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ABSTRACT: Intense wind shear (I-WS) near airport runways presents a critical challenge to aviation safety, necessi-
tating accurate and timely classification to mitigate risks during takeoff and landing. This study proposes the application
of advanced Residual Network (ResNet) architectures including ResNet34 and ResNet50 for classifying I-WS and Non-
Intense Wind Shear (NI-WS) events using Doppler Light Detection and Ranging (LiDAR) data from Hong Kong
International Airport (HKIA). Unlike conventional models such as feedforward neural networks (FNNs), convolutional
neural networks (CNNs), and recurrent neural networks (RNNs), ResNet provides a distinct advantage in addressing
key challenges such as capturing intricate WS dynamics, mitigating vanishing gradient issues in deep architectures,
and effectively handling class imbalance when combined with Synthetic Minority Oversampling Technique (SMOTE).
The analysis results revealed that ResNet34 outperforms other models with a Balanced Accuracy of 0.7106, Probability
of Detection of 0.8271, False Alarm Rate of 0.328, F1-score of 0.7413, Matthews Correlation Coefficient of 0.433, and
Geometric Mean of 0.701, demonstrating its effectiveness in classifying I-WS events. The findings of this study not
only establish ResNet as a valuable tool in the domain of WS classification but also provide a reliable framework for
enhancing operational safety at airports.
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1 Introduction
Wind shear (WS) poses a critical and often undetectable aerodynamic hazard to pilots, defined by

sudden and significant gradients in wind speed and direction over localized spatial intervals. These rapid
atmospheric disturbances pose severe risks during flight phases demanding high precision and stability, par-
ticularly during climb-out or approach near runway thresholds. Aircraft encountering WS are subjected to
abrupt trajectory perturbations, triggering rapid variations in indicated airspeed, lift coefficients, and control
authority, thereby compromising aerodynamic stability and flight path management. This destabilization
greatly heightens the risk of adverse events such as runway overruns missed approaches and in extreme
cases complete loss of aircraft control [1,2]. The International Civil Aviation Organization (ICAO) define WS
as a sudden change in wind speed and/or direction over a short distance, either vertically or horizontally,
exceeding 14 knots. In more intense cases, where the change exceeds 25 knots, it can critically impact flight
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stability and pose substantial challenges to pilot control during the vital phases of flight, such as takeoff and
landing [3].

Airports worldwide are equipped with advanced Low-Level Wind Shear Alert Systems (LLWAS) to
ensure aviation safety during critical phases of flight such as takeoff and landing. LLWAS technologies vary by
airport and typically include Anemometer Networks [4,5], which are ground-based sensors measuring wind
speed and direction at multiple points around an airport. Doppler Radar Systems such as Terminal Doppler
Weather Radar (TDWR) and Doppler Light Detection and Ranging (LiDAR) systems are specialized radar
system designed to detect hazardous weather phenomena such as WS, microbursts, and gust fronts in the
vicinity of airports [6,7]. In USA, Federal Aviation Administration (FAA) mandates LLWAS deployment
at major airports such as Denver International Airport (DIA), Hartsfield-Jackson Atlanta International
Airport (ATL), and Dallas/Fort Worth International Airport (DFW), prone to WS due to hurricane or
mountainous regions. Singapore Changi Airport (SIN) is equipped with LLWAS to detect WS in tropical
monsoon environments. Dubai International Airport (DXB) uses LLWAS combined with advanced radar
systems to enhance aviation safety in arid and variable wind conditions. Tokyo Narita Airport (NRT) employs
LLWAS with anemometer networks to detect and mitigate the impact of WS on runway operations [8].
Doppler LiDAR systems at Hong Kong International Airport (HKIA) are specifically designed to detect WS
caused by the interaction of mountain waves with the complex terrain surrounding the airport [9].

These advanced systems are highly effective in accurately detecting WS events in real time [10,11].
However, their ability to predict the future occurrence of intense wind shear (I-WS) remains limited. The lack
of predictive capabilities presents a critical challenge to aviation safety, as the ability to forecast hazardous
wind conditions in advance is vital for avoiding flight disruptions and ensuring the safety of takeoffs and
landings. This gap emphasizes the potential of predictive models to significantly enhance aviation safety
by employing advanced algorithms to forecast hazardous WS events, enabling proactive measures and
improving operational reliability during critical flight phases.

2 Literature Review
Numerous studies have explored the application of machine learning (ML) and deep learning (DL)

models in improving aviation safety by addressing both meteorological and operational aspects. From the
meteorological aspect, several studies were carried using both ML and DL models such as Extreme Gradient
Boosting (XGBoost) was used for the time series forecasting of I-WS at HKIA [12]. In another study, Artificial
Neural Network (ANN) models were employed to predict short-term wind gusts at airports, focusing on
meteorological data to enhance forecasting precision [13]. A Dual-Channel Convolutional Neural Network
(CNN) and hybrid Dense Convolutional Network model with a Squeeze-and-Excitation (SE-DenseNet)
were applied to predict flight delays [14]. In a related study, a Chaotic Oscillatory-based Neural Network
(CONN) was used to forecast WS and turbulence [15]. Wind field characteristics along the glide slope
of airport runways were assessed using an Explainable Boosting Machine (EBM) framework, providing
valuable insights into WS risk assessment [16]. Similarly, a model was developed to predict turbulence risk
by incorporating advanced data analysis techniques to improve operational safety in challenging weather
conditions [17].

