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ABSTRACT: Since the plasticity of soil and the irregular shape of the excavation, the efficiency and stability of
the traditional local radial basis function (RBF) collocation method (LRBFCM) are inadequate for analyzing three-
dimensional (3D) deformation of deep excavation. In this work, the technique known as the direct method, where
the local influence nodes are collocated on a straight line, is introduced to optimize the LRBFCM. The direct method
can improve the accuracy of the partial derivative, reduce the size effect caused by the large length-width ratio, and
weaken the influence of the shape parameters on the LRBFCM. The mapping technique is adopted to transform the
physical coordinates of a quadratic-type block to normalized coordinates, in which the deformation problem can easily
be solved using the direct method. The stability of the LRBFCM is further modified by considering the irregular shape
of 3D excavation, which is divided into several quadratic-type blocks. The soil’s plasticity is described by the Drucker-
Prager (D-P) model. The improved LRBFCM is integrated with the incremental method to analyze the plasticity.
Five different examples, including strip excavations and circular excavations, are presented to validate the proposed
approach’s efficiency.
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1 Introduction

The excavation is a kind of retaining structure, which is usually performed in congested urban areas to
ensure the safety of the underground space [1,2]. The deformation is a key indicator used to assess the stability
of excavation. Investigators have carried out a lot of numerical methods to calculate and predict excavation
deformation [3,4], but some difficulties still exist in the numerical simulation of excavation. One of the
difficulties comes from the elastic-plasticity of soil. The Drucker-Prager (D-P) model [5,6], which is modified
from the Mises yield model and takes into account the influence of the first stress invariant, is usually used
to describe the plasticity in the soil. In order to deal with the elastic-plastic deformation, the incremental
theory is applied to reflect the influence of the stress path. However, the incremental theory is based on the
accurate and stable calculation in each incremental step, otherwise the error would continuously accumulate.
Additionally, the size effect caused by various excavation shapes is often present in excavation engineering,
such as the circular excavation [7,8]. The circular excavation shape can reduce the lateral deformation due
to the circumferential hoop force. Therefore, a three-dimensional (3D) geotechnical model with a relatively
complex shape is necessary for excavation simulation. A typical excavation is mainly composed of the soil
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and support structure which must be considered separately. In this structure, the support part typically has a
large length-width ratio. It is not efficient to use the same node arrays or elements in different axis directions
for this kind of 3D problem.

The finite element method (FEM) is commonly used to simulate the practical problems of excava-
tion [7,9,10]. Although the FEM has the advantages such as a simple principle and strong adaptability,
some meshless methods show advantages over the FEM in computational efficiency, accuracy, solving high-
dimensional problems, and handling complex geometries [11]. In the last decade, some meshless methods
were applied to solve boundary value problems, such as the method of the fundamental solution [12] and
the boundary knot method [13]. In order to avoid dense matrices, various localized techniques have been
employed, leading to the development of many different localized methods, such as the localized boundary
knot method [14] and the localized method of fundamental solutions [15]. The local radial basis function
collocation method (LRBFCM), which is modified from the global radial basis function collocation method,
and the interpolation calculation is applied in a local domain, is one of the famous localized meshless
methods [16–18]. By using LRBFCM, some elastic-plasticity problems and other nonlinear problems could
be solved [19–21]. Our tests have shown that the traditional LRBFCM is difficult to directly combine with
the incremental method for solving elastic-plastic excavation problems, as its accuracy and stability need
improvement. The traditional LRBFCM exhibits poor accuracy in solving first-order derivatives, as analyzed
in reference [11]. These first-order derivatives are prevalent in the excavation problems, as they arise not only
from the stress boundary conditions but also from the governing equations themselves. Additionally, the
accuracy of the RBF collocation method is greatly influenced by the value of the shape parameter. Although
there is no universal and simple method to obtain the optimal shape parameters so far, scholars have realized
that the shape parameters are mainly influenced by the Euclidean distances between collocation nodes
[22–24]. Zheng et al. [11] proposed the direct method, where the nodes on a straight line are used to construct
the first-order derivative matrix to address the instability problem in dealing with Neumann boundary
conditions. This method can also significantly improve the accuracy of the computation of first-order
partial derivatives. Through further research, the direct method can be extended to the partial derivative
computation for interior nodes to improve the computational accuracy and reduce the influence of shape
parameters [25]. Furthermore, we find the direct method could also improve calculation efficiency in the
simulation of the large length-width ratio shape problems, such as the excavation’s support structure in
this work.

In actual excavation engineering, excavations often have irregular shapes, which are difficult to describe
in simulations. There are many numerical methods available for solving problems with complex boundary
shapes, including the localized boundary knot method [14], the radial basis function collocation method
(RBFCM) [26], and the method of approximate particular solutions (MAPS) [27]. Zheng et al. [11] applied the
fictitious nodes method to optimized the LRBFCM to solve the arbitrary shape problems, but the efficiency of
describing irregular boundary shapes with this method is still not high enough for the excavation problems.
Wen et al. [28,29] proposed the mapping technique in the finite block method (FBM) for the shape problems.
By using the mapping technique, a quadratic-type domain was transformed from physical coordinates to
normalized coordinates. The partial differential operators in the irregular physical domain were addressed
by differential operators in the transformed normalized domain. The collocation nodes in this normalized
domain can be distributed uniformly [30,31]. In this paper, the mapping technique is applied to LRBFCM
to solve excavation problems. The irregular shape of the 3D excavation is described using several quadratic-
type blocks.

