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ABSTRACT: The construction phase of a project is a critical factor that significantly impacts its overall success. The
construction environment is characterized by uncertainty and dynamism, involving nonlinear relationships among
various factors that affect construction quality. This study utilized 987 construction inspection records from 1993 to
2022, obtained from the Taiwanese Public Construction Management Information System (PCMIS), to determine the
relationships between construction factors and quality. First, fuzzy logic was applied to calculate the weights of 499
defects, and 25 critical construction factors were selected based on these weight values. Next, a deep neural network
was used to identify the relationship between the critical construction factors (input variables) and construction quality
(output variable). Finally, the prediction model’s performance was evaluated to confirm the impact of these critical
construction factors on project outcomes. This study employed an innovative hybrid soft computing technique, com-
bining fuzzy logic and an artificial neural network, to effectively predict the relationship between critical construction
factors and construction quality, achieving a model accuracy of 96.08%. Project managers can utilize the findings of this
study to enhance project management practices and establish effective construction management strategies, thereby
improving project construction quality.
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1 Introduction
The fundamental outcomes of a successful project are completing it within the allowed timeframe,

adhering to the estimated budget, and maintaining the quality of the construction project [1]. In particular,
quality is a crucial pillar of construction success, as failures in quality pose significant threats to the
project [2]. The project is the primary characteristic of the construction industry. However, projects lack
clear scope division, standard procedures, and formalized operations, evaluating the overall performance
level of construction projects is challenging [3]. The effectiveness of all stages of a project, namely planning,
design, construction, and completion, influences the overall project performance. However, numerous
factors affect stages effectiveness; thus, making the implementation of a comprehensive evaluation method
difficult. Instead, research typically evaluates the factors affecting a single stage. The construction phase
is a particularly critical stage of a project. However, most studies only measure project performance after
completion; the performance during the construction phase is rarely investigated [4]. Fanaei et al. [5] argued
that the performance during the construction phase should be evaluated to enable stakeholders to use the
evaluation results to propose corrective measures and predict the performance of the remaining project.
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Project management affects construction quality, which further affects the interests of clients. Therefore,
identifying relevant quality factors and their effects on the construction phase is critical.

There remains considerable disagreement regarding a set of success criteria that can be applied to
all types of projects when evaluating project success, making it a complex process for practitioners and
scholars [6]. Researchers often use methods such as questionnaire surveys, expert interviews, and literature
reviews to identify factors or performance indicators that affect the quality of construction projects. For
example, Jha et al. [7] used questionnaire data to develop a model for predicting project quality. Acıkara
et al. [8] administered questionnaires to 120 stakeholders in Turkish construction projects to determine
their attitudes toward quality management. Nassar et al. [9] conducted expert interviews to determine
key performance indicators (KPIs) for the construction phase of projects. Ngacho et al. [10] identified
six KPIs through interviews and a literature review to develop a framework for evaluating construction
project performance. Leon et al. [11] identified eight performance indicators for construction projects by
conducting a literature review and interviews with domain experts. Maya et al. [12] identified 34 factors
affecting construction project performance based on the opinions of practitioners.

Studies on construction quality typically rely on conventional survey statistics; however, these tech-
niques are often ineffective for generating large datasets and analyzing the characteristics of dynamic projects.
In contrast, soft computing techniques can identify critical factors affecting complex projects, enabling
the formulation of suitable project management strategies. The complexity, uncertainty, and randomness
inherent in mathematical reasoning often make traditional mathematical or modeling approaches ineffective
for many real-world problems. Soft computing, on the other hand, can tackle specific tasks using sample
data or experimental observations [13]. Soft computing encompasses a collection of techniques, including
fuzzy logic, artificial neural networks (ANNs), genetic algorithms, and learning theory. These methods aim
to mimic human cognition and are often more effective than conventional hard computing techniques in
addressing issues involving uncertainty or nonlinearity. Each soft computing method has unique strengths
and limitations. When a single technique cannot manage a complex or multidimensional real-world problem
due to excessive uncertainty, ambiguity, or insufficient data, it is often combined with other methods [14].

Some researchers advocate for integrating different methods to develop hybrid models, aiming to
achieve more reliable and accurate estimates by combining the strengths of various approaches. These models
often integrate ANNs with metaheuristic techniques or secondary artificial intelligence methods [15]. The
combination of ANN and fuzzy logic modeling methods is known as a neuro-fuzzy system, or the Adaptive
Neuro-Fuzzy Inference System (ANFIS). This approach facilitates the creation of suitable fuzzy reasoning
classifications by leveraging hybrid optimization algorithms, training fuzzy systems, and determining
appropriate membership function parameters for fuzzy inference, thereby enabling the modeling of complex
input-output relationships [16]. Kiani Mavi et al. [17] developed a decision support system using ANFIS to
predict the success of mid- and large-sized construction projects, while Georgy et al. [18] employed a neuro-
fuzzy system to forecast project performance. Dissanayake et al. [19] combined fuzzy sets, ANNs, and genetic
algorithms to develop a model for project performance monitoring. Fanaei et al. [5] applied neuro-fuzzy
techniques to qualitatively measure and predict six critical KPIs of construction projects.

Conventional control methods require numerous variables with explicit numerical values; however, not
all variables are quantifiable. Therefore, these approaches are ineffective for modeling large systems. Fuzzy
logic, which was proposed by Zadeh [20], is a method of describing uncertainty in complex problems by using
fuzzy numbers, operations, and inference. The membership functions are used to calculate crisp (nonfuzzy)
weight values for fuzzy concepts. Fuzzy logic is a method of problem simplification similar to that used in
human cognition, and this method is an effective alternative to traditional control methods because it can
establish logical relationships for uncertain or subjective data. In summary, fuzzy logic can handle imprecise
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data and accurately solve complex systems and therefore has been applied in practice to solve many difficult
control and decision-making problems.