From an operational standpoint, several studies have aimed to improve predictive models for air-
port operations. A Self-Paced Ensemble (SPE) strategy combined with XGBoost was to assess missed-
approaches [18]. Aircraft landing times at Singapore Changi International Airport were estimated using the
Extra Tree (ET) algorithm, a critical tool for optimizing aircraft arrival scheduling [19]. In addition, Long
Short-Term Memory (LSTM) models were applied to predict aircraft boarding times, which contributed
to the optimal airport operations [20]. While these models have demonstrated significant potential across
various aspects, they have certain limitations [21–24]. For instance, CNNs are highly effective at capturing
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spatial relationships within data, but they often struggle to model long-term dependencies and can become
computationally expensive as the depth of the network increases [25]. RNNs are adept at handling sequential
data but they are prone to issues such as the vanishing gradient problem, particularly when dealing with long
sequences [26]. These shortcomings restrict their capacity to effectively learn and capture intricate patterns
within large datasets.

In contrast, Deep Residual Networks (ResNet) effectively address the vanishing gradient problem by
incorporating skip (residual) connections. These connections enable gradients to bypass intermediate layers
and flow directly to earlier layers, ensuring stable training and reducing the risk of gradient disappearance
in very deep networks. They are powerful DL model that has proven to be highly effective across various
engineering domains such as detecting structural defects [27], assessing passenger flow at urban public
transportation hubs [28], diagnosis of faults in rotating machinery [29], and air quality assessment [30],
etc. They are highly effective in in handling complex structured data [31–33]. However, to the best of our
knowledge, their potential remains largely unexplored in the aviation safety domain.

This paper introduces the application of ResNet for classifying WS intensity using data from Doppler
LiDAR. The proposed approach utilizes the ability of ResNet to capture complex relationships among critical
parameters, including the month of the year, time of day, assigned approach and departure runways, and
WS encounter location relative to the runway. These parameters are essential for accurately estimating
WS intensity near airport runways. The ResNet architecture is designed to address the vanishing gradient
problem, which often arises in deep neural networks when training on complex datasets [34]. This issue is
particularly prevalent when using models with many layers. ResNet solves this through its residual learning
mechanism, allowing errors to propagate effectively through the network’s layers, ensuring that the model
can learn complex data patterns that contribute to I-WS events. For the task of WS intensity classification,
ResNet combines fully connected layers, residual blocks, and batch normalization to produce a reliable model
capable of accurately predicting intense WS. In this study, two ResNet architectures including ResNet34 and
ResNet50 are evaluated for their effectiveness in classifying WS intensity. These architectures differ primarily
in their depth:

• ResNet34 is a shallower model with 34 layers, providing a balanced approach between model complexity
and computational efficiency [35]. It effectively captures important patterns in WS data, such as temporal
and seasonal variations, while maintaining lower computational costs.

• ResNet50 with its 50 layers is a deeper architecture capable of extracting more nuanced patterns from
complex datasets [36]. The additional depth allows ResNet50 to handle more intricate interactions
between Doppler LiDAR data, which enhances the classification accuracy of intense WS events.
However, it requires more computational resources compared to ResNet34.

Another major challenge in classifying WS intensity classification lies in the imbalanced nature of
the Doppler LiDAR dataset, where I-WS events are much rarer than NI-WS events. To mitigate this
imbalance and ensure that the model does not favor the majority class (NI-WS), the dataset is balanced using
the Synthetic Minority Over-sampling Technique (SMOTE) [37]. SMOTE generates synthetic samples of
the minority class (which is I-WS in our case) to ensure that both classes are adequately represented in the
training data, improving the ability of model classify rare but critical I-WS events accurately. Both ResNet34
and ResNet50 architectures, combined with SMOTE to address class imbalance, ensure balanced learning
by mitigating bias toward the majority class and improving the accurate classification of rare I-WS events.
Key contributions of this research can be summarized as follows:

1. Introduction of a novel DL method for WS intensity classification using ResNet architectures using
Doppler LiDAR data from HKIA.
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2. Effective handling of class imbalance through the application of SMOTE, ensuring both I-WS and NI-
WS events are properly represented in the training process.

3. Evaluation of two specific architectures of ResNet, i.e., ResNet34 and ResNet50, to assess their
effectiveness in classifying WS intensity.

4. Utilization of residual learning mechanisms to address the vanishing gradient problem, ensuring that
the models are capable of learning deep and complex patterns in WS data.

The following sections of the paper are organized as follows: Section 3 details the research methodology,
including data collection via Doppler LiDAR at HKIA, working principle of Doppler LiDAR, and the
overview of proposed ResNet architectures. Section 4 presents the results by comparing ResNet models with
baseline models using various performance metrics. Section 5 concludes by summarizing the findings and
their significance for improving aviation safety.