In this paper, the optimized LRBFCM is applied in 3D excavation deformation calculation. The direct
method and the mapping technique is employed to improve the traditional LRBFCM, making it possible
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to apply the LRBFCM to excavation problems and harnessing the algorithm’s advantages in accuracy
and efficiency.

2 LRBFCM and the Numerical Technique

2.1 Indroduction of the LRBFCM
In the formulation of LRBFCM, the field variable u can be approximated by

u(x) =
ns

∑
k=1

ϕ(∥x − xk∥)αk , (1)

where ns is the number of local nodes, αk is the undetermined coefficient, ϕ is radial basis function (RBF).
In this work, the following multi-quadratic (MQ) RBF is employed:

ϕ(rk) =
√

r2
k + c2,

where c is the shape parameter and rk = ∥x − x k∥ denotes the Euclidean distance between points x and xk .
For traditional LRBFCM, the nearest neighboring nodes of the observation node are usually employed as
the local nodes {x k}, 1 ≤ k ≤ ns . Fig. 1 shows the condition of the local nodes as ns = 5.

Figure 1: Sketch of the local nodes as ns = 5

In the local influence domain, x ∈ {x j}, 1 ≤ j ≤ ns , and the solution is approximated by

ū = ϕ̄α, (2)

where

ū = [u(x 1), u(x2), ⋅ ⋅ ⋅ , u(xns)]T ,
ϕ̄ = [ϕ(∥x j − xk∥)]1≤ j ,k≤ns

,

α = [α1 , α2, ⋅ ⋅ ⋅ , αns ]T .

The Eq. (2) can be rewritten as

α = ϕ̄−1ū. (3)



2150 Comput Model Eng Sci. 2025;142(2)

Substituting Eq. (3) into Eq. (1), the field quantity and its differential form can be expressed as

u(x) = ϕ′ϕ̄−1ū, (4)

L u(x) =L ϕ′ϕ̄−1ū, (5)

where L is the differential operator, ϕ′ = [ϕ(∥x − x 1∥), ϕ(∥x − x2∥), ⋅ ⋅ ⋅ , ϕ(∥x − xns∥)] and L ϕ′ =
[L ϕ(∥x − x 1∥), L ϕ(∥x − x2∥), ⋅ ⋅ ⋅ , L ϕ(∥x − xns∥)] are vectors with the size of 1 × ns . Let Φ̄ = ϕ′ϕ̄−1 and
L Φ̄ =L ϕ′ϕ̄−1. By strategically adding zero elements in appropriate positions, Φ̄ and L Φ̄ can be converted
into the global sparse vectors Φ̃ and L Φ̃ with the size of 1 × n, where n is the total number of global
collocation nodes:

local Φ̄⇒ global Φ̃, (6)
local L Φ̄⇒ global L Φ̃, (7)
local ū⇒ global ũ, (8)

where ũ = [u(x 1), u(x2), ⋅ ⋅ ⋅ , u(xn)] is the vector of field variable in the global domain. Then Eqs. (4)
and (5) can be expressed as

u(x) = Φ̄ū = Φ̃ũ, (9)
L u(x) =L Φ̄ū =L Φ̃ũ. (10)

The unknown field variable vector ũ can be derived from governing partial differential equations and
boundary conditions by considering Eqs. (9) and (10).

2.2 The Direct Method and Optimization of the Local Nodes
The direct method is adopted to optimize the local nodes. Instead of using the nearest neighboring

nodes, the direct method selects only the nearest nodes in the n direction as the local influence nodes to
calculate the first order partial derivative ∂u

∂n . Fig. 2 shows a condition of local points in 2D. As shown in
the figure, we use three points along the x-axis to express ∂u

∂x and another three points along the y-axis to
calculate ∂u

∂ y . This method can be fully extended to 3D conditions.

Figure 2: A condition of local points for the direct method
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The local influence points of direct method is on a one-dimensional line, rather than in a circular
configuration for two-dimension (or a spherical configuration for three-dimension). By introducing this
method, the accuracy, efficiency, and stability of excavation problems would improve obviously: Firstly, a
2D or 3D problem is transformed into a 1D problem, as the local nodes are collocated along a straight
line. This reduces the complexity of the calculation and improves the accuracy of the partial derivatives.
Secondly, the direct method employs much fewer local points, leading to improved calculation efficiency. The
direct method uses different nodes to address the partial derivatives in each coordinate direction, allowing
for different point spacings to be considered in different directions. This feature is crucial for large length-
width ratio shape problems, such as the support structure of excavation. Fig. 3 shows two different kinds
of collocation node arrangements for a 2 × 0.1 bar in 2D. For the traditional LRBFCM, nodes should be
uniformly distributed, as shown in Fig. 3a, to yield acceptable results. However, this arrangement results in
too little node spacing in the x-axis direction limited by the size in the y-axis direction. The sparser nodes in
x-axis, contrasting with y-axis, as shown in Fig. 3b, can be employed for the direct method and yield almost
the same result. The much fewer collocation nodes in the direct method lead to a significant improvement in
computational efficiency. Lastly, the influence of the shape parameters is greatly reduced by using the direct
method to optimize the traditional LRBFCM. Thus, the simulation results will have greater stability. As we
know, the optimal shape parameter of RBFs collocation method is primarily determined by the Euclidean
distances between the local nodes [22]. For the direct method, the positional relationship of the three local
points is stationary. The shape parameter c would have a sufficiently wide acceptable value range, which
would be further proposed in the examples in Section 5. In fact, we would use the value c/d instead of c in
the cases where d is the Euclidean distance between the nearest local nodes to adapt the shape parameter for
different d and further ensure the rationality of the shape parameter.

