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ABSTRACT

The co-infection of corona and influenza viruses has emerged as a significant threat to global public health
due to their shared modes of transmission and overlapping clinical symptoms. This article presents a novel
mathematical model that addresses the dynamics of this co-infection by extending the SEIR (Susceptible-Exposed-
Infectious-Recovered) framework to incorporate treatment and hospitalization compartments. The population is
divided into eight compartments, with infectious individuals further categorized into influenza infectious, corona
infectious, and co-infection cases. The proposed mathematical model is constrained to adhere to fundamental
epidemiological properties, such as non-negativity and boundedness within a feasible region. Additionally, the
model is demonstrated to be well-posed with a unique solution. Equilibrium points, including the disease-free
and endemic equilibria, are identified, and various properties related to these equilibrium points, such as the
basic reproduction number, are determined. Local and global sensitivity analyses are performed to identify the
parameters that highly influence disease dynamics and the reproduction number. Knowing the most influential
parameters is crucial for understanding their impact on the co-infection’s spread and severity. Furthermore, an
optimal control problem is defined to minimize disease transmission and to control strategy costs. The purpose of
our study is to identify the most effective (optimal) control strategies for mitigating the spread of the co-infection
with minimum cost of the controls. The results illustrate the effectiveness of the implemented control strategies in
managing the co-infection’s impact on the population’s health. This mathematical modeling and control strategy
framework provides valuable tools for understanding and combating the dual threat of corona and influenza
co-infection, helping public health authorities and policymakers make informed decisions in the face of these
intertwined epidemics.

KEYWORDS
Influenza-corona co-infection; stability analysis; sensitivity analysis; treatment; self-precaution; optimal control

1 Introduction

Coronavirus or COVID-19 first reported in Wuhan, China, in late 2019 [1,2]. The World Health
Organization officially declared the COVID-19 pandemic in March 2020 [3,4], following a series of
devastating coronaviruses, such as SARS-CoV and MERS-CoV, that had already spread globally
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[5,6]. The coronavirus can lead to a deadly cytokine storm, similar to previous coronaviruses [7–9].
The available evidence indicates that the primary mode of transmission of the coronavirus among
individuals is through the release of respiratory droplets during activities such as sneezing and
coughing [10]. The incubation period for the coronavirus disease typically ranges from 2 to 14 days,
with an average of 5 to 6 days [11]. Influenza, commonly called the flu, is an infectious respiratory
disease caused by the influenza virus [12,13]. During seasonal pandemics and epidemics, influenza
spreads widely throughout the world. Apart from pandemic influenza, there is a global influenza
outbreak every year that causes between 3 and 5 million cases of severe disease and between 250,000
and 500,000 fatalities [14]. The time it takes for the signs and symptoms of influenza to appear is about
2 days but might range from 1 to 4 days [15].

Concerns about the possibility of a twin epidemic of influenza and corona have persisted since the
start of the pandemic. Many cases have been reported where individuals had both SARS-CoV-2 and
influenza [16]. Up to 20% of corona patients, according to some research [17], can have co-infections
with other respiratory viruses. The influenza season and the corona pandemic pose a significant threat
to public health. Both viruses share similar transmission characteristics and clinical symptoms, causing
respiratory infections [17]. The interplay between influenza and corona viruses is a major concern, with
fatalities among people infected with both viruses being twice as high as those infected with the new
coronavirus [16,17].

Co-infection between corona and other respiratory pathogens is more common in the USA and
China, with 7% of SARS-CoV-2-positive patients sharing the burden of co-infection [17]. The clinical
signs of corona and influenza include coughing, runny noses, sore throats, fevers, headaches, and
fatigue [16,17]. Those who are infected with either virus can experience varied levels of illness, including
some who show no symptoms, only minor symptoms, or severe disease [17]. Both the flu and corona
can have severe consequences, including pneumonia, respiratory failure, acute respiratory distress
syndrome, sepsis, heart attacks or strokes, multiple organ failure, severe inflammation, and even death
[18,19].

Both coronavirus and influenza are single-stranded encapsulated RNA viruses; the former contain
a positive sense RNA strand and the latter a negative one [20]. Both have comparable infection
sites in the upper respiratory tracts (URT) and lower respiratory tracts (LRT). While influenza URT
infections are highly transmissible but have a low pathogenicity, influenza LRT infections can produce
more severe symptoms [20]. Furthermore, both viruses can spread directly from person to person or
indirectly through close contact. Their routes of transmission are comparable and include droplet,
aerosol, and self-inoculation by hand contamination [16,17,20]. Co-infection can affect the disease
prognosis, increase therapeutic intolerance, and severely compromise the immune system of the host.
One of the most important area of epidemiology has been the study of the co-existence and co-infection
of multiple diseases [21,22]. To assess the dynamics of co-infection and estimate the treatment facilities,
epidemiological models are very helpful. Numerous research works focus on the coexistence of two
infectious agents in vulnerable hosts [22–26].

There is a considerable body of work in the literature focusing on coronavirus, influenza, and
their co-infection. Epidemiologists are consistently striving to provide comprehensive insights into
these epidemics and develop effective control strategies with minimal costs. In [9], the authors
formulated an extended susceptible-exposed-symptomatic-asymptomatic-superspreader-quarantine-
recovered (SEIAPQR) mathematical model, incorporating two non-pharmaceutical optimal control
strategies: quarantine and self-precautions. In [21], the authors constructed a model for co-infection
of coronavirus and influenza, introducing vaccination compartments for COVID-19, Influenza, and
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corona-influenza co-infection. They analyzed the impact of vaccinations, including booster doses for
COVID-19, and offered a detailed analysis of influenza-corona co-infection, exploring the effects of
transmission, cure, or treatment dynamics. Similarly, in [22], the authors proposed a mathematical
model for corona-influenza co-infection, dividing the entire model into three susceptible-exposed-
infected-recovered (SEIR) submodels with a vaccination compartment. The dynamics of each sub-
model are analyzed individually to understand the complete model. Finally, an optimal control
strategy is defined in [22] with three optimal controls: non-pharmaceutical strategy (minimization of
infectious interactions), vaccine for corona, and vaccination for influenza, respectively.

To investigate the co-dynamics of influenza and corona co-infection, we divide the total pop-
ulation into eight distinct time-dependent classes or compartments: susceptible S(t), exposed E(t),
infectious with influenza II(t), infectious with corona IC(t), infectious with co-infection IIC(t), under-
treatment T(t), hospitalized H(t), and recovered R(t). First we prove fundamental properties (i.e.,
positive, bounded, and well-posedness) of the proposed model. Then, we determine the important
equilibrium points (disease-free equilibrium (DFE) and endemic equilibrium (EE)) of the proposed
model, the reproduction number R0, and demonstrate that DFE and EE points are locally and
globally asymptotically stable. To determine the most important critical parameters for R0, we perform
sensitivity analysis and mark the critical parameters for disease control analysis. In the second phase
of this study, we will conduct an optimal control analysis aimed at minimizing disease spread [25,26].
To achieve this, we will develop two optimal control problems, each using a distinct control strategy.
The first strategy focuses on the effect of treatment for infected individuals, aiming to find the optimal
treatment rate that reduces infection within the population. In the second strategy, we adjust the model
to incorporate non-pharmaceutical interventions (i.e., self-precautionary measures and government-
provided resources) along with treatment to assess their impact on preventing disease transmission.

