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ABSTRACT: This paper presents a framework for constructing surrogate models for sensitivity analysis of structural
dynamics behavior. Physical models involving deformation, such as collisions, vibrations, and penetration, are devel-
oped using the material point method. To reduce the computational cost of Monte Carlo simulations, response surface
models are created as surrogate models for the material point system to approximate its dynamic behavior. An adaptive
randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,
effectively balancing the accuracy and computational efficiency of the surrogate model. Based on the sparse polynomial
chaos expansion, sensitivity analysis is conducted using the global finite difference and Sobol methods. Several examples
of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural
dynamics problems.

KEYWORDS: Structural dynamics; deformation; material point method; sparse polynomial chaos expansion; adaptive
randomized greedy algorithm; sensitivity analysis

1 Introduction
In practical engineering, structures are often subjected to dynamic loads such as impact loads and

vibration loads. With the increasing demands for safety and reliability in fields like mechanical, civil, and
military engineering, accurately assessing the effects of these dynamic loads on structures has become a
critical issue [1,2]. However, experimental studies on these responses are usually costly, and time-consuming,
and the results are often difficult to predict accurately. For this reason, a variety of numerical simulation
methods [3,4] have been applied to the engineering field with successful results. Among them, the material
point method (MPM) proposed by Sulsky et al. [5,6] has been proven to have high accuracy in dealing with
institutional dynamics problems such as extreme deformation, which is a meshless method based entirely
on Lagrangian particles and avoids the mesh distortion problem inherent to the Lagrangian method in
deformation calculations by combining the advantages of the Lagrangian method and Eulerian method.
In recent years, Zhang et al. [7] proposed the material point finite element method based on the two
methods for accurately dealing with deformation problems, and developed MPM3D, a three-dimensional
explicit parallel material point method numerical simulation software for impact explosion problems. Lian
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et al. [8] introduced finite elements into MPM and proposed the hybrid material point finite element
method. In addition, scholars have proposed an adaptive split-mass scheme for MPM [9] and established
a contact algorithm based on localized multiple background grids [10], all of which are improving the
simulation accuracy.

In structural dynamics, there are multiple sources of uncertainty associated with structural model
properties, including random variations in material properties, load variations, etc. Therefore, the effect of
uncertainty in structural parameters on the properties of structural dynamics is important [11,12]. Structural
dynamics sensitivity analysis is a method for assessing the sensitivity of the dynamic properties of a structural
system to changes in design parameters, which includes local sensitivity analysis (LSA) and global sensitivity
analysis (GSA). Some of the sensitivity analysis methods are the global finite difference method (FDM) [13],
Morris method [14], fourier amplitude sensitivity test (FAST) [15], and Sobol method [16] based on variance
decomposition. In particular, the FDM and Sobol methods have higher accuracy in dealing with nonlinear
systems such as structural dynamics.

Sensitivity analysis [17,18] of structural dynamics has traditionally been conducted using finite element
methods. However, for deformation problems, MPM has high accuracy, but MPM simulations are computa-
tionally expensive and therefore less suitable for large-scale fast iterative calculations. This limitation restricts
the broader application of MPM in sensitivity analysis, particularly when a high number of iterations is
required for the comprehensive exploration of parameter spaces. To reduce the computational cost of the
MPM, Dong et al. [19] use multiple GPUs to parallelize the MPM, Wang et al. [20] use a GPU acceleration
framework coupled with MPM, Zeng et al. [21] propose an adaptive peridynamics MPM, and Huang
et al. [22] proposed an MPM parallel algorithm for shared memory computers based on OpenMP, all of
which improve the computational efficiency. All these methods can improve the computational efficiency of
MPM, but they are still inefficient for the large number of samples required for sensitivity analysis. Therefore,
the contribution of this paper is to present the construction of a response surface model (e.g., support vector
machine (SVM) [23], decision tree (DT) [24], Gaussian process regression (GPR) [25], polynomial chaos
expansion (PCE) [26], etc.) as a surrogate model for MPM, which enables efficient Monte Carlo simulation.

