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ABSTRACT: Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic
in academic research. However, the current research on wireless sensor network deployment problems uses overly
simplistic models, and there is a significant gap between the research results and actual wireless sensor networks. Some
scholars have now modeled data fusion networks to make them more suitable for practical applications. This paper
will explore the deployment problem of a stochastic data fusion wireless sensor network (SDFWSN), a model that
reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor
networks for information collection. The deployment problem of SDFWSN is modeled as a multi-objective optimization
problem. The network life cycle, spatiotemporal coverage, detection rate, and false alarm rate of SDFWSN are used
as optimization objectives to optimize the deployment of network nodes. This paper proposes an enhanced multi-
objective mongoose optimization algorithm (EMODMOA) to solve the deployment problem of SDFWSN. First, to
overcome the shortcomings of the DMOA algorithm, such as its low convergence and tendency to get stuck in a
local optimum, an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA
algorithm. The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-
Nearest Neighbor (KNN) algorithm. To verify the effectiveness of the proposed algorithm, the EMODMOA algorithm
was tested at CEC 2020 and achieved good results. In the SDFWSN deployment problem, the algorithm was compared
with the Non-dominated Sorting Genetic Algorithm II (NSGAII), Multiple Objective Particle Swarm Optimization
(MOPSO), Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), and Multi-Objective Grey
Wolf Optimizer (MOGWO). By comparing and analyzing the performance evaluation metrics and optimization results
of the objective functions of the multi-objective algorithms, the algorithm outperforms the other algorithms in the
SDFWSN deployment results. To better demonstrate the superiority of the algorithm, simulations of diverse test cases
were also performed, and good results were obtained.

KEYWORDS: Stochastic data fusion wireless sensor networks; network deployment; spatiotemporal coverage; dwarf
mongoose optimization algorithm; multi-objective optimization

1 Introduction

With the development of wireless sensors and micro-electro-mechanical systems, wireless sensor net-
works have developed rapidly, attracting extensive attention from both academia and industry [1]. Wireless
sensor networks, which consist of sensor nodes independently distributed in the detection area, were initially
widely used in the military field, and are now widely used in our daily lives such as environmental monitoring,
agriculture, healthcare, smart cities, industrial automation, internet of things, transportation and vehicle
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management, etc. [2]. Wireless sensor networks are low-cost, simple to deploy and scalable, and capable of
real-time monitoring and data collection, but the sensor nodes have the problem of energy constraints, the
deployment of network nodes greatly affects the overall energy consumption of the network and thus directly
affects the performance of the wireless sensor network [3]. Literature [4] points out that deploying sensors
has always been a great challenge for wireless sensor networks, and the effective deployment of nodes is a
prerequisite for wireless sensor networks to cover the target area efficiently. Therefore, this study is dedicated
to solving the deployment problem of wireless sensor networks to extend the network lifecycle, coverage,
and other performance.

Coverage is a key indicator for determining the quality of wireless sensor network node deployment.
Coverage can be divided into spatial coverage and temporal coverage, where spatial coverage measures the
range of the target area monitored by the wireless sensor network, and temporal coverage measures whether
the wireless sensor network is tracking the target on time [5]. Previous research on the deployment of wireless
sensor network nodes has usually been based on simple target area coverage perception models, such as the
0–1 perception model and the probabilistic perception model [4,6–8]. However, the perception model used in
practical applications usually adopts a data fusion model that fuses the perception results of multiple sensors.
Data fusion models improve the accuracy of sensor monitoring and expand the coverage of wireless sensor
networks. The 0–1 sensing model assumes that the sensing range of a sensor is a circle [5]. The probabilistic
sensing model assumes that a sensor has two sensing radii, an inner sensing radius and an outer sensing
radius. Targets within the inner sensing radius are detectable, while targets within the outer sensing radius are
detected with a probability assigned by humans [9]. This makes the monitoring results of the model affected
by the assigned probability. Therefore, there is a gap between the two models and the actual sensing of sensors.
This paper studies the deployment of a stochastic data fusion wireless sensor network (SDFWSN), which is
more in line with practical applications. This model assumes that the sensor’s perception of the signal energy
emitted by the target point is affected by environmental factors such as distance, temperature, and humidity.
The signal energy is negatively correlated with the distance from the sensor to the target point, and within a
certain range, it decreases with increasing temperature and decreasing humidity. The final monitoring result
is a fusion of the monitoring results of sensors within a certain range. This model is in line with the perception
process of sensors in practice. The model mentioned in [5] is used for spatial and temporal coverage. To the
best of our knowledge, this is the first time that time delay has been considered in the process of wireless
network deployment optimization, and the SDFWSN model applied in this study is more realistic, making
our experimental results more accurate.

Consider a deployment area with multiple dynamic target points and static sensor node candidate
locations using (α, β) spatial coverage model, i.e., a target point has a probability α of being falsely detected
(no target point is present but the sensor emits a positive result) and a probability β of being correctly detected
(a target point is present and the sensor correctly detects the target point), where α is referred to as the false
alarm rate, β is referred to as the detection rate and α ∈ (0, 0.5)and β ∈ (0.5, 1). The α − del ay temporal
coverage model is used, i.e., the average number of detection cycles from the first detection to the target
provided that the network false alarm rate is not greater than α. This paper aims to reduce the false alarm
rate and increase the detection rate by optimizing the deployment of the network, extending the network
lifecycle, and improving the spatiotemporal coverage of the network. The problem is modeled as a multi-
objective optimization problem with five objectives. Notably, this is a Non-deterministic Polynomial-time
hard task [10]. When dealing with the above problem, it is best to use meta-heuristics to efficiently solve
the problem [11]. DMOA is an effective swarm intelligence algorithm that can solve various optimization
problems [12]. This paper designed and used an enhanced multi-objective mongoose optimization algorithm
(EMODMOA) to find a feasible stochastic data fusion-based network node deployment scheme considering
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network lifecycle, spatial coverage, temporal coverage, detection, and false alarms. DMOA is inspired by the
social behaviors of dwarf mongoose populations such as guarding, babysitting, and attacking predators [13].
The DMOA algorithm has the advantages of being simple and easy to implement and does not require
excessive parameter adjustment. However, it has a slow convergence speed and is prone to local optima due
to the weak balance between exploration and exploitation [14]. In this paper, the encircling and hunting
strategy is highlighted by simulating the encircling and hunting habits of the dwarf mongoose. With the
encircling and hunting strategy, the algorithm can successfully escape from local optima and achieve a good
balance between exploration and exploitation. In this paper, the K-Nearest Neighbor (KNN) algorithm is
used to select the reference points, EMODMOA is proposed, and the performance of EMODMOA is tested
using the CEC2020 multi-objective multi-modal optimization benchmark function. The algorithm is used
to complete the multi-objective stochastic data fusion wireless sensor.

The main contributions of this paper are as follows:
1. By simulating the biological habits of the dwarf mongoose, a strategy for encircling and hunting is

proposed, which is an enhanced dwarf mongoose optimization algorithm (EDMOA) is proposed.
2. The KNN algorithm is used to select reference points, and a multi-objective dwarf mongoose

optimization algorithm is established to improve the efficiency of the multi-objective algorithm.
3. A stochastic data fusion network model is established based on the original data fusion network model

by considering the influence of environmental factors on the sensing effect of sensors, and the deployment
of sensor nodes of this model is studied.

4. When optimizing the deployment of network nodes, maximizing the spatial coverage of the network
will maximize the temporal coverage and the accuracy of monitoring as the goal to ensure the speed and
quality of network monitoring.

The rest of the paper is organized as follows: Section 2 of this paper describes the literature
review. Section 3 gives the construction of the SDFWSN model. Section 4 describes the construction of
EMODMOA and the application of the algorithm, Section 5 performs the CEC2020 benchmark function on
the proposed algorithm and Section 6 gives the experimental results and discussion. Section 7 concludes the
paper and proposes future work.

2 Related Works
Several works have solved the node deployment problem in WSN systems using swarm intelligence

algorithms [15]. Sections 2.1 and 2.2 provide an overview of research on WSN node deployment and
DMOA, respectively.

2.1 WSN Node Deployment
Hajjej et al. [16] proposed a multi-objective flower pollination algorithm (MOFPA) for stochastic WSN

scheduling. It aims to deploy a set of sensors in a target area under the condition of guaranteed network
connectivity while optimizing the total network coverage and energy consumption. Wang et al. [17] employ
a node scheduling scheme based on a multi-objective evolutionary algorithm to schedule heterogeneous
nodes in shifts, thus extending the life cycle of the network. Non-dominated Sorting Genetic Algorithm-
iii (NSGA-III) is used to optimize the deployment of WSN to reduce the network energy consumption
and improve network coverage while ensuring network connectivity [18]. The deployment of WSNs in
environments where obstacles are present is investigated, using a multi-objective optimization algorithm
to deploy sensor nodes in a way that ensures network connectivity to maximize coverage and reduce
deployment costs [19]. Saad et al. [20] addressed the deployment of WSN in 3D environments using
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NSGA-II. It is worth mentioning that they simulated a real space 3D model using the Bresenham line-
of-sight 3D environment coverage model. Zaimen et al. [21] considered the problem of optimizing the
deployment of sensor nodes in heterogeneous obstacle indoor environments, using the BIM database as
well as other additional inputs (sensor node parameters) and a genetic algorithm to provide the optimal
deployment. A new method based on Support Vector Regression and Genetic Algorithm is proposed for
the deployment optimization problem of WSN nodes, which argues that the configuration and deployment
of WSN affects almost all of their performance metrics, and the support vector regression model is utilized
for the configuration of the node parameters of the Wireless Sensor Networks, and the configured node
model is optimized for the deployment [22]. An enhanced multi-objective marine predator algorithm
(CMOMPA) is proposed, which utilizes a Gaussian elite perturbation strategy and a learning strategy based
on a competitive mechanism to generate progeny with enhanced diversity and distribution, and balances the
deployment cost, connectivity, and coverage of heterogeneous WSN under specific coverage constraints [23].
The Voronoi diagram method is used to divide the monitoring area to obtain the appropriate sensing radius
and communication radius, and the algorithm is used to solve the problem of deploying the wireless sensor
network on 3D terrain and to improve the Quality of Service (QoS) of the wireless sensor network [24]. A
resource scheduling algorithm for large-scale wireless sensor networks based on differential co-evolution
and multi-objective decomposition is proposed, which is used to simultaneously optimize the position and
dormant state of nodes [25]. In [26], three heuristic algorithms are used to optimize the deployment of sensor
nodes, thereby maximizing the network lifetime and network coverage is divided into. The deployment of
sensor nodes is optimized using an improved vampire bat optimizer, which obtains the optimal deployment
location and the minimum number of sensors required by optimally splicing the sensing region with the
cellular grid [27].

Looking at the current state of research at domestic and abroad, it can be found that most of the models
currently studied in the literature for the deployment problem of wireless sensor networks are too simple, and
there is a huge difference between them and practical applications. There are obvious differences between
the currently studied sensor sensing models which mainly utilize the 0–1 sensing model, the probabilistic
sensing model, the advanced sensing models, and information processing schemes adopted by the existing
sensor networks; and there are few literature studies on the temporal coverage problem and the quality of
network monitoring of the network. This study proposed a stochastic data fusion wireless sensor model as
the wireless sensor coverage deployment model for the following reasons:

(1) The model adopts a random sensing model. Most of the traditional wireless sensor networks use a
0–1 sensing model or probabilistic sensing model, which does not consider the randomness of sensing, while
sensors using a stochastic sensing model sense the signal energy of the target point will be affected by the
external environment, which makes the sensor’s sensing with randomness and more realistic.

(2) The current study of wireless sensor networks for monitoring using an independent transmission
model which is very different from the advanced data transmission model used in practice, this project uses
a data fusion model that is more in line with the practical application, a certain range of sensors to fuse their
monitoring results to obtain the final monitoring results.

2.2 DMOA
In 2022, Sadoun et al. used DMOA to improve the Long Short-Term Memory (LSTM) model to predict

the properties of composite materials [28]. The model improved by DMOA has a prediction accuracy of 99%.
In 2022, Akinola et al. introduced a simulated annealing algorithm to a binary variant of DMOA [29] which
balanced the detection and exploitation capabilities of the algorithm. In 2022, Agushaka et al. improved
DMOA by incorporating other social behaviors of dwarf mongooses, i.e., predation, mound protection,
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reproduction, and group splitting behaviors [30], greater enhancement of the dwarf mongoose’s exploration
and exploitation capabilities, and improved convergence speed of the algorithm. In 2022, Mehmood et al.
proposed a meta-heuristic algorithm for parameter estimation of autoregressive exogenous models based
on DMOA [31]. The algorithm has fast convergence speed, high estimation accuracy, and strong robustness.
In 2023, Agushaka et al. introduced adaptive and stochastic factors to the DMOA, which improves the
exploration capability and availability of the algorithm and improves the diversity of the solution [32].
In 2022, Akinola et al. solved the high-dimensional feature selection problem using a binary version of
DMOA [33]. In 2022, Alissa et al. proposed a dwarf mongoose algorithm based on machine learning-driven
ransomware detection by combining DMOA with machine learning-driven ransomware detection [34],
which is effective in identifying and classifying malware or ransomware. In 2022, Alrayes et al. used
improved DMOA to select cluster heads of unmanned aerial vehicles to find the optimal routes to reach
their destinations [35]. In 2022, Balasubramaniam et al. embedded DMOA into a lightweight deep neural
network architecture for heart disease prediction [36]. In 2023, Zare et al. used DMOA to integrate the battery
life, operations and maintenance cost, fuel cost and environmental cost of microgrids to determine the
optimal operating parameters and improve the load capacity of microgrids [37]. In 2023, Dora et al. merged
Symbiotic Organism Search (SOS) into DMOA to enhance the algorithm’s local search capability [38],
solved the reactive power scheduling problem using the proposed enhanced DMOA and found the optimal
settings to minimize the real power loss, total voltage variation and L-index. In 2023, Fu et al. proposed
an improved DMOA which introduced the optimal leader mechanism and proposed a novel nonlinear
control strategy based on sinusoidal function, which ensured the accuracy of the algorithm and at the same
time improved the convergence speed of the algorithm [39]. In 2022, Abirami et al. combined DMOA
with Gaussian Convolution Deep Confidence Networks for effective classification and extraction of retinal
images to examine diabetic retinopathy [40]. In 2023, Almutairi et al. introduced quantum techniques to
DMOA, which accelerated the convergence of the algorithm at a later stage [41]. In 2023, Rizk-Allah et al.
used a modified DMOA to identify unknown parameters of an computational and physical elements model
(single-phase transformer) and to evaluate the aging trend of the transformer at the hottest temperature [42].