The format of this manuscript is as follows: We explore the development of the influenza-corona
co-infection model (Section 2). The essential characteristics of the solution are discussed, including
the presence of uniqueness and positive bounded solutions (Section 3). We analyze the equilibrium
points and the reproduction number (R0) (Section 4). Specifically, we explore the asymptotic stability
of the disease-free equilibrium (DFE) and the endemic equilibrium (EE) points at the local and global
levels. A sensitivity analysis of the reproduction number with respect to different parameters is included
(Section 5). The study discusses several controls and presents their effects at various control levels and
optimal control strategies including numerical simulation (Section 6). Numerical simulations are also
included in this section to further highlight the findings. Finally, we provide a concise summary of the
manuscript’s key findings (Section 7).

2 Mathematical Model

We divide the total population, denoted as N(t), into eight mutually distinct and time-dependent
sub-classes or compartments, which we refer to as follows: susceptible S(t), exposed E(t), influenza-
infectious II(t), corona-infectious IC(t), influenza-corona infectious IIC(t), under treatment T(t),
hospitalized H(t), and those who have recovered or have been removed from the population R(t). The
susceptible population S(t) comprises individuals who are at risk of contracting influenza and corona
infections following interactions with infectious individuals carrying either influenza, corona, or both
viruses. After such interactions, a portion of the susceptible population transitions to the exposed state
E(t), making them vulnerable to coronavirus, influenza, or co-infection with both viruses. Following
an incubation period of 2 to 5 days for influenza and 2 to 14 days for corona, those in the exposed
category progress to become influenza-infectious II(t), corona-infectious IC(t), or influenza-corona
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co-infectious IIC(t). Individuals who are currently infected and receiving medical treatment in any form
are placed in the treatment compartment T(t). Patients with severe conditions, such as those requiring
oxygen beds, are considered for hospitalization H(t). Eventually, individuals who have successfully
recovered from the diseases are categorized to move in the R(t) compartment. The total population
N(t) can be written as:

N(t) = S(t) + E(t) + II(t) + IC(t) + IIC(t) + T(t) + H(t) + R(t), (1)

and flow of co-infection through compartments is shown in Fig. 1. The transmission and translation
rates (α′s, β ′s, and γ ′s, etc.) along with their complete description are given below:

• � : Birth/Recruitment rate of susceptible population.

• α1 : Transmission rate of influenza infection.

• α2 : Transmission rate of corona infection.

• α3 : Transmission rate of influenza-corona co-infection.

• β1 : Translation rate of influenza exposed to influenza infectious.

• β2 : Translation rate of corona exposed to corona infectious.

• β3 : Translation rate of influenza-corona exposed to influenza-corona infectious.

• γ1 : Translation rate of influenza infectious to influenza-corona infectious.

• γ2 : Treatment rate of influenza infectious.

• γ3 : Recovery rate of influenza infectious.

• τ1 : Translation rate of corona infectious to influenza-corona infectious.

• τ2 : Treatment rate of corona infectious.

• τ3 : Recovery rate of corona infectious.

• δ1 : Treatment rate of influenza-corona infectious.

• δ2 : Recovery rate of influenza-corona infectious.

• φ1 : Hospitalization rate of under-treatment patients.

• φ2 : Recovery rate of under-treatment patients.

• φ3 : Recovery rate of hospitalized patients.

• μ : Natural death rate.

• d1 : Death rate due to influenza disease.

• d2 : Death rate due to corona disease.

• d3 : Death rate due to influenza-corona disease.

• d4 : Death rate due to disease in under-treatment patients.

• d5 : Death rate due to disease in hospitalized patients.
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Figure 1: Flow diagram of the proposed influenza-corona co-infection model (Eq. (2))

We model the transmission of influenza-corona co-infection by the following system of non-linear
differential equations.

dS
dt

= � − (α1II + α2IC + α3IIC)S − μS, (2a)

dE
dt

= (α1II + α2IC + α3IIC)S − (β1 + β2 + β3 + μ)E, (2b)

dII

dt
= β1E − (γ1 + γ2 + γ3 + μ + d1)II , (2c)

dIC

dt
= β2E − (τ1 + τ2 + τc + μ + d2)IC, (2d)

dIIC

dt
= β3E + γ1II + τ1IC − (δ1 + δ2 + μ + d3)IIC, (2e)

dT
dt

= γ2II + τ2IC + δ1IIC − (φ1 + φ2 + μ + d4)T , (2f)

dH
dt

= φ1T − (φ3 + μ + d5)H, (2g)
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dR
dt

= γ3II + τcIC + δ2IIC + φ2T + φ3H − μR, (2h)

with the non-negative initial conditions:

S(0) > 0, E(0) ≥ 0, II(0) ≥ 0, IC(0) ≥ 0, IIC(0) ≥ 0, T(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0. (2i)

The above autonomous system can be written in compact form as:

dy
dt

= F(y(t)), y(0) = y0, 0 < t < T < +∞, (3)

where y : [0,T] → R
8
+ and F : R8

+ → R
8
+ are vector valued functions such that

y(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S(t)
E(t)
II(t)
IC(t)
IIC(t)
T(t)
H(t)
R(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, y(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S(0)

E(0)

II(0)

IC(0)

IIC(0)

T(0)

H(0)

R(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

F(y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1

F2

F3

F4

F5

F6

F7

F8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� − (α1II + α2IC + α3IIC)S − μS
(α1II + α2IC + α3IIC)S − (β1 + β2 + β3 + μ)E

β1E − (γ1 + γ2 + γ3 + μ + d1)II

β2E − (τ1 + τ2 + τc + μ + d2)IC

β3E + γ1II + τ1IC − (δ1 + δ2 + μ + d3)IIC

γ2II + τ2IC + δ1IIC − (φ1 + φ2 + μ + d4)T
φ1T − (φ3 + μ + d5)H

γ3II + τcIC + δ2IIC + φ2T + φ3H − μR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

respectively.

3 Theoretical Properties and Proofs

The fundamental characteristics of the proposed mathematical model, such as the existence of a
unique solution and a positive, bounded solution in a feasible region is demonstrated in this section.

Theorem 3.1. The co-infection model (Eq. (2)) has a bounded solution, y(t) = (
S(t), E(t), II(t),

IC(t), IIC(t), T(t), H(t), R(t)
)
.