Response surface methods involve two types of numerical errors, the Monte Carlo error (which
converges to zero when the sample size is infinite), and the error between the alternative model and the
real physical model, which significantly affects the computation of local and global sensitivities. In recent
years, the PCE model has been widely used in sensitivity analysis because it can avoid the first type of errors
and improve computational accuracy. The advantage of PCE is that it can perform both local and global
sensitivity analysis, including Sobol indices [27] which can be derived directly from PCE coefficients [28] or
even distribution-based sensitivity indices [29] derived from PCE [30], it is possible to analytically obtain
derivatives of PCE [31]. However, this approach will face a serious “curse of dimension” problem when con-
fronted with high-dimensional and high-order PCE. To overcome this difficulty, Blatman et al. [32] proposed
a sparse PCE method, which uses adaptive least squares regression or minimum angle regression to retain the
main variance contributors in the PCE, and avoids solving the coefficients of all the PCE expansion terms. The
main difference between sPCE and traditional PCE lies in sparsity. The sPCE model reduces computational
complexity and the number of required samples by selecting the most important polynomial basis functions,
thereby improving efficiency. The benefits of using the sPCE model include faster computation speed, lower
memory usage, and higher accuracy when dealing with high-dimensional uncertainties. In addition, some
scholars have used more advanced sampling techniques to efficiently construct PCE, e.g., active learning
further reducing the number of samples [33,34] or adaptive stochastic domain decomposition (multi-element
PCE) [30]. In the process of determining the basis functions, researchers have proposed greedy algorithms
such as orthogonal matching pursuit (OMP) [35] and randomized greedy algorithm (RGA) [36], all of which
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improve the accuracy of sPCE. The second type of error mainly depends on the order of the polynomial
expansion, and the error decreases with the increase of the order, but the efficiency also decreases, so the
contribution of this paper is to present an approach that balances the accuracy and the efficiency to reduce
the second type of error and thus to obtain the accurate sPCE.

In this paper, several classical examples of structural dynamics are selected for sensitivity analysis
tests. The response surface models are constructed to replace the MPM physical model to improve the
computational efficiency and reduce the Monte Carlo error. Based on RGA, the coefficient of variation [37] is
introduced as an adaptive termination condition for polynomial order selection, to obtain an accurate sPCE
surrogate model and reduce the error between the alternative model and the real physical model. The FDM
and Sobol methods are introduced to compute local and global sensitivities based on the sPCE model to
improve the accuracy and completeness of the results. In brevity, the innovations of this paper are as follows:

• The MPM is used for sensitivity analysis of structural dynamics.
• Response surface model is constructed to replace the MPM-based physical model.
• Adaptive RGA is used to obtain an accurate sPCE model.
• Local and global sensitivity analysis of structural dynamics based on sPCE.

The remaining structure of this paper is outlined as follows: Section 2 introduces the analytical
process of the MPM utilized for computing various output parameters in the case studies presented in this
paper. Section 3 describes the principles of sPCE and the process of solving for local and global sensitiv-
ities. Section 4 validates the proposed methods’ accuracy and effectiveness through numerical examples.
Finally, Section 5 provides concluding observations.

2 Structural Dynamics Analysis by Material Point Method

The material point method (MPM) uses two types of discretization: background mesh discretization,
which solves the discrete governing equations, and material point discretization, which defines the object’s
geometrical configuration and the physical quantities it contains. The method combines the best of Eulerian
and Lagrangian approaches by storing physical information on material points, employing Lagrangian
material points to track material interfaces, and introducing an intrinsic model related to the deformation
history. An interpolation function transfers physical information from material points to background nodes,
and the equilibrium equations are computed on the background mesh. Mesh distortion is prevented due to
the steady backdrop mesh.