Figure 3: Collocation points for different methods

However, the direct method still requires the nodes to be neatly arranged in the direction of partial
derivative n. This means that the direct method can only be applied to a rectangular domain in 2D (or
a cuboid domain in 3D) directly. For the irregular-shaped domains, an additional technique needs to
be employed.

3 Coordinate Transform and Mapping Technique in 3D
To solve the irregular shape domain problems, we use the mapping technique to transform phys-

ical coordinates (x , y, z) of a block of quadratic-type into normalized coordinates (κ, η, ν), where
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−1 ≤ κ, η, ν ≤ 1. For the 3D problem, a normalised block with 20 seeds {(κi , ηi , νi)}, 1 ≤ i ≤ 20 is shown
in Fig. 4. The shape functions are given by

Ni =
1
8
(1 + κiκ)(1 + ηi η)(1 + νi ν)(κiκ + ηi η + νi ν − 2), i = 1, 2, 3, 4, 5, 6, 7, 8, (11)

Ni =
1
4
(1 − κ2)(1 + ηi η)(1 + νi ν), i = 9, 11, 17, 19, (12)

Ni =
1
4
(1 − η2)(1 + κiκ)(1 + νi ν), i = 10, 12, 18, 20, (13)

Ni =
1
4
(1 − ν2)(1 + κiκ)(1 + ηi η), i = 13, 14, 15, 16. (14)

Figure 4: Normalised block and its mapping seeds

The partial differentials of shape functions are:

∂Ni

∂κ
= κi

8
(1 + ηi η)(1 + νi ν)(2κiκ + ηi η + νi ν − 1), (15)

∂Ni

∂η
= ηi

8
(1 + κiκ)(1 + νi ν)(κiκ + 2ηi η + νi ν − 1), (16)

∂Ni

∂ν
= νi

8
(1 + κiκ)(1 + ηi η)(κiκ + ηi η + 2νi ν − 1), i = 1, 2, 3, 4, 5, 6, 7, 8, (17)

∂Ni

∂κ
= − 1

2
κ(1 + ηi η)(1 + νi ν), (18)

∂Ni

∂η
= 1

4
ηi(1 − κ2)(1 + νi ν), (19)

∂Ni

∂ν
= 1

4
νi(1 − κ2)(1 + ηi η), i = 9, 11, 17, 19, (20)

∂Ni

∂κ
= 1

4
κi(1 − η2)(1 + νi ν), (21)
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∂Ni

∂η
= − 1

2
η(1 + κiκ)(1 + νi ν), (22)

∂Ni

∂ν
= 1

4
νi(1 − η2)(1 + κiκ), i = 10, 12, 18, 20, (23)

∂Ni

∂κ
= 1

4
κi(1 − ν2)(1 + ηi η), (24)

∂Ni

∂η
= 1

4
ηi(1 − ν2)(1 + κiκ), (25)

∂Ni

∂ν
= − 1

2
ν(1 + κiκ)(1 + ηi η), i = 13, 14, 15, 16. (26)

Then the physical coordinate can be written as

x =
20
∑
i=1

Ni(κ, η, ν)xi , y =
20
∑
i=1

Ni(κ, η, ν)yi , z =
20
∑
i=1

Ni(κ, η, ν)zi , (27)

where (xi , yi , zi) are the physical coordinates corresponding to the mapping seeds (κi , ηi , νi). Then the
partial derivatives of field quantity are:

∂u
∂x
= 1

J
(∂u

∂κ
β11 +

∂u
∂η

β12 +
∂u
∂ν

β13) ,

∂u
∂y
= 1

J
(∂u

∂κ
β21 +

∂u
∂η

β22 +
∂u
∂ν

β23) ,

∂u
∂z
= 1

J
(∂u

∂κ
β31 +

∂u
∂η

β32 +
∂u
∂ν

β33) ,

(28)

where

J =

�������������������������������

∂x
∂κ

∂x
∂η

∂x
∂ν

∂y
∂κ

∂y
∂η

∂y
∂ν

∂z
∂κ

∂z
∂η

∂z
∂ν

�������������������������������

,

and the coefficients

β11 =
∂y
∂η

∂z
∂ν
− ∂y

∂ν
∂z
∂η

, β12 = −
∂y
∂κ

∂z
∂ν
+ ∂y

∂ν
∂z
∂κ

, β13 =
∂y
∂κ

∂z
∂η
− ∂y

∂η
∂z
∂κ

,

β21 = −
∂x
∂η

∂z
∂ν
+ ∂x

∂ν
∂z
∂η

, β22 =
∂x
∂κ

∂z
∂ν
− ∂x

∂ν
∂z
∂κ

, β23 = −
∂x
∂κ

∂z
∂η
+ ∂x

∂η
∂z
∂κ

,

β31 =
∂x
∂η

∂y
∂ν
− ∂x

∂ν
∂y
∂η

, β32 = −
∂x
∂κ

∂y
∂ν
+ ∂x

∂ν
∂y
∂κ

, β33 =
∂x
∂κ

∂y
∂η
− ∂x

∂η
∂y
∂κ

.

By utilizing the mapping technique, the partial derivatives in the physical coordinate system of a
quadratic-type block can be expressed in terms of partial differentials in the normalized coordinate system.
In this normalized domain, the direct method, as described in Section 2.2, can be applied. For irregular
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shapes, such as circular excavation, the calculational domain should be subdivided into several quadratic-
type blocks, and the interpolation is implemented in each block individually. Further details on the mapping
technique can be found in references [28–31].