Proof. By differentiating Eq. (1) w.r.t time t and then adding right hand side of ODEs of the system
(Eq. (2)), we get an equation of the form

dN
dt

= � − μN − (d1II + d2IC + d3IIC + d4T + d5H), (4)

with

N0 = N(0) = S(0) + E(0) + II(0) + IC(0) + IIC(0) + T(0) + H(0) + R(0) ≤ �

μ
. (5)
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Since, d1II + d2IC + d3IIC + d4T + d5H ≥ 0, hence Eq. (4) can be written as:

dN
dt

≤ � − μN. (6)

By using the properties of the Laplace transformation and partial fraction on inequality (6), we
get

L{dN(t)
dt

} ≤ L{�} − μL{N(t)}, (7)

N(s) ≤ �

μs
− �

μ(s + μ)
+ N0

(s + μ)
. (8)

The Laplace inverse transformation yield us

L
−1{N(s)} ≤ L

−1{ �

μs
} − L

−1{ �

μ(s + μ)
} + L

−1{ N0

(s + μ)
}, (9)

N(t) ≤ �

μ
− e−μt(

�

μ
− N0). (10)

Thus,

lim
t→∞

N(t) ≤�

μ
. (11)

Thus, y(t) is a bounded solution ∀ t ≥ 0. �
Theorem 3.2. With the positive initial conditions, the co-infection model (Eq. (2)) has a positive

solution y(t) = (
S(t), E(t), II(t), IC(t), IIC(t), T(t), H(t), R(t)

)
for all t ≥ 0.

Proof. Since, y(0) represent the total population at t = 0, hence, y(0) ≥ 0. Let us prove the
positivity of one state variable and the left can be proved similarly. Let us take Eq. (2a)

dS
dt

= � − (α1II + α2IC + α3IIC + μ)S.

As we already proved all the state variables are bounded by
�

μ
, therefore, ∃ χ > 0 such that

χ = sup [α1II + α2IC + α3IIC + μ].

Thus,

dS
dt

≥ � − χS(t).

Applying the Laplace transformation gives

L{dS
dt

} ≥ L{� − χS(t)},
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S(s) ≥ �

s(s + χ)
+ S0

(s + χ)
.

Now, using the inverse Laplace transformation

L
−1{S(s)} ≥L

−1{ �

s(s + χ)
} + L

−1{ S0

(s + χ)
},

S(t) ≥ �

χ
− �

χ
e−χ t + S0e−χ t. (12)

Since 0 ≤ e−χ t ≤ 1, and S0e−χ t > 0. Thus, it is self evident that S(t) ≥ 0 ∀ t ≥ 0. Furthermore,
we can verify this for other state variables. Thus, the feasible region of the proposed influenza-corona
co-infection model (Eq. (2)) is given by


 =
{(

S(t), E(t), II(t), IC(t), IIC(t), T(t), H(t), R(t)
)

∈ R8
+ : 0 < N(t) ≤ �

μ
, ∀t ≥ 0

}
. (13)

�
Before proving the existence and uniqueness properties of the solution of the proposed model, we

define following fundamental theorems:
Theorem 3.3. [27] Suppose S = {(t, u1, u2, u3, . . . , um)|a ≤ t ≤ b, −∞ < ui < ∞, for each i = 1, 2,

3 . . . , m}, and let fi(t, u1, u2, u3, . . . , um) for each i = 1, 2, 3 . . . , m be continuous on S and satisfies a

Lipchitz condition there. The system of first order differential equations
dui

dt
= fi(t, ui) with ui(a) = ωi

for each i = 1, 2, 3 . . . , m, has a unique solution for all a ≤ t ≤ b.
Theorem 3.4. The model (Eq. (3)) has a unique solution on [0,T] if F(y(t)) is Lipschitz continuous

on [0,T].

Proof. Since, all the state variables are assumed to be continuously differentiable on [0,T],
therefore, F(y(t)) and first partial derivatives of F(y(t)) are also continuous on [0,T]. Theorems 3.1 and

3.2 guarantee that F(y(t)) is bounded on [0,T], i.e., 0 < F(y(t)) ≤ �

μ
. Thus, if the partial derivatives

of the F(y(t)) are bounded, then Theorem 3.3 implies existence of a unique solution to the problem
(Eq. (2)).

To prove Lipschitz condition, we need to prove that F(y(t)) has partial derivatives with respect to
all state variables and are bounded.

|∂F1

∂S
| = | − (α1II + α2IC + α3IIC + μ)| ≤ �

μ
< ∞, |∂F1

∂E
| = 0, |∂F1

∂II

| = | − α1S| ≤ �

μ
,

|∂F1

∂IC

| = | − α2S| ≤ �

μ
, | ∂F1

∂IIC

| = | − α3S| ≤ �

μ
, |∂F1

∂T
| = |∂F1

∂H
| = |∂F1

∂R
| = 0,

|∂F2

∂S
| = |α1II + α2IC + α3IIC| ≤ �

μ
< ∞, |∂F2

∂E
| = |β1 + β2 + β3 + μ|, |∂F2

∂II

| = |α1S| ≤ �

μ
,
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|∂F2

∂IC

| = |α2S| ≤ �

μ
, | ∂F2

∂IIC

| = |α3S| ≤ �

μ
, |∂F2

∂T
| = |∂F2

∂H
| = |∂F2

∂R
| = 0, |∂F3

∂S
| = 0, |∂F3

∂E
| = β1,

|∂F3

∂II

| = |(γ1 + γ2 + γ3 + μ + d1)|, |∂F3

∂IC

| = | ∂F3

∂IIC

| = |∂F3

∂T
| = |∂F3

∂H
| = |∂F3

∂R
| = 0, |∂F4

∂S
| = 0,

|∂F4

∂E
| = β2, |∂F4

∂II

| = 0, |∂F4

∂IC

| = | − (τ1 + τ2 + τc + μ + d2)|, | ∂F4

∂IIC

| = |∂F4

∂T
| = |∂F4

∂H
| = |∂F4

∂R
| = 0,

|∂F5

∂S
| = 0, |∂F5

∂E
| = β3, |∂F5

∂II

| = γ1, |∂F5

∂IC

| = |τ1|, | ∂F5

∂IIC

| = | − (δ1 + δ2 + μ + d3)|,

|∂F5

∂T
| = |∂F5

∂H
| = |∂F5

∂R
| = 0, |∂F6

∂S
| = |∂F6

∂E
| = 0, |∂F6

∂II

| = |γ2|, |∂F6

∂IC

| = |τ2|, | ∂F6

∂IIC

| = |δ1|,

|∂F6

∂T
| = | − (φ1 + φ2 + μ + d4)|, |∂F6

∂H
| = |∂F6

∂R
| = 0, |∂F7

∂S
| = |∂F7

∂E
| = |∂F7

∂II

| = |∂F7

∂IC

| = | ∂F7

∂IIC

| = 0,

|∂F7

∂T
| = |φ1|, |∂F7

∂H
| = | − (φ3 + μ + d5)|, |∂F7

∂R
| = 0, |∂F8

∂S
| = 0|∂F8

∂E
| = 0, |∂F8

∂II

| = |γ3|,

|∂F8

∂IC

| = |τc|, | ∂F8

∂IIC

| = |δ2|, |∂F8

∂T
| = |φ2|, |∂F8

∂H
| = |φ3|, |∂F8

∂R
| = | − μ|.

It is clear that all the partial derivatives,
∂Fi

∂yj

, i, j = 1, 2, 3, . . . , 8, exist and are bounded on [0,T].