As shown in Fig. 1, the computational process of MPM is divided into four steps: First, the background
mesh is defined and the mass, momentum, and internal force terms of all the mass points are mapped to
the background mesh nodes. Second, the physical information carried by the material points is mapped
to the background grid through shape function interpolation, updating the momentum and displacement
information of the background grid nodes. Third, the velocity and acceleration fields of the background mesh
nodes are used to update the positions and velocities of the particles, the nodal velocity fields are utilized to
calculate the strain increments and spin increments, and the stresses are updated according to the constitutive
equations. Fourth, the updated grid is reset—it is this step that renders MPM free of mesh distortion.

Within the framework of the updated Lagrangian description, the momentum balance equation is
expressed as follows:

ρ dv
dt

= ∇ ⋅ σ + ρb (1)
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where v(x , t) = du(x , t)/dt stands for velocity and ρ(x , t) for mass density. b(x , t) is the particular body
force, and σ(x , t) is the Cauchy stress tensor. The particle’s coordinates at time t are indicated by the vector
x. To obtain a solution to the momentum balance equation, the following boundary and starting conditions
must be satisfied:

σ(x , t) ⋅ n∣Γt = t̄(t), u(x , t)∣Γu = ū(t) (2)
u(x , 0) = u0(x), v(x , 0) = v0(x) (3)

where Γt is the portion of the boundary with a prescribed traction vector t, Γu is the boundary with a
prescribed displacement u, and n is the outward normal to the surface Γt . u0(x) and v0(x) stand for the
initial displacement and velocity, respectively. One way to express the Galerkin weak form of Eq. (1) is

∫
V

ρü ⋅wdV + ∫
V

σ ∶ ∇wdV − ∫
V

ρw ⋅ bdV − ∫
Γt

w ⋅ t̄dΓ = 0 (4)

where w ∈ R0, R0 = {w∣w ∈ C0, w∣Γy = 0} stands for the test function and V for the continuum’s current
configuration. Given that np particles describe the entire domain, the mass density can be roughly expressed
as

ρ(x , t) =
n p

∑
p=1

mpδ (x − x t
p) (5)

where the mass of particle p is represented by the symbol mp, the Dirac delta function is marked by δ, and
the current position of particle p at time t is indicated by x t

p. By inserting Eq. (5) into Eq. (4), the integral is
converted into a quantity that needs to be added up at the particle:

n p

∑
p=1

mpüp ⋅w p +
n p

∑
p=1

mp

ρp
σ p ∶ ∇w p −

n p

∑
p=1

mpbp ⋅w p −
n p

∑
p=1

mp

ρph
t p ⋅w p = 0 (6)

where h denotes the thickness of the boundary layer and üp denotes the acceleration of the particle p.

Figure 1: Typical particle discretization and solution steps for 2D material domains
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In the three-dimensional problems, the background grid is constructed using hexahedral elements with
eight nodes. The particles are labeled with the subscript index p, while the nodes of the background grid are
labeled with the subscript index I. The node shape function of the 8-node cell is defined as

NI =
1
8
(1 + εεI)(1 + ηηI)(1 + ζζI), I = 1, 2, . . . , 8 (7)

where εI , ηI and ζI are the natural coordinates (±1) at node I. Thus, uI and the test function w I can represent
the displacement of any particle in the cell as follows:

up =
ng

∑
I=1

NIpuI , w p =
ng

∑
I=1

NIpw I (8)

where the value of the shape function evaluated at particle p concerning node I is denoted as NIp = NI(x p).
The total number of nodes in the background grid is represented by ng .