3 Research Methodology

3.1 WS Vulnerability at Hong Kong International Airport
HKIA has long been recognized as particularly vulnerable to WS events since its operations began in

1998 [38–41]. It is situated in the northern part of Lantau Island, which is surrounded by diverse and complex
terrain. It includes low-lying areas with altitudes up to 300 m, while mountainous peaks in the southern
region rise to elevations as high as 900 m. This topography exacerbates WS occurrences by distorting the
airflow, leading to phenomena like mountain waves and gap flows, which pose significant challenges to
aircraft during landing and takeoff operations. HKIA has a total of three runways including the north, central,
and south, each oriented at 070○ and 250○ as illustrated in Fig. 1. This runway layout supports twelve different
operational configurations that allow for the bidirectional use of these runways for both takeoff and landing.
For instance, the code ‘25RD’ represents a departure operation (‘D’ for departure) on the north runway (‘R’
for right), aligned with a heading of 250○ as shown by blue arrow. Similarly, the code ‘07CA’ shows the arrival
operation (‘A’ for Arrival) in the central runway (‘C’ for Central), aligned with a heading 070○.

South RWY Central RWY North RWY

Lantou 
Island

Figure 1: HKIA airport sounding terrain and runway system

3.2 Doppler LiDAR at HKIA
HKIA employs two Doppler LiDAR systems to monitor wind conditions and detect WS near runways.

These Doppler LiDAR supplied by Mitsubishi Electric are designed to detect WS and turbulence under non-
precipitation conditions [42]. These systems rely on a single-frequency pulse laser that captures movements
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of dust and tiny particulates in the air for precise atmospheric measurements. They are strategically
positioned to provide comprehensive coverage of the approach and departure runways of the airport as
shown in Fig. 2. One of the Doppler LiDARs is located at the rooftop of a metal platform adjacent to the
Midfield Concourse. This LiDAR continuously scans the departure and approach runways focusing on the
central and southern runways including 07RA, 25LA, 07RD, and 25LD. Another is the North Runway LiDAR,
which is situated near the middle of the new North runway. This LiDAR is dedicated to monitoring the
approach and departure paths of northern runway and covers 07LA, 25RA, 07LD, and 25RD. These Doppler
LIDAR systems provide detailed insights into critical parameters, which as follows:

• The LiDAR outputs provide precise measurements of headwind gain and loss, enabling the quantification
of WS intensity along the glide path of arriving and departing aircraft.

• Each recorded WS event is accurately time-stamped, providing a temporal context that allows for
analysis of event frequency, patterns, and seasonal or diurnal variations.

• The systems are configured to measure WS events at various distances along the glide path, providing
spatially resolved data relative to the touchdown zone of the runway. This information is crucial for
understanding where hazardous wind conditions occur.

Midfield 
Concourse 

LiDAR

North 
RWY 

LiDAR

Figure 2: 2 x Doppler LiDAR systems located near northern and central runway of HKIA

3.3 Working Principle of Doppler LiDAR
The Doppler LiDAR system at HKIA operates with an infrared wavelength of approximately 1.5 microns.

It has the ability to provide radial resolution of 100 m (range gate) and can compute maximum radial speeds
of up to 40 m/s. In clear weather, it can achieve an observation range of 10 to 15 km. However, its performance
is notably affected by adverse weather conditions, such as typhoons or heavy rainfall, where the effective
range is reduced to under 0.5 km. To enhance its functionality, the system conducts routine plan-position
indicator (PPI) scans and is configured for glide path scans along flight paths used during take-off and
landing. These glide path scans provide vital insights into the headwind profiles along the runway approaches,
enabling precise detection and monitoring of WS conditions. In addition, the laser scanner head of this
system is designed for controlled movement in both vertical and azimuthal planes, ensuring comprehensive
and precise data acquisition along the glide paths. The glide path scans performed by the two Doppler
LiDAR systems at HKIA capture headwind profile data by measuring radial speed. With a revisit interval of
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approximately one minute, these scans ensure that headwind profiles are updated every minute, providing
real time information on wind conditions. This prompt update is critical for detecting WS hazards.

Once the headwind component profiles are generated, the GLYGA algorithm [43] is used to process
them. It identifies abrupt changes in headwind profile, known are known as WS ramps and computes a speed
increment profile by evaluating the difference between consecutive data points within the headwind profile.
Each detected ramp is assigned a severity factor (Ω), which increases with both the headwind increment
and the inverse cube root of the ramp length (L). This strategy prioritizes the most I-WS events. When the
headwind increment exceeds the threshold of 14 knots at HKIA, automatic warnings are triggered to alert
air traffic control and pilots of potential WS conditions as shown in Fig. 3.
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Figure 3: Example of headwind profile showing a peak of 18 knots wind speed

Let the headwind component at a specific location, denoted as S (wi), corresponds to the wind data at
point wi along the glide path. To quantify changes in wind speed, the speed increment at a given location is
computed over a defined ramp length (γ). The speed increment ΔV (wi) is calculated using Eq. (1).

ΔV (wi) = S (wi) − S (wi−1) (1)

where S (wi) and S (wi−1) are the headwind components at two consecutive points along the glide path.
This computation captures the variability in wind conditions, which is critical for assessing the aerodynamic
stability of the aircraft. The intensity of wind effects on the approach is further evaluated by determining the
severity factor (Φ). It quantifies the impact of WS based on the magnitude of wind speed changes ΔV (wi)
along the glide path and the approach speed Va of the aircraft. It is calculated as the cube of the speed
increment, scaled by the inverse square of the approach speed of the aircraft as given by Eq. (2).