Thus, Theorem 3.3 guarantees that the model (Eq. (3)) has a unique solution. �
Thus, we have proved that the proposed model (Eq. (2)) has a unique, positive, and bounded

solution (Fig. 2).

4 Equilibrium Points and Associated Properties

In this section, we determine the important equilibrium points and the properties associated with
these equilibrium points. Specifically, we drive the reproduction number R0 and perform stability
analysis of the system at the equilibrium points. All the analytical results of stability analysis are
validated through numerical simulations and given at the end of each section (Figs. 3 and 4).

4.1 Equilibrium Points and Reproduction Number
To find equilibrium points, we consider the rate of change of all the state variables equal to zero,

i.e., dS
dt

= dE
dt

= dII
dt

= dIC
dt

= dIIC
dt

= dT
dt

= dH
dt

= dR
dt

= 0. There are two main equilibrium points that
exist for an epidemic model, DFE point and EE point. To find DFE point of an epidemic model, we
assume that there is no infection present, i.e., E = IC = II = IIC = 0. Thus, the DFE point of the
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corona-influenza co-infection model (Eq. (2)) is given as:

P∗ = (S∗, E∗, IC
∗, II

∗, IIC
∗, T ∗, H∗, R∗) =

(
�

μ
, 0, 0, 0, 0, 0, 0, 0

)
. (14)

A critical epidemiological metric that quantifies the average number of secondary infections
produced by a single infectious person in a fully susceptible (disease free) population is the reproduc-
tion number R0. The R0 can be computed mathematically using the next-generation matrix method
[28–30]. To calculate R0, we sub-divide infection carrier compartments into F and G :

F =

⎛
⎜⎜⎝

(α1II + α2IC + α3IIC)S
0
0
0

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

k1E
−β1E + k2II

−β2E + k3IC

−β3E − γ1II − τ1IC + k4IIC

⎞
⎟⎟⎠ ,

where, k1 = β1 +β2 +β3 +μ, k2 = γ1 +γ2 +γ3 +μ+d1, k3 = τ1 +τ2 +τc +μ+d2, and k4 = δ1 +δ2 +μ+d3.
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Figure 2: Numerical simulations illustrating theoretical results proved analytically, that our proposed
model is bounded and positive within a feasible region and has a unique solution
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Figure 3: Numerical simulation illustrating the our proposed model (Eq. (2)) is stable at disease free
equilibrium point when R0 < 1 (proved in Theorem 4.2). We numerically solve the system with
different initial values, and all the solution curves approaches same point which is the disease free
equilibrium point
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Figure 4: (Continued)
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Figure 4: We numerically solve the system by using different initial values, but all the solutions
approach same point which is the endemic point. These simulations demonstrate the state theorem
(Theorem 4.4) that the proposed model (Eq. (2)) is stable at endemic equilibrium point (P∗∗)

The Jacobian of the matrices F and G evaluated at DFE point P∗ are given as:

F =

⎛
⎜⎜⎜⎜⎝

0
α1�

μ

α2�

μ

α3�

μ

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎠ , G =

⎛
⎜⎜⎝

k1 0 0 0
−β1 k2 0 0
−β2 0 k3 0
−β3 −γ1 −τ1 k4

⎞
⎟⎟⎠ .

Thus, the spectral radius of FG−1 = R0 = RI + RC + RIC,

where

RI = �α1β1

μk1k2

, RC = �α2β2

μk1k3

, and RIC = α3�

μ

(
β3

k1k4

+ β1γ1

k1k2k4

+ β2τ1

k1k2k3

)
.

Here RI , RC, and RIC represent the reproduction number of influenza, corona and influenza-
corona co-infection, respectively. Thus, the reproduction number of the whole model (Eq. (2)) is given
as:

R0 = �

μ

[
α1β1k3k4 + α2β2k2k4 + α3β3k2k3 + α3γ1β1k3 + α3τ1β2k2

k1k2k3k4

]
. (15)

Local Stability at DFE

Theorem 4.1. The proposed model (Eq. (2)) is locally asymptotically stable (LAS) at the disease
free equilibrium point P∗ if R0 < 1 and unstable for R0 > 1.
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Proof. This theorem can be proved by using the Jacobian matrix approach. For this purpose, we
need to find Jacobian matrix at DFE point, i.e.,

J(P∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ 0 −α1�

μ
−α2�

μ
−α3�

μ
0 0 0

0 −k1

α1�

μ

α2�

μ

α3�

μ
0 0 0

0 β1 −k2 0 0 0 0 0

0 β2 0 −k3 0 0 0 0

0 β3 γ1 τ1 −k4 0 0 0

0 0 γ2 τ2 δ1 −k5 0 0

0 0 0 0 0 φ1 −k6 0
0 0 γ3 τc δ2 φ2 φ3 −μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

As we know that, a system is said to be stable at an equilibrium if all the eigenvalues are negative
at this equilibrium point and unstable otherwise. Therefore, we calculate the eigenvalues of the above
matrix with the help of Maple software:

λ∗
1 = − μ, (17a)

λ∗
2 = − μ, (17b)

λ∗
3 = − k6, (17c)

λ∗
4 = − k5, (17d)

λ∗
5 = − k1, (17e)

λ∗
6 = − k2

(
1 − β1α1�

μk1k2

)
, (17f)

λ∗
7 =

[
(1 − R0) + (α3β3k2k3 + α3β3k2k3 + α3γ1β1k3 + α3τ1β2k2)

k1k4μλ∗
6

]
, (17g)

λ∗
8 = − [1 − R0]

k1μλ∗
6λ

∗
7

. (17h)

Since all the eigenvalues are negatives when R0 < 1, β1α1�

μk1k2
< 1 (true) and at least Eq. (17h) is

positive otherwise. Thus, our proposed co-infection model (Eq. (2)) is locally asymptotically stable at
DFE point (Eq. (14)). �
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4.2 Global Stability
In order to show that the DFE point P∗ is globally stable, we use the approach given by Castillo-

Chavez [31].
Theorem 4.2. The disease free equilibrium (DFE) point P∗ of the model (Eq. (2)) is globally

asymptotically stable (GAS) if R0 < 1 and the conditions (H 1) and (H 2) are fulfilled:

(H 1)
dX
dt

= K(X, 0) = 0, X
0 is GAS,

(H 2)
dY
dt

= N(X,Y) = BY − N̄(X,Y),

where N̄(X,Y) ≥ 0 ∀ t ≥ 0 and B = DYN(X0, 0) is an M-matrix.