In recent years, fuzzy logic has been adopted to investigate the imprecise and fuzzy phenomena in
construction projects. For example, Elwood et al. [21] proposed a method for detecting building damage
based on fuzzy pattern recognition. Tripathi et al. [22] used a fuzzy preference relation technique to deter-
mine the relative weights of performance factors and the associated performance measurement attributes
of construction organizations. Seresht et al. [23] provided a detailed overview of the current applications
of fuzzy–hybrid techniques in the construction field, including combinations of fuzzy logic and machine
learning methods. The development of machine learning has occurred in two phases: one related to shallow
learning and the other related to deep learning. Deep and shallow learning are distinguished by the depth
of the “assignment path,” that is, the chain of causality between actions and effects that the path can
learn [24]. Early ANNs used techniques such as backpropagation (BP) to learn statistical regularities from
large quantities of training data and subsequently make predictions for new events. One early ANN method
was a multilayer perceptron, which is a relatively simple model that only contains a single hidden layer. Later,
many other shallow machine learning models were proposed, such as support vector machine and logistic
regression, whose structures can be considered the same as those of neural networks with a single hidden
layer [25] and no hidden layer, respectively. These models have achieved success in theoretical analysis and
practical applications.

However, shallow learning is only suitable for small samples, has poor computational performance, and
has limited capacity for representing complex functions. Consequently, its generalization performance might
be limited for complex classification tasks. By contrast, deep learning methods use a deep, nonlinear network
structure to approximate complex functions, which enables the acquisition of a distributed representation
of feature inputs and the extraction of essential features from a few samples. Therefore, deep learning
involves using large quantities of training data to construct machine learning models with many hidden
layers that can learn useful features to achieve high classification or prediction accuracy. Shallow learning
methods cannot extract high-level features and might even require further postprocessing to interpret high-
dimensional extracted features; the more complex network architectures of deep learning methods do not
face these problems [26]. Moreover, in practice, the data description or sample features used in shallow
machine learning methods typically must be manually selected by experts; the selection of low-quality
features worsens the model’s generalization performance. By contrast, deep learning methods use multiple
layers for automatically extracting high-level features from the original input [27].

ANNs use weighted, interconnected computing units (artificial neurons) arranged in multiple layers
to mimic the function of the human brain and are increasingly used for prediction tasks involving large
data sets [28]. Specifically, ANNs are well-suited for handling incomplete or fuzzy data sets and highly
complex or ambiguous problems that conventionally require human intuition [29]. Deep neural networks
have been widely applied in civil engineering due to their powerful learning and nonlinear fitting capa-
bilities. For example, these networks have been applied in tasks such as construction cost estimation [30],
construction productivity prediction [31–33], construction quality evaluation [34], and project performance
prediction [35,36].

The vagueness inherent in human thinking and language introduces subjectivity and uncertainties in
practice. During the construction stage, uncertainty may arise from incomplete information or vagueness
in state monitoring, construction management, and decision-making processes, leading to uncertainties in
measurements and perceptions. Soft computing techniques can help overcome these challenges by bypassing
the need for precise mathematical or logical models of the problem. Instead, they process input data directly
to obtain results. The combination of fuzzy logic and ANNs can effectively address fuzzy phenomena and
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numerical data, making them suitable for understanding various stages of construction. By leveraging the
complementary functionality of fuzzy systems and the learning capability of ANNs, hybrid methods can
achieve performance superior to that of either method alone. Hybrid approaches that combine two or more
techniques, such as neuro-fuzzy systems, have been widely used to solve practical problems [37,38].

Tiruneh et al. [39] argued that neuro-fuzzy systems can represent and model complex problems and the
input-output relationships of nonlinear systems; practical construction and management problems can be
considered to be nonlinear systems. Therefore, some researchers have combined neural networks and fuzzy
systems to analyze construction and managerial decision-making. For example, Chae et al. [40] proposed
neuro-fuzzy approaches to classify sewer pipe defects. Sinha et al. [41] presented a novel neuro-fuzzy classifier
that combined neural network and fuzzy logic concepts; the classifier extracted features from segmented
buried pipe images to classify defects. Kumar et al. [42] developed a neuro-fuzzy inference system to classify
pipeline defects, assess damage, and evaluate degradation.

As the number of factors increases, model design and analysis become increasingly challenging, with
model complexity rising nonlinearly. The conventional expert consultation process may be ineffective
in managing the numerous complex factors present in real-world scenarios [43]. In this study, two soft
computing methods are combined to identify complex yet meaningful relationships among the factors
influencing construction, enabling predictions without relying solely on expert models. This approach
represents a state-of-the-art method for investigating construction performance. First, critical construction
factors with higher weights are identified through fuzzy logic screening. Then, an ANN is used to predict
the relationship between these critical factors and construction quality. Jafarzadeh et al. [44] noted that
the likelihood of ANN overfitting significantly increases as the number of predictive variables rises. Thus,
fuzzy logic is necessary to select key factors from the potential set to optimize ANN prediction accuracy.
By reducing data redundancy and dimensionality, capturing complex relationships, and refining specific
variables, prediction accuracy can be enhanced. Soft computing based on fuzzy logic and ANN enables the
detection of previously obscured correlations or trends, improving predictive capabilities and generating
new practical value. These prediction results can inform construction management strategies, contributing
to improved construction quality and overall project performance.

2 Research Methodology

Recently, researchers have applied soft computing techniques to the modeling, prediction, and control
of dynamic nonlinear systems, which has resulted in continually increasing computation speed, accuracy,
and design complexity [45]. This section describes the principles and operation of fuzzy logic and ANNs in
soft computing, the construction inspection data used in this research, and the research framework.