Φ = (ΔV
γ
)

3

⋅ ( 1
Va
)

2
(2)

Fig. 4 shows an example of Doppler LiDAR observations at HKIA during the night from 24 March to 25
March 2022. The Figure illustrates conical scans in the center with headwind profiles displayed on both sides.
A vortex is shown by a red arrow. The middle panels include grey lines extending outward marked at 1, 2 and
3 nautical miles from the runway ends and the corresponding headwind profiles along these lines are shown
on either side. The headwind profiles along the glide paths which are straight lines angled at 3○ glide path
above the horizon leading to the runway where aircraft approach for landing reveal noticeable fluctuations.
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Figure 4: Doppler LiDAR WS observations at HKIA

3.4 Theoretical Overview of Deep Residual Networks (ResNet)

ResNet was developed to overcome the challenges associated with training very deep networks, such as
the vanishing gradient problem. As the number of layers increases in a deep neural network, the gradients
during back-propagation become extremely small, which makes it difficult to update weights effectively.
ResNet addresses this challenge by introducing residual learning through skip connections, which allows
the network to learn the residual (difference) between the input and output, instead of directly learning a
transformation from input to output. Below is the discussion of different components.

In traditional deep neural networks, each layer learns a mapping H (x) where x is the input, and the
output y = H (x). However, as the depth of the network increases, learning this mapping becomes more
difficult due to the vanishing gradient problem. In ResNet, instead of learning H (x) directly, the network
learns the residual function F (x) = H (x) − x, and thus the original function is shown in Eq. (3).

y = F (x) + x (3)

This residual connection (or skip connection) ensures that if the learned residual is close to zero, the
network simply outputs the input, preserving the information across layers. Each residual block starts with
an input, which in our class is the input data such as assigned runway, WS magnitude and WS encounter
from the runway threshold, etc. This input x is first passed through a series of transformations. First, the
input x is passed through a convolutional layer to give transformed input as illustrated in Eq. (4).

z1 =W1 − x (4)
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Here, W1 represents the weights of the first convolutional layer, and z1 is the transformed input. The
transformed input output z1 is normalized using Batch Normalization to stabilize the learning process and
is then passed through a ReLU activation function to introduce non-linearity is given in Eq. (5).

a1 = σ (BatchNorm (z1)) (5)

where, σ represents the ReLU activation function. The activated output a1 is passed through another
convolutional layer:

z2 =W2 ⋅ a1 (6)

where, W2 represents the weights of the second convolutional layer. The result from the second convolution
z2 is added to the original input x (skip connection).

y = z2 + x (7)

This addition allows the network to learn the residual F (x), making it easier for the deeper network to
update weights. The combined output y is optionally passed through another activation function, typically
ReLU.

yout = σ (y) (8)

This completes the forward pass of a residual block, allowing the output yout to be passed to the
next layer. Furthermore, there are two specific architectures of ResNet, i.e., ResNet34 and ResNet50. The
architecture ResNet34 consists of 34 layers, with multiple residual blocks, each containing two convolutional
layers. The depth of the network is moderate, making it efficient for tasks like WS intensity classification while
balancing computational complexity. ResNet50, on the other hand, uses 50 layers, and in each residual block,
it introduces a bottleneck block to reduce the number of parameters. This is done by adding a 1× 1 convolution
layer before and after the 3 × 3 convolution layers, reducing the dimensionality and computational cost while
increasing depth.

For forward propagation in ResNet, the residual blocks are stacked across multiple layers. The input
at each layer undergoes the same process of convolutions, activations, and residual additions, as described.
With each forward pass, the model efficiently learns the residual mappings, which help propagate useful
information through the network. The deeper architecture (such as ResNet50) is advantageous for capturing
more complex relationships in the data that influence the WS intensity. During training, the model optimizes
its parameters by minimizing a loss function that quantifies the discrepancy between the predicted and actual
WS intensity labels. In binary classification tasks, such as distinguishing between I-WS and NI-WS, the most
commonly used loss function is binary cross-entropy [44]. This function is defined as:

Γ (y, ŷ) = − [y log ( ŷ) + (1 − y) log (1 − ŷ)] (9)

where, y is the true label (0 or 1 for NI-WS or I-WS), ŷ is the predicted probability of the positive class (I-WS),
and Γ (y, ŷ) represents the error between the true and predicted labels.

3.5 Performance Measures
In this study, the effectiveness of the different DL and ML classification models for the WS intensity

classification is assessed using several key performance metrics, including Precision, Probability of Detection
(PoD), F1-score, False Alarm Rate (FAR), Matthews Correlation Coefficient (MCC), G-Mean, and Balanced
Accuracy (BA). Precision reflects how accurately the classification model identifies I-WS among all positive
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classifications. PoD quantifies the ability of model to correctly identify I-WS events relative to all actual
occurrences of I-WS. The F1-score provides a balanced evaluation by combining precision and PoD into a
single metric, ensuring that both false positives (FP) and false negatives (FN) are considered. FAR measures
the proportion of incorrect positive predictions (false alarms) relative to all predicted positive case. MCC
is a more comprehensive metric that evaluates the correlation between actual and predicted classifications,
taking into account both true and false results, making it particularly useful when dealing with imbalanced
datasets. G-Mean captures the balance between sensitivity and specificity, ensuring that the classification
model performs well across both positive and negative classes. Finally, BA adjusts for class imbalance by
averaging the recall for each class. The mathematical expressions for each metric are shown in Eqs. (10)–(15).