Throughout the research status at domestic and abroad, the research on DMOA is mainly carried out
in the following two aspects: one is to improve the performance of the basic algorithm for the deficiencies
that exist, and a variety of different types of improved versions of DMOA have been proposed, the other
is to broaden the scope of application of DMOA. With the deepening of the research, it can be found that
although there are more literature on the improvement of DMOA performance, through a large number of
numerical examples of experiments and comparative analysis found that DMOA still exists in the exploration
and exploitation capacity is difficult to achieve the balance; easy to fall into the local optimum and late
convergence of the slow speed and other shortcomings, and single-objective algorithms of the application of
the scope of a certain degree of restriction. In this study, the shortcomings of the DMOA are as follows:

(1) EDMOA is proposed, which introduces nonlinear convergence factors and Markov Chain ideas in
the original DMOA to accelerate the convergence speed of the algorithm, solve the problem of imbalance
between the detection and exploitation capabilities, and improve the ability of the algorithm to jump out of
the local optimal solution. In order to solve more practical application problems, EDMOA is designed to
EMODMOA. The performance and application range of DMOA are comprehensively improved.

(2) Evaluate the performance of the proposed algorithm. Theoretically analyze the time complexity of
the algorithm and test the performance of the algorithm using the CEC2020 multi-objective multi-modal
optimization benchmark function.
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(3) The proposed algorithm is used for the optimal deployment of SDFWSN. The results obtained in
this study are of great theoretical significance and application prospects for advancing the development of
the discipline of modern intelligent optimization technology.

3 Network Model and Problem Formulation
In this section, based on the data fusion wireless sensor network model proposed in [5], a stochastic

data fusion network model is proposed by considering the effect of the environment on sensor sensing and
defining the objective function to optimize this network model.

A data fusion network consists of many distributed sensor nodes. The key objective is to integrate
dispersed information from multiple nodes to obtain more comprehensive and reliable information. First,
there is data collection and pre-processing. The information collected by the sensor nodes may contain
noise or redundancy due to signal attenuation. Pre-processing of the data through noise filtering, anomaly
detection, and data correction provides a reliable data source for subsequent data fusion, ω (⋅) will be defined
as a signal attenuation function. Second, data merging and data fusion are performed. Multiple sensor nodes
may collect the same or similar data. The sensor measurements are weighted. Decision-making and reasoning
are performed again. The goal of data fusion is to make decisions or reasons based on the results of data
fusion. By setting a threshold, a judgment can be made based on the fusion results as to whether a target
state or event has occurred. Compared with traditional wireless sensor networks, data fusion-based wireless
sensor networks have stronger data transmission reliability, lower transmission latency, and wider coverage.

3.1 Description and Assumptions of the Model
3.1.1 Stochastic Perception

If the sensor detects the target area by detecting the energy of the signal emitted from the target point, the
true energy of the signal received by the sensor is affected by the environment. The energy of most physical
signals’ decays with increasing distance from the source, and the sensing ability of the sensor decreases with
increasing temperature and decreasing humidity. Assume that the sensor i is di meters from a target that
emits a signal with energy s0, and the temperature in the environment is Te and the humidity is RH. The
real signal energy received by the sensor i from the target point is si and si is given by the Eq. (1).

si = s0 ⋅ ω (di) ⋅ ξ (Te) ⋅ ζ (RH) (1)

where ω (⋅) is a signal attenuation function satisfying ω (0) = 1, ω (∞) = 0 and ω (x) = θ (x−k). Depending
on the environment (e.g., atmospheric conditions), the path loss exponent of the signal k is usually between
2.0 and 5.0 [43]. ξ (⋅), ζ (⋅) is a nonlinear increasing and nonlinear decreasing function given by the
sensor manufacturer.

3.1.2 Data Fusion
When a sensor detects a target point P, sensors within R meters of the target point P form a cluster, a

cluster head is selected to fuse the sensor measurements, and the monitoring decision is made by comparing
the measurements with the monitoring threshold t. Let Y be the fusion statistic, i.e., Y = ∑

i∈F(p)
Yi . When

Y ≥ t, the cluster head decides H1 that the target is detected; otherwise, it decides H0 that the target is not
detected. F (P) denotes the set of sensors within the R fusion range and N (P) denotes the number of sensors
in the fusion range.
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3.1.3 Energy Loss
The energy loss model is used to calculate the energy loss during the communication of each sensor

node [44,45]. Two-channel propagation models are used, the multipath fading channel model (d4 power
loss) for transmitting packets over multiple hops and the free-space model (d2 power loss) for single-hop
or direct transmission. Thus, the amount of energy dissipated by the transmission of l bit packet over the
distance d is given by Eq. (2).

ET X (l , d) = {lEelec + lEfsd2, d < d0
lEelec + lEmpd4, d ≥ d0

(2)

where Emp is multipath energy loss and Efs is free space energy loss. Eelec is electronic energy. d is the distance
between the source and destination nodes and d0 is calculated by Eq. (3).

d0 =


��� E f s

Em p
(3)

The equation for energy dissipation in radio reception (ER X) is given by Eq. (4).

ER X (l) = lEel sc (4)

3.1.4 Network Deployment
This article deployed the network in a two-dimensional region where sensors are uniformly and

independently distributed. If any two nodes can communicate with each other, the connectivity of the
network is ensured by computing the adjacency matrix of the SDFWSN. TD is the monitoring cycle of the
sensor, and the sensor performs a monitoring task every TD seconds. In each monitoring cycle, the sensor
collects the target signal energy for target monitoring within a sampling interval, which is much shorter than
the detection cycle, target monitoring within a detection cycle is called unit detection, and the process of
detecting a target consists of a series of unit detections.

3.2 Symbols and Definitions
3.2.1 Description of Symbols

Table 1 explains the symbol applied in this paper.

Table 1: Definition of symbol

Notation Define
ω (⋅) Signal attenuation function, w (x) = θ (x−k)
ξ (⋅) Nonlinear increasing function
ζ (⋅) Nonlinear decreasing function
o (⋅) Asymptotic upper bound symbol
θ (⋅) Asymptotic tight bounding symbol

Q (X) Standard normal distribution
s0 Raw signal energy emitted by the target

μ, σ 2 Mean and variance of noise energy

(Continued)
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Table 1 (continued)

Notation Define
Y Signal energy measurement, yi = si + ni

α/β PF/PD Upper/lower limit of
H0/H1 Target does not exist/exists

ρ Network density
F (P) A collection of sensors within the P point fusion

range
N (P) Number of sensors in F (P)

T Network coverage detection interval
TD Monitoring cycle
R Data fusion radius
c Spatial coverage of the network
τ Average network detection delay
ni Noise energy, ni ∼ N (μ, σ 2)

3.2.2 Definition of Terms
Definition 1. ((α, β) − covered) For a target point P to be detected, if the false alarm rate PF and the

detection probability PD (p) satisfy PF ≤ α, PD(p) ≥ β, where α ∈ (0, 0.5) and β ∈ (0.5, 1), then the target
point P is (α, β) − covered.

Definition 2. (Spatial coverage) The percentage of target points in the target area that are covered by
(α, β) − covered.

Definition 3. (α − del ay) The α − del ay is the average number of detection cycles from the first
detection to the target provided that PF is not greater than α.

Definition 4. (Temporal coverage) Time Override is the inverse of α − del ay.
Definition 5. (False alarm rate PF) PF is the probability that the sensor determines the presence of a

target point when no target point is present.
Definition 6. (Detection rate PD) PD is the probability that a target point is present, and the sensor

detects it.

3.3 Derivation of the Fitness Function
3.3.1 Objective 1. Maximize Network Lifecycle

The network lifecycle is an important metric for measuring the merits of a network deployment. The
network coverage should at least exceed a given threshold to ensure the proper operation of the wireless
sensor network [46]. So, in this paper, the network lifecycle is defined as the time from the initialization of
the network to the time when the minimum threshold value of network coverage cannot be met. The network
is tested for coverage at every interval of T time, assuming that the network does not satisfy the coverage
minimum threshold value when it is detected at the first n time, then the network lifecycle is judged to be
over then the network life cycle can be defined as Eq. (5).

LT =
n
∑
i=1

Ti (5)
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3.3.2 Objective 2. Maximize Spatial Coverage
The spatial coverage of the unified deployment network under the stochastic data fusion model, denoted

by is c as Eq. (6).

c ≅ Q
⎛
⎝

γ (R) − ρπR2
√

ρπR2

⎞
⎠

(6)

γ (R) =
⎛
⎝

Q−1 (α) σ − Q−1 (β)
√

σ 2
s + σ 2

μs

⎞
⎠

2

(7)

where μs , σ 2
s are given by Eqs. (12) and (13).

3.3.3 Objective 3. Maximize Temporal Coverage
The temporal coverage of the unified deployment network under the data fusion model, denoted by is

τ as in Eq. (8).

τ = 1/E [PD] (8)

E [PD] =
N
∑

N j=0
PD j ⋅ fPoi (N j ∣ρπR2) (9)

where E [PD] is the average detection probability of any unit detection, N j obeys the Poisson distribution,
i.e., N j ∼ Poi (ρπR2), where fPoi (k∣λ) is the probability density function of the Poisson distribution Poi (λ).
Where fPoi (k∣λ) = λκe−λ/k, PD j are defined as Eq. (11).

3.3.4 Objective 4. False Alarm Rate PF Minimize
The false alarm rate is the probability of false detection by the network and reducing the false alarm rate

of the network means increasing the confidence of the network’s detection results. Let Fj be the set of sensors
in the fusion range in the jth unit detection and there are N j sensors in Fj. When the target is not present,
we have Y ∣H0 = ∑

i∈F j

ni ∼ N (N j μ, N jσ 2) where ni the noise energy is experienced by sensor i. This article

assumes that the noise ni at each sensor i obeys a normal distribution, i.e., ni ∼ N (μ, σ 2). The false alarm
rate for the jth unit detection PF j can be defined as Eq. (10).

PF j = P (Y ≥ η∣H0) = Q
⎛
⎝

T − N j μ√
N jσ

⎞
⎠

(10)

3.3.5 Objective 5. Detection Rate PD Maximization
The false alarm rate and the detection rate are independent of each other and increasing the detection

rate improves the quality of the network in detecting target points. When the target is present, the sum of
energy measurements in the jth unit detection approximately obeys a normal distribution Y ∣H1 = ∑

i∈F j

si +

∑
i∈F j

ni ∼ N (N j μs + N j μ, N jσ 2
s + N jσ 2) the jth unit detection rate can be defined as Eq. (11).

PD j = P (Y ≥ T ∣H1) ≈ Q
⎛
⎝

T − N j μs − N j μ√
N j ⋅

√
σ 2

s
+ σ 2

⎞
⎠

(11)
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where μs , σ 2
s denote the mean and variance, respectively, of si ∣i ∈ F (p) for any point P. μs , σ 2

s given
by Eqs. (12) and (13).

μs = 2Si

R2 ⋅ ∫
R

0
xω (x) ξ (x) ζ (x)dx (12)

σ 2
s = 2S2

i
R2 ⋅ ∫

R

0
xω2 (x) ξ2 (x) ζ2 (x)dx − μ2

s (13)

3.4 Problem Description
As mentioned above, under the constraints of complete coverage of the monitoring area and network

connectivity, this article investigates the SDFWSN deployment problem by jointly optimizing the five
objectives of the network lifecycle, spatiotemporal coverage, false alarm rate, and detection rate. In summary,
the SDFWSN deployment problem can be formulated as follows (Eq. (14)):

{max (LT) , min (PF j) , max (PD j) , max (c) , max (τ)}
s.t.C (GSDFWSN) = 1 (14)

where C (GSDFWSN) = 1 indicates that the network satisfies the connectivity condition.

4 Proposed EMODMOA Algorithm Design Process and Method
This section describes algorithms to solve the problem of sensor deployment in SDFWSN. Considering

that Eq. (14) in which the multi-objective optimization problem is a non-convex, discontinuous, multi-
modal, and NP-hard problem, this article proposes EMODMOA to solve it. In this section, firstly, the DMOA
algorithm is briefly described, secondly, improvement strategies for the algorithm are presented, and finally,
EMODMOA is introduced in detail, including the initialization of the algorithm, the iterative process, and
the strategy of sub-generation generation. Based on this, the optimal deployment method of SDFWSN based
on EMODMOA is further proposed. And the analysis of EMODMOA time complexity is given.