4 Governing Equations

In the excavation, the support structure is modeled as an elastic material, while the soil is simplified as
an elastic-plastic body. This section provides a brief overview of elastic and elastic-plastic theories.

4.1 Elastic Theory

The equilibrium equations can be written as

∂σx

∂x
+

∂τyx

∂y
+ ∂τzx

∂z
+ fx = 0,

∂τx y

∂x
+

∂σy

∂y
+

∂τz y

∂z
+ fy = 0,

∂τxz

∂x
+

∂τyz

∂y
+ ∂σz

∂z
+ fz = 0,

(29)

where σx , σy , σz are the normal stress components, and τyx = τx y , τz y = τyz , τxz = τzx are the shear stress
components in the directions marked by the respective sub-indices, fx , fy , fz are the body force. For linear
elasticity, the stress-strain relationship can be described as

σx =
E

(1 − 2ν)(1 + ν)((1 − ν)εx + νεy + νεz), τyx = τx y =
E

2(1 + ν)γx y ,

σy =
E

(1 − 2ν)(1 + ν)(νεx + (1 − ν)εy + νεz), τz y = τyz =
E

2(1 + ν)γyz ,

σz =
E

(1 − 2ν)(1 + ν)(νεx + νεy + (1 − ν)εz), τxz = τzx =
E

2(1 + ν)γzx ,

(30)

where ν is the Poisson’s ratio, E denotes the Young’s modulus, {εx , εy , εz} are the normal strain, and {γx y ,
γyz , γzx} are shear strain components. The relations between strains and displacements are determined as
follows:

εx =
∂ux

∂x
, γx y =

∂uy

∂x
+ ∂ux

∂y
,

εy =
∂uy

∂y
, γyz =

∂uz

∂y
+

∂uy

∂z
,

εz =
∂uz

∂z
, γzx =

∂uz

∂x
+ ∂ux

∂z
,

(31)

where {ux , uy , uz} are the displacement components. Aside from the partial differential governing equations,
the displacement boundary can be described as

ux = ûx , uy = ûy , uz = ûz , (32)
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where {ûx , ûy , ûz} represent the known displacement components. Then the stress boundary conditions can
be written as

Tx = nx σx + ny τyx + nz τzx ,
Ty = nx τx y + ny σy + nz τz y ,
Tz = nx τxz + ny τyz + nz σz ,

(33)

where {Tx , Ty , Tz} represent the known force components. {nx , ny , nz} represent the cosine values of
the angle between n and the axis {x , y, z}, where n is the boundary’s normal vector. For the elastic
theory, the displacement components {ux , uy , uz} can be gained by solving the system of governing and
boundary equations.

4.2 Elastic-Plastic Theory
For the classical elastic-plastic theory, the constitutive equations of an elastic-plastic body

should be described in the incremental form [32,33]. Let dσ = [dσx dσy dσz dτx y dτyz dτzx]T and dε =
[dεx dεy dεz dγx y dγyz dγzx]T represent the stress components and strain components in the respective
directions marked by the sub-indices. Based on elastic-plastic theory, the strain increment can be divided
into the elastic strain increment dεe and the plastic strain increment dεp:

dε = dεe + dεp . (34)

Then the stress-strain relation can be expressed as

dσ = C edεe = C e(dε − dεp), (35)

or

dσ = C e pdε, (36)

where C e is elastic stiffness matrix and C e p is elastic-plastic stiffness matrix.
The plasticity of soil is described by the Drucker-Prager (D-P) model [5,6]. Its yield condition is defined

as

g = αI1 +
√

J2 − k(∫ dεp) = 0, (37)

where J2 stands for the second deviatoric stress invariant, and I1 stands for the first stress invariant. α and k
denote the material parameters. In the initial yield condition, the parameters can be obtained by the friction
angle φ and soil’s cohesion C as [2,32]

α = 2 sin φ√
3(3 − sin φ)

, k = 6C cos φ√
3(3 − sin φ)

. (38)

∫ dεp is the equivalent plastic strain. The flow law can be expressed as

dεp = Λ ∂g
∂σ

, (39)
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where Λ is a positive scalar called plastic multiplier, ∂g
∂σ

denotes the normal to the plastic potential. Let

Λ = 1
h
[ ∂g

∂σ
]Tdσ , (40)

where h denotes the plastic modulus, which can be derived from the stress–plastic-strain curve.
From Eqs. (35), (36), (39), (40), C e p can be written as

C e p = C e − 1
H

C e ∂g
∂σ
[ ∂g

∂σ
]TC e , (41)

H = h + [ ∂g
∂σ
]TC e ∂g

∂σ
. (42)

Due to the nonlinearity of elastic-plastic material, the stiffness matrix changes as the increase of
equivalent plastic strain ∫ dεp. The incremental theory is recommended to capture the evolution of stress
along the loading path. Let f denote the total load applied during the loading process, and the stress path
is artificially divided into s incremental steps. In each step, a load increment Δ f = f /s is applied, and the
stiffness matrix is updated based on the state at each collocation points. Consequently, the increments
of displacement, strain, and stress are computed. Finally, all the increments are aggregated to field the
total results.

