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ABSTRACT: This paper introduces a hybrid multi-objective optimization algorithm, designated HMODESFO, which
amalgamates the exploratory prowess of Differential Evolution (DE) with the rapid convergence attributes of the Sailfish
Optimization (SFO) algorithm. The primary objective is to address multi-objective optimization challenges within
mechanical engineering, with a specific emphasis on planetary gearbox optimization. The algorithm is equipped with
the ability to dynamically select the optimal mutation operator, contingent upon an adaptive normalized population
spacing parameter. The efficacy of HMODESFO has been substantiated through rigorous validation against estab-
lished industry benchmarks, including a suite of Zitzler-Deb-Thiele (ZDT) and Zeb-Thiele-Laumanns-Zitzler (DTLZ)
problems, where it exhibited superior performance. The outcomes underscore the algorithm’s markedly enhanced
optimization capabilities relative to existing methods, particularly in tackling highly intricate multi-objective planetary
gearbox optimization problems. Additionally, the performance of HMODESFO is evaluated against selected well-
known mechanical engineering test problems, further accentuating its adeptness in resolving complex optimization
challenges within this domain.

KEYWORDS: Multi-objective optimization; planetary gearbox; gear efficiency; sailfish optimization; differential
evolution; hybrid algorithms

1 Introduction

Multi-objective optimization has gained the attention of researchers in the last decade with the
development of improved nature-inspired metaheuristic algorithms. Generally, there are two methodologies
for addressing multi-objective optimization problems. The first ones convert the optimization problem with
several objectives into a single objective optimization problem by summing all normalized objectives which
are then weighted according to a set of predefined values. Despite the extensive application of these classical
approaches in addressing multi-objective optimization problems, they exhibit limits in real-world scenarios.
These strategies need convex Pareto fronts to obtain a solution, and show significant drawbacks on complex
optimization problems [1,2]. Furthermore, the pre-algorithm expert-provided weights have a significant
impact on the final solution and biased in their favor [3]. In order to circumvent these limits, researchers
developed methods that solve all objectives directly without combining them. Determining a set of solutions
that specify the optimal compromise between opposing objectives is one way to tackle such situations.
Regarding this, multi-objective Evolutionary Algorithms (MOEAs) can provide solutions that are adequate
for practical purposes within an acceptable runtime.
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Evolutionary algorithms, or bio-inspired algorithms, are prominent and extensively utilized methods
under the category of population-based metaheuristics. The Genetic Algorithm (GA) and its variations
are a category of evolutionary algorithms extensively utilized on the practical optimization problems,
due to its wide availability in different software packages, and well understood mechanism. The Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [4] is a popular multi-objective implementation of
GA widely applied in various fields, including engineering design, which is designed to solve optimization
problems with multiple conflicting objectives. NSGA-II employs a fast non-dominated sorting approach
to classify solutions into different Pareto fronts, and it uses a crowding distance mechanism to ensure
diversity among solutions by preserving a spread across the Pareto front. However, NSGA-II has some
disadvantages, such as its computational complexity, which can become significant for large populations or
problems with many objectives, and its sensitivity to parameter settings, which may require careful tuning
for optimal performance.

The majority of practical engineering optimization problems necessitate the presence of multiple con-
straints of equality and inequality types. Conventional meta-heuristic optimization algorithms are presented
for solving unconstrained optimization problems. In order to deal with constraints, various methods have
been suggested in the literature. These methods can be grouped into three main categories: penalty functions,
addressing constraints using the Multi-Objective Optimization (MOO) problem, and addressing constraints
with separate considerations of feasible and infeasible solutions [5]. By adding a penalty term to the objective
function associated with the constraints, the most typical method for dealing with constraints is to convert
a constrained optimization problem into an unconstrained one. One alternative strategy takes a two-step
approach to dealing with constraints: first, the algorithm optimizes the constraints independently of the
objective functions; subsequently, once a large number of viable solutions have been found, the optimization
of the objective functions is the algorithm’s primary concern. The most up-to-date method involves turning
the constrined optimization issue into an unconstrained MOO problem by considering the constraints as
additional objectives.

Another widely applied evolutionary optimization algorithm is the Differential Evolution (DE), which,
unlike GAs, has not taken inspiration from nature but is designed purely based on mathematical concepts [6].
DE is highly regarded for its robustness and simplicity in solving optimization problems. A key benefit of
DE is its effectiveness in tackling intricate optimization problems that involve non-linear relationships and
multiple local optima. DE is particularly significant for its strong exploration capabilities, which enable it
to effectively search global optimization landscapes and avoid premature convergence to local optima [7].
However, DE has some limitations. The performance of DE is also sensitive to the choice of its control
parameters, such as the mutation factor, crossover rate, and population size. Fine-tuning these parameters is
often necessary to achieve optimal performance, which can be time-consuming.

The multi-objective version of the DE algorithm extends its optimization capabilities to problems
with multiple conflicting objectives, directly incorporating constraints and multi-objectiveness into the
evolutionary process [8]. Notable variants include the Multi-Objective Differential Evolution Algorithm
(MODEA), which utilizes Opposition-Based Learning for initial population generation and introduces a new
selection mechanism for better Pareto front distribution [9], and the Adaptive Chaotic DE, which combines
adaptive and chaotic principles for enhanced efficiency [10]. A significant strength of multi-objective DE
is its robust exploration ability, efficiently navigating the search space to identify a diverse set of Pareto-
optimal solutions. Applications of this algorithm span various fields, including engineering design, power
plant control, and chemometrics, where it optimizes trade-offs among multiple objectives effectively [11].

Another category of metaheuristics are swarm optimization algorithms (SO), among which Ant Colony
Optimization (ACO), Firefly Algorithm (FA) and Particle Swarm Optimization (PSO) are two approaches
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commonly used to solve real-world problems. These algorithms are inspired by the collective behavior of
decentralized, self-organized systems, typically found in nature, such as bird flocking, fish schooling, and
ant colonies. More recently, authors proposed a novel nature-inspired optimization algorithm that belongs
to the group of SO algorithms, the Sailfish Optimization (SFO) algorithm, that draws inspiration from the
collective hunting behavior of sailfish and sardines. The algorithm maintains two populations simultaneously,
e.g., sailfish (predators) and sardines (prey). During the optimization process, SFO alternates between
exploration and exploitation phases by having sailfish update their positions based on the elite sailfish and the
worst-performing sardines. The movement of sailfish is directed towards the best-known positions, thereby
exploiting the search space, while sardines move randomly to explore new areas. This approach ensures a
balance between exploration and exploitation, with the aim to efficiently find optimal solutions for various
optimization problems.

The SFO algorithm has been widely applied to various optimization problems. The authors in [12]
introduced SFO as a novel metaheuristic algorithm for solving constrained engineering optimization
problems, demonstrating superior performance in terms of exploration, exploitation, and convergence speed
compared to existing algorithms. In the realm of power systems [13] applied SFO for optimal placement and
sizing of static synchronous compensator, resulting in improved voltage profiles and reduced power losses.
In [14], authors optimized the coverage and connectivity of sensor nodes in a 3D wireless sensor network
using SFO, ensuring robust network performance.

These studies collectively highlight the versatility and effectiveness of the SFO algorithm in solving
diverse optimization problems. However, the majority of these studies focused on single objective optimiza-
tion. In [15], authors introduced a multi-objective Sailfish Optimizer combined with a genetic algorithm
for expert recommendation in community-based question-answering, demonstrating superior performance
in matching questions to experts. In order to design a frequency selective surface for 5G applications, the
authors in [16] introduced a hybrid multi-objective optimization technique utilizing the SFO combined
with a General Regression Neural Network. However, unlike the multi-objective implementation of SFO
algorithm presented in this paper, the proposed algorithm in [16] employed the weighted sum method to
balance multiple objectives, which cannot provide satisfactory result on non-convex Pareto fronts.

Despite much investigation using various algorithms, the inquiry into identifying the most appropriate
one for a certain challenge remains inadequately addressed. Moreover, preserving the diversity of optimal
solutions and preventing premature convergence to local optima remain essential for population-based
algorithms. Moreover, the No Free Lunch theorem [17], which established that enhancements in performance
for one category of optimization problems result in diminished performance for another, has spurred the
advancement and comparative analysis of metaheuristic algorithms for addressing diverse optimization
challenges. In general, it is not possible to provide a single algorithm that will successfully solve all problems
that can be encountered in practice.

In this regard, researchers proposed a number of hybrid optimization algorithms, with the aim of
strategic combination of different optimization techniques to leverage their respective strengths and mitigate
their weaknesses, thereby enhancing overall problem-solving efficacy. This approach is performed to improve
convergence speed, maintain solution diversity, and adapt to a wide range of problem characteristics,
making the optimization process more robust and efficient. In [18], the authors developed a hybrid of the
salp swarm algorithm and DE, which improves feature exploitation and demonstrated superior results in
big data optimization compared to traditional methods. In [19], the authors introduced an adaptive DE
algorithm incorporating a memory mechanism from PSO to adaptively select mutation operators, resulting
in competitive performance on benchmark problems. In [20], the authors proposed a hybrid approach
combining DE, PSO, and nondominated sorting, improving distributed optimization quality in complex
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multi-objective problems. Regarding the SFO algorithm, literature reveals numerous studies addressing
its enhanced performance, although improvement through various hybridization techniques is seldom.
Regarding hybridization, in [21], the authors developed a hybrid model combining SFO with the Whale
Optimization Algorithm (WOA) termed SWO-DLSTM (A Hybrid Sailfish Whale Optimization and Deep
Long Short-Term Memory). This hybrid model leverages the optimization capabilities of SFO and WOA for
feature selection and parameter tuning, which are then utilized by DLSTM (Deep Long Short-Term Memory)
for accurate time series predictions in energy demand forecasting, showcasing significant improvements
in considered performance metrics. These hybrid methods effectively balance exploration and exploitation,
leading to improved solution quality and convergence rates in multi-objective optimization tasks.