4.1 DMOA
DMOA is a population intelligence optimization algorithm proposed in 2022 by Agushaka et al. DMOA

is inspired by the semi-nomadic and compensatory adaptive behavior of dwarf mongoose populations. The
algorithm has a strong global search capability. The algorithm is divided into four main phases, searching for
food, searching for mounds (exploitation phase), babysitter exchange, and choosing mounds (exploration
phase) [13].

(1) Food search phase:
The algorithm divides the mongoose into an alpha group (scouting group) and a babysitter group based

on their compensatory adaptive behavior, and the alpha group searches for the location of the optimal food
during the food search phase. The alpha group leader is selected according to Eq. (15) and the individual
position update formula is given by Eq. (16).

α = f iti
n
∑
i=1

f iti

(15)

Xi+1 = Xi + phi ∗ peep (16)
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where phi is a uniformly distributed random number [−1, 1] and peep is the sound made by the alpha female.
(2) Mounds search phase:
The scouting group is responsible for finding the sleep mounds, and evaluation formula for individual

sleep mounds as Eq. (17). Evaluation formulas for population sleep mounds are given by Eq. (18).

smi =
( f iti+1 − f iti)

max { f iti+1 , f iti}
(17)

ϕ = ∑n
i=1 smi

n
(18)

where f iti+1, f iti denote the fitness values of the mongoose’s new position and the original position
respectively.

(3) Babysitter exchange phase:
Once the babysitter swap conditions are met, the babysitter group and alpha (scout) group will swap

identities. Initialize the mongoose’s new location as Eq. (19).

xi , j = uni f rnd (VarMin, VarMax , VarSize) (19)

(4) Mounds choose phase:
During this phase, an individual chooses an optimal sleep mound to perch on, and the individual

position equation is as follows Eq. (20). Where M is given by Eq. (21), CF is the adaptive operator and the
formula is as Eq. (22).

Xi+1 = {Xi − CF ∗ phi ∗ rand [Xi − M] , i f ϕi+1 > ϕi
Xi + CF ∗ phi ∗ rand [Xi − M] , otherwise (20)

M =

n
∑
i=1

Xi ∗ smi

Xi
(21)

CF = (1 − i ter
MaXiter

)
(2 i ter

Maxi ter
) (22)

The DMOA pseudo-code is shown in Algorithm 1.

Algorithm 1: DMOA
01 Input: peep, nPop, bs, L, nAl phaGroup
02 Initialize the algorithm solutions, Cbest and Gbest.
03 While (iter < Maxiter) do
04 Set alpha use Eq. (15)
05 Create new position use Eq. (16)
06 Calculate sleeping mound use Eq. (17)
07 Calculate average sleeping mound use Eq. (18)
08 Set time counter C = C + 1.
09 if C > L
10 Initialize the DMOA population use Eq. (19)

(Continued)
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Algorithm 1 (continued)
11 Set C = 0
12 end if
13 Update solutions position use Eq. (20)
14 iter = iter + 1
15 end while
16 Output: Return the most effective solution x.

4.2 EDMOA
This subsection describes the proposed EDMOA algorithm, and the new algorithm focuses on the

improvement of the original algorithm for the shortcomings that it is easy to fall into local optimal solutions,
slow convergence, and imbalance between exploration and exploitation.

Encircling and Hunting Strategy
Because the dwarf mongoose has the characteristic of rounding up foraging, an encircling and hunting

strategy is proposed based on the biological characteristics of the dwarf mongoose to better simulate the
biological behavior of the dwarf mongoose. This strategy draws inspiration from the grey wolf optimization
algorithm. First, three optimal markets are selected as Pα , Pβ and Pδ . Distances between individual mongoose
and among them are computed as per Eqs. (23)–(25).

dα = ∣c1 ⋅ Pα − xi ∣ (23)
dβ = ∣c2 ⋅ Pβ − xi ∣ (24)
dδ = ∣c3 ⋅ Pδ − xi ∣ (25)

where c1, c2 and c3 is random numbers within the range of [0, 1] are used to randomly select three non-
optimal mongoose, P1, P2 and P3 from the remaining n − 3 individuals. These selected mongooses undergo
computations as per Eqs. (26)–(28).

P1 = ϕ ⋅ Pr1 − r ⋅ (dα) (26)
P2 = ϕ ⋅ Pr2 − r ⋅ (dβ) (27)
P3 = ϕ ⋅ Pr3 − r ⋅ (dδ) (28)

where r1, r2 and r3 is random numbers within the range of [0, 1], r is random numbers within the range of
[−1, 1], ϕ = e−0.05∗t .

The mongoose individuals are updated according to Eq. (29).

xi+1 =
P1 + P2 + P3

3
(29)

The pseudo-code of the EDMOA algorithm is as follows (Algorithm 2):

Algorithm 2: EDMOA
01 Input: Set the conditions and solutions for the algorithm.
02 Initialize the algorithm parameters and solutions.
03 Set nAl pha = nScout = 90% × nPop, nBabysitter = nPop − nAl pha

(Continued)
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Algorithm 2 (continued)
04 while (iter < Maxiter) do
05 Set alpha use Eq. (15)
06 if rand>0.7
07 Update the solutions’ positions using Eq. (16)
08 else
09 Update the solutions’ positions using Eq. (21)
10 end if
11 Calculate sleeping mound use Eq. (17)
12 Calculate average sleeping mound use Eq. (18)
13 Set time counter C = C+1
14 if C<L
15 Update the solutions’ positions using Eq. (20)
16 end if
17 Update solutions position use Eq. (29)
18 iter = iter + 1
19 end while
20 Output: Return the most effective solution (x).

EDMOA update flowchart is shown in Fig. 1.

Figure 1: Flowchart of EDMOA
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4.3 EMODMOA

The design of EMODMOA refers to the algorithm framework of NSGAIII, but in the selection of
reference points, the classification algorithm KNN is used to classify individuals close to the reference points,
select individuals in small categories, ensure the diversity of the population, and reduce the complexity of
the algorithm. The pseudo-code of EMODMOA is shown in Algorithm 3, and the algorithm flowchart is
as follows:

Algorithm 3: EMODMOA
01 Input: Population Pt , H structured reference points Nc .
02 Initialization (Pt , H).
03 while (iter < MAXiter) do
04 Qt = EDMOA(Pt)
05 Rt = Pt ∪ Qt
06 (F1 , F2, ⋅ ⋅ ⋅ ) = Non-dominated sort (Rt).
07 repeat
08 St = St ∪ Fi and i = i + 1
09 Until ∣St ∣ ≥ N .
10 Last floor to be included: Fl = Fi
11 if ∣St ∣ = N then
12 Pt+1 = St
13 else
14 Pt+1 = ∪l−1

j=1 Fj and K = N − ∣Pt+1∣
15 Normalize-objectives Pt = Normal ize (St , Nc)
16 Classify based on each reference point [π (s) , d (s)] = KNN (St , Nc).
17 Compute niche count of reference point j ∈ Nc
18 Choose K members from Fl
19 end if
20 iter + +
21 end while
22 Output: Next Population Pt+1.

Algorithm 3 is the pseudo-code of EMODMOA, in EMODMOA Pt is the parent of tth generation of
size N and its generated child is Qt which is also of size N . Combining the child and the parent generates
Rt of size 2N and selects N individuals from it. To implement this selection process, Rt is first divided into
multiple non-dominated layers (F1 , F2, ⋅ ⋅ ⋅ ) by non-dominated ordering. The members of the populations
in the non-dominated stratum rank 1 to l are put into St in order, and if ∣St ∣ = N , the following operation is
not necessary, and Pt+1 = St directly. If ∣St ∣ > N , then a part of the next generation is solved as Pt+1 = ∪l−1

j=1 F j,
and the remaining part (K = N − ∣Pt+1∣) is chosen from Fl . The selection principle is to classify according
to the KNN algorithm, selecting individuals that are far from the reference point, thereby maintaining the
diversity of the solution.

The SDFWSN is deployed on a 4000 m × 4000 m static node grid. The false alarm rate of each node is
lower than 0.05 detection rate is higher than 0.95. The optimization process for the deployment of a stochastic
fused wireless sensor network consisting of 220 nodes using EMODMOA is as follows:
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Step 1. Initialize the parent population Pt and the reference point Nc. Pt is denoted as follows:

Pt = [X1 , X2, , XN]T (30)

where Xi = [x , y, Rc , n] is the ith individual in the population Pt representing a feasible deployment of
a wireless sensor network. n is the number of sensors in the network, x and y are n dimensional column
vectors, and Rc is the connectivity radius of the network.

Step 2. Generate child population Qt by updating iteration of parent population Pt using EDMOA and
merge the parent and child populations into Rt .

Step 3. Generate a Pareto frontier by the non-dominated ordering of Rt .
Step 4. Starting from the first Pareto frontier select individuals to population St until the number of St

is greater than or equal to the initial population size.
Step 5. Use KNN to select individuals in the selected last Pareto frontier to join the population St

until the number of St is equal to the initial population size. The population St is the deployment scheme
of SDFWSN.

The EMODMOA flowchart is shown in Fig. 2.

Figure 2: Flowchart of EMODMOA
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5 Function Performance Testing
In this section, the performance of the proposed EMODMOA is examined using the CEC2020 multi-

objective multi-modal optimization benchmark function. This benchmark function contains 24 different
types of test functions for convex and concave, linear and nonlinear. Each function corresponds to objective
space and decision space with optimal Pareto front (PF) and multiple local or global optimal PS sets.
The performance metrics we use in the objective space are the hypervolume inverse (rHV) [47] and the
Inverted Generational Distance (IGDF) [48]; in the decision space we use the inverse of the Pareto Strength
Pareto (rPSP) [49] and the Inverted Generational Distance (IGDX) [48] as performance metrics. The system
configuration of this experimental platform is shown in Table 2.

Table 2: System performance

Experimental environment Setting
Software

Operating system Windows 10
Language MATLAB R2022a
Hardware

CPU Intel Core (TM) i7-4210U
Frequency 2.4 GHz

RAM 4 GB
Hard drive 1 TB

The proposed algorithms are compared with 10 mainstream multi-objective algorithms including
Multiple Objective Particle Swarm Optimization (MOPSO), Multi-objective Marine Predators Algorithm
(MOMPA), Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Non-dominated
Sorting Genetic Algorithm II (NSGAII), Strength Pareto Evolutionary Algorithm 2 (SPEA2), Nominal
Diameter Non-dominated Sorting Genetic Algorithm II (DN-NSGA-II), Multi-Strategy Salp Swarm Algo-
rithm (MSSA), Multi-Objective Grey Wolf Optimizer (MOGWO), Multi-Objective Mayfly Algorithm
(MOMA) and optimal mini niche Non-dominated Sorting Genetic Algorithm (OMNI). The parameters of
each algorithm are set in Table 3. Each algorithm was run independently 21 times with 100 iterations and
the mean and variance values obtained from each function test were recorded. “+”, “=” and “−” indicate that
EMODMOA performs better than, equal to, and worse than the other algorithms, respectively.

Table 3: Algorithm parameter design

Algorithms Parameter Value

EMODMOA Peep 2
Population size 400

NSGAII Crossover probability 0.9
Mutation probability 0.1

MOMPA

Archive size 200
Fish aggregating devices 0.3

P 0.4

(Continued)
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Table 3 (continued)

Algorithms Parameter Value
Population size 400

MOMA Population size 400
Cognitive and social learning factors 2

MOPSO

Archive size 200
Population size 400

Deletion selection pressure 2
Leader selection pressure 2

Grid inflation rate 0.1
Inertia weight (w) 0.5

Number of grids per dimension 10
Mutation rate 0.1

OMNI
Population size 400

Neighborhood radius 2
Preference information 0.2

MOGWO

Archive size 200
Population size 400

Deletion selection pressure 2
Number of grids per dimension 10

Leader selection pressure 4
Grid inflation rate 0.1

MSSA Archive size 200
Population size 400

SPEA2
Crossover probability 0.9
Mutation probability 0.1

Population size 400

MOEA/D

Archive size 200
Population size 400

Crossover parameter 0.5
Number of neighbors 15

DN-NSGA-II

Crossover probability 0.9
Mutation probability 0.1

Crowding factor 200
Population size 400

Tables 4–7 show mean, and standard deviation results obtained by the algorithms on different perfor-
mance metrics, with each row in black font indicating the optimal result for the corresponding test function.
The last row of the table records the performance comparison between EMODMOA and the other algorithms
on each test problem.



1972 Comput Model Eng Sci. 2025;142(2)

Ta
bl

e4
:

rH
V

te
st

re
su

lts
Pr

ob
le

m
EM

O
D

M
O

A
EM

O
D

M
O

A
vs

.M
O

PS
O

EM
O

D
M

O
A

vs
.N

SG
A

-I
I

EM
O

D
M

O
A

vs
.M

O
EA

/D
EM

O
D

M
O

A
vs

.S
PE

A
2

EM
O

D
M

O
A

vs
.O

M
N

I
EM

O
D

M
O

A
vs

.M
SS

A
EM

O
D

M
O

A
vs

.
M

O
G

W
O

EM
O

D
M

O
A

vs
.M

O
M

A
EM

O
D

M
O

A
vs

.D
N

-
N

SG
A

-I
I

EM
O

D
M

O
A

vs
.M

O
M

PA

M
M

F1
M

ea
n

1.
14

00
1.1

55
0

+
1.1

43
8

+
1.1

63
1

+
1.1

54
3

+
1.1

44
3

+
1.7

11
0

+
1.1

41
2

+
1.1

44
9

+
1.1

45
0

+
1.1

44
7

+
St

d
0.