2.1 Fuzzy Set

Fuzzy logic employs fuzzy sets to characterize ambiguous ideas, such as high and low, plenty and few,
good and bad. It is defined as a set of ordered pairs as shown in Eq. (1). x represents a measure value in the
universe of discourse U, and the membership function μÃ (x) shows the size of x’s degree of membership in
set Ã. The membership function in fuzzy sets has a value ranging from 0 to 1, indicating the object’s degree
of membership in the fuzzy set [25].

f uzzy set Ã = {(x , μÃ (x)) ∣x ∈ U} . (1)
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2.1.1 Membership Function
The membership function is a fundamental concept of fuzzy logic that is used to describe the properties

of fuzzy sets. Fuzzy sets often use multiple membership functions defined with similar measures to describe
the possible values of a linguistic variable, such as “defect frequency,” to linguistic variables, such as “very
high,” “high,” “medium,” “low,” and “very low.” These linguistic variables are subsequently converted into
corresponding fuzzy values by using fuzzy numbers and are ultimately output as quantitative values. Thus,
the membership functions quantify fuzzy sets by enabling precise mathematical calculations and the analysis
of the fuzzy information. The potential power of fuzzy logic lies in its use of linguistic variables instead of
quantitative variables to represent imprecise concepts; it has promising performance for decision-making
processes that involve human reasoning.

Selecting an appropriate membership function is crucial for successfully applying fuzzy logic to practical
problems. However, no general rule or theorem for selecting a reasonable membership function has been
developed; a function is typically selected according to the characteristics of the fuzzy variable or expert
opinion. Thus, an objective standard for membership functions does not exist. Many types of membership
functions, including the commonly used Gaussian function, triangular function, and trapezoidal function,
have been proposed. The membership function for a trapezoidal function with a projection on the x-axis as
in Fig. 1 (a1, b1, c1, and d1) is presented in Eq. (2).

μÃ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
(x − a1)/(b1 − a1)

1
(d1 − x)/(d1 − c1)

0

x < a1
a1 ≤ x < b1
b1 ≤ x ≤ c1
c1 < x ≤ d1

x > d1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2)

Figure 1: Trapezoidal membership function

2.1.2 Calculation of Fuzzy Logic
Membership functions have indistinct boundaries; therefore, adjacent functions often partially overlap,

which is a characteristic of fuzzy systems. Multiple fuzzy values collectively affect the system output.
Therefore, fuzzy logic differs from traditional algebraic logic, in which only a single result is possible. One
of several suitable or reasonable choices can be selected under the situation or requirements; thus, fuzzy
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systems are elastic. For example, by using a trapezoidal function (Fig. 2), the fuzzy sets Ã= {a1, a2, a3, a4} and
B̃ = {b1, b2, b3, b4} can be defined as presented in Eqs. (3)–(6).

Ã + B̃ = (a1 + b1 , a2 + b2, a3 + b3, a4 + b4), (3)

Ã − B̃ = (a1 − b4, a2 − b3, a3 − b2, a4 − b1), (4)

Ã × B̃ = (a1 × b1 , a2 × b2, a3 × b3, a4 × b4), (5)

Ã ÷ B̃ = (a1 ÷ b4, a2 ÷ b3, a3 ÷ b2, a4 ÷ b1). (6)

Figure 2: Fuzzy set of a trapezoidal membership function

The core of fuzzy logic operations is the fuzzy rule, which is a statement of the form IF (preconditions)–
THEN (consequences). The commonly used operations in fuzzy rules are described as follows. (i) The “AND”
operator: the intersection of two fuzzy sets Ã and B̃ with a membership function C̃ = Ã∩B̃ is μC̃(x) =
min{μÃ(x), μB̃(x)}. (ii) The “OR” operator: the union of two fuzzy sets Ã and B̃ with a membership function
C̃ = Ã∪B̃ is μC̃(x) = max{μÃ(x), μB̃(x)}. The algebraic sum of two fuzzy sets Ã and B̃ with a membership
function C̃ = Ã + B̃ is μC̃(x) = μÃ(x) + μB̃(x) − μÃ(x) μB̃(x). (iii) The “NOT” operator: the complement of a
fuzzy set Ã with a membership function is μ∉Ã(x) = 1 − μÃ(x).

2.1.3 Steps of Fuzzy Inference
The membership function represents the fuzzy membership degree of an element through fuzzification,

which is the process of mapping a definite value to the element’s corresponding membership function.
Defuzzification is the opposite process of fuzzification and involves converting the fuzzy results obtained
through inference to a definite value. The steps of fuzzy inference are as follows: (i) crisp fuzzification by
applying membership functions with several rule conditions to fuzzify crisp input values and determine
membership degrees; (ii) calculation of the compliance strength of fuzzy rules by using the membership
degree of the rule conditions (these calculations include an intersection or algebraic product for AND or
a union or algebraic sum for OR); (iii) evaluation of the membership function of the rule according to the
compliance strength weight by using the intersection or algebraic product; (iv) aggregation of the weighted
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results for each rule by using the union or algebraic sum; and (v) defuzzification of the result obtained with
the aggregated membership functions by using the center of the area or the mean of max method to obtain
a definite value (i.e., the membership degree).

The purpose of this study is to evaluate the importance of different construction factors and identify the
critical construction factors that affect construction quality. To achieve these objectives, definite values of
three variables, namely defect frequency, inspection score, and construction progress, were fuzzified using
membership functions. Fuzzy inference, defuzzification, and IF-THEN rule conditions (preconditions) were
then applied to calculate the definite value of the fuzzy set.