Precision = TP
TP + FP

(10)

Recall or PoD = TP
TP + FN

(11)

FAR = FP
TP + FP

(12)

G −Mean =
√
( TP

TP + FN
)( TN

FP + TN
) (13)

BA = 1
2
( TP

TP + FN
+ TN

TN + FP
) (14)

MCC = TP × TN − FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(15)

4 Results and Discussions

4.1 Details of Model Development
To assess the performance of the our proposed ResNet and other competitive baseline classification

models, the data was collected from Doppler LiDAR at HKIA from 2017 to 2021. The data include DATE-
TIME: Timestamp of the WS data captured at specific intervals. RUNWAY: Represents the approaching and
departing runways such as 07RA and 25LD. MAGNITUDE: Represents the measured WS intensity in knots,
with positive values indicating headwind gain and negative values representing headwind loss. LOCATION:
Specifies the exact encounter location of WS from the RWY. Table 1 illustrates the sample data of I-WS event
obtained from the Doppler LiDAR of HKIA.

Table 1: Sample I-WS data from the Doppler LiDAR of HKIA

DATETIME RUNWAY MAGNITUDE LOCATION
2021-11-23 @17:10 07RA −40 2MF

2021-09-25 @19:06 25RD −36 1MF
2021-07-13 @03:22 07RD +37 RWY
2021-04-25 @12:06 25RA −36 1MF
2020-07-26 @ 04:41 07RA −38 1MF

(Continued)



1574 Comput Model Eng Sci. 2025;142(2)

Table 1 (continued)

DATETIME RUNWAY MAGNITUDE LOCATION
2020-01-13 @ 23:17 07RD +33 1MF
2019-05-06 @13:28 07LA −36 3MF
2019-02-23 @22:27 25LD +39 RWY

In this research, we have formulated a binary classification problem for WS events. The classification is
based on the absolute magnitude of the WS event:

• WS events with a magnitude equal to or greater than 25 knots are designated as I-WS, represented by
the class label 1.

• WS events with a magnitude less than 25 knots are designated as NI-WS, represented by the class label
0.

The mathematical expression for this classification can be written as Eq. (16).

Cl ass (WS) = {1, i f ∣Magnitude∣ ≥ 25knots
0, i f ∣Magnitude∣ < 25knots (16)

This binary classification is crucial for the study as it allows the separation of WS events into intense and
non-intense categories for better prediction and mitigation strategies. Prior to training, the SMOTE is applied
to balance the training dataset, ensuring that the models are trained on a more balanced representation of
I-WS and NI-WS events. In the original training data as shown by pie chart on the left side in Fig. 5, Class
0 (NI-WS) dominates with 97.9% of instances (262,270), while Class 1 (I-WS) accounts for only 2.1% (5517
instances). This significant imbalance can result in biased models that perform poorly when predicting the
minority class (I-WS). After applying SMOTE (right pie chart), both classes are perfectly balanced, each
representing 50.0% of the dataset with 262,270 instances. By balancing the dataset, SMOTE ensures that DL
models can better identify patterns for the minority class (I-WS) and avoid bias toward the majority class
(NI-WS). This adjustment enhances the ability of model to accurately detect rare but critical I-WS events,
improving prediction reliability.

Following the data preprocessing via SMOTE, two ResNet architectures were utilized for the classi-
fication of WS intensity. ResNet34 Architecture involved training a ResNet34 model from scratch using
Doppler LiDAR data. The goal was to classify WS intensity effectively by utilizing the ability of model to
learn intermediate-level patterns. A ResNet50 model was also trained from scratch, designed to capture more
intricate patterns in the data. Its deeper architecture aims to improve classification accuracy by extracting
more detailed and complex features. In addition, other DL models including Fully Connected Neural
Network (FNN) (Baseline), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN)
and supervised ML models including K-Nearest Neighbors (KNN) and Gene Expression Programming
(GEP) were used as baseline models for comparison. In case of DL models, Tables 2 and 3 summarize the
different hyperparameters used for these models in the WS intensity classification task. The optimizer plays
a critical role in ensuring the stability and effectiveness of the proposed WS intensity classification models.
Therefore, Stochastic Gradient Descent (SGD) optimizer is employed for the FNN classifier, while the Adam
optimizer is used for the CNN, RNN, and ResNet models. For the ResNet34 model, a learning rate of 0.001
is used. Similarly, a batch size of 200 is selected based on experimental results, which indicate that larger
batch sizes contribute to a balance between training accuracy and model convergence. In contrast, for the
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ResNet50 model, a smaller learning rate of 0.0001 is utilized. This strategy allows the deeper architecture to
converge more gradually. This also prevent overfitting while enabling the model to effectively capture the
intricate complexities of WS intensity variations.