00
00

0.
00

36
0.

00
05

0.
01

33
0.

00
04

0.
00

07
0.

00
38

0.
00

10
0.

00
01

0.
00

09
0.

00
04

M
M

F2
M

ea
n

0.
15

00
1.3

27
2

+
1.1

57
7

+
1.3

00
7

+
1.1

77
7

+
1.1

51
9

+
1.1

70
7

+
1.1

66
2

=
1.1

76
8

+
1.1

63
9

+
1.1

51
6

=
St

d
0.

00
10

0.
04

44
0.

00
93

0.
09

23
0.

01
52

0.
00

76
0.

00
61

0.
00

00
0.

00
52

0.
01

90
0.

00
00

M
M

F4
M

ea
n

1.8
47

8
1.8

61
2

+
1.8

46
6

-
1.8

72
1

+
1.8

50
9

+
1.8

47
6

+
1.9

49
9

+
1.8

53
1

+
1.

89
92

-
1.8

49
1

+
1.8

52
8

+
St

d
0.

00
08

0.
00

50
0.

00
00

0.
02

32
0.

00
30

0.
00

02
0.

01
81

0.
00

18
0.

00
02

0.
00

04
0.

00
41

M
M

F5
M

ea
n

0.
12

64
1.1

54
0

+
1.1

43
3

+
1.1

69
2

+
1.1

44
3

+
1.1

43
8

+
1.1

71
8

+
1.1

44
9

+
1.1

43
7

+
1.1

44
4

+
1.1

44
7

+
St

d
0.

00
00

0.
00

28
0.

00
04

0.
01

76
0.

00
04

0.
00

05
0.

00
65

0.
00

08
0.

00
03

0.
00

07
0.

00
03

M
M

F7
M

ea
n

0.
15

33
1.1

49
2

+
1.1

43
1

+
1.1

53
8

+
1.1

44
0

+
1.1

43
7

+
1.1

68
0

+
1.1

45
2

+
1.

12
30

-
1.1

44
9

+
1.1

44
2

+
St

d
0.

00
01

0.
00

23
0.

00
03

0.
00

83
0.

00
02

0.
00

04
0.

00
44

0.
00

09
0.

00
01

0.
00

05
0.

00
04

M
M

F8
M

ea
n

0.
23

30
2.

45
03

+
2.

36
34

+
2.

39
90

+
2.

38
41

+
2.

36
48

+
2.

47
27

+
2.

37
51

+
2.

36
71

+
2.

36
48

+
2.

37
06

+
St

d
0.

00
00

0.
02

71
0.

00
03

0.
02

60
0.

01
12

0.
00

04
0.

05
23

0.
00

26
0.

00
12

0.
00

17
0.

00
15

M
M

F1
0

M
ea

n
0.

08
10

0.
08

11
+

0.
08

05
+

0.
08

93
+

0.
07

87
+

0.
08

24
+

0.
08

24
+

0.
07

83
+

0.
07

77
=

0.
08

19
+

0.
07

70
-

St
d

0.
00

01
0.

00
39

0.
00

30
0.

00
52

0.
00

17
0.

00
29

0.
00

21
0.

00
02

0.
00

01
0.

00
24

0.
00

01
M

M
F1

1
M

ea
n

0.
06

80
0.

06
89

=
0.

06
89

+
0.

07
10

+
0.

06
89

=
0.

06
89

=
0.

06
97

+
0.

06
89

=
0.

06
89

=
0.

06
89

=
0.

06
89

=
St

d
0.

00
01

0.
00

00
0.

00
04

0.
00

08
0.

00
00

0.
00

00
0.

00
01

0.
00

00
0.

00
00

0.
00

00
0.

00
00

M
M

F1
2

M
ea

n
0.

63
46

0.
65

11
+

0.
63

57
+

0.
65

96
+

0.
63

67
+

0.
65

28
+

0.
64

85
+

0.
63

78
+

0.
63

86
+

0.
63

58
+

0.
63

68
+

St
d

0.
00

02
0.

02
75

0.
00

04
0.

02
43

0.
00

15
0.

04
96

0.
00

64
0.

00
03

0.
00

02
0.

00
02

0.
01

10
M

M
F1

3
M

ea
n

0.
05

18
0.

05
43

=
0.

05
42

=
0.

05
59

+
0.

05
43

=
0.

05
43

=
0.

05
46

+
0.

05
20

=
0.

04
62

=
0.

05
43

=
0.

05
43

=
St

d
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

00
0.

00
68

0.
00

00
0.

00
00

M
M

F1
4

M
ea

n
0.

31
10

0.
35

43
+

0.
35

29
+

0.
35

08
+

0.
40

16
+

0.
33

47
+

0.
35

08
+

0.
35

53
+

0.
34

15
+

0.
32

67
+

0.
33

23
+

St
d

0.
00

80
0.

00
73

0.
00

80
0.

00
97

0.
05

14
0.

00
84

0.
01

53
0.

01
29

0.
00

51
0.

00
94

0.
01

66
M

M
F1

5
M

ea
n

0.
22

18
0.

24
70

=
0.

79
23

+
0.

23
85

+
0.

26
75

+
0.

23
95

+
0.

24
93

+
0.

24
60

+
0.

23
40

+
0.

23
21

+
0.

22
62

+
St

d
0.

00
95

0.
00

18
0.

00
62

0.
00

92
0.

02
91

0.
00

71
0.

02
18

0.
00

84
0.

00
48

0.
01

12
0.

00
87

M
M

F1
_e

M
ea

n
1.1

50
8

1.2
30

1
+

1.1
52

6
+

1.2
65

8
+

1.1
64

2
+

1.1
84

8
+

1.1
64

2
+

1.1
52

2
+

1.1
46

9
+

1.
21

11
=

1.1
71

1
+

St
d

0.
00

10
0.

00
72

0.
00

95
0.

08
88

0.
01

57
0.

01
45

0.
00

38
0.

01
07

0.
00

15
0.

10
38

0.
06

22
M

M
F1

4_
a

M
ea

n
0.

30
01

0.
37

45
+

0.
34

84
=

0.
34

00
+

0.
39

23
+

0.
32

88
+

0.
35

29
+

0.
35

33
+

0.
32

50
+

0.
31

55
+

0.
36

01
+

St
d

0.
02

58
0.

00
50

0.
00

45
0.

01
88

0.
07

73
0.

00
72

0.
02

54
0.

01
42

0.
00

53
0.

01
24

0.
01

64
M

M
F1

5_
a

M
ea

n
0.

24
93

0.
26

57
+

0.
23

81
+

0.
23

17
+

0.
27

99
+

0.
23

64
+

0.
23

88
+

0.
24

49
+

0.
22

81
-

0.
23

92
+

0.
21

35
-

St
d

0.
01

24
0.

00
39

0.
00

86
0.

00
85

0.
02

36
0.

01
13

0.
01

44
0.

00
77

0.
00

34
0.

02
14

0.
01

10
M

M
F1

0_
l

M
ea

n
0.

07
77

0.
09

08
+

0.
07

89
+

0.
08

86
+

0.
07

81
+

0.
07

86
+

0.
08

07
+

0.
07

80
+

0.
07

77
-

0.
08

55
+

0.
07

77
-

St
d

0.
00

31
2.

29
94

0.
00

22
0.

00
12

0.
00

09
0.

00
23

0.
00

17
0.

00
08

0.
00

00
0.

00
22

0.
00

00
M

M
F1

1_
l

M
ea

n
0.

06
87

0.
06

95
+

0.
06

88
+

0.
07

03
+

0.
06

88
+

0.
06

88
+

0.
06

92
+

0.
06

88
+

0.
06

88
+

0.
06

88
+

0.
06

88
+

St
d

0.
00

00
0.

00
01

0.
00

03
0.

00
13

0.
00

04
0.

00
05

0.
00

01
0.

00
03

0.
00

21
0.

00
00

0.
00

07
M

M
F1

2_
l

M
ea

n
0.

63
43

0.
68

85
+

0.
63

52
+

0.
65

02
+

0.
63

54
+

0.
69

15
+

0.
64

54
+

0.
63

62
+

0.
63

63
+

0.
63

45
+

0.
63

57
+

St
d

0.
00

03
0.

00
14

0.
00

03
0.

02
28

0.
00

06
0.

00
06

0.
00

55
0.

00
03

0.
00

09
0.

00
08

0.
00

04
M

M
F1

3_
l

M
ea

n
0.

05
44

0.
05

43
+

0.
05

44
+

0.
05

51
+

0.
05

42
+

0.
05

47
+

0.
05

45
+

0.
05

42
=

0.
05

47
+

0.
05

99
+

0.
05

42
=

St
d

0.
00

01
0.

00
02

0.
00

03
0.

00
06

0.
00

02
0.

00
03

0.
00

04
0.

00
06

0.
00

08
0.

00
08

0.
00

60
M

M
F1

5_
l

M
ea

n
0.

21
89

0.
23

74
+

0.
23

84
+

0.
23

74
+

0.
24

31
+

0.
23

22
+

0.
24

52
+

0.
24

07
+

0.
23

43
+

0.
22

24
+

0.
20

49
+

St
d

0.
00

93
0.

03
25

0.
00

36
0.

00
53

0.
01

72
0.

00
58

0.
00

84
0.

00
50

0.
00

30
0.

00
74

0.
01

02
M

M
F1

5_
a_

l
M

ea
n

0.
22

03
0.

25
93

+
0.

23
60

+
0.

23
46

+
0.

27
45

+
0.

23
07

+
0.

23
93

+
0.

25
23

+
0.

26
73

+
0.

22
39

+
0.

22
48

+
St

d
0.

00
06

0.
00

54
0.

00
43

0.
00

48
0.

04
29

0.
01

24
0.

01
11

0.
00

44
0.

00
34

0.
00

73
0.

00
44

M
M

F1
6_

l1
M

ea
n

0.
22

71
0.

23
97

+
0.

23
52

+
0.

23
62

+
0.

26
04

+
0.

22
96

+
0.

23
38

+
0.

23
75

+
0.

23
32

-
0.

22
65

+
0.

22
62

-
St

d
0.

00
23

0.
00

57
0.

00
35

0.
00

47
0.

03
86

0.
00

59
0.

00
70

0.
00

60
0.

00
12

0.
00

73
0.

00
45

M
M

F1
6_

l2
M

ea
n

0.
22

50
0.

23
49

+
0.

23
53

+
0.

23
64

+
0.

25
14

+
0.

22
91

+
0.

23
38

+
0.

23
67

+
0.

23
21

+
0.

22
64

+
0.

22
69

+
St

d
0.

00
18

0.
00

21
0.

00
24

0.
00

51
0.

01
62

0.
00

48
0.

00
71

0.
00

48
0.

00
23

0.
00

76
0.

00
45

M
M

F1
6_

l3
M

ea
n

0.
22

91
0.

24
11

+
0.

23
50

+
0.

23
63

+
0.

25
48

+
0.

22
56

+
0.

23
23

+
0.

23
61

+
0.

23
35

+
0.

22
17

=
0.

22
56

+
St

d
0.

00
00

0.
00

88
0.

00
26

0.
00

35
0.

01
95

0.
00

25
0.

00
40

0.
00

47
0.

00
26

0.
00

48
0.

00
31

+
/-

/≈
21

/0
/3

21
/1

/2
24

/1
/0

22
/0

/2
22

/0
/2

24
/0

/0
21

/0
/3

17
/4

/3
20

/0
/4

16
/4

/4



Comput Model Eng Sci. 2025;142(2) 1973

Ta
bl

e5
:

IG
D

ft
es

tr
es

ul
ts

Pr
ob

le
m

EM
O

D
M

O
A

EM
O

D
M

O
A

vs
.M

O
PS

O
EM

O
D

M
O

A
vs

.N
SG

A
-I

I
EM

O
D

M
O

A
vs

.M
O

EA
/D

EM
O

D
M

O
A

vs
.S

PE
A

2
EM

O
D

M
O

A
vs

.O
M

N
I

EM
O

D
M

O
A

vs
.M

SS
A

EM
O

D
M

O
A

vs
.

M
O

G
W

O

EM
O

D
M

O
A

vs
.M

O
M

A
EM

O
D

M
O

A
vs

.D
N

-
N

SG
A

-I
I

EM
O

D
M

O
A

vs
.M

O
M

PA

M
M

F1
M

ea
n

0.
00

11
0.

00
74

+
0.

00
16

+
0.

01
13

+
0.

00
17

=
0.

00
17

+
0.

01
81

+
0.

00
26

+
0.

00
17

=
0.

00
21

+
0.

00
00

=
St

d
0.

00
00

0.
00

17
0.

00
02

0.
00

42
0.

00
00

0.
00

02
0.

00
18

0.
00

05
0.

00
00

0.
00

02
0.

00
23

M
M

F2
M

ea
n

0.
00

40
0.

08
23

+
0.

00
62

+
0.