Proof. Let X = (S) represents non-infectious class and Y = (E, II , IC, IIC, T) represent infectious
classes, and P∗ = (X∗, 0) is the DFE point. So,

dX
dt

= K(X,Y) = � − (α1II + α2IC + α3IIC)S − μS. (18)

If X = X
∗, then K(X, 0) = 0, i.e.,

dX
dt

= � − μS∗ = 0. (19)

From Eq. (19), as t → ∞, X → X
∗. Therefore, X∗ is GAS. Now,

dY
dt

= BY − N̄(X,Y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k1

α1�

μ

α2�

μ

α3�

μ
0 0

β1 −k2 0 0 0 0
β2 0 −k3 0 0 0
β3 γ1 τ1 −k4 0 0
0 γ2 τ2 δ1 −k5 0
0 0 0 0 φ1 −k6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

E
II

IC

IIC

T
H

⎤
⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎣

κ

0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (20)

where

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k1

α1�

μ

α2�

μ

α3�

μ
0 0

β1 −k2 0 0 0 0
β2 0 −k3 0 0 0
β3 γ1 τ1 −k4 0 0
0 γ2 τ2 δ1 −k5 0
0 0 0 0 φ1 −k6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

E
II

IC

IIC

T
H

⎤
⎥⎥⎥⎥⎥⎥⎦

, N̄(X,Y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

κ

0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and κ = (α1II + α2IC + α3IIC)(S∗ − S).

It is evident that B is an M-matrix. Since at the DFE point N = S∗, matrix N̄(X,Y) ≥ 0. So, the
DFE point P∗ is GAS. �
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4.2.1 Endemic Equilibrium Point

To find endemic equilibrium point (P∗∗), we set E �= 0, II �= 0, IC �= 0 and IIC �= 0 in steady state
equation of model (Eq. (2)).

P∗∗ = (S∗∗, E∗∗, IC
∗∗, II

∗∗, IIC
∗∗, T ∗∗, H∗∗, R∗∗) , (21)

where

S∗∗ = �

μ

k1

R0

, E∗∗ = �

(
R0 − k1

k1R0

)
, II

∗∗ = β1

k2

E∗∗, IC
∗∗ = β2

k3

E∗∗, IIC
∗∗ = β3k2k3 + γ1β1k3 + τ1β2k2

k2k3k4

E∗∗,

T ∗∗ = γ2II
∗∗ + τ2IC

∗∗ + δ1IIC
∗∗

k5

, H∗∗ = φ1T ∗∗

k6

, R∗∗ = γ3II
∗∗ + τcIC

∗∗ + δ2IIC
∗∗ + φ2T ∗∗ + φ3H∗∗

μ
.

4.2.2 Local Stability at EE

Theorem 4.3. The Model (Eq. (2)) is locally asymptotically stable (LAS) at endemic equilibrium
point P∗∗ if R0 > 1 and is unstable for R0 < 1.

Proof. Now, we linearized the proposed model (Eq. (2)) at endemic equilibrium point (P∗∗), i.e.,

J(P∗∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(μ + α1II
∗∗ + α2IC

∗∗ + α3IIC
∗∗
) 0 − α1

R0

− α2

R0

− α3

R0

0 0 0

α1II
∗∗ + α2IC

∗∗ + α3IIC
∗∗ −k1

α1

R0

α2

R0

α3

R0

0 0 0

0 β1 −k2 0 0 0 0 0
0 β1 0 −k3 0 0 0 0
0 β3 γ1 τ1 −k4 0 0 0
0 0 γ2 τ2 δ1 −k5 0 0
0 0 0 0 0 φ1 −k6 0
0 0 γ3 τc δ2 φ2 φ3 −μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

λ∗∗
1 = − μ, (22a)

λ∗∗
2 = − k5, (22b)

λ∗∗
3 = − k6, (22c)

λ∗∗
4 = − μR0, (22d)

λ∗∗
5 = − k1, (22e)

λ∗∗
6 = − k2

(
1 − α1β1�

R0
2k1k2μ

)
, (22f)

λ∗∗
7 = − k2k3

λ∗∗
6 R0

[
1 − R0 − α3β3k2k3 + α3γ1β1k3 + α3τ1β2k2

R0k1k2k3k4μ

]
, (22g)
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λ∗∗
8 = −

(
k2k3k4

λ∗∗
6 λ∗∗

7 R0

)
(R0 − 1) . (22h)

Since all the eigenvalues are negative when R0 > 1, α1β1�

R0
2k1k2μ

< 1 (true) and unstable otherwise, the
proposed co-infection model is LAS at EE point (P∗∗). �

4.2.3 Global Stability at EE

Theorem 4.4. The endemic equilibrium (EE) point P∗∗ of the model (Eq. (2)) is globally asymptot-
ically stable (GAS) provided R0 > 1 and unstable when R0 < 1.

Proof. Let L be a Volterra-type Lyapunov function and defined as:

L (S, E, II , IC, IIC, T , H, R) =
[
S − S∗∗ − S∗∗ log

S
S∗∗

]
+

[
E − E∗∗ − E∗∗ log

E
E∗∗

]

+
[
II − I ∗∗

I − I ∗∗
I log

II

I ∗∗
I

]
+

[
IC − I ∗∗

C − I ∗∗
C log

IC

I ∗∗
C

]

+
[
IIC − I ∗∗

IC − I ∗∗
IC log

IIC

I ∗∗
IC

]
+

[
T − T ∗∗ − T ∗∗ log

T
T ∗∗

]

+
[
H − H∗∗ − H∗∗ log

H
H∗∗

]
+

[
R − R∗∗ − R∗∗ log

R
R∗∗

]
. (23)

Taking the derivative of Eq. (23) w.r.t time t:

dL

dt
=

[S − S∗∗

S

]dS
dt

+
[E − E∗∗

E

]dE
dt

+
[II − I ∗∗

I

II

]dII

dt
+

[IC − I ∗∗
C

IC

]dIC

dt

+
[IIC − I ∗∗

IC

IIC

]dIIC

dt
+

[T − T ∗∗

T

]dT
dt

+
[H − H∗∗

H

]dH
dt

+
[R − R∗∗

R

]dR
dt

.

By replacing the values of the time derivatives of state variables of the model (Eq. (2)), we get

dL

dt
=

[S − S∗∗

S

][
� − (α1II + α2IC + α3IIC)S − μS

]

+
[E − E∗∗

E

][
(α1II + α2IC + α3IIC)S − (β1 + β2 + β3 + μ)E

]

+
[II − I ∗∗

I

II

][
β1E − (γ1 + γ2 + γ3 + μ + d1)II

]
+

[IC − I ∗∗
C

IC

][
β2E − (τ1 + τ2 + τc + μ + d2)IC

]

+
[IIC − I ∗∗

IC

IIC

][
β3E + γ1II + τ1IC − (δ1 + δ2 + μ + d3)IIC

]

+
[H − H∗∗

H

][
φ1T − (φ3 + μ + d5)H

]

+
[T − T ∗∗

T

][
γ2II + τ2IC + δ1IIC − (φ1 + φ2 + μ + d4)T

]

+
[R − R∗∗

R

][
γ3II + τcIC + δ2IIC + φ2T + φ3H − μR

]
.
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dL

dt
= ξ1 − ξ2,

where

ξ1 = � + (α1II + α2IC + α3IIC + μ)
(S∗∗)2

S
+ (α1II + α2IC + α3IIC)S + (β1 + β2 + β3 + μ)