2.2 Artificial Neural Network
An ANN can be described as a structure of closely interconnected adaptive simple processing elements,

which are known as artificial neurons or nodes, that can perform large-scale parallel computations for data
processing and knowledge representation [46]. Each neuron generates a series of real-valued activations.
Input neurons are activated through external sensors for collecting environmental data; other neurons are
activated through weighted connections from previously active neurons [24]. The output of a neuron can be
expressed using Eq. (7), where xi is the input value, wi is the weight of the neuron’s connection, bi is the bias
value, and yi is the output value. The artificial neurons acquire external information, and various learning
methods are applied to train the network structure to achieve the desired output.

yi = ∑
n
i wi ⋅ xi + bi . (7)

The deep neural network structure comprises an input layer, hidden layers, and an output layer. The
input layer contains the independent variables, and the output layer produces the solution of the studied
problem [47]. Hidden layers are located between the input and output layers and serve as a self-interacting
internal structure that solves nonlinear problems. The number of neurons and hidden layers might vary
in accordance with the complexity of the data. In general, complex problems require a high number of
neurons, and an excessive number of hidden layers can increase computation time and risk local optimization
and overfitting.

During training, the input parameters of an ANN are randomly initialized. It then iteratively calculates
an output and compares this output with the ground-truth results by using a loss function. The parameters
are then continuously updated until the value of the loss function is minimized. Iteration stops when an error
threshold is reached. The value of the loss function is the difference between the output and the predicted
value and is used as a feedback signal to update the weights and bias of neuron connections according to the
error of the loss function (such as cross-entropy). The loss function can be used to measure the learning error
(loss) for the training samples, as expressed in Eq. (8), in which Yi’ and Yi are the ground-truth labels and
predicted probability distributions, respectively. In backpropagation (BP), the loss function is minimized by
backpropagating the error through the network to adjust neuron weights by using an objective function to
compute an optimal combination of weights and biases. Because BP allows complex nonlinear relationships
to be mapped from inputs to outputs, it can approximate continuous functions and achieve model learning
goals. Gradient descent is a technique in which the weight and bias parameters are adjusted in the opposite
direction of the error gradient to reduce the total error in each iteration until an error threshold is reached.

Loss = −∑Y
′

i ⋅ log(Yi). (8)

An ANN uses nonlinear functions, which are known as activation functions, to approximate any
function. Typically, continuous, nonlinear, and differentiable functions are used as activation functions to
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facilitate the calculation of the loss function gradient for BP. In summary, a two-layer neural network can
approximate most functions. In an ANN, not only the output layer but also each hidden layer requires an
activation function to produce the input for the next layer. Two activation functions commonly used in ANNs
are the Sigmoid function and rectified linear unit (ReLU). The Sigmoid function exhibits the drawback of
gradient vanishing in deep neural networks; by contrast, ReLU can solve the gradient vanishing problem but
causes neurons to stop learning if they receive negative inputs (silencing neurons).

yi =
⎧⎪⎪⎨⎪⎪⎩

xi , i f xi ≥ 0
a ⋅ xi , i f xi < 0

. (9)

2.3 Construction Inspection Data and Research Framework
The Taiwanese government established the Public Project Construction Inspection System in 1993 to

ensure quality across various construction stages through an effective construction management framework.
Inspection committee members conduct on-site assessments of construction projects using a standardized
‘Quality Deficiency Deduction Record Form’ as a guide. Construction progress, inspection scores, defects,
and project levels are systematically recorded by the overseeing agency in the Project Construction Manage-
ment Information System (PCMIS). This data include forms completed by experts and scholars (committee
members) during quality inspections of construction sites throughout the construction process. Thus, the
data are consistent, objective, and representative of Taiwanese construction standards. These inspection
results are used to enhance contractor quality management and ensure that supervisory units adhere
to quality management practices, thereby raising standards in public projects. A systematic approach to
construction management, along with effective control measures during the construction phase, is essential
for meeting quality standards.

The government systematically collects inspection data from committee members in the PCMIS, which
is then subjected to statistical analysis to identify improvement opportunities and enhance the performance
and management of public projects. This extensive database, containing over 30 years of inspection data
across various construction stages, enables accurate analysis of the relationships between construction
factors and quality. Additionally, these results can inform the development of effective construction man-
agement strategies. The inspection data include both textual and numerical records, documenting the entire
construction inspection process. Soft computing techniques can be applied to extract rules and identify
patterns within this data, generating valuable insights to support construction management and performance
evaluation. Managers can leverage these insights to make more informed decisions. However, the data are
often complex and high-dimensional, requiring the identification of key feature variables relevant to specific
problems. Preprocessing steps are essential to eliminate errors and simplify models, thereby enabling more
effective exploration and analysis through soft computing methods.

Preprocessing is the process of cleaning, selecting, and transforming data to generate a complete
and accurate data set. This process is crucial for effective data access, analysis, and application. Data
cleaning involves identifying and correcting errors, inconsistencies, and missing values in the data. Flah
et al. [48] indicated that some algorithms might focus excessively on missing values and outliers, which
results in reduced prediction accuracy. Data selection involves choosing a specific subset of the data that
is relevant to the analysis or application. Data transformation involves converting data into a format that
is appropriate for the desired analysis or application. The implementation of the aforementioned steps can
enable the generation of a complete and accurate data set that can be effectively used for data access, analysis,
and application.



Comput Model Eng Sci. 2025;142(2) 2003

Data cleaning, selection, and transformation were applied to the construction data set collected in this
study. Construction inspection data often contain errors that must be corrected and identified. Therefore,
cleaning involves removing missing, incomplete, abnormal, outlier, invalid, and inconsistent data. In data
selection, fuzzy logic is used to calculate the weight of each construction factor and select the most important
features in the data (critical construction factors) for subsequent model training and testing. This process
facilitates the selection of relevant data and feature variables to produce a superior model that does not
exhibit overfitting. In data transformation, text data are converted into a binary or numerical format that can
be read by an ANN to obtain a prediction model with optimal learning ability. Akinosho et al. [49] stated
that obtaining optimal model performance requires preprocessing and data cleaning as well as subsequent
hyperparameter adjustment and model verification.