Figure 5: Untreated and SMOTE-treated data of Doppler LiDAR

Table 2: Hyperparameters for different DL models for WS intensity classification

Model Epochs Optimizer Batch
size

Kernel
size

Activation
function

Learning
rate

Weight
decay

Number of
parameters

Number
of total
layers

FNN
(Baseline)

50 SGD 32 12 Sigmoid 10−4 – ~4 4

CNN
(Baseline)

50 Adam 10 3 × 3 Sigmoid 3 × 10−4 10−4 0.90 M 21

RNN
(Baseline)

50 Adam 64 3 × 3 Sigmoid 10−3 10−4 0.60 M 30

ResNet34
(Scenario 1)

50 Adam 128 3 × 3 Non-linear 10−3 10−4 20.0 M 34

ResNet50
(Scenario 2)

50 Adam 128 3 × 3 Non-linear 10−4 10−4 22.5 M 50

Table 3: Hyperparameters for different ML models for WS intensity classification

Model Max
depth

Population
size

Tournament
size

Stopping
criteria

Generations n_neighbors Weights Leaf size

GEP 5 2000 20 0.95 20 – – –
KNN – – – – – 5 uniform 30
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Fig. 6 illustrates the training progress of the ResNet34 and ResNet50 architectures for WS intensity
classification, focusing on accuracy and loss function over both the training and testing phases over 50
epochs. Both the training loss (blue line) and validation loss (orange line) decrease steadily during the initial
epochs and stabilize after around 15–20 epochs. The gap between training and validation loss is minimal,
indicating a good fit of the models without significant overfitting. Both the models demonstrate consistent
learning, with both losses converging, illustrating that it is well-trained and generalized effectively.

Figure 6: Training progress of ResNet34 and ResNet50 Models for WS intensity classification: (a) Loss vs. Epoch,
illustrating the decrease in error over time for both training and testing data, (b) Accuracy vs. Epoch showing the
improvement in classification performance as the models converge

4.2 Performance Evaluation
The performance of proposed ResNet models and other competitive models in the WS intensity

classification task is illustrated using the Confusion Matrix, Receiver Operating Characteristic (ROC)
Curve, and Precision-Recall (PR) Curve as shown in Fig. 7. The confusion matrix provides an intuitive
understanding of the ability of model to correctly classify both I-WS and NI-WS events by displaying
the true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). Fig. 7a shows
the confusion matrix for the ResNet34 model illustrates its performance in classifying NI-WS and I-WS
events. The model correctly predicted 66,677 cases of NI-WS (true negatives) and 93,122 cases of I-WS (true
positives). However, it misclassified 45,542 NI-WS cases as I-WS (false positives) and 19,463 I-WS cases as
NI-WS (false negatives). Fig. 7b shows ROC curve for the ResNet34 model illustrates its performance in
distinguishing between NI-WS and I-WS across various classification thresholds. The curve plots the True
Positive Rate (TPR or Sensitivity) against the False Positive Rate (FPR) at different thresholds. The orange
line represents the performance of ResNet34 performance while the green dashed line is the 45-degree
baseline, representing random guessing. The Area Under the Curve (AUC) is 0.78, indicating a reasonably
good discriminatory ability of the ResNet34 model to differentiate between the two classes. An AUC of
0.78 shows that the model has a 78% chance of correctly distinguishing between an NI-WS and an I-WS
instance. Similarly, the Precision-Recall (PR) curve for the ResNet34 model as shown in Fig. 7c evaluates its
performance in distinguishing between NI-WS and I-WS, focusing on the trade-off between precision and
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recall or PoD at various classification thresholds. The orange line represents the PR curve of the ResNet34
model, while the green dashed line shows the baseline precision, which corresponds to the proportion of
positive samples in the dataset. The model achieves an Average Precision (AP) score of 0.74, indicating a
moderately good ability to balance precision and recall or PoD across thresholds.

Figure 7: (Continued)



1578 Comput Model Eng Sci. 2025;142(2)

Figure 7: (Continued)
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Figure 7: (a) Confusion matrix for ResNet34, (b) ROC curve for ResNet34, (c) Precision-recall curve for ResNet34,
(d) Confusion matrix for ResNet50, (e) ROC curve for ResNet50, (f) Precision-recall curve for ResNe50, (g) Confusion
matrix for CNN, (h) ROC curve for CNN, (i) Precision-recall curve for CNN, (j) Confusion matrix for FNN, (k)
ROC curve for FNN, (l) Precision-recall curve for FNN, (m) Confusion matrix for RNN, (n) ROC curve for RNN, (o)
Precision-recall curve for RNN, (p) Confusion matrix for KNN, (q) ROC curve for KNN, (r) Precision-recall curve for
KNN, (s) Confusion matrix for GEP, (t) ROC curve for GEP, (u) Precision-recall curve for GEP

The performance of ResNet50 can also be evaluated through its confusion matrix, ROC curve, and
Precision-Recall (PR) curve as illustrated in Fig. 7d–f, ResNet50 correctly classified 66,996 NI-WS cases and
92,620 I-WS cases. However, it misclassified 45,223 NI-WS cases as I-WS and 19,965 I-WS cases as NI-WS.
Compared to ResNet34, ResNet50 shows a slight increase in I-WS but also a small rise in false negatives,
indicating a comparable but slightly varied classification ability. The ROC curve for ResNet50 has an AUC
of 0.78, identical to ResNet34. This shows that both models have the same overall ability to discriminate
between NI-WS and I-WS. The similarity in AUC indicates that there is no significant improvement in overall
classification performance when moving from ResNet34 to ResNet50. ResNet50 achieves an AP score of
0.74, matching the performance of ResNet34. The PR curve for ResNet50 shows similar behavior, with high
precision at low recall and a gradual decline in precision as recall increases. This indicates that both models
balance precision and recall or PoD to a similar degree.