The mechanical engineering design problems often involves complex objective functions with numer-
ous variables, a number of complex non-linear constraints. This results into the complex optimization
problems, which often require multiple conflicting objectives. The modern requirements, posed on the
designer, which require long service life, lightweight but strong construction as well as increased energy
efficiency make these design problems even complex. In the area of gearbox design, the objectives are
inherently non-linear and non-convex thus making the problem complex to solve. The background part
presents a literature review on the development and implementation of several optimization techniques to
address difficult gearbox design problems.

The aim of this paper is to explore the suitable choosing of Evolutionary Algorithms (EAs) for
hybridization, with the aim to provide an improved optimization algorithm for the established multi-
objective planetary gearbox optimization problem. Therefore, it is on researchers to explore the possibilities
of application of different algorithms, to establish each of their weaknesses and strengths, and provide the
possibilities to hybridize each of the algorithms, in order to obtain the solutions of high accuracy for the
considered optimization problem. Based on the literature review and extensive research, we can see that
the DE algorithm shows strong exploration capability, if applied with appropriate mutation operator, while
the SFO algorithm shows fast convergence towards local optimum. This work presents the HMODESFO
algorithm, a hybridization of the DE and SFO algorithms, to enhance the exploration capabilities of the SFO
method. The hybridization was executed by integrating the mutation operators DE/rand/1 and DE/rand/2
from the DE algorithm into the equations for updating the locations of the sailfish (predator) and sardine
(prey), respectively. The performance of the proposed algorithm is validated against well-known industry
benchmarks, e.g., a set of ZDT (Zitzler-Deb-Thiele) and DTLZ (Deb-Thiele-Laumanns-Zitzler) benchmark
problems, where the proposed algorithm showed improved performance. This work employs a series of
well-recognized multi-objective optimization problems in literature that deal with mechanical engineering
to further validate the created hybrid HMODESFO method. Finally, the performance of this algorithm has
been validated on the developed multi-objective planetary gear optimization problem, where compared to
industry standard it showed improved results.

The primary contributions of the paper can be summarized as follows:

• The previously developed single stage planetary gearbox optimization problem has been extended to
include additional constraints, and increase physical realization of obtained results.

• To enhance optimization performance, particularly in addressing intricate multi-objective planetary
gearbox and mechanical design optimization challenges, a hybrid algorithm combining DE and SFO,
termed the HMODESFO algorithm, has been presented. The hybridization of two prominent evolu-
tionary algorithms has been accomplished by integrating the mutation operator of DE into the SFO
algorithm. The suggested technique utilizes an adaptive parameter to select a suitable modified mutation
operator for the prevailing optimization circumstances.
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• The effectiveness of the proposed HMODESFO algorithm has been evaluated by contrasting it with
reputable multi-objective metaheuristic algorithms, including mechanical design benchmark MOO
problems, as well as on the recognized ZDT and DTLZ benchmark problems. The experimental results
shown that the proposed HMODESFO method greatly surpasses other current algorithms regarding
optimization quality, particularly in Pareto solutions and convergence.

The paper is structured as indicated: Section 1 presents the introduction and a survey of the existing
literature. Section 2 gives the outline of the background and related work of applying EAs in the area
of mechanical design, especially optimal gearbox design. In Section 3, the mathematical formulations of
the The Multi-Objective Sailfish Optimization algorithm, Differential evolution algorithm as well as the
proposed hybrid algorithm are outlined, with the appropriate pseudo-code that accompanies each algorithm.
In Section 4, the formulations of used benchmark test functions as well as the formulated planetary gearbox
optimization model are provided. Furthermore, Section 4 also gives the results of the numerical experimental
simulations. In Section 5, the conclusions are drawn.

2 Background and Related Work
In mechanical engineering, optimizing gearbox design is a complex and essential task. It requires

addressing multiple objectives, such as enhancing performance, improving efficiency, reducing weight, and
ensuring long service life. These factors are critical to meeting the stringent requirements of modern gearbox
design, which must balance these often-conflicting goals to achieve optimal functionality. The complexity
of this task underscores the need for advanced optimization techniques that can handle the intricate trade-
offs involved in creating high-performing, efficient, and durable gearboxes. Single-objective optimization
has been a fundamental approach in the design and enhancement of gearboxes. Reference [22] proposed a
powerful optimization method for the minimal dimensional design of gearboxes. By implementing a PSO
algorithm, they achieved significant reductions in gearbox volume, which directly translated to cost savings
and material efficiency. In another study [23], authors utilized single-objective optimization to minimize
the volume and weight of gearboxes. Their research provided practical graphs and guidelines for deriving
optimal gearbox parameters based on different input power, gear ratio, and material hardness. This approach
facilitated the design of lightweight and compact gearboxes, which are essential for various industrial
applications. In [24], the authors examined an innovative approach to optimizing the transmission efficiency
of spiral bevel gears. By integrating PSO with the Gravitational Search Algorithm, they demonstrated
significant improvements in gear design performance and efficiency. In [25], the authors explored the use
of seven different nature-inspired optimization algorithms to minimize the volume of a two-stage planetary
gearbox. This study applied algorithms such as Grey Wolf Optimizer, Artificial Bee Colony, and Multi-
verse Optimizer, achieving optimal volume values significantly better than those previously recorded in the
literature. The findings highlight the effectiveness of these meta-heuristic approaches in addressing complex
engineering optimization challenges.

Given the inherent complexity of gearbox optimization, considering only one objective is often unsat-
isfactory, especially when aiming to optimize multiple conflicting objectives simultaneously. Multi-objective
optimization has emerged as a robust approach to address these conflicting goals, such as minimizing weight
while maximizing efficiency and durability. This method effectively balances the trade-offs necessary for
optimal gearbox design. Multi-objective optimization techniques have been extensively applied to various
types of gearboxes, including spur, helical, and planetary gearboxes. For instance, reference [26] explored the
multi-objective optimization of a two-stage spur gearbox by incorporating tribological aspects to minimize
weight and power losses. Their study utilized the NSGA-II to achieve significant improvements over tradi-
tional single-objective optimization approaches. In another study, the same authors extended their research
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to a two-stage helical gearbox, again focusing on minimizing volume and power losses while considering
tribological constraints [27]. Their findings demonstrated a considerable reduction in power loss and a higher
probability of avoiding wear failures when using a multi-objective optimization framework compared to
single-objective methods. Additionally, in [28], authors applied the Taguchi method and Grey Relational
Analysis to optimize a two-stage helical gearbox, focusing on maximizing efficiency and minimizing mass.
Their study identified optimal design parameters, showcasing the effectiveness of combining single-objective
and multi-objective optimization phases to achieve superior performance. In [29], the authors developed
a multi-objective uncertainty optimization design framework to enhance the performance and reliability
of planetary gear trains in electric vehicles. This study incorporates uncertainties in manufacturing size,
material properties, and load inputs, optimizing both volume and transmission efficiency using an improved
NSGA-II algorithm. The findings demonstrate that the proposed framework offers superior reliability
and performance compared to traditional deterministic optimization methods under varying uncertainty.
The paper [30] presents a comprehensive framework for enhancing the design of planetary gear sets. By
employing advanced optimization algorithms, the authors aim to simultaneously minimize mass and power
loss while reducing transmission error. This study achieves significant improvements in efficiency and
reliability, offering a balanced trade-off among competing design objectives.

Furthermore, the use of hybrid optimization algorithms has shown promise in optimizing planetary
gearboxes. In [31], authors proposed a hybrid algorithm combining particle swarm optimization and
differential evolution to tackle the complex multi-objective non-linear optimization problems in planetary
gearboxes. Their approach yielded significant improvements in efficiency, weight reduction, and preven-
tion of premature gear failure. A recent research [31] suggested a modified hybrid approach called the
Multi-objective Hybrid Butterfly Optimization and Particle Swarm Optimization approach (HMOBPSO),
which combines PSO with the Butterfly Optimization Algorithm (BOA). This strategy sought to improve
performance by tackling several competing objectives in the optimization of planetary gearboxes. The
research has shown notable advancements in gearbox dimensions, efficiency, and spacing relative to
traditional techniques.

These studies underscore the advancements and effectiveness of multi-objective optimization in the
design and enhancement of gearboxes. By integrating various optimization algorithms and considering
multiple performance metrics, researchers continue to push the boundaries of gearbox technology, leading
to more efficient, durable, and lightweight designs.

3 The Proposed Hybridization
In this section we will first introduce the Multi-objective SFO and DE algorithms, as the constituents of

the proposed hyrbid HMODESFO optimization algorithm.

3.1 The Multi-Objective Sailfish Optimization Algorithm
The Sailfish Optimizer [12] is a nature-inspired meta heuristic algorithm that draws inspiration from

the collective hunting behavior of sailfish. Sailfish use their speed, agility, and collaborative strategies to
encircle and capture prey, typically sardines. The previous and original implementation of SFO algorithm
considered only single objective optimization problems. The Multi-Objective Sailfish Optimization algo-
rithm (MOSFO), presented in this section, extends the original SFO to handle problems with multiple
conflicting objectives. In order to do so, MOSFO algorithm incorporates Pareto dominance and an external
archive to handle multiple objectives. In the following subsections we will present the main processes of
MOSFO algorithm.
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In general, the multi-objective optimization problems consider the m = 1, 2, . . . , M objectives which
are simultaneously optimized. In practical applications the optimization problems require satisfaction of
multiple constraints of equality and inequality type. Therefore, the MOO problem can be defined as:

min f⃗ (x) = min [ fm] , m = 1, . . . , M
s.t.
gk (x) ≥ 0, k = 1, . . . , K
hl (x) = 0, l = 1, . . . , L, (1)

where M is the number of objectives, gk denotes the k-th inequality constraint, K is the total number of
inequality constraints, hl is the l-th equality constraint and L is the total number of equality constraints.
In order to handle the constraints, in the proposed MOO framework, each constraint is incorporated as
an additional objective to be minimized alongside the original objective functions. For each inequality
constraint gk(x) ≤ 0 represents the decision variable vector and i = 1, 2, . . ., we define a constraint violation
function as follows:

fgk(x) = max{0, gk(x)}. (2)

This function fgk(x) quantifies the degree to which a candidate solution x violates the k-th inequality
constraint. Therefore, in case of gi(x) ≤ 0, then fgk(x) = 0 indicates there is no constraint violation.