08
15

+
0.

01
51

+
0.

00
63

+
0.

01
45

+
0.

01
23

+
0.

01
72

+
0.

01
26

+
0.

00
63

=
St

d
0.

00
30

0.
02

21
0.

01
71

0.
04

69
0.

00
88

0.
00

50
0.

00
28

0.
00

20
0.

00
25

0.
01

11
0.

00
09

M
M

F4
M

ea
n

0.
00

00
0.

00
37

+
0.

00
00

-
0.

00
42

+
0.

00
17

+
0.

00
14

+
0.

02
00

+
0.

00
23

+
0.

00
00

=
0.

00
16

+
0.

00
20

+
St

d
0.

00
08

0.
00

07
0.

00
00

0.
00

23
0.

00
01

0.
00

01
0.

00
29

0.
00

04
0.

00
01

0.
00

02
0.

00
02

M
M

F5
M

ea
n

0.
00

16
0.

00
70

+
0.

00
03

=
0.

01
14

+
0.

00
17

+
0.

00
15

+
0.

01
46

+
0.

00
21

+
0.

00
15

+
0.

00
18

+
0.

00
21

+
St

d
0.

00
00

0.
00

14
0.

00
01

0.
00

99
0.

00
01

0.
00

01
0.

00
21

0.
00

05
0.

00
01

0.
00

02
0.

00
02

M
M

F7
M

ea
n

0.
00

17
0.

00
45

+
0.

00
11

-
0.

00
74

+
0.

00
17

+
0.

00
15

+
0.

01
59

+
0.

00
25

+
0.

00
11

-
0.

00
20

+
0.

00
19

+
St

d
0.

00
00

0.
00

08
0.

00
00

0.
00

57
0.

00
01

0.
00

01
0.

00
27

0.
00

06
0.

00
00

0.
00

02
0.

00
02

M
M

F8
M

ea
n

0.
00

11
0.

01
36

+
0.

00
11

=
0.

00
43

+
0.

00
18

+
0.

00
15

+
0.

01
19

+
0.

00
31

+
0.

00
16

+
0.

00
19

+
0.

00
25

+
St

d
0.

00
01

0.
00

44
0.

00
01

0.
00

16
0.

00
03

0.
00

02
0.

00
20

0.
00

07
0.

00
02

0.
00

03
0.

00
02

M
M

F1
0

M
ea

n
0.

00
90

0.
12

88
+

0.
11

93
+

0.
31

66
+

0.
05

74
+

0.
17

31
+

0.
19

04
+

0.
04

73
+

0.
01

06
+

0.
17

10
+

0.
00

99
=

St
d

0.
00

19
0.

13
49

0.
11

63
0.

13
47

0.
06

68
0.

09
91

0.
08

76
0.

02
21

0.
00

24
0.

09
15

0.
00

10
M

M
F1

1
M

ea
n

0.
00

89
0.

01
54

+
0.

02
10

+
0.

14
70

+
0.

01
40

+
0.

01
20

+
0.

05
35

+
0.

01
40

+
0.

00
99

+
0.

01
38

+
0.

01
42

+
St

d
0.

00
01

0.
00

14
0.

08
99

0.
04

13
0.

00
10

0.
00

10
0.

00
85

0.
00

15
0.

00
06

0.
00

13
0.

00
21

M
M

F1
2

M
ea

n
0.

00
01

0.
01

49
+

0.
01

22
=

0.
02

76
+

0.
00

29
+

0.
00

70
+

0.
02

01
+

0.
00

47
+

0.
00

45
+

0.
00

29
+

0.
00

32
+

St
d

0.
00

02
0.

01
18

0.
00

00
0.

04
10

0.
00

03
0.

01
19

0.
00

37
0.

00
07

0.
00

14
0.

00
03

0.
00

03
M

M
F1

3
M

ea
n

0.
00

05
0.

02
33

+
0.

01
36

+
0.

22
94

+
0.

01
71

+
0.

01
60

+
0.

06
50

+
0.

01
78

+
0.

01
35

+
0.

02
11

+
0.

01
84

+
St

d
0.

00
00

0.
00

47
0.

00
05

0.
10

24
0.

00
08

0.
00

12
0.

01
18

0.
00

10
0.

00
07

0.
00

32
0.

00
25

M
M

F1
4

M
ea

n
0.

04
97

0.
15

43
+

0.
09

43
+

0.
09

29
+

0.
19

85
+

0.
08

54
+

0.
10

01
+

0.
06

75
+

0.
06

37
+

0.
09

53
+

0.
07

15
+

St
d

0.
00

00
0.

00
73

0.
00

74
0.

00
45

0.
00

55
0.

00
80

0.
00

53
0.

00
37

0.
00

51
0.

00
69

0.
00

69
M

M
F1

5
M

ea
n

0.
08

75
0.

09
70

=
0.

08
80

+
0.

13
33

+
0.

25
01

+
0.

14
13

+
0.

19
19

+
0.

10
31

+
0.

09
18

+
0.

16
33

+
0.

10
35

+
St

d
0.

00
70

0.
00

58
0.

01
11

0.
00

70
0.

03
72

0.
00

71
0.

03
81

0.
00

77
0.

00
49

0.
01

32
0.

01
20

M
M

F1
_e

M
ea

n
0.

00
40

0.
03

01
+

1.4
29

7
+

0.
08

58
+

0.
01

13
+

0.
00

64
+

0.
01

24
+

0.
00

49
+

0.
00

49
+

0.
00

98
+

0.
00

88
+

St
d

0.
00

00
0.

02
72

0.
83

49
0.

06
64

0.
00

64
0.

00
66

0.
00

38
0.

00
35

0.
00

10
0.

00
68

0.
00

03
M

M
F1

4_
a

M
ea

n
0.

05
18

0.
07

45
+

0.
11

77
+

0.
09

28
+

0.
20

41
+

0.
09

04
+

0.
11

59
+

0.
06

94
+

0.
07

14
+

0.
10

47
+

0.
10

59
+

St
d

0.
00

09
0.

00
50

0.
00

83
0.

00
55

0.
02

56
0.

00
38

0.
00

70
0.

00
21

0.
00

30
0.

00
59

0.
00

93
M

M
F1

5_
a

M
ea

n
0.

08
78

0.
11

57
+

0.
10

78
+

0.
13

54
+

0.
28

13
+

0.
14

84
+

0.
18

39
+

0.
11

15
+

0.
09

88
+

0.
16

64
+

0.
13

25
+

St
d

0.
00

04
0.

00
39

0.
01

20
0.

00
85

0.
04

09
0.

01
33

0.
01

82
0.

00
78

0.
00

30
0.

01
47

0.
01

57
M

M
F1

0_
l

M
ea

n
0.

18
37

0.
19

08
+

0.
18

78
+

0.
19

71
+

0.
20

31
+

0.
20

20
+

0.
25

06
+

0.
20

35
+

0.
19

31
=

0.
19

86
+

0.
19

27
+

St
d

0.
02

22
0.

00
94

0.
02

54
0.

03
80

0.
02

18
0.

02
34

0.
02

91
0.

00
23

0.
00

00
0.

04
06

0.
00

27
M

M
F1

1_
l

M
ea

n
0.

10
18

0.
16

05
+

0.
25

08
+

0.
20

78
+

0.
09

28
+

0.
09

08
=

0.
12

72
+

0.
09

08
=

0.
14

49
+

0.
09

23
+

0.
09

26
+

St
d

0.
00

00
0.

00
09

0.
00

03
0.

08
86

0.
00

21
0.

00
05

0.
00

96
0.

00
04

0.
00

09
0.

00
05

0.
00

07
M

M
F1

2_
l

M
ea

n
0.

04
69

0.
08

85
+

0.
24

69
+

0.
09

68
+

0.
08

10
+

0.
08

12
+

0.
09

41
+

0.
08

42
+

0.
08

70
+

0.
08

24
+

0.
08

30
+

St
d

0.
00

00
0.

00
14

0.
00

03
0.

00
88

0.
00

54
0.

00
00

0.
00

55
0.

00
00

0.
00

09
0.

00
08

0.
00

04
M

M
F1

3_
l

M
ea

n
0.

12
60

0.
14

43
+

0.
29

14
+

0.
31

25
+

0.
14

79
+

0.
14

53
+

0.
18

30
+

0.
14

55
+

0.
14

46
+

0.
14

78
+

0.
14

67
+

St
d

0.
00

00
0.

00
02

0.
00

92
0.

10
82

0.
00

39
0.

00
08

0.
01

82
0.

00
12

0.
00

09
0.

00
28

0.
00

66
M

M
F1

5_
l

M
ea

n
0.

16
84

0.
23

74
+

0.
25

63
+

0.
21

23
+

0.
26

53
+

0.
18

98
+

0.
25

06
+

0.
17

88
+

0.
18

02
+

0.
20

32
+

0.
18

81
=

St
d

0.
00

45
0.

01
25

0.
02

03
0.

00
53

0.
02

26
0.

00
61

0.
02

91
0.

00
41

0.
00

33
0.

00
77

0.
00

30
M

M
F1

5_
a_

l
M

ea
n

0.
16

68
0.

23
33

+
0.

23
60

+
0.

23
27

+
0.

28
76

+
0.

19
77

+
0.

19
42

+
0.

16
87

+
0.

18
02

+
0.

21
34

+
0.

19
51

+
St

d
0.

00
06

0.
00

54
0.

00
76

0.
00

48
0.

04
29

0.
00

70
0.

00
96

0.
00

44
0.

00
21

0.
00

93
0.

00
77

M
M

F1
6_

l1
M

ea
n

0.
13

37
0.

13
97

+
0.

17
75

+
0.

16
73

+
0.

25
48

+
0.

14
96

+
0.

29
41

+
0.

13
80

+
0.

18
21

=
0.

15
93

+
0.

14
44

+
St

d
0.

00
23

0.
00

57
0.

00
68

0.
00

34
0.

02
83

0.
00

59
0.

00
70

0.
00

60
0.

00
21

0.
00

73
0.

00
45

M
M

F1
6_

l2
M

ea
n

0.
22

29
0.

23
49

+
0.

32
68

+
0.

25
74

+
0.

28
72

+
0.

23
20

+
0.

28
30

+
0.

22
67

+
0.

23
00

+
0.

23
39

+
0.

23
80

+
St

d
0.

00
11

0.
00

21
0.

01
68

0.
00

32
0.

02
17

0.
00

71
0.

01
35

0.
00

48
0.

00
31

0.
00

81
0.

00
77

M
M

F1
6_

l3
M

ea
n

0.
16

21
0.

23
11

+
0.

23
50

+
0.

20
58

+
0.

25
90

+
0.

18
47

+
0.

21
15

+
0.

17
80

+
0.

18
12

+
0.

19
02

+
0.

18
88

+
St

d
0.

00
10

0.
00

88
0.

00
76

0.
00

35
0.

02
15

0.
00

77
0.

00
40

0.
00

47
0.

00
26

0.
00

47
0.

00
55

+
/-

/≈
23

/0
/1

19
/2

/3
24

/0
/0

23
/0

/1
23

/0
/1

24
/0

/0
23

/0
/1

19
/1

/4
24

/0
/0

20
/0

/4



1974 Comput Model Eng Sci. 2025;142(2)

Ta
bl

e6
:

rP
SP

te
st

re
su

lts

Pr
ob

le
m

EM
O

D
M

O
A

EM
O

D
M

O
A

vs
.M

O
PS

O
EM

O
D

M
O

A
vs

.N
SG

A
-I

I
EM

O
D

M
O

A
vs

.M
O

EA
/D

EM
O

D
M

O
A

vs
.S

PE
A

2
EM

O
D

M
O

A
vs

.O
M

N
I

EM
O

D
M

O
A

vs
.M

SS
A

EM
O

D
M

O
A

vs
.

M
O

G
W

O

EM
O

D
M

O
A

vs
.M

O
M

A
EM

O
D

M
O

A
vs

.D
N

-
N

SG
A

-I
I

EM
O

D
M

O
A

vs
.M

O
M

PA

M
M

F1
M

ea
n

0.
00

12
0.

01
12

+
0.

02
03

+
0.

02
27

+
0.

00
38

+
0.

05
12

+
0.

00
76

+
0.

04
12

+
0.

03
08

+
0.

05
55

+
0.

04
35

+
St

d
0.

00
10

0.
01

65
0.

00
96

0.
06

77
0.

00
28

0.
00

86
0.

04
17

0.
00

88
0.

00
10

0.
00

88
0.

00
73

M
M

F2
M

ea
n

0.
03

10
0.

07
84

+
0.

05
51

+
0.

05
86

+
0.

03
84

+
0.

06
72

+
0.

08
51

+
0.

03
41

=
0.

03
91

+
0.

06
43

+
0.

03
44

+
St

d
0.

07
00

0.
08

70
0.

02
49

0.
48

71
0.

02
18

0.
04

66
0.

03
62

0.
00

90
0.

01
21

0.
03

19
0.

01
45

M
M

F4
M

ea
n

0.
00

58
0.

04
19

+
0.

07
33

+
0.

27
77

+
0.

02
34

+
0.

04
33

+
0.

26
45

+
0.

05
48

+
0.

01
61

+
0.

04
88

+
0.

02
49

+
St

d
0.

00
00

0.
00

95
0.

01
84

0.
09

15
0.

00
39

0.
00

97
0.

07
12

0.
04

01
0.