By replacing Eqs. (7) and (8) into Eq. (6), and referring to w I(I ∉ Γv) yields ṗI = fint
I + fext

I (I ∉ Γv), the
momentum of the grid node I is given by

pI =
ng

∑
J=1

mIJ u̇ J = mIu̇I (9)

and the mass matrix and lumped mass matrix are as follows:

mIJ =
n p

∑
p=1

mpNIpNJ p , mI =
n p

∑
p=1

mpNIp (10)

The nodal external force vector and the internal nodal force vector are denoted by

fext
I =

n p

∑
p=1

mpNIpbp +
n p

∑
p=1

NIp t ph−1 mp

ρp
(11)

fint
I = −

n p

∑
p=1

mp

ρp
σ p ⋅G Ip (12)

where G Ip = ∇NI ∣x p is the gradient of the shape function.
The computational time step is determined by the center difference method, and the interpolation

function is a bridge between the material points and the background grid nodes, in which the convective
particle-domain interpolation (CPDI) method can construct a smoother gradient of the interpolation
function. Sadeghirad et al. [38] developed an upgraded CPDI method, CPDI2, which depicts particles as
quadrilaterals (due to parallelograms’ inability to fill space without gaps). This paper calls this enhancement
CPDI-Q4, implying that each particle resembles a Q4 finite element. The CPDI-Q4 weighting function is

ϕIp =
1

24Vp
[(6Vp − a − b)NI(x1) + (6Vp − a + b)NI(x2) + (6Vp + a + b)NI(x3) + (6Vp + a − b)NI(x4)]

(13)
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where a = (x4 − x1)(y2 − y3) − (x2 − x3)(y4 − y1) and b = (x3 − x4)(y1 − y2) − (x1 − x2)(y3 − y4). The
volume (actually area) of the particle domain is given by Vp = 0.5[(x1 y2 − x2 y1) + (x2 y3 − x3 y2) + (x3 y4 −
x4 y3) + (x4 y1 − x1 y4)]. The nodal internal force vector is defined as follows:

fint
x I = −Vp [(σx x)p

∂ϕI

∂x
(xp) + (σx y)p

∂ϕI

∂y
(xp)]

fint
yI = −Vp [(σx y)p

∂ϕI

∂x
(xp) + (σy y)p

∂ϕI

∂y
(xp)]

(14)

The derivatives for CPDI-Q4 is expressed as follows:

[ϕI ,x(xp)
ϕI , y(xp)

] = 1
2Vp

{NI(x1) [
y24
x42

] + NI(x2) [
y31
x13
] + NI(x3) [

y42
x24

] + NI(x4) [
y13
x31
]} (15)

Substituting Eq. (15) into Eq. (14) yields the internal force vector for the x-component at the grid nodes
as follows:

fint
x I =NI(x1) (

y42

2
σx x +

x24

2
σx y) + NI(x2) (

y13

2
σx x +

x31

2
σx y)

+ NI(x3) (
y24

2
σx x +

x42

2
σx y) + NI(x4) (

y31

2
σx x +

x13

2
σx y) (16)

The Nguyen et al. [39] study provides the weighting and gradient weighting functions for the CPDI-Tet4
method where the particles are represented by linear tetrahedron elements.

ϕIp =
1
4

NI(x1) +
1
4

NI(x2) +
1
4

NI(x3) +
1
4

NI(x4) (17)

∇ϕIp =
1

6Vp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
NI(x1)

⎡⎢⎢⎢⎢⎢⎣

a1
b1
c1

⎤⎥⎥⎥⎥⎥⎦
+ NI(x2)

⎡⎢⎢⎢⎢⎢⎣

a2
b2
c2

⎤⎥⎥⎥⎥⎥⎦
+ NI(x3)

⎡⎢⎢⎢⎢⎢⎣

a3
b3
c3

⎤⎥⎥⎥⎥⎥⎦
+ NI(x4)

⎡⎢⎢⎢⎢⎢⎣

a4
b4
c4

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(18)

where a1 = y42z32 − y32z42, a2 = y31z43 − y34z13, a3 = y24z14 − y14z24, a4 = y13z21 − y12z31, b1 = x32z42 −
x42z32, b2 = x43z31 − x13z34, b3 = x14z24 − x24z14, b4 = x21z13 − x31z12, c1 = x42 y32 − x32 y42, c2 = x31 y43 −
x34 y13, c3 = x24 y14 − x14 y24, c4 = x13 y21 − x12 y31 with xi j = xi − x j and yi j = yi − y j; 6Vp = x21(y23z34 −
y34z23) + x32(y34z12− y12z34) + x43(y12z23 − y23z12).