5 Numerical Results and Discussion
In this section, we will present some numerical examples to show the effectiveness of the proposed

numerical method. In these examples, the parameters are denoted in Table 1. In order to distinguish the
LRBFCM optimized by the direct method from the traditional LRBFCM, we refer to the optimized version
as D-LRBFCM. Considering that displacement is the key indicator to judge the safety of excavation, we
mainly analyze the displacement fields of excavation. As we know, strain and stress can be obtained by the
displacement fields. Since no analytical solution is available in these examples, we compare our numerical
outcomes of the LRBFCM with FEM and the relative error (Rel) of maximum displacement is introduced
to measure the errors:

Rel = ∣ ∣ũ
max ∣ − ∣umax ∣
∣umax ∣ ∣ × 100%,

where ∣ũmax ∣ and ∣umax ∣ denote maximum displacements of the LRBFCM and FEM, respectively.

Table 1: The parameters used in the numerical examples

Parameter Definition
ns Number of local influence nodes
c Shape parameter of MQ-RBF

{cx , cy , cz} Shape parameters in {x , y, z} axis directions
{Nx , Ny , Nz} Numbers of collocation point arrays
{dx , dy , dz} Distances between the nodes in {x , y, z} axis directions
{ux , uy , uz} Displacements in {x , y, z} directions

(Continued)
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Table 1 (continued)

Parameter Definition
{Tx , Ty , Tz} Surface force components

s Number of the incremental-steps
{∣umax

x ∣, ∣umax
y ∣, ∣umax

z ∣} Values of maximum displacements in {x , y, z} directions
R Radius of soil excavation

CPU Algorithm computation time

The mechanical parameters in these examples were determined with reference to literature [1–3] and
in consideration of the local geotechnical conditions. In these numerical examples, the parameters of the
support structure are Poisson’s ratio ν = 0.2, Young’s modulus E = 12, 000 MPa, and density ρ = 2500 kg/m3.
The soil is assumed as homogeneous material for simplicity and the parameters are considered as Poisson’s
ratio ν = 0.35, elastic modulus E = 8 MPa, friction angle φ = 17○, cohesion C = 6 kPa, and unit weight γ =
18 kN/m3. The uniaxial compression test results of soil are shown in Fig. 5.

Figure 5: Uniaxial compression test results of soil

The numerical computations in this section were carried out using MATLAB© on a system equipped
with an AMD EPYC Milan 7713 CPU (2.0 GHz), 64 GB of memory, and 16 cores, running CentOS Linux
release 7.

5.1 Example 1
An elastic case is used to show the improvement of the D-LRBFCM. As shown in Fig. 6, there is a

b × l × h pile, whose mechanical parameters are proposed as the support structure. The pile is fixed on z = 0
side, bearing the gravity G and the load q = −104 Pa on x = b side. The boundary conditions can be presented
as follows:

Tx = 0 Pa, Ty = 0 Pa, Tz = 0 Pa x = 0 m,

Tx = q, Ty = 0 Pa, Tz = 0 Pa x = b,

Tx = 0 Pa, Ty = 0 Pa, Tz = 0 Pa y = 0 m,
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Tx = 0 Pa, Ty = 0 Pa, Tz = 0 Pa y = l ,

ux = 0 m, uy = 0 m, uz = 0 m z = 0 m,

Tx = 0 Pa, Ty = 0 Pa, Tz = 0 Pa z = h.

Figure 6: The mechanical state of Example 1

Firstly, we assume that b = l = 1 m, h = 3 m and the displacement results of FEM are shown in Fig. 7,
where ∣umax

x ∣ = 1.117e-4 m, ∣umax
y ∣ = 1.992e-6 m, and ∣umax

z ∣ = 3.164e-5 m. {Nx , Ny , Nz} = {21, 21, 61},
dx = dy = dz = 0.05. ns = 3 is used in the D-LRBFCM and ns = 19 is used in the traditional LRBFCM, the
numerical errors of the two methods under varying shape parameters are shown in Fig. 8. The results from
the traditional LRBFCM are acceptable only when c = 5, and they are sensitive to the shape parameter. In
contrast, the numerical errors in the D-LRBFCM remain stable as the shape parameter varies from 0.5 to 700.
Obviously, the stability of the D-LRBFCM is much better than that of the traditional LRBFCM. Combining
with the analysis in the literature [22], we can infer a suitable range of shape parameters for the D-LRBFCM
in 3D problems: 10 < cx/dx , cy/dy , cz/dz < 14, 000. Since the accuracy of the D-LRBFCM is insensitive to the
shape parameter, the parameter of D-LRBFCM cx/dx = cy/dy = cz/dz = 100 is fixed for convenience through
the rest of this section without further explanation.

Figure 7: Displacement results of Example 1
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Figure 8: Numerical errors for different shape parameters c

Next, we consider the case where b = l = 1 m and h = 3 m. ns = 3 is used in the D-LRBFCM, while c = 5
and ns = 19 are cosidered for the LRBFCM. Fig. 9 shows the accuracy under different node distributions,
where CPU time represents the time used by the D-LRBFCM. We notice that the traditional LRBFCM
only get relatively accurate results when the collocation points are evenly distributed in all the coordinate
axis directions, which corresponds to the case where {Nx , Ny , Nz} = {21, 21, 61}. Once the distribution
of nodes becomes non-uniform, the calculation accuracy will decrease. By contrast, the change in node
distributions has little effect on the calculation accuracy in D-LRBFCM, as the partial derivatives are
calculated independently in different directions. Hence, by using the D-LRBFCM, we can employ a flexible
and adaptable node array based on the deformation field of structure and the shape of the computational
domain. In solving large length-width ratio problems, we can select fewer collocation nodes along the longer
side, which leads to an improvement in computational efficiency. This can be reflected in the CPU time
in Fig. 9.