00
11

0.
01

42
0.

00
51

M
M

F5
M

ea
n

0.
15

04
0.

14
64

+
0.

13
65

+
0.

55
64

=
0.

06
57

+
0.

11
23

+
0.

36
68

+
0.

10
17

+
0.

05
40

+
0.

11
73

+
0.

08
09

+
St

d
0.

00
08

0.
01

87
0.

00
23

0.
21

47
0.

00
86

0.
00

94
0.

09
85

0.
03

24
0.

00
30

0.
01

51
0.

01
26

M
M

F7
M

ea
n

0.
00

45
0.

04
32

+
0.

08
71

+
0.

18
54

+
0.

02
16

+
0.

02
53

+
0.

22
76

+
0.

01
79

+
0.

01
48

+
0.

02
86

+
0.

02
28

+
St

d
0.

00
00

0.
00

93
0.

00
57

0.
07

71
0.

00
46

0.
00

69
0.

07
31

0.
00

90
0.

00
09

0.
00

76
0.

00
35

M
M

F8
M

ea
n

0.
05

39
0.

30
92

+
0.

71
64

+
1.5

55
0

+
0.

90
45

+
0.

13
08

+
1.1

38
1

+
0.

18
01

+
0.

13
36

+
0.

13
40

+
0.

06
51

+
St

d
0.

01
06

0.
15

42
0.

28
63

0.
72

53
0.

51
34

0.
03

25
0.

52
35

0.
11

33
0.

10
87

0.
04

41
0.

01
67

M
M

F1
0

M
ea

n
0.

00
30

0.
13

22
+

0.
11

18
+

0.
33

50
+

0.
02

74
+

0.
17

50
+

0.
10

65
+

0.
01

64
+

0.
00

23
-

0.
14

70
+

0.
00

26
+

St
d

0.
00

15
0.

16
62

0.
12

18
0.

11
98

0.
03

32
0.

12
04

0.
07

60
0.

02
23

0.
00

04
0.

10
54

0.
00

05
M

M
F1

1
M

ea
n

0.
00

30
0.

00
53

+
0.

00
36

+
0.

00
91

+
0.

00
33

+
0.

00
44

=
0.

01
31

+
0.

00
49

=
0.

00
34

+
0.

00
46

+
0.

00
39

+
St

d
0.

00
04

0.
00

08
0.

00
04

0.
00

17
0.

00
03

0.
00

02
0.

00
25

0.
00

02
0.

00
03

0.
00

03
0.

00
06

M
M

F1
2

M
ea

n
0.

00
16

0.
00

65
+

0.
00

19
+

0.
01

58
+

0.
00

16
+

0.
00

74
+

0.
00

87
+

0.
00

31
+

0.
00

18
+

0.
00

23
+

0.
00

21
+

St
d

0.
00

02
0.

00
39

0.
00

04
0.

03
13

0.
00

04
0.

01
36

0.
00

29
0.

00
03

0.
00

02
0.

00
03

0.
00

02
M

M
F1

3
M

ea
n

0.
05

18
0.

08
73

+
0.

10
14

+
0.

58
19

+
0.

13
38

+
0.

07
97

+
0.

11
07

+
0.

07
09

+
0.

04
62

+
0.

07
43

+
0.

03
48

-
St

d
0.

00
77

0.
06

73
0.

02
80

0.
89

72
0.

07
36

0.
02

42
0.

02
67

0.
05

21
0.

00
68

0.
00

97
0.

00
42

M
M

F1
4

M
ea

n
0.

04
39

0.
05

43
+

0.
09

32
+

0.
13

44
+

0.
22

91
+

0.
07

92
+

0.
08

44
+

0.
15

24
+

0.
04

87
+

0.
08

55
+

0.
04

92
+

St
d

0.
00

17
0.

00
73

0.
00

80
0.

03
33

0.
04

15
0.

00
84

0.
00

61
0.

06
92

0.
00

22
0.

00
64

0.
00

42
M

M
F1

5
M

ea
n

0.
04

36
0.

04
70

+
0.

07
64

+
0.

06
34

+
0.

11
43

+
0.

06
92

+
0.

08
96

+
0.

05
57

+
0.

04
67

+
0.

08
11

+
0.

04
90

+
St

d
0.

00
18

0.
00

18
0.

00
71

0.
00

56
0.

01
59

0.
00

73
0.

01
17

0.
00

48
0.

00
23

0.
00

85
0.

00
46

M
M

F1
_e

M
ea

n
1.4

71
6

2.
73

01
+

2.
78

92
+

13
.6

99
8

+
5.

28
45

+
1.1

84
8

-
6.

63
16

+
8.

20
20

+
2.

45
77

+
1.

27
21

-
1.6

99
4

+
St

d
2.

01
48

1.7
27

2
1.4

00
7

9.
76

38
3.

21
50

0.
46

93
4.

41
73

5.
05

87
1.2

55
5

0.
89

09
1.0

44
3

M
M

F1
4_

a
M

ea
n

0.
00

00
0.

00
45

+
0.

11
49

+
0.

00
38

+
0.

35
23

+
0.

10
01

+
0.

00
55

+
0.

00
94

+
0.

07
67

+
0.

10
55

+
0.

12
32

+
St

d
0.

00
00

0.
00

50
0.

00
71

0.
03

18
0.

16
98

0.
00

56
0.

01
89

0.
02

92
0.

00
38

0.
00

77
0.

01
39

M
M

F1
5_

a
M

ea
n

0.
00

46
0.

06
57

+
0.

10
36

+
0.

08
89

+
0.

16
96

+
0.

08
95

+
0.

10
71

+
0.

07
54

+
0.

05
84

+
0.

10
12

+
0.

08
96

+
St

d
0.

00
13

0.
00

39
0.

01
22

0.
11

16
0.

03
41

0.
00

88
0.

01
11

0.
00

80
0.

00
21

0.
01

14
0.

01
27

M
M

F1
0_

l
M

ea
n

2.
12

67
4.

09
08

+
8.

45
07

+
1.

70
55

-
7.5

44
6

+
5.

90
67

+
1.7

83
6

+
4.

11
83

-
6.

02
97

+
2.

61
29

+
6.

97
92

+
St

d
3.

07
36

2.
29

94
3.

26
07

0.
44

98
3.

06
27

3.
54

21
2.

22
69

0.
39

08
1.6

61
9

3.
10

41
0.

41
05

M
M

F1
1_

l
M

ea
n

0.
91

10
1.6

39
5

+
3.

29
35

+
4.

52
11

+
3.

70
84

+
2.

12
33

=
2.

01
09

+
1.7

15
8

+
2.

03
60

+
2.

01
34

+
2.

19
26

+
St

d
0.

89
48

0.
12

51
0.

58
34

3.
30

15
1.5

46
5

0.
08

10
0.

39
82

0.
10

63
0.

33
12

0.
16

58
0.

18
28

M
M

F1
2_

l
M

ea
n

0.
50

12
1.2

88
5

+
6.

13
45

+
4.

58
02

+
4.

21
34

+
2.

62
96

=
2.

34
51

+
1.6

31
6

+
1.7

84
9

+
2.

63
04

+
2.

56
64

+
St

d
0.

10
04

0.
34

94
3.

42
61

5.
06

17
1.0

77
9

0.
00

34
0.

82
33

0.
14

20
0.

33
90

0.
24

77
0.

17
03

M
M

F1
3_

l
M

ea
n

0.
32

01
0.

69
43

+
0.

66
99

+
1.0

49
4

+
0.

82
84

+
0.

59
25

+
0.

63
82

+
0.

61
94

+
0.

54
61

+
0.

59
98

+
0.

52
84

+
St

d
0.

00
23

0.
30

02
0.

07
09

0.
99

82
0.

24
60

0.
01

43
0.

04
85

0.
13

61
0.

00
80

0.
03

38
0.

00
54

M
M

F1
5_

l
M

ea
n

0.
10

01
0.

19
74

+
0.

22
20

+
1.0

09
5

+
0.

39
10

+
0.

34
30

+
0.

62
44

+
0.

52
30

+
0.

46
80

+
0.

28
84

+
0.

64
78

+
St

d
0.

02
25

0.
03

25
0.

17
48

0.
09

06
0.

11
94

0.
14

20
0.

04
46

0.
06

49
0.

14
29

0.
12

35
0.

02
62

M
M

F1
5_

a_
l

M
ea

n
0.

18
99

0.
25

93
+

0.
27

95
+

0.
29

66
=

0.
28

03
+

0.
23

53
+

0.
29

18
+

0.
25

23
+

0.
26

08
+

0.
22

72
+

0.
28

18
+

St
d

0.
01

14
0.

01
54

0.
02

15
0.

00
48

0.
04

29
0.

03
40

0.
00

81
0.

01
53

0.
01

50
0.

03
62

0.
00

75
M

M
F1

6_
l1

M
ea

n
0.

14
00

0.
19

97
+

0.
20

93
+

0.
34

22
+

0.
23

04
+

0.
20

34
+

0.
22

22
+

0.
22

60
+

0.
19

51
+

0.
19

62
+

0.
19

79
+

St
d

0.
00

03
0.

00
57

0.
03

52
0.

17
72

0.
03

86
0.

03
00

0.
00

43
0.

02
43

0.
01

26
0.

03
27

0.
00

80
M

M
F1

6_
l2

M
ea

n
0.

16
10

0.
79

49
+

0.
49

79
+

1.2
47

8
+

0.
45

71
+

0.
49

81
+

0.
80

76
+

0.
68

60
+

0.
66

70
+

0.
50

43
+

0.
86

51
+

St
d

0.
03

28
0.

06
11

0.
18

93
0.

08
19

0.
13

24
0.

19
15

0.
04

01
0.

10
76

0.
18

84
0.

15
79

0.
04

48
M

M
F1

6_
l3

M
ea

n
0.

12
54

0.
28

11
+

0.
27

98
+

0.
34

57
+

0.
27

73
+

0.
27

38
+

0.
30

42
+

0.
36

46
+

0.
28

39
+

0.
27

06
+

0.
28

77
+

St
d

0.
00

00
0.

00
88

0.
00

36
0.

00
01

0.
03

87
0.

03
67

0.
00

29
0.

21
78

0.
00

29
0.

00
96

0.
00

71
+

/-
/≈

24
/0

/0
24

/0
/0

21
/1

/2
24

/0
/0

20
/1

/3
24

/0
/0

21
/1

/2
23

/1
/0

23
/1

/0
23

/1
/0



Comput Model Eng Sci. 2025;142(2) 1975

Ta
bl

e7
:

IG
D

x
te

st
re

su
lts

Pr
ob

le
m

EM
O

D
M

O
A

EM
O

D
M

O
A

vs
.M

O
PS

O
EM

O
D

M
O

A
vs

.N
SG

A
-I

I
EM

O
D

M
O

A
vs

.M
O

EA
/D

EM
O

D
M

O
A

vs
.S

PE
A

2
EM

O
D

M
O

A
vs

.O
M

N
I

EM
O

D
M

O
A

vs
.M

SS
A

EM
O

D
M

O
A

vs
.

M
O

G
W

O

EM
O

D
M

O
A

vs
.M

O
M

A
EM

O
D

M
O

A
vs

.D
N

-
N

SG
A

-I
I

EM
O

D
M

O
A

vs
.M

O
M

PA

M
M

F1
M

ea
n

0.
03

11
0.

08
96

+
0.

06
94

+
0.

19
77

+
0.

03
36

+
0.

05
03

+
0.

20
03

+
0.

04
11

+
0.

03
08

=
0.

05
49

+
0.

04
31

+
St

d
0.

00
01

0.
01

52
0.

00
91

0.
05

12
0.

00
27

0.
00

84
0.

03
75

0.
00

87
0.

00
15

0.
00

86
0.

00
70

M
M

F2
M

ea
n

0.
03

40
0.

15
91

+
0.

05
81

+
0.

28
56

+
0.

03
82

+
0.

06
05

+
0.

07
78

+
0.

03
41

+
0.

03
91

+
0.

05
91

+
0.

03
43

+
St

d
0.

00
30

0.
05

14
0.

02
36

0.
14

03
0.

02
18

0.
04

58
0.

03
36

0.
00

99
0.

01
21

0.
02

67
0.

01
44

M
M

F4
M

ea
n

0.
01

78
0.

04
18

+
0.

07
41

+
0.

23
82

+
0.

02
33

+
0.

04
32

+
0.

24
29

+
0.

05
41

+
0.

01
61

=
0.

04
87

+
0.

02
48

+
St

d
0.

00
08

0.
00

94
0.

01
80

0.
05

52
0.

00
39

0.
00

96
0.

05
27

0.
03

86
0.

00
11

0.
01

42
0.

00
51

M
M

F5
M

ea
n

0.
04

24
0.

14
47

+
0.

31
52

+
0.

35
64

+
0.

06
54

+
0.

11
11

+
0.

33
90

+
0.

10
13

+
0.

05
39

+
0.

11
62

+
0.

08
06

+
St

d
0.

00
00

0.
01

82
0.

01
17

0.
11

42
0.

00
84

0.
00

91
0.

07
24

0.
03

21
0.

00
30

0.
01

50
0.

01
23

M
M

F7
M

ea
n

0.
01

49
0.

04
10

+
0.

04
66

+
0.

13
11

+
0.

02
11

+
0.

02
51

+
0.

15
03

+
0.

02
66

+
0.

01
48

=
0.

02
80

+
0.