3 Sensitivity Analysis Based on Sparse Polynomial Chaos Expansion

3.1 Sparse Polynomial Chaos Expansion
After establishing the physical model using the MPM, Monte Carlo sampling (MC) is employed to

randomly generate a large number of samples ξ within the uncertainty range of input variables (such as
external loads or internal material properties), following a uniform or normal distribution. Deterministic
calculations are then performed at each sampling point using the original MPM model to obtain the dynamic
response values θ(ξ) of the structure (such as energy or displacement). Based on the probability distribution
function of each input variable, the corresponding orthogonal polynomial ψα(ξ) is chosen as the basis
function to construct the PCE [40] as follows:

θ(ξ) = ∑
α

cαψα(ξ) (19)
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where α = [α1α2 ⋅ ⋅ ⋅ αd] denotes a multi-order subscript satisfying ∣α∣ = α1 + α2 + ⋅ ⋅ ⋅ + αd , ψα(ξ) is a
multivariate polynomial basis function, and cα are the unknown expansion coefficients corresponding to
ψα(ξ). The multivariate polynomial basis function ψα(ξ) can be decomposed into the tensor product of each
univariate basis function, ψα(ξ) = φα1(ξ1)φα2(ξ2) ⋅ ⋅ ⋅φαd(ξd), where φα1(ξ1) is an orthogonal polynomial
of order α j in the variable ξ j.

In general, the orthogonal polynomial corresponding to each input variable depends on the type of
distribution of that input variable. The expression for the general term of the Hermite polynomial system,
denoted as {Hh(ξ)}o

h=0 over the interval (−∞,∞), is depicted in Eq. (24).

H0(ξ) = 1, H1(ξ) = ξ, Hh+1(ξ) = ξHh(ξ) − hHh−1(ξ) 1 ≤ h ≤ o (20)

The Legendre polynomial system, denoted as {Ll(ξ)}o
l=0 over the interval [−1, 1], is illustrated

in Eq. (25).

L0(ξ) = 1, L1(ξ) = ξ, Ll+1(ξ) = 2l + 1
l + 1

ξLl(ξ) − l
l + 1

Ll−1(ξ) 1 ≤ l ≤ o (21)

In practice, when computing the approximation model as in Eq. (19), the highest expansion order (o) is
generally limited to achieve a truncated model with a finite number of terms.

θ(ξ) ≈ θo(ξ) = ∑
∣α∣⩽o

cαψα(ξ) (22)

The above equation can also be expressed in vector form as

θ(ξ) ≈
o−1
∑
k=0

ckψk(ξ) = cTψ(ξ) (23)

where c is the vector of expansion coefficients, c = [c0c1 ⋅ ⋅ ⋅ co−1]T, ck(k = 0, 1, ⋅ ⋅ ⋅ , o − 1) denotes the expan-
sion coefficients corresponding to the polynomial of the k-th degree, ψ(ξ) is the vector of basis functions,
ψ(ξ) = [1 ψ1(ξ) ⋅ ⋅ ⋅ψo−1(ξ)]T. The number of expansion terms P of the truncated approximation model is

P = (o + d)!
o!d!

(24)

According to the least squares principle, the expansion coefficients can be calculated by minimizing the
following residual problem:

ĉ = arg min
N
∑
j=1
[cTψ(ξ( j)) − θ(ξ( j))]

2

(25)

where N represents the number of samples, ξ( j) denotes the j-th set of input samples, and θ(ξ( j))
corresponds to the j-th output sample computed from the original model. To ensure the accuracy of the least
squares solution, it is generally required that N = 2P ∼ 3P. It can be seen from Eq. (24) that P depends on
the number of input variables (d) and the maximum unfolding order (o).

For the structural dynamics problem studied in this paper, P may be very large when dealing with multi-
ple uncertainties, and many MPM calculations are required to solve Eq. (25). To improve the computational
efficiency, in this paper, based on the idea of sparse polynomials, the Randomized Greedy Algorithm (RGA)
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is used to realize the fast computation of the expansion coefficients, and the details of solving the coefficients
can be found in [36].