(E∗∗)2

E
+ β1E

+ (γ1 + γ2 + γ3 + μ + d1)
(I ∗∗

I )2

II

+ β2E + (τ1 + τ2 + τc + μ + d2)
(I ∗∗

C )2

IC

+ β3E + γ1II + τ1IC

+ (δ1 + δ2 + μ + d3)
(I ∗∗

IC)2

IIC

+ γ2II + τ2IC + δ1IIC + (φ1 + φ2 + μ + d4)
(T ∗∗)2

T
+ φ1T

+ (φ3 + μ + d5)
(H∗∗)2

H
+ γ3II + τcIC + δ2IIC + φ2T + φ3H + μ

(R∗∗)2

R
,

and

ξ2 =(α1II + α2IC + α3IIC + μ)
(S − S∗∗)2

S
+ �

S∗∗

S
+ (α1II + α2IC + α3IIC + μ)S∗∗

+ (E − E∗∗)2

E
(β1 + β2 + β3 + μ) + E∗∗

E
(α1II + α2IC + α3IIC) + (β1 + β2 + β3 + μ)E∗∗

+ (II − I ∗∗
I )2

II

(γ1 + γ2 + γ3 + μ + d1) + I ∗∗
I

II

β1E + (γ1 + γ2 + γ3 + μ + d1)I ∗∗
I

+ (IC − I ∗∗
C )2

IC

(τ1 + τ2 + τc + μ + d2) + I ∗∗
C

IC

β2E + (τ1 + τ2 + τc + μ + d2)I ∗∗
C

+ (IIC − I ∗∗
IC)2

IIC

(δ1 + δ2 + μ + d3) + I ∗∗
IC

IIC

(β3E + γ1II + τ1IC) + (δ1 + δ2 + μ + d3)I ∗∗
IC

+ (T − T ∗∗)2

T
(φ1 + φ2 + μ + d4) + T ∗∗

T
(γ2II + τ2IC + δ1IIC) + (φ1 + φ2 + μ + d4)T ∗∗

+ (H − H∗∗)2

H
(φ3 + μ + d5) + H∗∗

H
(φ1) + (φ3 + μ + d5)H∗∗ + μ

(R − R∗∗)2

R
+ μR∗∗

+ R∗∗

R
(γ3II + τcIC + δ2IIC + φ2T + φ3H).

For R0 < 1, we know N = S, and E = II = IC = IIC = T = H = R = 0. Therefore, for R0 > 1,
all the state functions are increasing functions except S (which is decreasing) and bounded by endemic
equilibrium point P∗∗. Now it is clear that ξ2 > ξ1 and dL

dt
< 0 except at endemic equilibrium (EE)

point.

Now, if we put EE point, S = S∗∗, E = E∗∗, II = II
∗∗, IC = IC

∗∗, IIC = IIC
∗∗, T = T ∗∗, H = H∗∗, and

R = R∗∗, then
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ξ1 = � + (α1I ∗∗
I + α2I ∗∗

C + α3I ∗∗
IC + μ)(S∗∗) + (α1I ∗∗

I + α2I ∗∗
C + α3I ∗∗

IC)S∗∗ + (β1 + β2 + β3 + μ)(E∗∗)

+ β1E∗∗ + (γ1 + γ2 + γ3 + μ + d1)(I ∗∗
I ) + β2E∗∗ + (τ1 + τ2 + τc + μ + d2)(I ∗∗

C ) + β3E∗∗ + γ1I ∗∗
I

+ τ1I ∗∗
C + (δ1 + δ2 + μ + d3)(I ∗∗

IC) + γ2I ∗∗
I + τ2I ∗∗

C + δ1I ∗∗
IC + (φ1 + φ2 + μ + d4)(T ∗∗) + φ1T ∗∗

+ (φ3 + μ + d5)(H∗∗) + γ3I ∗∗
I + τcI ∗∗

C + δ2I ∗∗
IC + φ2T ∗∗ + φ3H∗∗ + μ(R∗∗),

and

ξ2 = � + (α1I ∗∗
I + α2I ∗∗

C + α3I ∗∗
IC + μ)S∗∗ + (α1I ∗∗

I + α2I ∗∗
C + α3I ∗∗

IC)S∗∗ + (β1 + β2 + β3 + μ)E∗∗ + β1E∗∗

+ (γ1 + γ2 + γ3 + μ + d1)I ∗∗
I + β2E∗∗ + (τ1 + τ2 + τc + μ + d2)I ∗∗

C + β3E∗∗ + γ1I ∗∗
I + τ1I ∗∗

C

+ (δ1 + δ2 + μ + d3)I ∗∗
IC + (γ2I ∗∗

I + τ2I ∗∗
C + δ1I ∗∗

IC) + (φ1 + φ2 + μ + d4)T ∗∗ + φ1T ∗∗

+ (φ3 + μ + d5)H∗∗ + γ3I ∗∗
I + τcI ∗∗

C + δ2I ∗∗
IC + φ2T ∗∗ + φ3H∗∗ + uR∗ ∗ .

Thus, dL

dt
= 0 at EE point P∗∗, implies that

dL

dt
≤ 0. (24)

Thus, LaSalle’s invariance principle [28] guarantee that the endemic equilibrium (EE) point P∗∗ is
globally asymptotically stable (GAS). �

5 Sensitivity Analysis

Sensitivity analysis is needed to design efficient viral control strategies. Our goal is to find
parameters that are extremely sensitive to R0. Targeting parameters with a high sensitivity index can
help manage epidemics since they are thought to be extremely sensitive to R0. We apply the method
described in [29] and applied in [28,30,32] to determine the sensitivity index of a parameter p using the
formula:⋂R0

p
= ∂R0

∂p
p

R0

. (25)

We calculate the sensitivity indices for every parameter used in R0 (Table 1). The force of infection
of corona α2 and the force of infection of influenza α1 are the nontrivial most sensitive parameters to R0

according to the sensitivity analysis. � and μ are the trivial most sensitive parameters. It is also notable
that treatment rates of infections are not very sensitive. Sensitivity analysis is an effective technique
for determining the factors that matter most in limiting the spread of infections. To visualize how each
parameter affects each of RI , RC, RIC, and R0, respectively, we plot all of them against each parameter
(Figs. 5–7).

Table 1: Sensitivity Index for reproduction number R0 for all model parameters. The force parameter
α1 (influenza) and α2 (corona) are the most sensitive. The parameters that have a sensitivity index of
zero indicate that they have no effect on R0

Parameter Values Sensitivity index Reference

μ 0.25 −1.599206014 [9]
� 2.5 0.9999 [9]
α1 0.203 0.4175689517 [22]

(Continued)
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Table 1 (continued)