In case of the equality constraints hl(x) = 0, with, these are converted into minimization of objectives
by taking the absolute value of the constraint function, according to

fhl (x) = ∣hl(x)∣. (3)

Here, the function fhl (x) measures the absolute deviation from the equality condition, ensuring
that both positive and negative deviations contribute equally to the constraint violation. In this way, the
introduction of constraints into the objectives, we get the following multi-objective optimization problem:

min f (x) = min [ f1 , . . . , fm , . . . , fM , fhl , . . . , fhL , fgk , . . . , fgK ] . (4)

This formulation enables the optimization algorithm to simultaneously minimize the original objectives
and the constraint violation functions. By integrating constraints as additional objectives, we harness the
multi-objective nature of the optimization algorithm to discover solutions that not only meet the original
objectives but also adhere to the problem’s constraints. This approach enhances the algorithm’s capacity to
traverse intricate search spaces where feasible regions may be narrow or fragmented, ultimately resulting in
high-quality solutions that fulfill all requirements.

3.1.1 Population Initialization
The MOSFO algorithm operates with two main populations: sailfish (predators) and sardines (prey). To

start the iteration process, we generate the initial populations of sailfish and sardines with random positions
within the defined search space, was follows:

x(0)SF , i = rand(n) × (xU
i − xL

i ) + xL
i , (5)

x(0)S , i = rand(n) × (xU
i − xL

i ) + xL
i , (6)
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where n is the dimension of the problem, rand is the random number generator in the domain [0, 1] and
xL

i and xU
i are the lower and upper bounds of the search space, respectively. The ith position, in the G =

0 generation of sailfish is defined as the vector x(0)SF , i = (x(0)SF , i ,1 , x(0)SF , i ,2 , . . . , x(0)SF , i , j , . . . , x(0)SF , i ,n)
T

, while the

position of the sardines is defined as x(0)S , i = (x(0)S , i ,1 , x(0)S , i ,2 , . . . , x(0)S , i , j , . . . , x(0)S , i ,n)
T

. In this regard, the initial
population of sailfish and sardines can be defined as:

SF(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0)SF ,1,1 x(0)SF ,1,2 . . . x(0)SF ,1,n
x(0)SF ,2,1 x(0)SF ,2,2 . . . x(0)SF ,2,n
⋮ ⋮ ⋱ ⋮

x(0)SF ,NP ,1 x(0)SF ,NP ,2 . . . x(0)SF ,NP ,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

S(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0)S ,1,1 x(0)S ,1,2 . . . x(0)S ,1,n
x(0)S ,2,1 x(0)S ,2,2 . . . x(0)S ,2,n
⋮ ⋮ ⋱ ⋮

x(0)S ,NP ,1 x(0)S ,NP ,2 . . . x(0)S ,NP ,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where NP is the number of individuals in the population. The initialization ensures a diverse set of starting
points, allowing the algorithm to explore the search space effectively.

3.1.2 Elitism and Archive Management
In MOSFO, an elitist strategy is employed to retain the best solutions found during the optimization

process. The best sailfish, xelite, and the most injured sardine, xinjured, are preserved across iterations. This
preservation ensures that high-quality solutions are not lost and helps in guiding the population towards
promising regions of the search space.

An external archive is maintained to store non-dominated solutions. This archive plays a critical role
in managing the diversity and quality of solutions, ensuring a comprehensive approximation of the Pareto
front. The archive is updated at each iteration with new non-dominated solutions, and dominated solutions
are removed. This mechanism helps in maintaining a diverse set of solutions that are spread across the
Pareto front.

3.1.3 Attack-Alternation Strategy
The sailfish update their positions based on an alternation strategy inspired by real-world hunting

behaviors. In the G-th generation, the new position x(G)SF , i of the i-th sailfish is calculated using the following
formula:

x(G)SF , i = xelite − λ
⎛
⎝

rand(0, 1) × (xelite + xinjured)/2 − x(G−1)
SF , i

2
⎞
⎠

, (9)

where rand(0, 1) is the random number between [0, 1] and λ is a coefficient generated as:

λ = 2 × rand(0, 1) × Pd − Pd. (10)

Here the Pd denotes the prey density, indicating the number of prey at each iteration. As the sailfish
progressively hunt and reduce the prey population, the Pd parameter becomes crucial for updating the sailfish
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positions relative to the prey school, thus the adaptive expressions for this parameter is introduced follows:

Pd = 1 − m
m + n

, (11)

where m is the number of sailfish, and n denotes the number of sardines. The attack-alternation strategy
allows sailfish to intensify their search around the best solutions while being influenced by the worst
solutions. This balance ensures that the population does not converge prematurely to local optima and
continues to explore the search space effectively.

3.2 Attack Power—Handling Multiple Objectives
The MOSFO algorithm incorporates Pareto dominance-based selection to handle multiple objectives.

After evaluating the objective functions for each individual, non-dominated sorting is performed to identify
the Pareto front. The crowding distance metric is employed to maintain diversity among the solutions. This
metric ensures that solutions are well-distributed across the Pareto front by favoring solutions that are in less
crowded regions.

The updated positions of sardines in the G-th iteration are determined by:

x(G)S , i = rand(0, 1) × (xelite − x(G−1)
S , i +AP), (12)

where rand(0, 1) is the random number between [0, 1] and AP is the attack power, introduced as the adaptive
parameter that reduces during the generations, with the aim of maintaining the balance between exploration
and exploitation capabilities of the algorithm. In this regard, the AP is calculated as:

AP = A × (1 − 2 × FE × ε
maxFE

) , (13)

where A is the initial attack power, ε is a small constant, FE is the current number of function evaluations,
and maxFE is the maximum number of function evaluations. The use of Pareto dominance ensures that only
the best trade-offs between objectives are selected, while the crowding distance maintains diversity among
the non-dominated solutions.

The presudocode of the MOSFO algorithm is given in Algorithm 1.

Algorithm 1: Pseudocode of the Multi-Objective Sailfish Optimizer (MOSFO)
1: Initialize population of sailfish SFposition and sardines Sposition with random positions
2: Initialize external archive with non-dominated solutions
3: while stopping criterion not met do
4: Evaluate objective functions for sailfish and sardines
5: Perform non-dominated sorting
6: Update external archive with non-dominated solutions
7: Calculate crowding distance
8: for each sailfish i do
9: Find elite sailfish Xelite and injured sardine Xinjured

10: Update sailfish position using: x(G)SF , i = Xelite − λ ( rand(0,1)×(Xelite+Xinjured)/2−x(G−1)
SF , i

2 )
11: Calculate λ as: λ = 2 × rand(0, 1) × Pd − Pd

(Continued)
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Algorithm 1 (continued)

12: Calculate prey density Pd as: Pd = 1 − N SF
N SF+N S

13: end for
14: for each sardine i do
15: Find elite sailfish Xelite
16: Calculate attack power AP as: AP = A× (1 − 2×FE×ε

maxFE )
17: Update sardine position using: x(G)S , i = rand(0, 1) × (Xelite − x(G−1)

S , i +AP)
18: end for
19: Select next generation based on Pareto dominance and crowding distance
20: end while
21: Return Pareto front from external archive

3.3 Differential Evolution Algorithm
The DE is an efficient population-based evolutionary algorithm, widely applied in solving practical

complex optimization problems [6]. The optimization process is based on four operations, i.e., initialization,
mutation, crossover, and selection, which are briefly explained in the following subsections.

3.3.1 Initialization
The DE algorithm is initialized with the random deployment of individuals x(G)i , defined as:

x(G)i , j ∈ [xmin
i , j , xmax

i , j ], ∀i ∈ {1, 2, . . . , NP},∀ j = 1, 2, . . . , n, (14)

where xmin
i , j and xmax

i , j denote the lower and upper bound of the solution space, respectively, NP is the
population size, and n is the dimension of the considered problem. Therefore, in the initial generation, each
component of the vector x(G)i is calculated as:

x(G)i , j = xmin
i , j + rand j(xmax

i , j − xmin
i , j ), ∀ j = 1, 2, . . . , n, (15)

where rand j denotes the random number generator such that rand j ∈ [0, 1].

3.3.2 Mutation
Mutation is one of the crucial operators in DE, since it ensures the discoverability of new solutions. The

new mutant vector is calculated for each target vector using a number of different strategies, which all possess
the necessary traits for solving different types of problems, including [7]:

• DE/rand/1

v(G+1)
i = x(G)r1 + F(x(G)r2 − x(G)r3 ), (16)

• DE/rand/2

v(G+1)
i = x(G)r1 + F(x(G)r2 − x(G)r3 ) + F(x(G)r4 − x(G)r5 ), (17)

• DE/best/1

v(G+1)
i = x(G)best + F(x(G)r1 − x(G)r2 ), (18)
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• DE/best/2

v(G+1)
i = x(G)best + F(x(G)r1 − x(G)r2 ) + F(x(G)r3 − x(G)r4 ), (19)

• DE/current-to-best/1

v(G+1)
i = x(G)i + F(x(G)best − x(G)i ) + F(x(G)r1 − x(G)r2 ), (20)

where r1, r2, . . . , r5 are mutually distinct random numbers drawn from {1, 2, . . . , NP}/{i}, x(G)best denotes
the individual in the population that achieved the best objective function value, and F is a scale factor,
introduced as one of the control parameters of the DE algorithm.

3.3.3 Crossover
In order to increase the diversity of the population, the crossover operator is applied to generate a trial

vector u(G+1)
i , by combining the components of the target vector x(G)i and the appropriate mutant vector vG

i ,
as per the expression:

u(G+1)
i , j =

⎧⎪⎪⎨⎪⎪⎩

v(G)i , j , if randi , j ≤ Cr or j = jrand ,
x(G)i , j , otherwise,

(21)

where Cr is the crossover rate, the control parameter in the range [0, 1], and jrand is a random integer selected
from the set {1, 2, . . . , n}.

3.3.4 Selection
The selection operator is applied to choose the individuals with better traits for solving the stated

problem to the next generation. The operator works such that the comparison of objective functions is made
between trial and target vectors. For the next generation, we select the better one, as follows:

x(G+1)
i =

⎧⎪⎪⎨⎪⎪⎩

u(G+1)
i , if f (u(G+1)

i ) ≤ f (x(G)i ),
x(G)i , otherwise.