For sPCE, the higher the maximum expansion order, the more accurate the polynomial expansion, but
the number of expansion terms will also increase accordingly. For typical engineering problems, setting the
order to 2 or 3 is sufficient to ensure high computational accuracy.

However, for the deformation problem studied in this paper, the above orders cannot accurately capture
the dynamic response of the structure, and higher orders would reduce computational efficiency. Therefore,
in the process of constructing sPCE with RGA, the coefficient of variation of the Root Mean Square Error
(CV-RMSE) is used as the truncation criterion for the finite terms in the approximation model (surrogate
model). The formula is as follows:

CV(RMSE) =

&
''*ΣN

j=1L (ξ( j))
N

/
∑N

j=1 θ(ξ( j))
N

(26)

whereL(ξ) = (θo(ξ) − θ(ξ))2. θo(ξ) represents the response value calculated by the surrogate model, θ(ξ)
represents the response value of the original model. If CV < 5%, it indicates that the model error is within
an acceptable range and achieves a good balance of accuracy. To further validate the model’s fitting quality,
the coefficient of determination (R2) is also used for fitting verification:

R2 = 1 −
∑N

j=1 L (ξ( j))

∑N
j=1 [θ(ξ( j)) − θ(ξ)]2

(27)

where θ(ξ) represents the mean of response θ(ξ( j)) and R2 belongs to the interval (−∞, 1].
The algorithm for solving the expansion coefficients using RGA and implementing the adaptive finite-

term truncation of the surrogate model via the CV is referred to as the Adaptive Randomized Greedy
Algorithm (Adaptive RGA) in this paper. The algorithm’s pseudocode can be found in Appendix A. The basic
steps of the algorithm are as follows:

Input Parameters: The algorithm requires a dictionary of candidate basis functions D , along with
samples of input {ξ j}N

j=1 and output {θ(ξ j)}N
j=1 values, as well as stopping criteria.

Initialization: The algorithm starts with an order o = 1, iteration k = 0, an empty index set J (0) = ∅,
and the initial residual r(0) = θ.

Coefficient of Variation Check: If the CV of the model exceeds 5%, the model order is increased to
improve accuracy.

Iteration Process: In each iteration, a subset of basis functions is selected randomly, and the best basis
function that minimizes the residual is chosen using a correlation measure.

Solve System: Once the stopping criteria are met, a linear system is solved to obtain the expansion
coefficients c(k), which define the model.

Output Result: The algorithm produces an accurate sPCE model.

3.2 Local and Global Sensitivity Analysis
This section performs local and global sensitivity analyses using sPCE, the global finite difference

method (FDM), and Sobol’ global sensitivity index. The local sensitivity can be derived directly by taking
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the partial derivative of the sPCE with an objective function of θ(ξ) ≈ θo(ξ), where ξ = [ξ1 ξ2 ⋅ ⋅ ⋅ ξd]T

is a d-dimensional independent random variable, and 0⩽ ξα ⩽ 1, α = 1, ⋅ ⋅ ⋅ , d. The formula is as follows:

SsPCE
ξα

= ∂θ(ξ1 , ξ2, ⋅ ⋅ ⋅ , ξd)
∂ξα

α = 1, 2, ⋅ ⋅ ⋅ , d (28)

The sPCE solves for sensitivity by taking a partial derivation of the polynomial, and when one of the
variables takes a partial derivation, the higher-order terms of the rest of the variables will be eliminated, so
that the local sensitivity can only be solved for one of the variables.

FDM, as a difference method, can perform local multivariate difference and local higher order difference
compared to sPCE, because the expansion of sPCE depends on the order of the polynomial, it is not possible
to solve the higher-order local sensitivity when the order is small. Sensitivity is solved with FDM dependent
on the results of MCs, and traditional MCs are inefficient, so this paper combines the two methods and
proposes the sPCE-FDM method to solve the sensitivity. This method uses FDM on top of the sPCE surrogate
model, which ensures both accuracy and efficiency and allows for multivariate high-order sensitivity analysis.