Figure 9: (Continued)
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Figure 9: The accuracy under different node distributions

In order to assess the convergence of D-LRBFCM, the number of collocation nodes (Nx × Ny × Ny) is
changed as shown in Fig. 10. For the analysis, b = l = 1 m, h = 6 m, and ns = 3 is considered. As the points
number increases, the results yielded by D-LRBFCM converge to FEM results.

Figure 10: Displacement results for different node numbers

We further consider piles with different lengths, and the numerical results are shown in Table 2. The
acceptable results for these four different sizes can be obtained by using the D-LRBFCM. We can infer that the
D-LRBFCM could get acceptable outcomes if the parameters are chosen according to the above principles.

5.2 Example 2
An elastic-plastic problem is discussed to demonstrate the effectiveness of the mapping technique and

incremental method. A 8 m × 4 m × 4 m soil slope is positioned on a rigid rock formation, and the soil
deforms under gravity. The simplified mechanical state is shown in Fig. 11. The boundary conditions can be
presented as follows:

Tx = 0 Pa, Ty = 0 Pa, Tz = 0 Pa x = 0 m,
ux = 0 m, Ty = 0 Pa, Tz = 0 Pa x = 8 m,
Tx = 0 Pa, uy = 0 m, Tz = 0 Pa y = 0 m,
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Tx = 0 Pa, uy = 0 m, Tz = 0 Pa y = 4 m,
ux = 0 m, uy = 0 m, uz = 0 m z = 0 m,
Tx = 0 Pa, Ty = 0 Pa, Tz = 0 Pa z = 4 m.

Table 2: The displacement results for different piles

{b, l , h} (m) {Nx , Ny , Nz} ∣ũmax
x ∣ (m) ∣ũmax

y ∣ (m) ∣ũmax
z ∣ (m) Relx Rely Relz CPU(s)

{1, 1, 3} {21, 21, 31} 1.117e-04 1.888e-06 3.209e-05 0.00% 5.22% 1.42% 15
{1, 1, 6} {21, 21, 61} 1.652e-03 8.019e-06 2.171e-04 0.24% 2.09% 0.28% 42
{1, 1, 9} {21, 21, 91} 8.248e-03 1.851e-05 6.897e-04 0.25% 1.28% 0.00% 90
{1, 1, 12} {21, 21, 121} 2.595e-02 3.336e-05 1.585e-03 0.27% 1.10% 0.06% 127

Figure 11: The mechanical state of Example 2

This example is essentially a plane strain problem, and uy is identically zero throughout the entire
computational domain, so we only analyze numerical errors in ux and uz .

The displacement results of FEM are presented in Fig. 12 with ∣umax
x ∣ = 1.128e-02 m and ∣umax

z ∣ =
1.654e-02 m. The deformation primarily occurs at the inner side of the soil slope (side of x = 0 m); it is not
economical or efficient to distribute the collocation nodes uniformly in the whole domain. By adjusting the
locations of mapping seeds (the black ● in Fig. 11), most of the nodes can be concentrated on the inner side
to better capture the displacement field variations, as shown in Fig. 13.

In the proposed method, we consider ns = 3 and s = 15. The results under different point arrays are
shown in Fig. 14. We observe that we can obtain stable results for these different node arrays. As the number
of points increases, the computation time increases continuously while the accuracy gradually improves and
eventually stabilizes. The mapping technique can be effectively combined with D-LRBFCM for computation.

Next, we use different incremental steps to calculate the elastic-plastic problem. The displacement
solutions of the D-LRBFCM are shown in Fig. 15. As the number of steps s increases, the solutions of
D-LRBFCM would converge and progressively align the FEM results. In this example, the results become
relatively stable as the total steps exceed 15.
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Figure 12: Displacement results of Example 2

Figure 13: Node distribution in physical coordinate system

Figure 14: The accuracy of the D-LRBFCM under varying point arrays
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Figure 15: Displacement outcomes for various step numbers

5.3 Example 3
A rock-socketed excavation is analyzed in this example. The displacement of the rock formation under

the soil layer is not considered, and the support structure is fixed in the rock. As shown in Fig. 16, there are
30 m × 15 m × 15 m soil layers located adjacent to the support structure on either side. The support structure
is 1 m wide. The initial boundary conditions are defined as follows:

ux = 0 m, Ty = 0 Pa, Tz = 0 Pa x = −31 m,
ux = 0 m, Ty = 0 Pa, Tz = 0 Pa x = 30 m,
Tx = 0 Pa, uy = 0 m, Tz = 0 Pa y = 0 m,
Tx = 0 Pa, uy = 0 m, Tz = 0 Pa y = 15 m,
ux = 0 m, uy = 0 m, uz = 0 m z = −15 m,
Tx = 0 Pa, Ty = 0 Pa, Tz = 0 Pa z = 0 m.

Figure 16: The prescribed mechanical state of Example 3

The excavation stress path can be categorized into three distinct stages, as illustrated in Fig. 17. The first
stage is referred to as the geostatic equilibrium stage, which represents the soil deposition history. During
this stage, the initial stresses of the structure reach equilibrate with the gravitational load of soil. However, the
calculated deformations remain zero, since we are only concerned about the deformations after construction.
The second stage is known as the support structure construction stage. The support wall is constructed and
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engages with the surrounding soil during this stage. The friction between the support structure and the
soil is neglected, and the normal displacements of the contact surfaces are equal. The third stage, which is
the one we are most concerned about, can be called the deformation stage. The passive soil located on the
inner side of the excavation (x < −1 m) is removed, after which the active soil and the wall (x > 0 m) start to
deform together.