(22)

The pseudo-code of the DE algorithm is given in Algorithm 2.

Algorithm 2: Pseudo-code of differential evolution algorithm
1: Initialization
2: for each individual i in population (i = 1 to NP) do
3: for each dimension j( j = 1 to n) do
4: x(G)i , j ← xmin

i , j + rand j(xmax
i , j − xmin

i , j )
5: end for
6: end for
7: Repeat
8: for each individual i in population do
9: Mutation
10: Select distinct random indices r1, r2, r3, r4, r5 ∈ {1, 2, . . . , NP}/{i}
11: Depending on the chosen mutation strategy:

(Continued)
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Algorithm 2 (continued)
12: if DE/rand/1 then
13: v(G+1)

i ← x(G)r1 + F(x(G)r2 − x(G)r3 )
14: else if DE/rand/2 then
15: v(G+1)

i ← x(G)r1 + F(x(G)r2 − x(G)r3 ) + F(x(G)r4 − x(G)r5 )
16: else if DE/best/1 then
17: v(G+1)

i ← x(G)best + F(x(G)r1 − x(G)r2 )
18: else if DE/best/2 then
19: v(G+1)

i ← x(G)best + F(x(G)r1 − x(G)r2 ) + F(x(G)r3 − x(G)r4 )
20: else if DE/current-to-best/1 then
21: v(G+1)

i ← x(G)i + F(x(G)best − x(G)i ) + F(x(G)r1 − x(G)r2 )
22: end if
23: Crossover
24: for each dimension j( j = 1 to n) do
25: if randi , j ≤ Cr or j = jrand then
26: u(G+1)

i , j ← v(G)i , j
27: else
28: u(G+1)

i , j ← x(G)i , j
29: end if
30: end for
31: Selection
32: if f (u(G+1)

i ) ≤ f (x(G)i ) then
33: x(G+1)

i ← u(G+1)
i

34: else
35: x(G+1)

i ← x(G)i
36: end if
37: end for
38: until stopping criteria is met (e.g., max generations)
39: Output the best solution found (xbest)

3.4 Hybrid HMODESFO Algorithm
In this section we present the hybridization between SFO and DE algorithms, named HMODESFO

algorithm. The optimization problems in engineering are often complex, requiring to satisfy a number of
constraints and multiple conflicting and complex objective functions. Based on the literature research, and
on the experimentation on the considered problems, we can conclude that the MOSFO algorithm can suffer
for premature convergence and doesn’t maintain the diversity of the solutions. Therefore, the proposed idea
in this paper is to include the expressions from the DE algorithm regarding the mutation operator into the
SFO algorithm, with the aim to introduce new potential solutions and improve diversity. It has been shown in
literature that DE/rand/1 and DE/rand/2 mutation operators are good in exploration and introduction of new
solutions into the solution pool. To perform this hybridization we have introduced an adaptive parameter, on
which basis the algorithm will decide weather to perform the mutation or not. Then based on the crowding
distance operator the algorithm will retain the promising solutions.

In each generation G we calculate the parameter ΔG
θ according to the expression

ΔG
θ = θG ⋅ Δnorm, (23)
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where Δnorm denotes the normalized spread metric which is calculated as:

Δnorm = ∑M−1
i=1 ∣di − d̄∣

∑M−1
i=1 di + M ⋅ d̄

, (24)

in which M is the number of Pareto optimal solutions, di is the Euclidean distance between consecutive
solutions in the objective space and d̄ is the mean of these distances. The normalized spread metric, indicates
the extent of spread achieved among the obtained solutions, such that when Δnorm = 0 the algorithm has
achieved the perfect uniform spread of solutions along the Pareto front. On the other hand, the second
limiting value Δnorm = 1 indicates the worst possible spread in the given normalization context. In order
control the parameter Δnorm we have introduced the function θG(G) that reduces the value of Δnorm as the
generations increase, as follows:

θG = θinit ⋅ (
θfin

θinit
)

G
Gmax

, (25)

where θinit is the starting value of parameter θG and θfin is the final value, in this paper taken as {θinit , θfin} =
{1, 0.1}, while Gmax denotes the maximum number of iterations. We see that the value of this parameter
decreases as the generation increases, thus multiplying with Δnorm it will decrease the influence of this
parameter as generations are in the later stage, when is expected that the algorithm has converged towards
the promising solutions.

As previously pointed out we see that DE/rand/1 and DE/rand/2 mutation operators from DE algorithm
can introduce new potential solutions and improve diversity. To select the individuals from the population
that we will mutate, we first define cm as the percentage of NP individuals that will be mutated. Then we
perform random selection of cm integers from the set {1, 2, . . . , NP} and we thus get the set {Cm , i} , i =
1, 2, . . . , cm . Then for each individual from the set {Cm , i} we apply the DE/rand/1 or DE/rand/2 mutation
operators, as described in Eqs. (16) and (17), respectively, with the random choosing and probability of 0.5.
Therefore, we introduce the following mutation operator into the MOSFO algorithm that will introduce new
random solutions into the population according to the pseudo-code in Algorithm 3.

Algorithm 3: Proposed mutation operator of HMODESFO algorithm
1: if Δθ > 0.5 then
2: Introduce mutation
3: Randomly select cm integers from the set {1, 2, . . . , NP} to form set {Cm , i}
4: for i in {Cm , i} do
5: if rand > 0.5 then
6: DE/rand/1
7: x(G)SF , i = x(G)SF ,r1 + F (x(G)SF ,r2 − x(G)SF ,r3),
8: else
9: DE/rand/2
10: x(G)SF , i = x(G)SF ,r1 + F (x(G)SF ,r2 − x(G)SF ,r3) + F (x(G)SF ,r4 − x(G)SF ,r5) ,
11: end if
12: end for
13: end if

In this regard we can observe that in each iteration only one subset of cm solutions are mutated.
Furthermore, we mutate individuals only if the spread indicator is showing low diversity and low spread of



2124 Comput Model Eng Sci. 2025;142(2)

solutions, thus introducing new solutions into the solution pool. The complete pseudo-code of the proposed
HMODESFO algorithm is shown in Algorithm 4.

Algorithm 4: Pseudo-code of the proposed HMODESFO algorithm
1: Initialize population of sailfish SFposition and sardines Sposition with random positions
2: Initialize external archive with non-dominated solutions
3: while stopping criterion not met do
4: Evaluate objective functions for sailfish and sardines
5: Perform non-dominated sorting
6: Update external archive with non-dominated solutions
7: Calculate crowding distance
8: Perform mutation if solution spread is inadequate
9: if Δθ > 0.5 then
10: Introduce mutation
11: Randomly select cm integers from the set {1, 2, . . . , NP} to form set {Cm , i}
12: for i in {Cm , i} do
13: if rand > 0.5 then
14: DE/rand/1
15: x(G)SF , i = x(G)SF ,r1 + F (x(G)SF ,r2 − x(G)SF ,r3),
16: else
17: DE/rand/2
18: x(G)SF , i = x(G)SF ,r1 + F (x(G)SF ,r2 − x(G)SF ,r3) + F (x(G)SF ,r4 − x(G)SF ,r5) ,
19: end if
20: end for
21: end if
22: for each sailfish i do
23: Find elite sailfish xelite and injured sardine xinjured

24: Update sailfish position using: x(G)SF , i = xelite − λ ( rand(0,1)×(xelite+xinjured)/2−x(G−1)
SF , i

2 )
25: Calculate λ as: λ = 2 × rand(0, 1) × Pd − Pd
26: Calculate prey density Pd as: Pd = 1 − N SF

N SF+N S
27: end for
28: for each sardine i do
29: Calculate attack power AP as: AP = A× (1 − 2×FE×ε

maxFE )
30: Update sardine position using: x(G)S , i = rand(0, 1) × (xelite − x(G−1)

S , i +AP)
31: end for
32: Select next generation based on Pareto dominance and crowding distance
33: end while
34: Return Pareto front from external archive

4 Performance Metrics on Benchmark Tests
To assess the effectiveness of the proposed algorithm and contrast it with established algorithms in the

literature, several benchmark tests have been conducted. Firstly, we compare the performance of the pro-
posed method on seven DTLZ and five ZDT benchmark functions for multi-objective optimization [32,33].
Furthermore, two established multi-objective mechanical design optimization problems are used to validate
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the performance of the proposed modifications. Finally, we employed a multi-objective planetary gearbox
optimization model [31], to validate performance. Three well-established performance metrics have been
used in this paper including Hypervolume (HV), Spread (SP) and Inverted Generational Distance (IGD) [34]
in order to measure the suggested algorithm’s convergence and coverage (diversity).

The HV measures the volume of the objective space dominated by a set of non-dominated solutions,
bounded by a reference point r. Formally, the hypervolume indicator for a set of solutions S = {s1 , s2, . . . , sn}
in the objective space is defined as:

HV(S) = vol(⋃
s∈S
{z ∈ Rm ∣ s ⪯ z ⪯ r}) , (26)

where s ⪯ z indicates that solution s dominates or is equal to z, and vol represents the Lebesgue measure of
the union of the hyperrectangles formed by each solution s and the reference point r. In this context, z is a
point in the objective space, m is the number of objectives, and r is a reference point that is dominated by all
solutions in the set S.

The hypervolume metric provides a scalar value that reflects both the convergence and diversity of the
solution set by capturing the extent of the dominated objective space.

The SP metric is a crucial measure used to evaluate the distribution and spread of solutions along the
Pareto front. It quantifies how well the solutions cover the extent of the Pareto front by considering both
the distance between consecutive solutions and the overall extent of the front. The spread metric is formally
defined as:

Δ =
d f + dl +∑n−1

i=1 ∣di − d̄∣
d f + dl + (n − 1)d̄

, (27)

where d f and dl are the Euclidean distances from the extreme solutions to the boundary solutions of the
Pareto front, di is the distance between consecutive solutions, d̄ is the average of these distances, and n is the
number of solutions. This metric ensures that solutions are evenly distributed and cover the entire range of
the Pareto front, reflecting both convergence and diversity in the solution set.