In this study, construction inspection data from the PCMIS spanning from 1993 to 2022 were collected
and analyzed. The preprocessing phase involved obtaining five types of data: 987 construction projects,
inspection scores, 499 distinct defect types, 6615 recorded defect occurrences (defect frequency), and
construction progress. Due to the high dimensionality and complexity of the defect data, fuzzy logic was
applied to convert defect characteristics into fuzzy data, providing a more flexible representation. Through
fuzzy inference and using three variables (inspection score, defect frequency, and construction progress), 25
critical factors influencing construction quality were identified. These crucial factors were then used as inputs
for an Artificial Neural Network (ANN) model to predict construction quality outcomes. Leveraging official
inspection data collected under consistent standards over nearly three decades enabled reliable analysis
within a complex, uncertain, and evolving construction environment. By identifying these critical factors,
the study aimed to develop a robust model for more effective construction quality prediction. The research
process was structured into four main steps, as shown in Fig. 3.

(1) Fuzzy Logic: In the fuzzy logic approach, a set of variables is described using membership functions
to represent fuzzy concepts. This method allows for handling uncertainty by quantifying the degree
to which each variable belongs to a particular set. Through a fuzzy-rule-based inference process, the
membership degree of each variable is determined, which helps assess its influence on construction
quality. The critical construction factors identified through this process are used as input variables for
the predictive model, enabling a more nuanced analysis of construction quality.

(2) Cluster Analysis: Cluster analysis was conducted on the defect frequency data and inspection scores to
categorize construction projects into groups with similar characteristics. The projects were divided into
two clusters: a high-quality cluster and a low-quality cluster. This clustering process helps differentiate
projects based on quality, even when the inspection scores fall within a narrow range. By regrouping
the data, each cluster ends up with a comparable number of projects, which effectively serves as a target
(label) for predicting construction quality.

(3) ANN: The ANN model developed in this study consisted of an input layer with 26 variables: 25
critical construction factors identified earlier, along with the construction quality label derived from
the cluster analysis. The model also included six hidden layers with a total of 1060 neurons, allowing it
to capture complex relationships within the data. The output layer consisted of a single output variable
that predicted the probability of a construction project belonging to a specific quality cluster. For the
activation functions, the input and hidden layers used ReLU, while the Sigmoid function was applied
to the output layer to generate a probability score.

(4) Model Evaluation: The dataset was split into a training set (80%) and a testing set (20%) to evaluate
the model’s predictive performance. The prediction accuracy and learning error of both the fuzzy logic
and ANN models were assessed to validate the relationship between the identified critical construction
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factors and the overall quality of the construction projects. This evaluation helped confirm the models’
ability to predict construction quality effectively.

Figure 3: Framework and workflow of this study

This research is based on the idea that soft computing techniques can predict or describe large datasets.
First, fuzzy logic was used to infer the weights of 499 construction factors and 25 critical construction
factors were ultimately identified and input into an ANN. The ANN was then trained to predict construction
quality. Finally, the performance of the prediction model was evaluated to confirm the effects of the critical
construction factors on project performance. The hybrid soft computing technique proposed in this paper
is a powerful tool that enables the automatic learning of rules and the acquisition of knowledge from actual
construction data. Project managers can use this technique to systematically identify factors affecting con-
struction performance. Moreover, the predicted results obtained with this technique can be used by managers
to design preventive strategies and corrective measures for effectively improving construction quality.

3 Results and Discussion
Construction quality defects refer to any functional deficiencies or noncompliance with specifications

and regulations in construction products [50]. However, each project occurs in a unique location and
environment and is subject to numerous unpredictable risks. In this research, fuzzy logic was used to weigh
the construction factors and identify 25 critical construction factors in inspection data from a standardized
construction inspection system. By considering the characteristics and value ranges of the PCMIS inspection
data, fuzzy numbers were assigned to the linguistic variables. The input variables were defect frequency
(times), inspection score (points), and construction progress (%), and the output variable was important
(Table 1). In the fuzzy inference process, the three input values were fuzzified, and the membership function
produced during the fuzzification process represented the value obtained after fuzzification. The definite
input value was added to the previously defined fuzzy set, and the membership function was used to
determine the membership degree of each variable.



Comput Model Eng Sci. 2025;142(2) 2005

Table 1: Linguistic variables and corresponding membership functions

Variables Linguistic variables Fuzzy numbers Membership functions
Input Inspection score Very bad, [1.0, 74]

Bad, [1.0, 77]
Common, [1.0, 80]

Good, [1.0, 83]
Very good [1.0, 86]

Defect frequency Very low, [40, 100]
Low, [40, 225]

Medium, [40, 350]
High, [40, 475]

Very high [40, 600]

Construction progress Low, [10, 20]
Medium, [10, 50]

High [10, 80]

Output Importance Unimportant, [0, 0.2, 0.4]
Common, [0.3, 0.5, 0.7]
Important [0.6, 0.8, 1]

3.1 Operation of Fuzzy Logic
Fuzzy logic involves using “fuzzy sets” and “membership functions” to assign a membership degree to an

element within a set. A fuzzy set is a set of elements in which each element has a membership degree between
0 and 1 instead of a binary status of “member” or “not a member” as in a traditional set. The membership
function, which is often represented by a graph, assigns a membership degree to each element within the set
based on the input value.