02
24

+
St

d
0.

00
00

0.
00

72
0.

00
56

0.
03

55
0.

00
42

0.
00

68
0.

03
00

0.
00

77
0.

00
09

0.
00

64
0.

00
34

M
M

F8
M

ea
n

0.
03

39
0.

28
74

+
0.

60
28

+
1.1

17
5

+
0.

71
16

+
0.

12
85

+
0.

79
76

+
0.

16
81

+
0.

12
82

+
0.

13
16

+
0.

06
41

+
St

d
0.

00
01

0.
14

17
0.

21
47

0.
34

49
0.

38
52

0.
03

21
0.

25
06

0.
09

95
0.

09
92

0.
04

33
0.

01
65

M
M

F1
0

M
ea

n
0.

00
23

0.
12

99
+

0.
11

03
+

0.
32

01
+

0.
02

44
+

0.
16

84
+

0.
10

20
+

0.
01

43
+

0.
00

23
-

0.
14

02
+

0.
00

26
=

St
d

0.
00

09
0.

16
45

0.
12

15
0.

11
80

0.
02

90
0.

12
11

0.
06

49
0.

01
74

0.
00

04
0.

10
52

0.
00

05
M

M
F1

1
M

ea
n

0.
00

34
0.

00
53

+
0.

00
36

+
0.

00
89

+
0.

00
32

=
0.

00
44

=
0.

01
29

+
0.

00
49

=
0.

00
34

+
0.

00
46

+
0.

00
39

+
St

d
0.

00
02

0.
00

08
0.

00
04

0.
00

17
0.

00
03

0.
00

02
0.

00
24

0.
00

02
0.

00
03

0.
00

03
0.

00
06

M
M

F1
2

M
ea

n
0.

00
66

0.
00

65
+

0.
00

19
+

0.
01

36
+

0.
00

16
+

0.
00

74
+

0.
00

85
+

0.
00

31
+

0.
00

18
+

0.
00

23
+

0.
00

21
+

St
d

0.
00

02
0.

00
39

0.
00

04
0.

02
44

0.
00

03
0.

01
36

0.
00

27
0.

00
03

0.
00

02
0.

00
03

0.
00

02
M

M
F1

3
M

ea
n

0.
05

18
0.

07
48

+
0.

08
62

+
0.

05
59

+
0.

09
99

+
0.

07
44

+
0.

10
48

+
0.

05
61

+
0.

04
62

+
0.

07
35

+
0.

03
47

=
St

d
0.

00
00

0.
03

76
0.

01
63

0.
03

77
0.

03
04

0.
01

51
0.

02
06

0.
02

71
0.

00
68

0.
00

88
0.

00
42

M
M

F1
4

M
ea

n
0.

04
39

0.
15

43
+

0.
09

43
+

0.
14

06
+

0.
22

31
+

0.
08

05
+

0.
08

29
+

0.
15

35
+

0.
04

88
+

0.
08

43
+

0.
05

27
+

St
d

0.
00

16
0.

00
73

0.
00

84
0.

02
63

0.
04

02
0.

00
65

0.
00

54
0.

07
61

0.
00

21
0.

00
94

0.
00

58
M

M
F1

5
M

ea
n

0.
04

35
0.

04
70

+
0.

07
80

+
0.

06
35

+
0.

11
11

+
0.

07
25

+
0.

08
72

+
0.

05
65

+
0.

04
61

+
0.

08
03

+
0.

05
10

+
St

d
0.

00
18

0.
00

18
0.

01
11

0.
00

30
0.

01
30

0.
00

56
0.

01
01

0.
00

84
0.

00
18

0.
00

80
0.

00
87

M
M

F1
_e

M
ea

n
2.

04
50

1.2
30

1
-

1.4
29

7
+

3.
30

05
+

2.
10

93
+

1.0
10

5
+

2.
37

08
+

2.
44

66
+

1.3
09

1
+

0.
98

63
-

1.1
35

0
+

St
d

0.
92

91
0.

00
72

0.
83

94
0.

57
74

0.
66

32
0.

55
18

0.
80

68
0.

79
99

0.
36

71
0.

46
54

0.
48

37
M

M
F1

4_
a

M
ea

n
0.

05
00

0.
11

15
+

0.
11

77
+

0.
15

23
+

0.
23

00
+

0.
10

04
+

0.
13

37
+

0.
12

83
+

0.
07

64
+

0.
10

45
+

0.
12

21
+

St
d

0.
00

30
0.

00
50

0.
00

83
0.

02
24

0.
07

73
0.

00
93

0.
01

62
0.

02
49

0.
00

62
0.

00
54

0.
01

20
M

M
F1

5_
a

M
ea

n
0.

05
04

0.
11

57
+

0.
10

52
+

0.
08

70
+

0.
16

02
+

0.
09

19
+

0.
11

18
+

0.
06

92
+

0.
05

88
+

0.
10

06
+

0.
08

94
+

St
d

0.
00

04
0.

00
39

0.
01

20
0.

00
86

0.
02

00
0.

01
04

0.
00

92
0.

00
88

0.
00

24
0.

01
09

0.
01

58
M

M
F1

0_
l

M
ea

n
0.

18
55

0.
19

08
+

0.
18

78
+

0.
14

06
-

0.
19

70
+

0.
20

48
+

0.
15

07
+

0.
20

33
+

0.
20

04
-

0.
16

75
+

0.
20

06
+

St
d

0.
01

64
0.

00
94

0.
02

54
0.

03
88

0.
01

69
0.

01
40

0.
03

99
0.

00
09

0.
00

01
0.

03
33

0.
00

07
M

M
F1

1_
l

M
ea

n
0.

21
93

0.
26

95
+

0.
25

08
+

0.
24

17
+

0.
25

06
+

0.
24

99
+

0.
25

38
+

0.
24

84
+

0.
24

94
+

0.
25

03
+

0.
24

95
+

St
d

0.
00

03
0.

00
19

0.
00

03
0.

03
49

0.
00

05
0.

00
03

0.
00

16
0.

00
04

0.
00

03
0.

00
03

0.
00

07
M

M
F1

2_
l

M
ea

n
0.

16
20

0.
68

85
+

0.
24

69
=

0.
24

81
+

0.
24

66
+

0.
24

63
+

0.
24

88
+

0.
24

36
+

0.
24

40
+

0.
24

63
+

0.
24

54
+

St
d

0.
00

04
0.

00
14

0.
00

03
0.

00
14

0.
00

06
0.

00
06

0.
00

10
0.

00
04

0.
00

09
0.

00
08

0.
00

04
M

M
F1

3_
l

M
ea

n
0.

28
40

0.
26

43
-

0.
29

14
+

0.
33

12
+

0.
31

36
+

0.
27

59
+

0.
29

54
+

0.
26

83
+

0.
25

94
+

0.
28

01
+

0.
25

32
-

St
d

0.
00

09
0.

00
02

0.
00

92
0.

02
95

0.
02

56
0.

00
53

0.
01

36
0.

01
67

0.
00

27
0.

00
75

0.
00

60
M

M
F1

5_
l

M
ea

n
0.

16
08

0.
23

74
+

0.
25

63
+

0.
27

47
+

0.
27

33
+

0.
24

38
+

0.
27

29
+

0.
25

82
+

0.
25

25
+

0.
23

05
+

0.
26

20
+

St
d

0.
00

10
0.

03
25

0.
02

03
0.

00
17

0.
01

67
0.

01
72

0.
00

22
0.

00
27

0.
01

23
0.

02
42

0.
02

26
M

M
F1

5_
a_

l
M

ea
n

0.
17

70
0.

25
93

+
0.

22
60

+
0.

23
34

+
0.

23
26

+
0.

21
03

+
0.

23
75

+
0.

21
10

+
0.

21
43

+
0.

21
28

+
0.

23
03

+
St

d
0.

00
01

0.
00

54
0.

00
76

0.
00

36
0.

01
92

0.
01

53
0.

00
53

0.
00

44
0.

00
18

0.
01

85
0.

00
81

M
M

F1
6_

l1
M

ea
n

0.
14

46
0.

20
97

+
0.

17
75

+
0.

19
66

+
0.

20
91

+
0.

16
82

+
0.

16
92

+
0.

19
73

+
0.

15
00

=
0.

17
17

+
0.

15
03

+
St

d
0.

00
15

0.
00

57
0.

00
68

0.
00

49
0.

01
43

0.
00

67
0.

00
27

0.
04

57
0.

00
01

0.
00

93
0.

00
20

M
M

F1
6_

l2
M

ea
n

0.
15

04
0.

33
49

+
0.

32
68

+
0.

24
55

+
0.

33
08

+
0.

32
14

+
0.

33
88

+
0.

32
80

+
0.

32
52

+
0.

30
99

+
0.

33
37

+
St

d
0.

00
07

0.
00

21
0.

01
68

0.
00

21
0.

01
84

0.
01

54
0.

00
17

0.
00

48
0.

01
24

0.
02

24
0.

00
45

M
M

F1
6_

l3
M

ea
n

0.
10

80
0.

24
11

+
0.

22
31

+
0.

24
38

+
0.

23
64

+
0.

21
32

+
0.

21
62

+
0.

23
61

+
0.

20
21

=
0.

21
38

+
0.

22
56

=
St

d
0.

00
50

0.
00

88
0.

00
72

0.
00

71
0.

01
47

0.
00

76
0.

00
23

0.
04

73
0.

00
05

0.
00

83
0.

00
05

+
/-

/≈
23

/1
/0

23
/0

/1
23

/1
/0

23
/0

/1
23

/0
/1

24
/0

/0
23

/0
/1

17
/2

/5
23

/1
/0

20
/1

/3



1976 Comput Model Eng Sci. 2025;142(2)

Table 4 provides statistics on the rHV obtained by different algorithms. The smaller the rHV, the
wider the coverage of the multidimensional objective space of the resulting Pareto front. As can be seen from
the table, EMODMOA obtained the minimum value among the 15 functions, which is much better than
the other algorithms. Although EMODMOA failed to obtain the minimum value in 9 functions, the mean
and standard deviation of the rHV index of these functions are still ranked first. This is because EDMOA
very well simulates the biological characteristics of the dwarf mongoose, making the algorithm have strong
global search capabilities, not disturbed by local optima, and can maximize the number of non-dominated
solutions, thus greatly improving the convergence and diversity of the algorithm.

Table 5 shows the IGDf results obtained by each algorithm. On IGDf, EMODMOA achieves the
minimum in 20 functions and its performance is far beyond the other algorithms. The results obtained in
Multi-objective Multimodal test function1 (MMF1), MMF5, MMF7, and MMF11_l are also very competitive
although no minimum is achieved. This proves once again that EMODMOA has strong search capability and
convergence performance, which matches the rHV results shown in Table 4.

The rPSP is used to measure the uniformity and compactness of the solutions obtained by the
measurement algorithm in the Pareto front. The rPSP values obtained by different algorithms are recorded
in Table 6. As can be seen from the table, among the 19 test functions, EMODMOA has the smallest value
and ranks first among all algorithms. In functions MMF5, MMF10, MMF13, and MMF1_e, EMODMOA
did not obtain the smallest value, but the optimization results were also very competitive among all
algorithms, and the number of minimum values obtained by other algorithms was far less than that of
EMODMOA. The comparison of rPSP values shows that EMODMOA can obtain a Pareto front with a
uniform distribution and compact arrangement, which proves that EMODMOA has a strong global search
capability. This is due to the improvement of the original DMOA algorithm, which combines the obtained
solution with the best solution of the previous generation and uses KNN to select reference points to retain
the best solution. Therefore, EMODMOA can find multiple optimal solutions for multimodal problems,
demonstrating excellent search capabilities.

Table 7 gives the statistics of the performance metric IGDx. In Table 7, EMODMOA’s results for IGDx
are better than the other algorithms. Minimum values were obtained for 16 functions and good results were
obtained although no minimum values were obtained for the remaining functions. It shows that EMODMOA
is very good at searching the decision space and IGDx measures the convergence between the PS obtained
by the algorithm and the true PS. Combined with the results of rPSP in Table 6, it proves that EMODMOA
is better than other algorithms in its global search ability.

Overall, the overall performance of EMODMOA in CEC2020 is excellent. EMODMOA can get closer
to the global optimal solution and more diverse Pareto frontiers. This fully reflects its superior search
performance and convergence and proves that we can lead the EMODMOA algorithm to solve real
multi-objective problems.

6 Experimental Results and Discussion
In this study, the EMODMOA algorithm is used to solve the SDFWSN deployment, which is deployed

on a static node grid of 4000 m × 4000 m. The false alarm rate of each node is lower than 0.05, detection
rate is higher than 0.95. The SDFWSN consists of 220 sensor nodes. The proposed EMODMOA algorithm
is compared parametrically with the existing multi-objective algorithms NSGAII, MOPSO, MOEA_D, and
MOGWO in terms of the network lifecycle, spatial coverage, temporal coverage, false alarm rate, and
detection rate. And to better evaluate the performance of the proposed algorithms, this article adopts the
widely used evaluation metrics in multi-objective optimization algorithms [50], hyper volume (HV), Delta
and non-dominant solution (NDS) metrics are evaluated for the multi-objective algorithm. Table 8 lists the
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experimental settings and their values. Table 9 shows the parameter settings of the various multi-objective
algorithms compared.