Parameter Values Sensitivity index Reference

α2 0.5249 0.5207162090 [22]
α3 0.0203 0.06171483879 Assume
β1 0.4 0.1201630446 [22]
β2 0.235 0.3378368317 [9]
β3 0.4 −0.2634473476 [22]
γ1 0.002 −0.001291547766 [22]
γ2 0.1 −0.07292876733 Assume
γ3 0.1998 −0.1457116771 [22]
τ1 0.2 −0.1394682056 Assume
τ2 0.1 −0.07658965883 Assume
τc 0.13978 −0.1070570251 [22]
δ1 0.1 −0.01234296782 Assume
δ2 0.125 −0.01542870978 [22]
d1 0.021 −0.01531504114 [22]
d2 0.008 −0.06127172706 [22]
d3 0.025 −0.003085741955 [22]
φ1 0.02 0 Assume
φ2 0.8 0 Assume
φ3 0.125 0 [19]
d4 0.02 0 Assume
d5 0.02 0 Assume
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Figure 5: Plot of RI , RC, RIC, and R0 reproduction numbers against select model parameters for
transmission rates (α1, α2, α3) and translation rate of influenza (β1 and τ2). Here, red, black, blue,
and green represent the RI , RC, RIC, and R0, respectively. The increasing and decreasing curves of
the reproduction numbers represent the effect of those parameters on the reproduction numbers. The
missing curves show that the corresponding reproduction number is independent of that parameter
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Figure 6: Plot of RI , RC, RIC, and R0 reproduction numbers vs. parameters for flu translation rate
(γ1), flu treatment (γ2), and recovery rate (γ3), etc. Since the green curve is the sum of the reproduction
numbers of all the submodels, it is therefore always dominant in all cases
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Figure 7: Plot of reproduction numbers R ′s vs. model parameters with negative sensitivity index

6 Control Analysis

In this section, we will provide a comprehensive analysis of different control analysis. We will
perform both the fixed control and optimal control analysis with different control parameters
[33–37].

6.1 Updated Model
To provide insightful information and realistic analysis, we update the proposed model (Eq. (2))

with a new non-pharmaceutical parameter s, and named as self-precaution taken by susceptible
populations. Thus, the updated model can be written as:

dS
dt

=� − (α1II + α2IC + α3IIC)S − (μ + s)S, (26a)

dE
dt

=(α1II + α2IC + α3IIC)S − (β1 + β2 + β3 + μ)E, (26b)

dII

dt
=β1E − (γ1 + γ2 + γ3 + μ + d1)II , (26c)

dIC

dt
=β2E − (τ1 + τ2 + τc + μ + d2)IC, (26d)
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dIIC

dt
=β3E + γ1II + τ1IC − (δ1 + δ2 + μ + d3)IIC, (26e)

dT
dt

=γ2II + τ2IC + δ1IIC − (φ1 + φ2 + μ + d4)T , (26f)

dH
dt

=φ1T − (φ3 + μ + d5)H, (26g)

dR
dt

= sS + γ3II + τcIC + δ2IIC + φ2T + φ3H − μR, (26h)

with the non-negative initial conditions

S(0) > 0, E(0) ≥ 0, II(0) ≥ 0, IC(0) ≥ 0, IIC(0) ≥ 0, H(0) ≥ 0, T(0) ≥ 0, R(0) ≥ 0. (26i)

6.2 Effect of Different Control Levels
Here we investigate the influence of self-precaution and treatment rates on the dynamics of state

variables in the updated model (Eq. (26)), with a particular focus on those representing infection within
the population. Employing various precautions and treatment levels spanning from 0% to 80%, we
examine their effects on disease control. The findings indicate a decline in the number of infectious
cases as the treatment level increases. Consequently, we can deduce that an elevated treatment rate for
infectious classes correlates with a reduction in infection. It is clear from Figs. 8–10, treatment can
reduce infection, but it cannot permanently eradicate the co-infection disease. On the other hand,
self-precaution, (e.g., social distancing, the wearing of a mask, and the regular use of handwash)
is an efficient non-pharmaceutical way to protect oneself and to help to eradicate the disease from
the population (Fig. 11). Based on analysis of different aspects of the disease dynamics and cost of
controls, self-precaution is the best policy to eradicate the disease. The combined effect of all treatment
parameters with and without self-precautions will be presented in the next section.

Figure 8: (Continued)
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Figure 8: Impact of influenza treatment rate (γ2) on influenza and corona dynamics (model Eq. (26)).
Disease is at its peak at γ2 = 0 and decreases with the increase in treatment, (γ2 = 0.2, γ2 = 0.4, γ2 =
0.6, and γ2 = 0.8). We assume that we have treatment resources up to 80%, and it has minimized almost
all the infectious compartment but has a maximum impact on the dynamics of influenza infectious

Figure 9: (Continued)
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Figure 9: Different levels of treatment rate τ2 (model Eq. (26)) for the patients infected with coronavirus
only and it is assumed that treatment parameter τ2 attains 0% to 80% with an increment of 20%. The
dynamics decrease with the increase of treatment rate and vice versa. The infectious with corona are
decreasing to their minimum level with a maximum treatment rate

Figure 10: Effect of influenza-corona co-infection treatment rate δ1 on model dynamics (Eq. (26)).
Interestingly, there is almost no impact on the dynamics of susceptible, exposed, influenza infectious,
and corona infectious. However, treatment and recovery increased
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Figure 11: Impact of self-precaution on the dynamics assuming that if someone is taking precautions,
they are recovered by default. If 50% to 60% (self-precaution s = 0.5 or 0.6) of the susceptible
population is aware of the disease and is taking safety measures (i.e., social distancing, hand washing,
etc.), then the disease will die out within a few days. Self-precaution not only helps eradicate the disease
but also decreases the number of under-treatments individuals and the burden on hospitalized

6.3 Optimal Control Analysis
In this section, we will define an optimal control problem to find the optimal treatment rates and

self-precaution measures as time-dependent controls. We perform optimal control analysis for model
(Eq. (26))using the Pontryagin maximum principle (PMP). The objective functional to be minimized
is defined as follows:

J(E, II , IC, IIC, u1, u2, u3, u4) =
∫

T

0

A1E(t) + A2II(t) + A3IC + A4IIC + B1

u2
1(t)
2

+ B2

u2
2(t)
2

+ B3

u2
3(t)
2

+ B4

u2
4(t)
2

dt, (27)
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where T represents the final time. E(t), II(t), IC(t), IIC(t) are the infectious state variables, and
u1(t), u2(t), u3(t) and u4(t) are our control variables for treatment of infectious compartments (i.e.,
γ2, τ2, and δ1), and self-precaution measures s taken by susceptible, respectively. B1, B2, B3, and B4 are
the associated cost parameters with our respective time-dependent controls.

The object is to find the optimal control u∗(t) = (u1, u2, u3, u4) ∈ U so that objective functional
Eq. (27) is minimized.

6.3.1 Necessary Optimality Conditions

For PMP optimization, we construct the following Hamiltonian

H(t, y, u1, u, λj) = A1E + A2II + A3IC + A4IIC + B1

u2
1(t)
2

+ B2

u2
2(t)
2

+ B3

u2
3(t)
2

+ B4

u2
4(t)
2

+
8∑

j=1

Ljfj(t, y, u).

We denote the state variables by y = (S, E, II , IC, IIC, T , H, R). The adjoint variables and the right-
hand side of our system of state equations are denoted by Lj and fj(t, y, u), respectively, where j =
1, 2, 3, . . . , 8.