The first and second-order sensitivities of the output of the model to the variable ξα of the sPCE-FDM
are defined as follows:

SF DM
ξ( j)

α
= θ(ξ( j)

α + Δξα) − θ(ξ( j)
α )

Δξα
α = 1, 2, ⋅ ⋅ ⋅ , d j = 1, 2, ⋅ ⋅ ⋅ , N (29)

SF DM
ξ( j)

α
= θ(ξ( j)

α + 2Δξα) − 2θ(ξ( j)
α + Δξα) + θ(ξ( j)

α )
(Δξα)2 α = 1, 2, ⋅ ⋅ ⋅ , d j = 1, 2, ⋅ ⋅ ⋅ , N (30)

where Δξα denotes a small perturbation related to ξα . The local sensitivity of solving for two parameters with
sPCE-FDM is defined as

SF DM
ξ( j)

α1 ξ(k)
α2
= θ(ξ( j)

α1 + Δξα1 , ξ(k)
α2 + Δξα2) − θ(ξ( j)

α1 , ξ(k)
α2 + Δξα2) − θ(ξ( j)

α1 + Δξα1 , ξ(k)
α2 ) + θ(ξ( j)

α1 , ξ( j)
α2 )

Δξα1 Δξα2

(31)

where Δξα1 denotes a small perturbation associated with ξα1 and Δξα2 denotes a small perturbation associated
with ξα2 .

Global sensitivity analysis can be performed by calculating the Sobol’ global sensitivity index based on
sPCE. θ(ξ) can be decomposed into the sum of 2d subfunctions.

θ(ξ) = θ0 +
d
∑
α=1

θα (ξα) + ⋅ ⋅ ⋅ + θ1,2, ⋅ ⋅ ⋅ ,d (ξ1 , ⋅ ⋅ ⋅ , ξd) (32)

where θ0 is a constant term of order = 0 and the expectation of θ(ξ). θα(ξα) is a 1st-order subfunction of ξα ,
and θ1,2, ⋅ ⋅ ⋅ ,d (ξ1 , ⋅ ⋅ ⋅ , ξd) is an d-th order subfunction associated with all input variables. The expectation
E[θ(ξ)] and variance D[θ(ξ] of the output variables are obtained directly based on the sPCE model as
follows:

E[θ(ξ)] = E[ ∑
∣α∣⩽o

cαψα(ξ)] = a0 (33)

D[θ(ξ)] = D
⎡⎢⎢⎢⎢⎣
∑
∣α∣⩽o

cαψα(ξ)
⎤⎥⎥⎥⎥⎦
= ∑
∣α∣⩽o

c2
α E[ψ2

α (ξ)] (34)
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The set of subscripts β is defined as

β = [βα , α = 1, ⋅ ⋅ ⋅ , d] βα ⩾ 0,
d
∑
α=1

βα ⩽ o (35)

Then the polynomial ψβ(ξ1 , ⋅ ⋅ ⋅ , ξs) which contains the subscript β is

ψβ(ξ1 , ⋅ ⋅ ⋅ , ξs) =
s
∏
α=1

φβα(ξα) (36)

The 0-th order orthogonal polynomial φ0(ξα) due to any variable ξα is 1. For ease of representation,
define the set Ωα1 , ⋅ ⋅ ⋅ ,αs to contain all nonzero elements in β.