Table 8: Experimental parameter settings

Simulation parameters Values
Area covered 4000 m × 4000 m

Deployment mode Uniform and Independent deployment
Location of sink Centre of network field

Number of nodes 220 nodes
Packet length (l) 2000 bits

Eini t i a l 1 J
Eel ec 50 nJ/bit
Em p 100 pJ/bit/m4

E f s 10 pJ/bit/m2

EDA 5 pJ/bit/signal
α 0.05
β 0.95
T 1

TD 1

Table 9: Function parameter settings

Algorithms Parameter Value

EMODMOA Peep 2
Population size 40

MOPSO

Archive size 20
Population size 40

Deletion selection pressure 2
Leader selection pressure 2

Grid inflation rate 0.1
Inertia weight (w) 0.5

Number of grids per dimension 10
Mutation rate 0.1

MOGWO

Archive size 20
Population size 40

Deletion selection pressure 2
Number of grids per dimension 10

Leader selection pressure 4
Grid inflation rate 0.1

MOEA/D

Archive size 20
Population size 40

Crossover parameter 0.5

(Continued)
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Table 9 (continued)

Algorithms Parameter Value
Number of neighbors 15

NSGAII
Population size 40

Crossover probability 0.9
Mutation probability 0.1

6.1 Basic Experiment
The HV index evaluates the convergence and diversity of the solution set by comparing the hypercube

between the solution set and the reference point. The HV index is positive. In multi-objective optimization,
the larger the hypercube occupied by the solution set, the better the performance of the solution set,
indicating that the algorithm has found a better solution in the objective space. The Delta index is a
commonly used evaluation index that can help determine the diversity and homogeneity of the solution set
generated by the optimization algorithm. It measures the degree of dispersion of the solutions within the
solution set and provides information about the structure of the solution set. The closer the Delta metric is
to 1, the better the diversity and homogeneity of the solution set; the closer it is to 0, the worse the diversity
and homogeneity of the solution set. NDS is the number of optimal solution sets obtained by the algorithm,
which intuitively reflects the algorithm’s ability to find the best solution. In this paper, the HV, Delta, and
NDS values of NSGAII, MOPSO, MOEA_D, and MOGWO are compared with those of the EMODMOA
algorithm. The results are shown in Figs. 3–5. The results show that the super-volume values obtained by
the EMODMOA algorithm are higher than those of the other algorithms under different parameter settings,
which indicates that the EMODMOA algorithm has strong convergence. Moreover, the Delta and NDS values
of EMODMOA are higher than those of the other algorithms, which indicates that EMODMOA can find a
Pareto frontier with more diversity and richness, and thus provide decision-makers with more choices.

Figure 3: HV vs. Number of iterations
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Figure 4: NDS vs. Number of iterations

Figure 5: Delta vs. Number of iterations

Fig. 6 shows the network life cycle as the number of iterations increases. It can be seen from the
figure that the network life cycle is extended with optimization. Comparing the EMODMOA algorithm
with algorithms such as NSGAII, MOPSO, MOEA/D, and MOGWO, our proposed algorithm obtains the
maximum network life cycle after 500 iterations. As can be seen from the direction of the broken line in
the figure, EMODMOA can steadily improve the network life cycle, and it has the highest stability among
all algorithms.

The analysis of the spatial coverage of the network is given in Fig. 7, which improves with the number
of iterations. A comparison of the EMODMOA algorithm with NSGAII, MOPSO, MOEA/D, and MOGWO
reveals that our proposed algorithm gives the optimal spatial coverage of the network at the later stage of
iteration. This is due to the scientific improvement of our algorithm and shows that our proposed algorithm
is highly competitive among many multi-objective optimization algorithms.
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Figure 6: Network lifecycle vs. Number of iterations

Figure 7: Spatial coverage vs. Number of iterations

Fig. 8 gives an analysis of the network time coverage, which is optimized with the increase of the number
of iterations. Comparing EMODMOA with NSGAII, MOPSO, MOEA/D, and MOGWO, it is found that the
final iteration result of our proposed algorithm has the best time coverage. Compared with the broken lines
obtained by other algorithms, the optimized broken lines obtained by our algorithm tend to grow steadily,
which indicates that our proposed algorithm has strong stability.

Figs. 9 and 10 show the detection rate and false alarm rate of the network, respectively. The detection
rate indicates the probability that the network correctly detects the target, while the false alarm rate indicates
the probability that the network transmits information about the existence of a target when there is no
target. Therefore, as the number of iterations increases, the algorithm should improve the detection rate of
the network while reducing the false alarm rate. Observing Fig. 9, it can be found that all algorithms have
optimized the detection rate, and the MOGWO algorithm has achieved the optimal detection rate. Although
the algorithm proposed in this paper has not achieved the optimal detection rate, the detection rate obtained
is not much different from the optimal detection rate. In addition, compared with Fig. 10, it can be found that
although the MOGWO algorithm achieves the optimal detection rate, the optimization effect on the false
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alarm rate is not ideal. In contrast, EMODMOA, MOPSO, and MOEA/D improve the detection rate while
reducing the false alarm rate. EMODMOA achieves a good detection rate and an optimal false alarm rate,
thereby improving network performance.

Figure 8: Temporal coverage vs. Number of iterations

Figure 9: Detection rate vs. Number of iterations

Figure 10: False alarm rate vs. Number of iterations
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Fig. 11 shows the deployment of the sensors optimized by the EMODMOA algorithm, and after the
optimized deployment, the sensor nodes can cover almost all the target areas. Our algorithm can optimize
the deployment of wireless sensors very well. Improve the spatial coverage of the network.

Figure 11: Optimization by EMODMOA

Fig. 12 shows the data fusion graph of SDFWSN, the red circle indicates the sensors that perform data
fusion, and the optimized nodes are evenly distributed, and a certain number of sensors are distributed in
each data fusion range, which ensures the quality of network transmission. Since the sensors use stochastic
sensing, the quality of sensing decreases as the distance between the target node and the sensor increases,
the shades of blue in the graph represent the quality of the target area covered by the sensors, i.e., the PD
value of the target area, which represents the accuracy degree of the network in detecting the target, and it
can be seen that most of the target areas are covered by a higher quality to ensure the accuracy of the network
monitoring. This provides a good guarantee for network QoS.

Figs. 13–16 represent the data fusion maps after optimization with the MOEA/D, MOGWO, MOPSO,
and NSGAII algorithms, comparing Figs. 13–16 with Fig. 12, the superiority of network nodes deployed using
EMODMOA can be found. First, the nodes of the network optimized using other algorithms are unevenly
distributed, and all of them have different degrees of coverage gaps, which will affect the quality of the
network. Second, the uneven distribution of the number of sensors within the fusion range leads to poor
detection accuracy, i.e., the network cannot provide accurate detection results, which directly affects the QoS
of the network. In summary, it can be found that the deployment of the network optimized by EMODMOA
is much better than the deployment of network nodes optimized using the other four algorithms, which can
be seen in the algorithms of the superiority of the deployment of the network nodes.
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Figure 12: Sensor data fusion of EMODMOA

Figure 13: Sensor data fusion of MOEA/D
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Figure 14: Sensor data fusion diagram of MOGWO

Figure 15: Sensor data fusion diagram of MOPSO
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Figure 16: Sensor data fusion diagram of NSGAII

In the simulation experiment, 220 wireless sensors are required to cover an area of 16 × 106 m2. After
the experimental deployment, it is calculated that the coverage areas of EMODMOA, MOPSO, MOGWO,
MOEA/D, and NSGAII are 15.1 × 106 m2, 13.1 × 106 m2, 12.2 × 106 m2, MOEA/D covers an area of 12.9 × 106

m2, and NSGAII covers an area of 12.4 × 106 m2. The calculation time for each algorithm is shown in Fig. 17
below. Within the allowable time frame, EMODMOA achieved the optimal coverage.

Figure 17: Algorithm running time

6.2 Use Case
To enhance the credibility of the algorithm, four different use cases are designed for verification. The

deployment of many nodes and a small number of nodes in a small area, i.e., 1000 m × 1000 m, is discussed,
as is the deployment of many nodes and a small number of nodes in a large area, i.e., 5000 × 5000.
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Case 1: 300 nodes are deployed within a 1000 m × 1000 m range, and the network coverage is as Fig. 18.

Figure 18: 1000 m × 1000 m range and 300 nodes

Case 2: 100 nodes are deployed within a 1000 m × 1000 m range, and the network coverage is as Fig. 19.

Figure 19: 1000 m × 1000 m range and 100 nodes

Case 3: 300 nodes are deployed within an area of 5000 m × 5000 m, and the network coverage is
as Fig. 20.
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Figure 20: 5000 m × 5000 m range and 300 nodes

Case 4: 100 nodes are deployed within a 5000 m × 5000 m range, and the network coverage is as Fig. 21.

Figure 21: 5000 m × 5000 m range and 100 nodes

As can be seen from the coverage map of the wireless sensor network, the EMODMOA algorithm can
optimize multi-node networks well and can ensure the uniform distribution of wireless sensor nodes, thus
covering the target area well. For networks with a small number of wireless sensors, it is better than the
limited number of sensors themselves, so full coverage of the target area cannot be guaranteed, but the sensors
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optimized by EMODMOA can also be distributed more evenly in the target area. As can be seen from the
figure, both the large target area and the small target area can be well covered after optimization by the
wireless sensor network.

Table 10 shows the false alarm rate and detection rate after EMODMOA optimization in different cases.
For the same target range, the more sensors there are, the lower the false alarm rate and the higher the
detection rate. This shows that EMODMOA is suitable for optimizing multi-node networks. When the
number of nodes is the same, the false alarm rate is low, and the detection rate is high for a small target area.
In summary, EMODMOA is suitable for optimizing multi-wireless sensor node networks, and there is no
limit on the range of the target area.

Table 10: Dynamic performance table

Case Area covered Deployment mode PD PF
Case1 1000 m × 1000 m 300 0.996 0.049
Case2 1000 m × 1000 m 100 0.977 0.044
Case3 5000 m × 5000 m 300 0.958 0.047
Case4 5000 m × 5000 m 100 0.944 0.051

6.3 Large-Scale Deployment
To verify the performance of the algorithm in large-scale wireless sensor networks, we will add an

experiment to deploy a large-scale wireless sensor network for verification.
The experimental parameters are set as shown in Table 11, with 400 wireless sensor network nodes

deployed within a 5000 m × 5000 m area.

Table 11: Experimental parameter settings

Simulation parameters Values
Area covered 5000 m × 5000 m

Deployment mode Uniform and Independent deployment
Location of sink Centre of network field

Number of nodes 400 nodes
Packet length (l) 2000 bits

Eini t i a l 1 J
Eel ec 50 nJ/bit
Em p 100 pJ/bit/m4

E f s 10 pJ/bit/m2

EDA 5 pJ/bit/signal
α 0.05
β 0.95
T 1

TD 1
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Figs. 22–26 show the optimization of the network life cycle, spatial coverage, temporal coverage, false
alarm rate, and detection rate of large-scale networks. Fig. 22 shows that EMODMOA has extended the
network cycle from 70 to 87. Fig. 23 shows that EMODMOA has improved spatial coverage by 17%. Fig. 24
shows that EMODMOA has improved spatial coverage by 3%. Figs. 25–26 show that after EMODMOA
optimization, the network false alarm rate has been greatly reduced and the network detection rate has been
greatly improved. The EMODMOA algorithm has greatly extended the network life cycle, improved the
spatial coverage and temporal coverage, greatly reduced the false alarm rate, and improved the detection rate
of the network. Fig. 27 shows that EMODMOA can be used for large-scale deployment.

Figure 22: The network lifetime of large-scale deployment

Figure 23: The spatial coverage of large-scale deployment
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Figure 24: The temporal coverage of large-scale deployment

Figure 25: The PF of large-scale deployment

Figure 26: The PD of large-scale deployment
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Figure 27: Large-scale deployment

7 Conclusion and Future Work
In this paper, an EMODMOA algorithm is proposed, which solves the problem of deploying a five-

target SDFWSN. The algorithm improves the original DMOA algorithm by balancing the exploration and
exploitation phases of the algorithm, thereby improving the convergence speed of the algorithm and prevent-
ing the algorithm from getting stuck in a local optimum. Using the KNN algorithm to select reference points
can obtain various feasible solutions. The CEC2020 multi-objective multimodal optimization benchmark
function was tested on the proposed algorithm, and the results showed that the algorithm was superior to
other multi-objective algorithms used for comparison. Experiments on the deployment of SDFWSN were
conducted in this paper. When the algorithm is applied to SDFWSN, it outperforms NSGAII, MOPSO,
MOEA/D, and MOGWO in terms of HV, Delta, and NDS metrics. To verify the feasibility of the algorithm,
cross-case deployment, and large-scale deployment are carried out. In the experiment, the algorithm can
improve the spatial coverage and network survival rate, while improving the detection rate and reducing
the false alarm rate. The algorithm proposed in this paper effectively solves the deployment problem of
two-dimensional planar SDFWSN.

However, the algorithm proposed in this study cannot well optimize the deployment of a network with
few sensors in a large target area, and the model applied in the experiment can also be further optimized to
make it more in line with practical applications. Therefore, in future work, we will focus on optimizing the
model of a network with few sensors in a large target area, solve practical problems that affect the deployment
of wireless sensors, and consider more realistic factors in the construction of the model, to achieve a model
that is more in line with practical applications. We will deploy this network and verify the randomness of
wireless sensor perception based on data fusion.
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