CNN model correctly classified 67,534 NI-WS cases and 82,898 I-WS cases. However, it misclassified
44,685 NI-WS cases as I-WS (false positives) and 29,687 I-WS cases as NI-WS (false negatives) as shown
in Fig. 7g–i. Compared to ResNet34 and ResNet50, CNN has fewer I-WS than ResNet34 and ResNet50,
indicating a lower ability to identify I-WS cases accurately. It has higher false negatives (I-WS misclassified as
NI-WS), which is critical in safety-related tasks like WS detection. However, CNN has a slightly lower false
positive rate compared to ResNet50, showing marginally better specificity. The ROC curve of CNN shows an
AUC of 0.73, which is lower than both ResNet34 and ResNet50. This indicates that CNN has weaker overall
discriminatory power between NI-WS and I-WS classes. Similarly, the CNN achieves an AP score of 0.69,
which is also lower than ResNet34 and ResNet50. This indicates that CNN struggles to maintain a balance
between precision and recall or PoD, particularly at higher recall values.

The performance of the FNN model can be assessed using its confusion matrix, ROC curve, and PR
curve. The FNN correctly identified 78,759 NI-WS cases and 69,775 I-WS cases as illustrated in Fig. 7j–l. It
has misclassified 33,460 NI-WS cases as I-WS and 42,810 I-WS cases as NI-WS. Compared to ResNet34 and
ResNet50, FNN demonstrates a higher true negative rate, with fewer NI-WS cases being misclassified as I-WS
compared to the ResNet models. However, its true positive rate is lower, as it fails to classify a larger number



1580 Comput Model Eng Sci. 2025;142(2)

of I-WS cases correctly, indicated by the higher false negatives. The FNN model achieved an AUC of 0.73,
which is slightly lower than the AUC of 0.78 for both ResNet34 and ResNet50. This indicates that FNN has
weaker classification between NI-WS and I-WS classes. The PR curve reveals an AP score of 0.70, which is
slightly better than CNN (AP = 0.69) but lower than ResNet34 and ResNet50 (AP = 0.74). This shows that
FNN maintains a reasonable balance between precision and PoD, although it lags behind the ResNet models
in overall effectiveness.

The performance of the RNN can be evaluated using its confusion matrix, ROC curve, and PR curve as
shown in Fig. 7m–o. The RNN correctly identified 59,808 NI-WS cases and 90,042 I-WS cases. It misclassified
52,411 NI-WS cases as I-WS and 22,543 I-WS cases as NI-WS. RNN shows improved classification of I-WS
cases compared to FNN, with fewer false negatives but it has a higher rate of false positives than ResNet34
and ResNet50, indicating less precision in classification between NI-WS and I-WS. The ROC curve for RNN
shows an AUC of 0.72, which is slightly lower than ResNet34 and ResNet50 (AUC = 0.78) but comparable to
CNN (AUC = 0.73) and FNN (AUC = 0.73). The ability of RNN to better classify two classes is slightly less
effective compared to ResNet models but is similar to that of CNN and FNN. The PR curve indicates an AP
score of 0.69, similar to CNN but slightly lower than FNN (AP = 0.70) and ResNet models (AP = 0.74).

In addition, we have also employed ML models including KNN and GEP for the WS intensity
classification. As shown in Fig. 7p–r, the KNN model classified 112,402 NI-WS cases correctly but failed to
classify any I-WS cases, resulting in 2364 false negatives and 0 true positives. This indicates that KNN has
completely failed to classify the I-WS class, classifying all instances as NI-WS. Unlike ResNet34, ResNet50,
CNN, FNN, and RNN, which all had varying levels of success in identifying both NI-WS and I-WS, the KNN
model fails entirely for I-WS detection. This shows that KNN may not handle the data distribution well in
this scenario, particularly for the minority class (I-WS).

The confusion matrix for the GEP model as shown in Fig. 7s–u also reveals its limitations in effectively
classifying WS events. The model correctly classified 46,666 instances of NI-WS events, demonstrating
moderate success in identifying the majority class. However, it misclassified a substantial 65,736 NI-WS
events as I-WS, reflecting a high false positive rate. For the minority class (I-WS), the model managed to
correctly identify 1743 cases but failed to recognize 621 I-WS events, which were misclassified as NI-WS. This
imbalance suggests that while GEP has some capability to detect critical I-WS events, it struggles to manage
the trade-off between sensitivity and specificity, particularly when dealing with the majority class. The ROC
curve for the GEP model indicates an AUC of 0.58, which is only slightly better than random guessing (AUC
= 0.5). This low AUC value reflects the limited ability of model to discriminate between NI-WS and I-WS
events across various thresholds. The PR curve shows an AP score of only 0.02, which is extremely low.
This indicates that the GEP model performs poorly in balancing precision and recall, particularly for the
minority class (I-WS). The curve shows a rapid decline in precision as recall increases, signifying that the
model generates a high number of false positives when attempting to identify I-WS events.