The Inverted Generational Distance is a widely used metric in multi-objective optimization for assessing
the convergence and diversity of a set of solutions generated by an algorithm with respect to a reference
Pareto front. The IGD provides an average distance from the points on the reference front to their closest
points in the obtained solution set, thus reflecting how well the solution set covers the true Pareto front. The
IGD metric is calculated as:

IGD(S , Pref) =
1

∣Pref∣
∑

y∈Pref

min
x∈S

d(y, x), (28)

where S is the set of solutions obtained by the algorithm, Pref is the reference Pareto front, ∣ ⋅ ∣ denotes the
cardinality of a set, y is a solution vector in the reference Pareto front Pref, x is a solution vector in the obtained
solution set S, d(y, x) is the Euclidean distance between vectors y and x, calculated as:

d(y, x) =
-
../

m
∑
i=1
(yi − xi)2, (29)

where m is the number of objectives, and yi and xi are the i-th objective values of y and x, respectively. A
lower IGD value indicates that the obtained solution set S is closer to the reference Pareto front and provides
better coverage of the true Pareto-optimal solutions.
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In contrast to the conventional IGD metric, the Inverted Generational Distance Plus (IGD+) [35]
metric addresses the shortcomings of the IGD by incorporating a modified distance function that exclusively
considers non-dominated vectors. This modification enhances the metric’s sensitivity to both convergence
towards the genuine Pareto front and the dispersion of solutions along it, rendering IGD+ a more reliable
tool for assessing the efficacy of diverse multi-objective optimization algorithms. The IGD+metric is defined
as:

IGD+(P∗, P) = 1
∣P∗∣ ∑v∈P∗

min
u∈P

d+(v, u), (30)

where P∗ represents the reference Pareto front (typically the true Pareto-optimal front), P is the set of
solutions obtained by the algorithm under evaluation, and ∣P∗∣ denotes the number of solutions in P∗. The
distance function d+(v, u) calculates the directional distance between vectors v and u, considering only the
positive differences in each objective dimension:

d+(v, u) =
-
../

m
∑
i=1
(max{0, vi − ui})2, (31)

where m is the number of objectives, and vi and ui are the values of the i-th objective for solutions v
and u, respectively. The use of the max{0, vi − ui} term ensures that only the distances where vi exceeds
ui contribute to the metric, effectively penalizing solutions that are dominated or not well-converged. By
averaging the minimal positive distances from each point in the reference set to the obtained solution
set, IGD+ provides a comprehensive assessment of how closely and uniformly the algorithm’s solutions
approximate the true Pareto front.

In order to perform the statistical comparison between obtained results the Wilcoxon signed rank test
and Friedman rank test have been employed.

The Wilcoxon signed-rank test [36] is a non-parametric statistical technique utilized to compare two
correlated samples or repeated measurements on a single sample in order to evaluate if their population mean
ranks exhibit any differences. The test process entails computing the disparities between paired observations,
ordering these disparities ac-cording to their absolute values, and subsequently aggregating the rankings for
the positive and negative disparities individually. The lesser of these sums is utilized as the test statistic. The
null and alternative hypotheses for the Wilcoxon signed-rank test are stated as follows: H0 states that the
median difference between the paired observations is equal to zero, while H1 states that the median difference
between the paired observations is not equal to zero. The determination to reject the null hypothesis relies
on comparing the test statistic with crucial values obtained from the Wilcoxon signed-rank table or by
generating a p-value. If the p-value is less than or equal to the selected significance level (α = 0.05), the null
hypothesis is rejected, suggesting a statistically significant distinction between the paired observations.

The Friedman test [36], a non-parametric statistical approach, is commonly used in evolutionary
optimization to assess the efficiency of various algorithms across several problem occurrences. It is essential
in benchmark studies to ascertain whether there are statistically significant disparities in performance
indicators among different algorithms. The procedure involves ranking the performance of each algorithm
on each problem instance, summing these ranks, and using these sums to compute the test statistic.
This statistic follows a chi-squared distribution with k − 1 degrees of freedom, where k is the number of
algorithms. The null and alternative hypotheses evaluated by the test are: H0: “There are no disparities in
the distributions of the performance measures among the algorithms.” H1: “At least one algorithm exhibits
significant dissimilarity.” The choice to reject the null hypothesis is determined by comparing the test statistic
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to the crucial value obtained from the chi-squared distribution table at the selected significance level (α =
0.05). If the value of the test statistic exceeds the critical value, it leads to the rejection of the null hypothesis,
indicating a significant performance difference among the algorithms.

In the next subsections we present the benchmark problems employed to perform numerical analysis.

4.1 Outline of ZDT and DTLZ Benchmark Problems
In the area of optimization, especially meta-heuristic optimization, the benchmark problems play a

crucial role in evaluating the efficiency of algorithms, since in majority of cases the strict mathematical
validation is not possible. These benchmarks serve as standardized tests, providing a common ground for
researchers to compare the performance of different optimization algorithms. The DTLZ and ZDT test
problems are widely recognized benchmarks in the field of multi-objective optimization [32,33]. DTLZ prob-
lems are specifically formulated for scenarios involving multiple objectives and can accommodate objective
spaces with dimensions greater than two. This poses a challenge for algorithms in identifying a diverse
range of Pareto-optimal solutions. In contrast, ZDT problems are specifically formulated for bi-objective
optimization tasks, focusing on the consideration of only two objectives. In Table 1, a summary of employed
benchmark problems is provided, where the following information are provided such as the number of
objectives (M), decision variables (n), and the formulas used to calculate objective functions fi(x), and the
auxiliary function g(x). The results of statistical comparison of IGD metric (mean and standard deviation)
on different optimization problems described in Table 1 are shown in Table 2. Furthermore, the results of
using the IGD+ metric are presented in the Table 3. In these tables for performance comparison we have
employed well established algorithms in the literature MO_Ring_PSO_SCD [37], GDE3 [38], NSGA-II [4]
and compare their performance to the proposed algorithm. The parameters for the employed algorithms for
comparison are outlined in Table 4, and are taken as suggested in the respective cited papers. The population
number in each simulation was fixed to NP = 100 and the maximum number of iterations to 10, 000. The
results are presented in the form of mean and standard deviation values of IGD and IGD+ metrics as the
outcomes of numerical simulation conducted across 30 independent runs for each of the test problems
under consideration.

Table 1: The outline of ZDT and DTLZ test problems employed in analysis

Problem Test type M n Objective functions calculation
DTLZ1 Continuous 3 n fi(x) = 0.5 × xi × (1 + g(∑n

j=M x j))
for i = 1, 2, . . . , M − 1,

where g(x) = ∑n
i=1(xi − 0.5)2

ine DTLZ2 Continuous 3 n fi(x) = 1 + g(x) ×∑M−1
i=1 xi

for i = 1, 2, . . . , M − 1,
where g(x) = ∑n

i=1(xi − 0.5)2

ine DTLZ3 Continuous 3 n fi(x) = 1 + g(x) × cos(20πxi)
for i = 1, 2, . . . , M − 1,

where g(x) = ∑n
i=1(xi − 0.5)2

(Continued)
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Table 1 (continued)

Problem Test type M n Objective functions calculation
ine DTLZ4 Continuous 3 n fi(x) = (1 + g(x)) ×∏M−1

i=1 cos(0.5πxi)
for i = 1, 2, . . . , M − 1,

where g(x) = ∑n
i=1(xi − 0.5)2

ine DTLZ5 Continuous 3 n + k − 1 fi(x) = 1 + g(x) ×∑M−1
i=1 cos4(20πxi)

for i = 1, 2, . . . , M − 1,
where g(x) = ∑n

i=1(xi − 0.5)2, and k = n − M + 1
ine DTLZ6 Continuous 3 n + k − 1 fi(x) = (1 + g(x)) ×∏M−1

i=1 cos2(0.5πxi)
for i = 1, 2, . . . , M − 1,

where g(x) = ∑n
i=1(xi − 0.5)2,

and k = n − M + 1
ine DTLZ7 Continuous 3 n fi(x) = 1 + g(x) +∑M−1

i=1 cos ( 4πxi+(1+4i)
2 )

for i = 1, 2, . . . , M − 1,
where g(x) = ∑n

i=1(xi − 0.5)2

ine ZDT1 Continuous 2 n f1(x) = x1 , f2(x) = g(x) × h( f1(x), g(x)),
where g(x) = 1 + 9 × ∑

n
i=2 xi
n−1

and h( f1(x), g(x)) = 1 −
√

f1(x)
g(x)

ine ZDT2 Continuous 2 n f1(x) = x1 , f2(x) = g(x) × h( f1(x), g(x)),
where g(x) = 1 + 9 × ∑

n
i=2 xi
n−1

and h( f1(x), g(x)) = 1 − ( f1(x)
g(x) )

2

ine ZDT3 Continuous 2 n f1(x) = x1 , f2(x) = g(x) × h( f1(x), g(x)),
where g(x) = 1 + 9 × ∑

n
i=2 xi
n−1

and h( f1(x), g(x)) = 1 −
√

f1(x)
g(x) × sin(10π f1(x))

ine ZDT4 Continuous 2 n f1(x) = x1 , f2(x) = g(x) × h( f1(x), g(x)),
where

g(x) = 1 + 10(n − 1) +∑n
i=2(x2

i − 10 cos(4πxi))

and h( f1(x), g(x)) = 1 −
√

f1(x)
g(x)

ine ZDT5 Continuous 2 n f1(x) = x1 , f2(x) = g(x) × h( f1(x), g(x)),
where g(x) = 1 + 9 × ∑

n
i=2 xi
n−1

and h( f1(x), g(x)) = 1 − ( f1(x)
g(x) )

2

ine ZDT6 Continuous 2 n f1(x) = x1 , f2(x) = g(x) × h( f1(x), g(x)),
where g(x) = 1 + 9 × ∑

n
i=2 xi
n−1
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Table 2: The parameters of employed algorithms

Algorithm Parameters
NSGA-II [4] Crossover probability Pc = 0.9,

Mutation probability Pm = 1/n,
Distribution index for crossover ηc = 20,
distribution index for mutation ηm = 20