Figure 17: The stress path of excavation in Example 3

The final displacement solutions, as fielded through the FEM, are presented in Fig. 18 with ∣umax
x ∣ =

9.960e-02 m and ∣umax
z ∣ = 5.100e-02 m. For the proposed method, the mapping technique is used to optimize

the node distribution. Fig. 19 shows the collocation node distribution in the physical coordinate system. s = 15
is introduced. We employ three distinct node arrays to address the problem, and the results are summarized
in Table 3. The results remain consistent across different node arrays, with the maximum value of relative
error being 1.58%. The D-LRBFCM could get convincing solutions when we follow the principles outlined
in the previous examples. In the FEM, we used the mesh with nodes arranged in the same distribution as
the collocation points in D-LRBFCM and performed calculations with an equal number of incremental
steps. The CPU times using the FEM software ABAQUS© are shown in Table 3. The results show that the
D-LRBFCM is superior to FEM in terms of computational efficiency.

Figure 18: Displacement results of Example 3

The work of applying the traditional LRBFCM in conjunction with the incremental method to solve
similar excavation issues is also carried out. However, the results showed significant discretization. The
reasons for this discretization are multifaceted: First, the large length-width ratio of the excavation support



Comput Model Eng Sci. 2025;142(2) 2165

structure severely restricts the node distribution in the traditional LRBFCM, resulting in an unreasonable
distribution of collocation points. Secondly, the presence of numerous first-order partial derivatives in the
stress boundary conditions and governing equations makes it difficult to ensure accuracy. Furthermore, as
verified in Example 1, the calculation accuracy of the traditional LRBFCM is quite sensitive to the shape
parameter, which is difficult to determine. Therefore, Optimizing LRBFCM through the direct method is an
essential step for simulating excavation deformation.

Figure 19: Node distribution for mapping technique

Table 3: The results of D-LRBFCM under various point arrays

{Nx , Ny , Nz} ∣ũmax
x ∣ (m) ∣ũmax

z ∣ (m) Relx Relz CPU(s) FEM CPU(s)

Soil Wall
{26, 21, 21} {13, 21, 21} 9.815e-02 5.094e-02 1.43% 0.12% 310 966
{31, 21, 21} {15, 21, 21} 9.825e-02 5.102e-02 1.36% 0.03% 427 1149
{31, 26, 26} {15, 26, 26} 9.803e-02 5.091e-02 1.58% 0.18% 1129 1886

5.4 Example 4
In this example, we analyze a 3D rock-socketed circular excavation with a radius of 49 m. Considering

the symmetry, we examine a quarter of the circle. As shown in Fig. 20, the excavation is 30 m deep, and the
support wall is 1 m wide. The initial boundary conditions are:

ux = 0 m, Ty = 0 Pa, Tz = 0 Pa x = 0 m,
ux = 0 m, Ty = 0 Pa, Tz = 0 Pa x = 110 m,
Tx = 0 Pa, uy = 0 m, Tz = 0 Pa y = 0 m,
Tx = 0 Pa, uy = 0 m, Tz = 0 Pa y = 110 m,
ux = 0 m, uy = 0 m, uz = 0 m z = −30 m,
Tx = 0 Pa, Ty = 0 Pa, Tz = 0 Pa z = 0 m.

The friction between the soil and the support wall is ignored. Similarly to the previous example, the
stress path consists of three stages (see Fig. 21). In the deformation stage, the passive soil within a radius of
less than 49 m is excavated.
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Figure 20: The prescribed mechanical state of Example 4

Figure 21: The stress path of excavation in Example 4

Considering the shape of the excavation, it needs to be divided into five blocks artificially, as shown
in Fig. 22, for the mapping technique. The numbers in Fig. 22a represent the indices of the Blocks. In each
block, an individual normalized coordinate system is constructed, and the collocation nodes are transformed
to normalized nodes using the mapping seeds (the black ● in Fig. 22). The D-LRBFCM is applied in each
block, respectively.

The final displacement solutions of FEM are shown in Fig. 23 with ∣umax
x ∣ = 3.222e-02 m, ∣umax

y ∣ = 3.222e-
02 m, and ∣umax

z ∣ = 7.600e-03 m. The displacement fields of the 3D circular excavation differ from those of
the strip excavation in Example 3. Firstly, the circular excavation can bear heavier soil weight and produce
smaller deformation because of the circumferential hoop forces. At the same time, the plastic deformation
of soil is significantly reduced. Secondly, the position of maximum lateral deformation of the support wall
is changed. In Example 3, the top of the supporting wall has the largest deformation, whereas in the circular
excavation, the maximum lateral displacement is located at the lower part of the wall. Lastly, the support wall
in the circular excavation experiences a few positive displacements in the z-axis direction caused by the shell
deflection (see Fig. 23c).