H(t, y, u, Li) = A1E + A2II + A3IC + A4IIC + B1

u2
1(t)
2

+ B2

u2
2(t)
2

+ B3

u2
3(t)
2

+ B4

u2
4(t)
2

+ L1(� − (α1II + α2IC + α3IIC)S − (μ + u4)S) + L2(α1II + α2IC + α3IIC)S

− L2(β1 + β2 + β3 + μ)E + L3(β1E − (γ1 + u1 + γ3 + μ + d1)II)

+ L4(β2E − (τ1 + u2 + τc + μ + d2)IC) + L5(β3E + γ1II + τ1IC − (u3 + δ2 + μ + d3)IIC)

+ L6(u1II + u2IC + u3IIC − (φ1 + φ2 + μ + d4)T) + L7(φ1T − (φ3 + μ + d5)H)

+ L8(u4S + γ3II + τcIC + δ2IIC + φ2T + φ3H − μR). (28)

The First condition of optimality is given by

∂H
∂u

= 0.

The PMP gives us the following expressions for the controls

∂H
∂u1

= 0 �⇒ u1(t) = II(L3 − L6)

B1

, (29a)

∂H
∂u2

= 0 �⇒ u2(t) = IC(L4 − L6)

B2

, (29b)

∂H
∂u3

= 0 �⇒ u3(t) = IIC(L5 − L6)

B3

, (29c)

∂H
∂u4

= 0 �⇒ u4(t) = S(L1 − L8)

B4

. (29d)
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Under the max-min bounds, we update the controls to have

u∗
1(t) = min

[
u1(max), max

(
0,

II(L3 − L6)

B1

)]
, (30a)

u∗
2(t) = min

[
u2(max), max

(
0,

IC(L4 − L6)

B2

)]
, (30b)

u∗
3(t) = min

[
u3(max), max

(
0,

IIC(L5 − L6)

B3

)]
, (30c)

u∗
4(t) = min

[
u2(max), max

(
0,

S(L1 − L8)

B4

)]
. (30d)

Using the second optimality condition

dLj

dt
= −∂H

∂yj

, j = 1, 2, 3, . . . , 8, (31)

We get the following adjoint equations

dL1

dt
= (α1II + α2IC + α3 ∗ IIC + μ)L1 + u4L1 − (α1II + α2IC + α3IIC)L2 − u4L8, (32a)

dL2

dt
= (β1 + β2 + β3 + μ)L2 − β1L3 − β2L4 − β3L5 − A1, (32b)

dL3

dt
= α1S(L1 − l2) + (γ1 + u1 + γ3 + μ + d1)L3 − γ1L5 − u1L6 − γ3L8 − A2, (32c)

dL4

dt
= α2S(L1 − L2) + (τ1 + u2 + τc + μ + d2)L4 − τ1L5 − u2L6 − τcL8 − A3, (32d)

dL5

dt
= α3S(L1 − L2) + (u3 + δ2 + μ + d3)L5 − u3L6 − δ2L8 − A4, (32e)

dL6

dt
= (φ1 + φ2 + μ + d4)L6 − φ1L7 − φ2L8, (32f)

dL7

dt
= (φ3 + μ + d5)L7 − φ3L8, (32g)

dL8

dt
= μL8, (32h)

with Li(Tf ) = 0, i = 1, 2, . . . , 8.

6.3.2 Optimal Solution

In the first case, we take all three treatment controls (u1 = γ2, u2 = τ2, and u3 = δ1) and ignore the
self-precaution control (u4 = s = 0) (Figs. 12 and 13), and in the second case, we observe the combined
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effect of the treatment (pharmaceutical) controls and the self-precaution (non-pharmaceutical) control
(Figs. 14 and 15). Both control strategies minimize the disease and we attain the minimum value of the
corresponding objective functional. The objective functional and treatment rates both are minimum
when people are taking self-precaution and the disease dies out in this case in a very short time
(Fig. 15). On the other hand, when we only consider treatment controls, disease is reduced but not
eliminated (Fig. 13). Thus, treatment can reduce the impact of disease but cannot completely stop its
spread without taking precautionary measures.
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Figure 12: The objective functional and the corresponding optimal control values for parameters γ2, τ2

and δ1 are shown for the first optimal control strategy, where we combine all treatment rates as optimal
controls. We assume that our capacity to give treatment is up to 90% and allow controls to get a
maximum value of 0.9. All the controls are initially at maximum and then slowly decrease

Figure 13: (Continued)
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Figure 13: Impact of treatments on the susceptible, exposed, influenza-infective, and corona-infective
populations. The red line represents the dynamics of each state variable before the use of optimal
treatment controls, and the red line represents the dynamics after applying the optimal controls for
100 days
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Figure 14: We adopt both pharmaceutical (treatment) and non-pharmaceutical (self-precaution)
optimal controls and analyze the effect of this control strategy. This is the best control strategy. It
minimizes the burden of disease as well as the cost of treatment. We obtain the minimum value of the
objective functional in only 13 iterations, and the maximum level of treatments is 40% and for a very
short time
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Figure 15: The impact of optimal treatments and self-precaution control has a great impact on
the susceptible, exposed, influenza infectious, and corona infectious populations. The blue and red
lines represent the dynamics without and with optimal controls. Since red lines reach zero in all the
infectious compartments in a very short time, this optimal control is very effective

7 Conclusion

In this manuscript, we have proposed a new SEIIICIICTHR mathematical model for influenza-
corona co-infection and suggested the optimal control strategies. We analyzed the theoretical proper-
ties of the mathematical model and proved that the proposed model is well-posed and has a positive
and bounded solution within a feasible region. We also determined the equilibrium points of the model
and established the local and global stability of the model at these equilibrium points. To find the most
sensitive parameters, we did sensitivity analysis and found that the recruitment rate and death rate are
trivial sensitive parameters, and transmission parameters and treatment rates are the most not-trivial
direct and inverse, respectively, sensitive parameters. After detailed theoretical analysis, we checked
the impact of different levels of treatment on the dynamics of the co-infection disease. Our numerical
experiments indicate that all the treatment rates are useful to minimize the effect of the disease but
are not able to prevent the disease. We defined an optimal control problem and analyzed the effects of
both pharmaceutical and non-pharmaceutical optimal controls. Our findings suggest that treatment
alone is able to minimize disease spread; however, the use of self-precaution along with treatment is
the best control strategy to eliminate the disease from the population at a minimum cost.
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In our upcoming research, we will use a fractional model to provide a thorough depiction of
the co-infection dynamics of influenza and coronavirus. This model will use Caputo-Fabrizio (CF)
and Atangana-Baleanu Caputo (ABC) derivative operators to represent the intricate interactions
between the two illnesses. Furthermore, we will incorporate numerous intervention options, such
as immunization, into this framework. Our research will go beyond analyzing the success of these
interventions, suggesting optimal approaches to vaccination and hospitalization using a fractional-
order optimal control problem. This will enable us to identify the most effective strategies for lowering
the co-infection burden on the healthcare systems and improving patient health. In addition to the
above, the proposed influenza-corona co-infection model offers valuable insights into dynamics and
control strategies but has limitations. It simplifies complex biological and socio-behavioral processes,
assumes homogeneous population mixing, and overlooks multi-strain infections, resistance, and co-
infections with other diseases, affecting real-world applicability.
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