GDE3 [38] Crossover rate CR = 0.2,
Scale factor F = 0.2

MO_Ring_PSO_SCD [37] Inertia weight w = 0.7298,
Acceleration coefficients c1 = c2 = 2.05

Table 3: The mean and standard deviation values of the IGD measure for all employed algorithms across all evaluated
ZDT and DTLZ benchmarks

Problem MO_Ring_PSO_SCD GDE3 NSGA-II HMODESFO
DTLZ1 9.4976e+0 (3.91e+0) − 4.2728e+0 (2.36e+0) − 2.3013e-1 (2.08e-1) = 3.5257e-1 (6.19e-1)
DTLZ2 7.6249e-2 (9.00e-3) − 8.2445e-2 (2.66e-3) − 5.4875e-2 (8.05e-5) + 6.9277e-2 (2.66e-3)
DTLZ3 2.1601e+2 (4.22e+1) − 3.7819e+1 (3.02e+1) − 8.5264e+0 (3.49e+0) = 8.9874e+0 (4.04e+0)
DTLZ4 1.4244e-1 (2.21e-1) − 1.1269e-1 (2.82e-2) + 1.6577e-1 (2.36e-1) − 1.3191e-1 (1.63e-1)
DTLZ5 8.3666e-3 (1.36e-3) − 8.9621e-3 (1.08e-3) − 1.1942e-2 (1.30e-3) − 6.1480e-3 (3.89e-4)
DTLZ6 5.0075e+0 (7.02e-1) − 1.4862e+0 (8.27e-1) − 1.8709e-2 (2.64e-3) − 7.2336e-3 (7.36e-3)
DTLZ7 1.9350e+0 (5.76e-1) − 3.1758e+0 (8.30e-1) − 1.0118e-1 (5.50e-2) = 9.4434e-2 (6.94e-3)
ZDT1 5.5423e-1 (8.36e-2) − 8.7722e-1 (1.02e-1) − 1.7812e-2 (3.66e-3) − 1.3060e-2 (2.27e-3)
ZDT2 1.2830e+0 (3.10e-1) − 1.8369e+0 (2.77e-1) − 6.8557e-2 (8.17e-2) − 3.0991e-2 (4.15e-2)
ZDT3 4.5332e-1 (8.93e-2) − 9.2879e-1 (9.61e-2) − 2.0493e-2 (9.46e-3) − 1.3441e-2 (9.16e-3)
ZDT4 8.8833e+0 (3.97e+0) − 3.1897e+1 (5.32e+0) − 6.4889e-1 (2.54e-1) − 2.1634e-1 (1.26e-1)
ZDT6 3.6462e-1 (4.93e-1) − 1.1119e-1 (1.98e-1) = 1.8872e-1 (7.20e-2) − 6.1614e-2 (3.20e-2)
+/-/= 0/12/0 1/10/1 1/8/3

Note: In these tables, the result of the best performing algorithm, for each considered problem is noted in bold.

Table 4: The mean and standard deviation values of the IGD+ measure for all employed algorithms across all evaluated
ZDT and DTLZ benchmarks

Problem MO_Ring_PSO_SCD GDE3 NSGA-II HMODESFO
DTLZ1 9.18 × 100 (3.94 × 100) 4.20 × 100 (2.26 × 100) 2.21 × 10−1(2.43 × 10−1) 2.40 × 10−1 (2.79 × 10−1)
DTLZ2 6.15 × 10−2 (1.45 × 10−2) 6.05 × 10−2 (3.50 × 10−3) 2.46 × 10−2(3.56 × 10−4) 3.58 × 10−2 (1.67 × 10−3)
DTLZ3 2.21 × 102 (4.45 × 101) 3.67 × 101 (3.04 × 101) 9.30 × 100 (4.35 × 100) 7.56 × 100(4.24 × 100)

DTLZ4 1.10 × 10−1 (1.38 × 10−1) 6.02 × 10−2(6.69 × 10−3) 8.21 × 10−2 (1.00 × 10−1) 6.36 × 10−2 (8.21 × 10−2)
DTLZ5 4.81 × 10−3 (7.99 × 10−4) 6.46 × 10−3 (7.30 × 10−4) 6.85 × 10−3 (8.17 × 10−4) 3.25 × 10−3(2.34 × 10−4)

DTLZ6 5.08 × 100 (7.67 × 10−1) 1.14 × 100 (7.14 × 10−1) 8.69 × 10−3 (1.66 × 10−3) 4.86 × 10−3(3.58 × 10−2)

DTLZ7 2.12 × 100 (6.21 × 10−1) 3.03 × 100 (6.94 × 10−1) 8.19 × 10−2 (4.40 × 10−2) 7.94 × 10−2(3.76 × 10−2)

ZDT1 5.40 × 10−1 (8.46 × 10−2) 8.76 × 10−1 (1.12 × 10−1) 1.85 × 10−2 (3.85 × 10−3) 1.26 × 10−2(2.19 × 10−3)

ZDT2 1.29 × 100 (2.67 × 10−1) 1.88 × 100 (2.19 × 10−1) 3.75 × 10−2 (3.93 × 10−2) 2.19 × 10−2(2.72 × 10−2)

ZDT3 4.47 × 10−1 (9.19 × 10−2) 8.99 × 10−1 (1.21 × 10−1) 1.55 × 10−2 (4.70 × 10−3) 1.11 × 10−2(6.06 × 10−3)

ZDT4 1.04 × 101 (4.70 × 100) 3.19 × 101 (5.01 × 100) 4.47 × 10−1 (3.01 × 10−1) 2.23 × 10−1(1.39 × 10−1)

Note: In these tables, the result of the best performing algorithm, for each considered problem is noted in bold.
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The results presented in Table 3 highlight that for the majority of the test cases, the HMODESFO
algorithm achieved the best performance, as indicated by the bold values. In particular, HMODESFO
outperforms other algorithms on 9 out of 12 problems.

In contrast, MO_Ring_PSO_SCD and GDE3 exhibit weaker performance, as they were consistently
outperformed across all problems, with no observed wins for MO_Ring_PSO_SCD and only one for GDE3.
NSGA-II, while competitive in some cases (with three ties), is still largely outperformed by HMODESFO in
terms of overall results.

Comparing the results obtained using IGD metric in Table 3 with that in Table 4, we can see that in the
case of IGD+ metric the proposed HMODESFO algorithm achieves the similar results, where the NSGA-II
algorithm is better only on DTLZ1, DTLZ2 and DTLZ4 problems.

Table 5 displays the statistical results obtained from the application of Wilcoxon’s signed-rank test to
the ZDT benchmark issues in this study. This analysis produced results that allowed for the assignment of
one of three symbols (+,−, ≈) to compare the algorithms. Specifically, the symbol (+) indicates that the
first algorithm significantly outperforms the second, while the symbol (−) signifies that the performance of
the first algorithm is significantly worse than the second. The symbol (≈) suggests that the two algorithms
perform similarly.

Table 5: The results of Wilcoxon’s statistical test between proposed HMODESFO and other algorithms taken for
consideration on selected ZDT and DTLZ benchmark problems

Algorithms R+ R− p-value Dec.
HMODESFO vs. NSGA-II 51 27 0.3804 ≈

HMODESFO vs. GDE3 75 3 0.0024 +
HMOBPSO vs. MO_Ring_PSO_SCD 78 0 0.0004 +

The statistical results presented in Table 5 shows that firstly, the comparison between HMODESFO
and NSGA-II yields a p-value of 0.3804, which is greater than the significance threshold of 0.05, indicating
that their performance is considered comparable, as denoted by the symbol ≈. In contrast, the comparison
between HMODESFO and GDE3 results in a p-value of 0.0024, which is below the significance threshold,
indicating a statistically significant difference in favor of HMODESFO. The R+ value of 75 compared
to the R− value of 3 further supports this conclusion, and thus, HMODESFO is shown to significantly
outperform GDE3, as indicated by the symbol +. Similarly, the comparison between HMOBPSO and
MO_Ring_PSO_SCD shows a p-value of 0.0004, also below the threshold of 0.05, indicating a significant
difference in favor of HMOBPSO. With R+ = 78 and R− = 0, it is evident that HMOBPSO significantly
outperforms MO_Ring_PSO_SCD, as denoted by the symbol +. Table 6 presents the average ranks of the
algorithms under analysis across different objective functions of the ZDT and DTLZ benchmark problems,
calculated using Friedman’s test. This test was conducted to assess the performance of the proposed algorithm
in comparison to other well-established algorithms.

In Table 6, the optimal method for the specified issue is emphasized in bold, whilst the second
most effective is underscored. Analyzing the findings reveals that there is a considerable difference in the
performance of the algorithms under discussion, as all of the generated p-values fall below the significance
level α = 0.05. The HMODESFO algorithm attained the highest overall rank, consistent with the findings of
the Wilcoxon test. The statistical analysis validates the efficacy of the hybrid algorithm proposed in this paper.
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4.2 Benchmark on Mechanical Design Optimization Problems
To evaluate the performance of the proposed algorithm, we have applied it to two real-life mechanical

engineering design problems, e.g., welded beam design and pressure vessel design problems, which are
widely employed in literature as the benchmarks for multi-objective mechanical engineering design opti-
mization.

4.2.1 Welded-Beam Design Problem
In the field of structural optimization, the welded-beam design problem has been considered as the

reference benchmark problem [39]. The main aims of this benchmark problem are to minimize the costs of
production while reducing the maximum deflection of the beam, which are conflicting objectives. According
to the original problem definition [39], we consider the four design variables: weld thickness (h), beam height
(t), beam thickness (b), weld length (l), as shown in Fig. 1. The objectives of the considered problem are
formulated as:

min f1 = (1 + c1)h2 l + c2tb(L + l), (32)
min f2 = δ, (33)

where f1 is the objective which determines the welding material and working cost, f2 is the beam deflection
objective, δ denotes the beam deflection, L = 356 mm is the fixed distance between the point of load to the
support, and cost coefficients are:

c1 = 6.3898 × 10−3 $/mm3, (34)
c2 = 2.9359 × 10−3 $/mm3. (35)

Figure 1: The welded-beam design optimization example

There are numerous constraints that must be met, including the mechanical properties of the weld
and the beam, shear and normal stresses, maximal deflection, and the constraints regarding the physical
feasibility, including:

g1 = τmax − τ ≥ 0, (36)
g2 = σmax − σ ≥ 0, (37)
g3 = b − h ≥ 0, (38)
g4 = l ≥ 0, (39)
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g5 = t ≥ 0, (40)
g6 = Pc − F ≥ 0, (41)
g7 = h − 0.125 ≥ 0, (42)

where τmax is the maximum allowable shear stress of the weld such that τmax = 9.38 × 102 N/mm2, τ is the
maximum shear stress in the weld, σmax is the allowable normal stress such that σmax = 2.07 × 102 N/mm2,
σ is the maximum normal stress in the beam, Pc is the buckling load, F = 26, 689 N is the load.