The performance measures presented in Table 4 shows the significant differences in the ability of various
DL and ML models to classify WS intensity effectively. Among the models, ResNet34 demonstrates the
best overall performance, achieving a balanced accuracy of 0.7106, recall (PoD) of 0.827, and F1-score of
0.7413. These metrics indicate its superior ability to accurately identify I-WS events while maintaining a
good balance between sensitivity and specificity. Similarly, ResNet50 performs comparably with only slight
decreases in balanced accuracy (0.7098) and F1-score (0.7397), showing the effectiveness of residual learning
mechanisms in capturing the complex dynamics of WS events. In contrast, baseline models like CNN, FNN,
and RNN show reduced performance, with lower F1-scores (0.6673 for CNN and 0.6466 for FNN) and higher
FAR, indicating struggles in achieving a balanced trade-off between false positives and false negatives. RNN
slightly outperforms FNN and CNN in recall (PoD) at 0.794 but still lags behind the ResNet architectures in
overall classification capability.
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Table 4: Performance measures of different DL and ML models in classifying WS intensity

Model Precision PoD F1-score MCC G-Mean FAR Balanced accuracy
ResNet34 (Scenario 1) 0.6716 0.827 0.7413 0.4333 0.701 0.328 0.7106
ResNet50 (Scenario 2) 0.6719 0.822 0.7397 0.4309 0.7008 0.328 0.7098

CNN (baseline) 0.6811 0.736 0.6673 0.3471 0.6731 0.350 0.6734
FNN (baseline) 0.6759 0.619 0.6466 0.3227 0.6595 0.326 0.6608
RNN (baseline) 0.6321 0.794 0.7061 0.3453 0.6529 0.364 0.6664
KNN (baseline) 0.959 0.979 0.962 0.0000 0.000 1.000 0.5000
GEP (baseline) 0.9671 0.4318 0.5735 0.044 0.5533 0.2627 0.5762

On the other hand, the performance of traditional ML models like KNN and GEP is notably inferior.
While KNN achieves high precision (0.959) and recall (0.979), its MCC is 0.0000, and its G-Mean is 0.000,
reflecting its complete failure to classify I-WS effectively. Similarly, GEP, despite its high precision of 0.9671,
suffers from poor recall (0.4318), F1-score (0.5735), and MCC (0.044), showing its inability to balance
the classification of both NI-WS and I-WS events. The high FAR (0.2627) for GEP further illustrates its
susceptibility to false positives, making it unsuitable for WS intensity classification task.

5 Conclusion and Recommendations
This study utilized Doppler LiDAR data from HKIA to classify WS intensity into I-WS and NI-

WS categories using ResNet34 and ResNet50 models, along with comparisons to traditional ML methods
including GEP and KNN, and baseline DL models including CNN, FNN, and RNN. Among all models,
ResNet34 proved to be the most effective, achieving a balanced accuracy of 0.7106, a recall (PoD) of 0.8271,
and an F1-score of 0.7413. This performance highlights its capability to classify rare but critical I-WS events
while maintaining a balance between sensitivity and specificity. ResNet50 showed comparable performance,
with a balanced accuracy of 0.7098 and an F1-score of 0.7397, establishing itself as the second best model.
In contrast, FNN as DL model performed the worst among DL models, with a balanced accuracy of
0.6608, recall of 0.619, and an F1-score of 0.6466, reflecting its limitations in handling imbalanced datasets
and capturing WS complexities. Similarly, the KNN model demonstrated poor performance, achieving a
balanced accuracy of 0.5000 and a recall of 0.979 for the majority class (NI-WS) while entirely failing to
classify the minority class (I-WS). This resulted in an MCC of 0.0000 and a G-Mean of 0.000, reflecting its
inability to handle class imbalance effectively. This shows the limitations of KNN in handling Doppler LiDAR
data and the complexity of WS dynamics. Given the significant safety implications of WS classification in
aviation, different recommendations can be provided:.

• It is recommended that ResNet34 be integrated into airport weather monitoring and safety systems to
enhance the detection of hazardous I-WS events. Its reliable performance ensures timely and accurate
identification of critical WS events, allowing for proactive measures to ensure aviation safety during
takeoffs and landings.

• Future studies could further optimize this framework by incorporating additional meteorological
parameters such as temperature, humidity, and wind turbulence, and exploring ensemble techniques to
improve generalization.

• Expanding the scope to airports in diverse geographical and meteorological settings would validate the
applicability of ResNet34 and effectiveness across different environments.
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Despite the promising results, the study has several limitations, which are as follows:

• The use of data from HKIA limits the generalization of the findings to other airports with differing terrain
and weather conditions.

• While SMOTE effectively addressed class imbalance in this study, it may not fully replicate the complex
relationships inherent in real-world datasets.

• The reliance on Doppler LiDAR data restricts the applicability of the approach in airports without such
systems. Future work should focus on overcoming these limitations by integrating multi data sources
and developing transferable models to improve the scalability of WS classification frameworks globally.
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Glossary/Nomenclature/Abbreviations
WS Wind Shear
ICAO International Civil Aviation Organization
FAA Federal Aviation Administration
LLWAS Low-Level Wind Shear Alert Systems
ResNet Residual Network
HKIA Hong Kong International Airport
LiDAR Light Detection and Ranging
I-WS Intense-Wind Shear
NI-WS Non Intense-Wind Shear
TDWR Terminal Doppler Weather Radar
ML Machine Learning
DL Deep Learning
CNNs Convolutional Neural Networks
RNNs Recurrent Neural Networks
PPI Plan-Position Indicator
SMOTE Synthetic Minority Over-sampling Technique
GEP Gene Expression Programming
KNN K Nearest Neighbour
MCC Matthews Correlation Coefficient
PoD Probability of Detection
FAR False Alarm Rate
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