The Gaussian membership function presents a bell-shaped curve that is symmetric and smooth. The
peak of the Gaussian distribution marks the center of the membership function, while its standard deviation
determines the width or degree of fuzziness. Due to the smooth and normal distribution-like nature of the
Gaussian membership function, it is well-suited to represent continuous and naturally transitioning fuzzy
characteristics. In contrast, the triangular membership function is simpler and more intuitive, resembling
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a symmetric triangle shape. It is often used to represent a variable’s membership degree within a specific
range, especially when boundary conditions are defined. In this study, inspection scores, defect frequency,
and construction progress exhibit continuous and normally distributed characteristics; thus, the Gaussian
membership function, with its smooth transition, is employed to represent these fuzzy attributes. For the
importance factor, which requires a distinct value to define clear boundaries within a range, the triangular
membership function is applied.

In this study, statistical analysis shows that the defect frequency range in PCMIS is between 0 and 700
occurrences, inspection scores range from 70 to 90, and construction progress ranges from 0% to 100%. A
Gaussian membership function was used to model the inspection score, and five linguistic variables were
established according to this score: very bad [1.0, 74], bad [1.0, 77], common [1.0, 80], good [1.0, 83], and
very good [1.0, 86]. The frequency of defects was modeled using a Gaussian membership function, and five
linguistic variables were established according to the number of defect occurrences: very low [40, 100], low
[40, 225], medium [40, 350], high [40, 475], and very high [40, 600]. Moreover, three linguistic variables
were established according to the progress: low [10, 20], medium [10, 50], and high [10, 80]. A triangular
membership function was used to establish output values of unimportant [0, 0.2, 0.4], common [0.3, 0.5, 0.7],
and important [0.6, 0.8, 1]. The output values can represent the importance of construction factors, allowing
for the identification of crucial construction factors.

Fuzzy inference involves two parts: evaluating the antecedent (IF) of the rule and applying the result to
the consequent (THEN). The antecedent is described using fuzzy sets and can include one or more linguistic
variables. Input values are first transformed through fuzzification and then converted into a definite output
value through defuzzification. IF–THEN fuzzy rules can be generated by experts by using prior knowledge
or leveraging data characteristics. In this study, the characteristics of the construction inspection data and
expert opinions were the primary tools used to establish nine IF–THEN rule conditions (Table 2). For
example, if a defect in the inspection data has high frequency, the inspection score and construction progress
are low, and the defect is considered important. Therefore, the corresponding fuzzy rule R1 can be represented
as follows: IF “Inspection score = very bad” AND “Defect frequency = very high” AND “Construction
progress = low,” THEN “Importance = important.”

Table 2: IF–THEN rules of this study

Rules IF THEN

Inspection score Defect frequency Construction progress Importance
R1 Very bad Very high Low Important
R2 Bad Very high Low Important
R3 Very bad High Low Important
R4 Bad High Low Important
R5 Common Medium Medium Common
R6 Good Low High Unimportant
R7 Very good Low High Unimportant
R8 Good Very low High Unimportant
R9 Very good Very low High Unimportant
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The input variables (inspection score, defect frequency, and construction progress) for determining
construction quality were fuzzified using membership functions to assign a membership degree to each
variable. These membership degrees were then used in the fuzzy inference process, in which a set of rules was
applied to determine the output variable (importance) based on the input variable’s membership degree. This
step allows for a nuanced and flexible analysis of construction factors because it accounts for the uncertainty
and imprecision inherent in many real-world scenarios.

The purpose of fuzzy inference is to determine the importance of construction factors. A construction
factor with higher importance has a stronger effect on construction quality. By using fuzzy logic inference
and defuzzification, the inspection scores, defect frequency, and construction progress of various projects
were analyzed. The results of the fuzzy inference were converted into values and mapped to appropriate
values. This process involved identifying the most suitable value for representing the fuzzy set of a given rule
to determine the output value for a specific construction factor. In this study, the construction factors are
sourced from PCMIS, totaling 499 items. These include 113 defects in the management category (defect codes:
A1~A113), 356 defects in the quality category (defect codes: B1~B356), 10 defects in the schedule category
(defect codes: C1~C10), and 20 defects in the design category (defect codes: D1~D20). Given the large number
of construction factors, to prevent the selection of an excessive number of minimally impactful defects—
often chosen based on intuitive judgment during construction quality assessments—which may lead to biases
in multi-indicator evaluations, fuzzy logic is employed to infer the more critical construction factors. In
this study, most construction factors were determined to have an importance close to 0.2 (with an average
value of 0.2) through fuzzy logic reasoning (Fig. 4). Using this approach, 25 crucial construction factors with
importance greater than 0.205 were selected, with an average importance of 0.4 (Table 3).

Figure 4: Importance of crucial construction factors
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Table 3: Input and output values of the critical construction factors

Defect code Critical construction
factors

Input Output

Inspection
score

Defect
frequency

Construction
progress

Importance

A4 Lack of quality
supervision and

inspection records

80.46 194 49.9 0.2118

A6 Supervision plan not
thoroughly reviewed

80.17 181 44.6 0.2176

A29 Other project
management contractor

defects

80.65 370 46.2 0.4999

A35 Quality management
standards for materials
and construction have
not been established

80.08 190 45.2 0.2342

A36 Inspection checkpoints
for general materials and

construction work

80.25 241 43.9 0.4846

A47 Construction and
equipment defects

80.29 308 45.0 0.4987

A48 Contractor fails to
implement site safety

measures

80.18 192 48.6 0.2144

A51 Supervision reports are
not filed

80.36 190 45.3 0.2331

A61 Insufficient supervisory
unit quality management

80.97 360 48.6 0.4982

A75 No construction log 80.64 419 47.0 0.5017
A76 No quality management

self-inspection checklist
80.72 681 47.0 0.8

A77 No material review
control table

80.41 298 45.7 0.4979

A78 No preventive measures
for defect correction

80.58 220 50.7 0.2768

A113 Poor contractor quality
management

80.61 381 45.7 0.5005

B2 Cracks or holes in
concrete

80.93 282 46.4 0.4957

B5 Residual debris on
concrete surface

81.26 269 45 0.4954

(Continued)
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Table 3 (continued)