The stresses σ and τ are calculated as follows:

σ = 6FL
bt2 , (43)

τ = F√
2bt2

(2τ′L
bt

) , (44)

where primary and secondary shear stresses are:

τ1 =
F√
2bt2

, (45)

τ2 =
F (L + l)

bt2 . (46)

and Pc is:

Pc = 64746.022 (1 − 0.0282346t) tb2. (47)

4.2.2 Pressure Vessel Design Problem
Another well-established mechanical engineering optimization benchmark problem is the pressure ves-

sel design problem. The main objectives of this problem are to minimize the cost of manufacturing (including
the cost of material, forming, and welding) and maximizing the capacity of the pressure vessel [40]. We
consider the cylindrical vessel which is closed from the top and bottom with hemispherical heads as depicted
in Fig. 2.

Figure 2: Pressure vessel benchmark design problem

This optimization problem considers four design variables including Ts shell thickness, Th the thickness
of the hemispherical heads, R inner radius of the cylindrical part, L the length of the cylindrical part of the
vessel. Thus, the objectives can be formulated as:

min f1 = 0.6224Ts LR + 1.7781Th R2 + 3.1661T2
s L + 19.84T2

s R, (48)
min f2 = −(πR2L + 1.333πR3). (49)
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To ensure physical feasibility of the solution, there are a number of constraints to satisfy including:

g1 = Ts − 0.0193R ≥ 0, (50)
g2 = Th − 0.00954R ≥ 0, (51)
g3 = Ts − 0.0625 ≥ 0, (52)
g4 = 5 − Ts ≥ 0, (53)
g5 = Th − 0.0625 ≥ 0, (54)
g6 = 5 − Th ≥ 0, (55)
g7 = R − 10 ≥ 0, (56)
g8 = 200 − R ≥ 0, (57)
g9 = L − 10 ≥ 0, (58)

g10 = 240 − L ≥ 0. (59)

4.3 Results of Simulation on Welded Beam and Pressure Vessel Problems
This section presents the results of numerical simulations conducted to compare performance and

validate the improvements of the proposed HMODESFO algorithm on two mechanical design optimization
problems previously described. Based on the conclusions in Section 4.1, in this section we have performed
comparison of proposed algorithm to the NSGA-II algorithm. Firstly we have considered welded-beam
optimization problem. The obtained Pareto fronts using HMODESFO and NSGA-II algorithms are shown
on Fig. 3. From the Fig. 3 we observe that the considered objectives are mutually conflicting, thus validating
the need for Pareto optimization. We also observe that the Pareto front obtained by proposed algorithm
dominates the one obtained by NSGA-II algorithm.

Figure 3: Pareto fronts obtained using HMODESFO and NSGA-II algorithms on welded-beam design problem

Next, we consider the pressure vessel problem described in Section 4.2.2, employing the same algo-
rithms. The obtained Pareto sets for this problem are shown in Fig. 4. Based on the shown Pareto sets from
NSGA-II and HMODESFO algorithms, we as in the previous case observe slight improvement in the Pareto
front obtained by the proposed algorithm.
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Figure 4: Pareto fronts obtained using HMODESFO and NSGA-II algorithms on pressure vessel design problem

To further validate the performance of two considered algorithms on mechanical engineering problems
we have calculated the Hypervolume and Spread metrics using Eqs. (26) and (27), respectively, where the
results are presented in Table 7.

Table 7: The values of Hypervolume and Spread metrics calculated on two mechanical engineering problems

HV(S) Δ
Welded-beam design problem

HMODESFO 0.5911 0.6419
NSGA-II 0.583 0.79

Pressure vessel design problem
HMODESFO 0.3372 0.3793

NSGA-II 0.3176 0.7384

From the results in Table 7 for the welded-beam design problem, HMODESFO achieved a higher
hypervolume of 0.5911 compared to hypervolume of NSGA-II algorithm 0.583, indicating that Pareto front
obtained by HMODESFO alg. encompasses a larger portion of the objective space, thus demonstrating
better convergence. Additionally, HMODESFO attained a lower spread value of 0.6419 vs. NSGA-II 0.79,
suggesting a more uniform distribution of solutions along the Pareto front and enhanced diversity. Regarding
the pressure vessel design problem, a similar trend is observed. HMODESFO outperformed NSGA-II with
a hypervolume of 0.3372 compared to 0.3176. Moreover, spread metric of HMODESFO algorithm is 0.3793
and is significantly lower than that of NSGA-II which is 0.7384, indicating a more evenly spread set of
solutions. This shows that the improvements introduced in proposed algorithm lead to better performance
on mechanical engineering problems.

4.4 Performance Metrics on Planetary Gearbox Optimization Problem
In order to further compare the performance of the proposed algorithm, the complex multi-objective

planetary gearbox optimization problem, formulated by [31,41], has been employed. The considered problem
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assumes choosing the appropriate parameters for a single stage planetary gearbox with central gear connected
with the input, three planet gears on a carrier, and a single stationary rim gear with internal gearing, as shown
in Fig. 5.

Figure 5: Schematic representation of a single stage planetary gearbox included in the appropriate optimization
model [41]

According to the previous works of authors [31,41], the planetary gearbox optimization model uses seven
design variables such as the teeth number of central sun gear z3, number of teeth of rim gear with internal
teething zr , number of teeth of planet gears zp, module m, x3, xr , and xp which are profile shift coefficients
of sun, rim, and planet gears, respectively. The appropriate domains of application for each variable are given
in Table 8.

Table 8: Range and type of design variables in this optimization problem

Design variable Lower bound Upper bound Type
z3 17 26 Integer
zr 40 120 Integer
zp 22 60 Integer
m 2 40 Discrete
x3 0.1 1 Continuous
xr −0.5 1 Continuous
xp −0.5 0.5 Continuous

The proposed model assumes a number of different objectives among which, in this study we will employ
the gearbox volume, as well as the efficiency calculation of complete gearbox as the two main objectives,
which can be defined as
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Gears volume
The volume of the gears can be defined under the assumption of uniform density of the gear material

and that all gears are produced using the same material as follows:

f1 = V (x) = π
4

b [d(a)
2 + nw (d2

a(b) − D2) + (d2
(g) − d2

s )] , (60)

where b is the width of gears, d(a) is the tip circle of the sun gear, nw is the number of planet gears, da(b) is
the tip circle of planet gear, D is the outside diameter of ring gear, d(g) is the pitch circle of planet gear and
ds is the outside bearing diameter.

Gearbox efficiency

ηb
aH =

1 − ηH
ag ηH

gbuH
ab

1 − uH
ab

. (61)

where ηb
aH , ηH

ag and ηH
gb are the appropriate efficiencies of considered gear pairs and uH

ab is the overall gearbox
gear ratio. To determine the efficiency of a specific gear pair, this paper utilizes the mathematical model
established by the authors in [31].

In order to guarantee the viability of the derived optimal solution, and consequently the proper
functioning of the planetary gearbox, it is essential to incorporate and fulfill a series of constraints within the
proposed optimization model, which include:

Safety against bending
To ensure the proper functioning of gears, we must calculate bending stress and prevent that stress

becoming greater than critical stress for material, which is represented with constraint

g1 =
[σF]c

σF
− SFmin ≥ 0, (62)

where [σF]c is the critical root stress depending on the material of the gear, SFmin is the factor of safety against
bending, such that SFmin = 1.25, and root stress is calculated as:

σF = YF YβYε
Ft

bmn
KAKV KH . (63)

where the appropriate factors YF , Yβ , Yε , KA, KV , KH are calculated according to the standard [42,43].
Safety against pitting
Another important factor that ensures normal working of gears is ensuring that the contact stress is less

than critical contact stress, encompassed with the constraint

g2 =
[σH]c

σH
− SHmin ≥ 0, (64)

where [σH]c is the critical contact stress, SHmin is the factor of safety against pitting, taken as SHmin = 1.25, and
the contact stress is calculated as:

σH = ZH ZE Zε

-
../ Ft

bd(a)

u + 1
u

KAKv KHα , (65)

where the appropriate factors ZH , ZE , Zε , KA, Kv , KHα are calculated according to the standard [42,43].
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Space requirement
In order to facilitate the proper mounting of gears within the gearbox assembly, it is imperative that an

adequate clearance be maintained between the tip circles of the meshing gears. This requirement is addressed
through the implementation of the following constraint:

g3 = 2aag sin( π
nw

) − fz − da(g) ≥ 0, (66)

where fz = 0.5 ⋅ mn is the minimum clearance, and aag is the center distance between sun and planet gears.
Assembly constraint
In order to avert any possible interference of the teeth throughout the meshing process, it is imperative

to guarantee that the central sun gear engages with the planet gears in a simultaneous manner consistently.
Consequently, the equality constraint is formulated as follows:

h1 =
za + zb

nw
− i = 0, (67)

where i is the integer which leads to constraint being zero.

4.5 Results on Simulation on Planetary Gearbox Problem
This subsection presents the findings derived from numerical simulations performed on the optimiza-

tion model of the planetary gearbox, as delineated in Section 4.4.
The system under examination acquires power through the input shaft, which is connected to the

sun gear, subsequently disseminating it among the planet gears and transmitting it to the holder, which is
connected to the output shaft. In the course of the analysis, the speed of sun gear is maintained at a constant
value of na = 2750 min−1, accompanied by a power output of Pa = 175 kW. The parameters that remain
integral to the design of the considered optimization problem of planetary transmission are enumerated
in Table 9.