For the proposed method, we consider s = 15 and three different collocation node arrays, as shown
in Table 4. The deformation results are presented in Table 5. The relative error values remain stable across
the different node arrays, with the maximum error being 5.97%. A denser node array yields slightly better
outcomes but also leads to lower computational efficiency.
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Figure 22: Dividing the excavation and collocating the mapping seeds

Figure 23: Displacement results of Example 4

Table 4: {Nx , Ny , Nz} for each block in circular excavation

Serial number Block 1 Block 2 Block 3 Block 4 Block 5
I {21, 13, 21} {21, 13, 21} {21, 21, 21} {21, 21, 21} {21, 21, 21}
II {26, 15, 26} {26, 15, 26} {26, 26, 26} {26, 26, 26} {26, 26, 26}
III {31, 15, 31} {31, 15, 31} {31, 31, 31} {31, 31, 31} {31, 31, 31}



2168 Comput Model Eng Sci. 2025;142(2)

Table 5: The calculation results under different node arrays in Example 4

Serial number ∣ũmax
x ∣ (m) ∣ũmax

y ∣ (m) ∣ũmax
z ∣ (m) Relx Rely Relz CPU(s)

I 3.272E-02 3.270E-02 8.054E-03 1.55% 1.49% 5.97% 607
II 3.258E-02 3.258E-02 7.906E-03 1.12% 1.12% 4.03% 2161
III 3.258E-02 3.258E-02 7.892E-03 1.12% 1.12% 3.84% 4259

5.5 Example 5
In the last example, a general circular excavation with a radius of 49 m is discussed. This model features

an excavation within a 40 m deep soil region (see Fig. 24). The support wall has a thickness of 1 m, and the
initial boundary conditions are as follows:

ux = 0 m, Ty = 0 Pa, Tz = 0 Pa x = 0 m,
ux = 0 m, Ty = 0 Pa, Tz = 0 Pa x = 110 m,
Tx = 0 Pa, uy = 0 m, Tz = 0 Pa y = 0 m,
Tx = 0 Pa, uy = 0 m, Tz = 0 Pa y = 110 m,
ux = 0 m, uy = 0 m, uz = 0 m z = −40 m,
Tx = 0 Pa, Ty = 0 Pa, Tz = 0 Pa z = 0 m.

Figure 24: The prescribed initial boundary conditions for Example 5

We ignore the friction between the soil and the support wall. The stress path is also divided into three
stages as shown in Fig. 25. During the deformation stage, the passive soil within R < 49 m, −20 m < z < 0 m is
excavated. It means that there are three parts of the structure—the passive soil, the active soil and the support
wall—working together, making the stress path more complex. This example is expected to be more difficult
than the previous ones. Fig. 26 shows the final displacement solutions of FEM (∣umax

x ∣ = 3.544e-02 m, ∣umax
y ∣ =

3.544e-02 m and ∣umax
z ∣ = 8.840e-03 m). It is important to note that there is a considerable upward movement

in the passive soil, as the upper soil is excavated and its self-gravity is released. However, this deformation is
generally not of concern in geotechnical engineering, and it is ignored in uz as shown in Fig. 26c.
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Figure 25: The stress path of excavation in Example 5

Figure 26: Displacement results of Example 5

Similarly to Example 4, the excavation shape is divided into five blocks artificially for the mapping
technique, as shown in Fig. 27, where the indices of blocks are presented. We build an individual normalized
coordinate system for each block. Tables 6 and 7 show the results of three different node arrays. Compared
with the other examples, this problem is more complex, and the accuracy is slightly inferior but still
acceptable. The results also show that a denser node array yields slightly better accuracy.

Figure 27: Dividing the excavation and the indices of blocks of Example 5
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Table 6: {Nx , Ny , Nz} for each block in general circular excavation

Serial number Block 1 Block 2 Block 3 Block 4 Block 5
I {21, 13, 31} {21, 13, 31} {21, 21, 31} {21, 21, 31} {21, 21, 31}
II {26, 15, 31} {26, 15, 31} {26, 26, 31} {26, 26, 31} {26, 26, 31}
III {31, 15, 31} {31, 15, 31} {31, 31, 31} {31, 31, 31} {31, 31, 31}

Table 7: The calculation results of the D-LRBFCM under different node arrays in Example 5

Serial number ∣ũmax
x ∣ (m) ∣ũmax

y ∣ (m) ∣ũmax
z ∣ (m) Relx Rely Relz CPU(s)

I 3.678e-02 3.676e-02 9.401e-03 3.78% 3.72% 6.35% 1100
II 3.652e-02 3.650e-02 9.234e-03 3.05% 2.99% 4.46% 4307
III 3.644e-02 3.644e-02 8.936e-03 2.82% 2.82% 1.09% 8624

6 Conclusions
This paper extends the LRBFCM to the deformation analysis of deep excavation in 3D. The direct

method, where the influence nodes are collocated on a straight line, is introduced to optimize the local nodes.
The mapping technique is used to describe the irregular shape of excavation in 3D. The plasticity of soil in
excavation is described by the D-P model, and the LRBFCM, using the incremental method, is applied to
analyze the plasticity. The efficiency of modified LRBFCM is demonstrated through five examples. By using
the proposed optimization methods, LRBFCM can effectively solve deep excavation problems. The following
conclusions can be made:

1. The application of the direct method is crucial for simulating excavation deformation. By using the
direct method, the accuracy of computing first-order partial derivatives is significantly improved.
Additionally, the collocation node distribution can be adjusted flexibly, greatly enhancing the compu-
tational efficiency when solving significant length-width ratio problems. Moreover, the direct method
is insensitive to the shape parameter, making the calculation more stable.

2. The shape of circular excavation can be described with several quadratic-type blocks, and the
deformation results remain stable since the physical coordinates are transformed into a normalized
coordinate system.

3. A suitable range of 10 < cx/dx , cy/dy , cz/dz < 14,000 is recommended for the D-LRBFCM when solving
3D deep excavation problems.

4. Compared to the strip excavation, the plastic deformation of soil in a circular excavation is significantly
reduced, and the position of maximum lateral deformation shifts from the top to the lower part of
the wall.

Our current study exclusively addresses the problem of single-layer soil, and our future work will focus
on multi-layer soils and inhomogeneous materials. Additionally, large deformation problems in geotechnical
engineering may also be considered in future studies.
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