Defect code Critical construction
factors

Input Output

Inspection
score

Defect
frequency

Construction
progress

Importance

B10 Other concrete
construction defects

81.34 201 46.9 0.2523

B89 Other general
construction defects

80.6 215 50.9 0.2522

B175 No testing or trial runs of
mechanical and electrical

equipment

74.0 1.0 35.7 0.4783

B233 Unorganized equipment
or tools

80.81 198 44.5 0.281

B271 No foundation load
testing records

71.0 1.0 8.0 0.5

B283 Insufficient material and
equipment inspections

80.64 473 47.0 0.5357

B286 Facilities are
noncompliant with fall
protection regulations

80.32 173 45.3 0.206

B305 Contractor does not have
labor safety inspection

records

80.47 235 47.7 0.4287

B325 Violation of occupational
safety and health

regulations

80.99 342 46.3 0.4981

3.2 Analysis of Crucial Construction Factors

The attributes that affect quality during construction stages were divided into five main categories:
Man, Material, Machine, Method, and Management attributes. Each of these categories was associated with
some of the 25 critical construction factors (Fig. 5). The categories of Man, Material, Machine, Method, and
Management attributes had an average importance of 0.43, 0.46, 0.42, 0.34, and 0.32, respectively, for eight,
six, three, three, and five critical construction factors, respectively. Thus, the Man, Material, and Machine
attributes were more important than were the Method and Management attributes. Among the 25 critical
construction factors, “No quality management self-inspection checklist (A76)” had the highest importance,
which indicated a strong correlation between quality control self-inspections and construction quality. In
addition, concerning the Man attribute category, shortcomings in quality control and project management
contractors (A29), supervision units (A61), and construction contractors (A75 and A113) were relatively
important factors. With regard to the material attribute category, the importance of the presence of cracks in,
holes in, and residual debris on concrete (B2 and B5) indicated that concrete handling is a key factor affecting
construction quality.
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Figure 5: Five attribute categories and twenty-five critical construction factors

3.3 Results of ANN Prediction and Model Evaluation
The number of layers and the number of neurons in each layer in an ANN model affect its computational

efficiency. Increases in the number of hidden layers and neurons can enhance an ANN model’s learning
ability and predictive accuracy. However, deeper neural networks require more computations, are more
prone to overfitting, and are more likely to encounter the vanishing gradient problem. However, by training
the network layers and tuning hyperparameters, a neural network that meets practical requirements can be
produced. The ANN architecture used in this study comprised one input layer, six hidden layers, and one
output layer. The input layer was fed with numerical data converted from textual data for 987 construction
projects. The input features were 25 critical construction factors and 1 construction quality label and had
data dimensions of 26 × 1 × 987. The six hidden layers comprised a total of 1060 neurons. The number of
hidden layers and neurons in the developed ANN model is sufficient for approximating complex continuous
functions. A dropout of 0.5 was used because this value can improve predictive accuracy through the
temporary ignoring of certain units in the neural network during calculations [48]. In the output layer, the
Sigmoid activation function was used to calculate the probability of construction quality and to predict the
quality outcome for each input datum.

In this study, a neural network with six hidden layers was constructed, and multiple experiments were
conducted to evaluate model performance under different architectures. During testing, it was observed
that six hidden layers achieved optimal predictive results while maintaining computational efficiency. The
number of neurons per layer decreases from 400 to 10 (400, 300, 200, 100, 50, 10), forming a tapered structure
that is typically suitable for models with progressively condensed features. In an ANN, the first hidden layer
requires more neurons to capture lower-level features, and as the layers progress, the data features become
increasingly condensed, allowing for fewer neurons to capture higher-level features. This gradual reduction
in neurons helps reduce computational load and prevent overfitting. Given the large number of neurons in
this network, dropout was added to decrease reliance on specific neurons, thus preventing overfitting during
training and improving performance on the test set. The layer architecture and parameters of the developed
ANN are presented in Table 4.
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Table 4: Architecture and hyperparameters of the ANN developed in this study

Input layer Hidden layer Output layer Learning parameter
• Twenty-five critical

construction factors: 1
represents presence, and
0 represents absence

• Two clusters: 1
represents good
construction quality,
and 0 represents poor
construction quality

• ReLU activation
function and dropout
= 0.5

• First layer:
400 neurons

• Second layer:
300 neurons

• Third layer:
200 neurons

• Fourth layer:
100 neurons

• Fifth layer:
50 neurons

• Sixth layer:
10 neurons

Sigmoid activation
function

• Learning error:
binary cross-
entropy loss

• Learning rate:
0.001

• Optimizer: Adam

The learning rate determines network step size while optimizing weight navigation to minimize
error [40]. Learning rate determines the effectiveness of ANN learning by controlling the extent of parameter
updates in each iteration. An excessive or insufficient learning rate negatively affects model performance.
A high learning rate can impede convergence, whereas a low learning rate can cause slow convergence. A
suitable learning rate results in optimal training speed. The choice of learning rate has a significant impact on
training speed and the final model performance (e.g., prediction accuracy and loss). A learning rate that is too
high may lead to oscillations or convergence difficulties during training, while a rate that is too low can make
the training process excessively slow. Therefore, selecting an appropriate learning rate is crucial for balancing
training speed and stability. In many deep learning models, a learning rate of 0.001 is commonly used as an
initial value, especially when using optimizers like Adaptive Moment Estimation (Adam), as it often strikes
a good balance between training speed and stability across various tasks. The Adam optimizer combines the
advantages of Momentum and Root Mean Square Prop (RMSProp), efficiently and stably updating model
parameters during the training process. Adam’s base learning rate is usually set to 0.001, and this rate is
not fixed; it adapts based on each parameter’s historical gradient information (including first and second
moments), setting a different learning rate for each parameter. This allows Adam to adjust the update speed
as needed during different training stages, thereby enhancing training effectiveness. In this study, the Adam
optimizer was selected with a learning rate of 0.001 and binary cross-entropy was used as the loss function
to handle the binary classification task of construction quality prediction.