Table 9: The parameters of the planetary transmission examined in this study

Parameters Units Symbol Value
Input power [kW] Pa 175
Input speed [min−1] na 2750

Pressure angle [○] αn 20
Gear material 18CrNi8

Gear surface roughness [m] Ra 0.8
Factor of safety against bending [-] SF min 1.2
Factor of safety against pitting [-] SH min 1.25

Number of planet gears [-] nw 3

In light of prior benchmark tests conducted for this analysis, we utilized the NSGA-II algorithm to eval-
uate its performance in comparison to the proposed HMODESFO algorithm. The parameters employed in
the simulations consist of NP = 100 individuals and a maximum of 10,000 generations. The simulations were
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conducted utilizing MATLAB software using a computational system featuring a 3.2 GHz central processing
unit and 16 gigabytes of random access memory. Considering the presence of conflicting objectives, it is
evident that no singular optimal solution can be identified. Consequently, a Pareto set of solutions has been
derived and to facilitate comparison, an ideal solution, denoted as xid eal = (xid eal ,1 , xid eal ,2 , . . . , xid eal ,M),
is calculated based on the following expression:

xid eal , i = min( fi), ∀i = 1, 2, . . . , M (68)

here, M denotes the quantity of objectives undergoing optimization. The ideal solution xid eal is a theoretical
construct that signifies the optimal outcome for each objective, supposing that all objectives can be
concurrently reduced. In practical optimization problems, particularly those with competing objectives, such
a solution is seldom attainable, as enhancing one goal generally results in the decline of another.

As the optimal solution xid eal does not exist in the Pareto set, it functions as a benchmark rather than a
realizable outcome. A compromise solution is identified to facilitate practical comparisons. This compromise
option is chosen from the Pareto front as the one nearest to the ideal solution, with closeness assessed using
the Euclidean distance metric. This guarantees that the compromise solution equilibrates trade-offs among
all objectives and embodies the most balanced design option within the framework of the specified challenge.
To comprehensively study the issue, many combinations of objectives have been evaluated to encompass
diverse aspects of gearbox design optimization, such as

• Gearbox volume (V) in conjunction with gearbox efficiency (ηH
gb) and bending stress (σF), Eqs. (60)

and (61), respectively,
• Gearbox volume V combined with efficiency ηH

gb and bending stress σF , and
• Gearbox volume V in conjunction with efficiency ηH

gb and contact stress σH .

An analysis was conducted on the suitable Pareto optimal curves obtained by solving the planetary
gearbox multi-objective optimization model, which were derived from both the NSGA-II and the proposed
algorithms. The Pareto optimal curves serve as a visual depiction of the trade-offs inherent among various
objectives, thereby enabling engineers to identify the most appropriate solution in accordance with their
specific needs, rather than being constrained to a singular compromise solution.

We firstly examine the gearbox volume in conjunction with its efficiency as shown in Fig. 6.
From the Fig. 6, we can observe that the considered objectives are mutually conflicting. Thus the

reduction in one objective leads to the increase in the other. Furthermore, we can see that the Pareto curves
obtained by the HMODESFO algorithm dominate the ones obtained by NSGA-II algorithm. To compare
two algorithms on the same problem an ideal solution is extracted as a tuple (V , ηH

gb) = (1.27 × 109, 0.995)
and compromise solution obtained by HMODESFO algorithm is (1.27 × 109, 0.984), as well as the solution
obtained by NSGA-II is (1.28 × 109, 0.96).

Furthermore, we consider Pareto curves for three objectives optimization problem, where the objectives
are gearbox volume V, gearbox efficiency ηH

gb and bending stress σF , as shown in Fig. 7.
We can see that all the goals that were taken into consideration are in opposition with each other, as

shown in Fig. 7. Specifically, when one goal is increased, the other two objectives are decreased. Here, a tuple
containing an ideal solution (not part of the Pareto front but minimizing all goals) is extracted for the sake of
comparison as (V , σF , ηH

gb) = (1.27 × 109, 817.6, 0.995) and compromise solution obtained by HMODESFO
algorithm is (1.2 × 109, 372, 0.97), as well as the solution obtained by NSGA-II is (1.27 × 109, 385, 0.96). We
see that in the terms of ideal solution in this case both algorithms provide the similar result.
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Figure 6: The HMODESFO and NSGA-II algorithms applied to obtained results for the MOO problem with
combination of gearbox volume V and gearbox efficiency as the objectives with the appropriate Pareto curves

Figure 7: The results of applying HMODESFO and NSGA-II algorithms to obtain solutions for the MOO problem
with combination of gearbox volume V, gearbox efficiency and bending stress σF as the objectives with the appropriate
Pareto curves

Finally, we consider the following combination of objectives - gearbox volume V, gearbox efficiency ηH
gb

and contact stress σH as shown in Fig. 8.
Based on the results in Fig. 8 it can be observed that considered objecives are conflicting. In order

to make comparison between algorithms, we extracted the ideal and compromise solutions as the fol-
lowing tuples (V , σH , ηH

gb) = (1.26 × 109, 614.8, 0.995) and compromise solution obtained by HMOBPSO
algorithm is (1.27 × 109, 458.5, 0.976), as well as the solution obtained by NSGA-II is (1.27 × 109, 473, 0.974).
This metric again shows similar results, but it’s not the primary metric for deciding the adequatness of
the algorithm.
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Figure 8: The results of applying HMODESFO and NSGA-II algorithms to obtain solutions for the MOO problem
with combination of gearbox volume V, gearbox efficiency and contact stress σH as the objectives with the appropriate
Pareto curves

To further validate the performance of HMODESFO and NSGA-II algorithms on considered com-
plex planetary gearbox optimization model, we have calculated the Hypervolume and Spread metrics
using Eqs. (26) and (27), respectively, where the results are presented in Table 10.

Table 10: The values of Hypervolume and Spread metrics calculated for all considered combinations of objectives for
planetary gearbox optimization problem

HV(S) Δ
Objectives: Gearbox volume and efficiency
HMODESFO 0.1879 0.9402

NSGA-II 0.1575 0.9688
Objectives: Gearbox volume, efficiency and bending stress
HMODESFO 0.6668 0.7107

NSGA-II 0.6577 0.9468
Objectives: Gearbox volume, efficiency and contact stress
HMODESFO 0.7061 0.9847

NSGA-II 0.6791 1.1557

The computed values for each algorithm across different combinations of objectives in the planetary
gearbox optimization problem are summarized in Table 10. When considering the objectives of gearbox
volume and efficiency, HMODESFO achieved a higher HV of 0.1879 compared to HV value of NSGA-II
0.1575, indicating a better convergence towards the true Pareto front. Additionally, HMODESFO exhibited
a lower Spread value (Δ = 0.9402) than NSGA-II (Δ = 0.9688), suggesting a more uniform distribution
of solutions.
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For the three-objective optimization involving gearbox volume, efficiency, and bending stress, HMOD-
ESFO again outperformed NSGA-II with an HV of 0.6668 vs. 0.6577 and a lower Spread of 0.7107 compared
to 0.9468. Similarly, in the case of gearbox volume, efficiency, and contact stress, HMODESFO attained a
higher HV of 0.7061 and a lower Spread of 0.9847, whereas NSGA-II recorded an HV of 0.6791 and a Spread
of 1.1557. These results consistently demonstrate that HMODESFO not only provides a broader coverage of
the objective space but also maintains better solution diversity. Therefore, HMODESFO exhibits superior
performance over NSGA-II in optimizing the complex planetary gearbox model across all considered
objective combinations.

5 Conclusion
This study has successfully developed and validated the HMODESFO algorithm, a hybrid multi-

objective optimization approach that combines the exploratory strengths of DE with the rapid convergence
of the SFO algorithm. This integration is specifically designed to tackle the intricate multi-objective
optimization challenges encountered in the field of mechanical engineering, concentrating particularly on
the optimization of planetary gearboxes. For this purpose, appropriate mechanical optimization problems
have been introduced from the literature, and the MOO model has been created for a planetary gearbox,
integrating many objectives and multiple constraints, including safety against pitting and bending, assembly
and mounting, etc. The integration of mutation strategies from DE algorithm into the SFO framework has
notably enhanced the exploration and exploitation phases, thereby preventing premature convergence, a
common pitfall in many evolutionary algorithms.

The method in question has effectively produced the non-convex Pareto frontier, which is confirmed
with calculated Hypervolume and Spread metrics, thus enabling the designer to have a wider Pareto
front and a larger number of solutions to choose from (a larger number of variations of the design).
Through comparison with other algorithms on various ZDT and DTLZ benchmark issues, the optimization
effectiveness of the HMODESFO approach has been assessed. By producing better results compared to the
NSGA-II, the HMODESFO algorithm proved to be more efficient in optimizing the planetary gearbox model.
This finding demonstrates how efficient and reliable the suggested approach is for finding best solutions.

Despite its potential, HMODESFO algorithm performance was evaluated on specific benchmark
problems and mechanical design optimization scenarios. These scenarios may not fully represent real-
world problem domains. Future studies should test the algorithm on a broader range of optimization tasks,
including those from unrelated fields.

Secondly, this study derived its parameter settings from established practices and empirical fine-tuning.
A more systematic investigation into parameter sensitivity and robustness across different problem types
would enhance the algorithm’s generalization and practical implementation.

Building on these findings, future research should extend beyond refining adaptive mechanisms and
exploring additional applications. Integrating HMODESFO with emerging computational paradigms can
address scalability challenges and enhance performance. The adaptive mechanisms introduced here can serve
as a foundation for developing a new class of hybrid meta-heuristic algorithms for diverse fields like supply
chain optimization and renewable energy systems.

Collaborations with industrial stakeholders can validate HMODESFO algorithm efficiency on real-
world datasets, paving the way for its adoption in different sectors.

Finally, comparative studies with recently developed algorithms in under-explored domains can provide
deeper insights into HMODESFO algorithm robustness, adaptability, and versatility. These efforts would
strengthen the algorithm’s practical relevance and contribute to advancing multi-objective optimization.
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