Data was divided into training and validation sets. The training set was used to calculate gradients and
update the weights of the connections, and the validation set was used to evaluate errors. Training stopped
when the error for the training set decreased but the error for the validation set increased; at this point, the
model weights had minimum errors for the validation set. To achieve high prediction accuracy, the model
was repeatedly trained on the training dataset. In this study, the number of samples (batch size) used for
each gradient iteration update was 30. The period for which an ANN model is trained on the same sample
is called an epoch. In general, more training cycles and iterations produce a model with better performance.
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The model training process requires numerous epochs to achieve correct classification or prediction. In this
study, the total number of epochs was set as 200, and the training and validation set accuracies were 99.32%
and 99.21%, respectively (Fig. 6). Ultimately, the test set accuracy was 96.08%.

Figure 6: Accuracy of training and validation in the model

The ANN learning method requires the acquisition of a large quantity of labeled data for training, and
training requires processing the same data numerous times to adjust the combination of weights and biases
gradually for minimizing the error between the true labels and the predicted value until optimal classification
is achieved. In this study, binary cross-entropy loss was used to calculate the learning error during training,
and 200 training and validation epochs were performed. Initially, the loss decreased rapidly, and the training
loss stabilized in epoch 150. The final training loss was 0.014, and the validation set loss was 0.015 (Fig. 7).

Figure 7: Learning error during training and validation

During the training process of deep learning models, random sampling and random weight initializa-
tion can introduce stochastic factors, which may lead to instability in performance on the validation set. The
fluctuations in the validation curve observed in this study may suggest that the model is overfitting to the
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training set, potentially diminishing its generalization ability on the validation set and resulting in unstable
performance on validation data. Additionally, high variability in the samples within the validation set can
also cause fluctuations in model performance across different batches, thus contributing to variations in the
curve. If the validation set is not well-fitted, it can negatively affect the model’s predictive accuracy on new
data. In this study, however, the validation curve achieved a relatively high accuracy early on, remaining
stable above the 0.95 level for the majority of the training, though occasional decreases occurred, followed
by a return to stability (Fig. 6). These temporary drops indicate the model’s difficulty in adapting to certain
rare validation samples. The model’s accuracy on both the training and validation sets rose rapidly from
80% to 90% within the initial 20 epochs, showing a fast convergence trend. The maximum fluctuation in the
validation set was observed at 0.55 (epoch 174), but overall, the fluctuations were minor, with final accuracy
approaching 1.0, aligning with the expected performance. Moreover, the model demonstrated effective early
learning, as the validation loss curve quickly converged and reduced the loss value significantly, indicating a
strong learning capacity (Fig. 7). Although the validation loss curve exhibited a few fluctuations during the
later stages of training, it ultimately stabilized at around 0.04, achieving a satisfactory level of performance.

The dataset in this study is divided into two main parts: the training set and the test set. The training
set constitutes 80% of the entire dataset, while the test set accounts for 20%, with a random partitioning
method employed. An 80–20 split is commonly used, although different studies may select varying ratios
depending on the size of the dataset and specific requirements of the problem. A larger training set (e.g.,
90%) provides more data for model training, allowing the model to learn from a greater number of samples,
which often results in higher training accuracy. However, this may also lead to overfitting, where the model
becomes overly fitted to the training data and performs poorly on the test set due to the limited test data,
which may not adequately assess the model’s generalization ability. Conversely, a larger test set (e.g., 30%) can
provide a more accurate performance evaluation but may reduce the amount of data available for training,
potentially limiting the model’s learning capacity and decreasing predictive performance. This trade-off is
especially significant in cases where the dataset is small, as insufficient training data can prevent the model
from learning effective features. Thus, in cases with smaller datasets or more complex models, adjusting
the data split ratio may be necessary to optimize training and testing outcomes. Changing the split ratio
impacts the learning process during training and the model’s final performance on the test set, and selecting
the optimal ratio requires experimentation and adjustments based on specific circumstances. The primary
function of the test set is to provide an objective performance evaluation of the trained model. The data in
the test set does not overlap with that in the training set, allowing us to assess the model’s generalization
capability on unseen data. Fig. 8 presents the confusion matrix results for 202 construction projects in the
test set of this study. This graphical representation not only aids in intuitively understanding the model’s
predictive performance across different classes but also provides specific data regarding true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN). Additionally, the precision, recall, and
F1-score of the model are all 96.08%.
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Figure 8: Confusion matrix results of the ANN model on the test set in this study

4 Conclusion

This study employed fuzzy logic to calculate the weights of construction factors and identify 35 critical
ones. A deep ANN was then trained and tested on a comprehensive construction inspection dataset to predict
construction quality. The resulting prediction model was further evaluated to determine the relationship
between these critical factors and construction quality, achieving an accuracy of 96.08%. These findings
indicate that hybrid soft computing is an effective quantitative method capable of automatic learning. By
focusing on the identified critical factors, this approach can support the development of sound construction
management practices to improve project performance and quality.

However, this research has certain limitations. First, as the study is based on data specific to Taiwan’s
PCMIS, the model’s applicability to other regions or types of projects may be limited. Additionally, although
the hybrid model achieved high prediction accuracy, the ANN may be susceptible to overfitting with complex
datasets, which could affect generalizability. Future research could explore expanding the dataset to include
diverse construction contexts and testing alternative hybrid techniques to enhance model robustness.
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