Ωα1 , ⋅ ⋅ ⋅ ,αs = {β∶βk>0,∀k ∈ {α1 , ⋅ ⋅ ⋅ , αs} ⊆ {1, ⋅ ⋅ ⋅ , d} ; βk = 0,∀k ∈ {1, ⋅ ⋅ ⋅ , d} / {α1 , ⋅ ⋅ ⋅ , αs}} (37)

Therefore, the orthogonal polynomials of each order of the variables (ξ1 , ⋅ ⋅ ⋅ , ξs) can be expressed
uniformly, and Eq. (22) can be rewritten as

θ(ξ) ≈ θ0 +
d
∑
α=1

∑
β∈Ωα

cβψβ(ξα) + ∑
1≤α1≤α2≤d

∑
β∈Ωα1 ,α2

cβψβ(ξα1 , ξα2)+

⋅ ⋅ ⋅ + ∑
1⩽α1< ⋅ ⋅ ⋅ <αs⩽d

∑
β∈Ωα1 , ⋅ ⋅ ⋅ ,αs

cβψβ(ξα1 , ⋅ ⋅ ⋅ ξαs) + ⋅ ⋅ ⋅ + ∑
β∈Ω1, ⋅ ⋅ ⋅ ,d

cβψβ(ξα1 , ⋅ ⋅ ⋅ ξd)
(38)

It follows from the uniqueness of the Sobol decomposition:

θα1 , ⋅ ⋅ ⋅ ,αs(ξα1 , ⋅ ⋅ ⋅ , ξαs) = ∑
β∈Ωα1 , ⋅ ⋅ ⋅ ,αs

cβψβ(ξα1 ⋅ ⋅ ⋅ , ξαs) (39)

It can be seen that the s-order subfunction of the variables (ξ1 , ⋅ ⋅ ⋅ , ξs) in the Sobol decomposition is
the sum of s-order orthogonal polynomials in the sPCE model containing the same variables. Therefore, the
global sensitivity index of the input variables (ξ1 , ⋅ ⋅ ⋅ , ξs) can be derived directly from sPCE.

SSobol
α1 ⋅ ⋅ ⋅ αs

=
∑β∈Ωα1 , ⋅ ⋅ ⋅ ,αs

c2
β E [ψ2

β (ξα1 , ⋅ ⋅ ⋅ , ξαs)]

∑∣α∣⩽o c2
α E [ψ2

α (ξ)]
(40)

The explicit expressions for the surrogate model of structural dynamics can be derived using the MPM
and sPCE methods according to the above description. The local sensitivity of the model to a particular
variable can be obtained by differentiation, the local sensitivity of the model to multiple variables can be
obtained by sPCE-FDM, and the global sensitivity of the model can be analyzed by the Sobol method. Fig. 2
illustrates a sketch of the sensitivity-solving process based on sPCE.
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Figure 2: A sketch of the computational flow for constructing sPCE surrogate models for sensitivity analysis using the
adaptive randomized greedy algorithm

4 Numerical Examples
In this section, physical models for collision, vibration, and penetration deformation in structural

dynamics are constructed using MPM, and various response surface models are developed as surrogate
models for MPM. The effectiveness of the proposed adaptive RGA and sPCE-based sensitivity analysis
methods in structural dynamics is highlighted through comparisons. In the collision deformation analysis
(Section 4.1), the training data follows a normal distribution, and the accuracy and efficiency of the response
surface models are compared under different numbers of training samples, verifying the correctness of sPCE
and FDM in solving local sensitivities. In the vibration deformation analysis (Section 4.2), the training data
follows a uniform distribution, and the local and global sensitivities of sPCE-FDM are compared at different
orders. In the penetration deformation analysis (Section 4.3), the training data set does not follow any specific
distribution. Therefore, the Legendre and Hermite polynomials of sPCE are established, and the accuracy,
result variability, and Sobol indices of the two sPCE models are compared using the same training data set.

The framework for MPM and the adaptive sPCE method are implemented in MATLAB and executed
on a personal computer equipped with an Intel (R) Core (TM) i7-7700 CPU and 128 GB of RAM.

4.1 Collision Deformation Analysis
Collision deformation refers to the deformation that occurs in materials and structures when subjected

to rapid impacts, a phenomenon widely observed in fields such as bearing systems and automotive collisions.
During a collision, the object experiences a significant force over a very short time, leading to substantial
changes in its shape, structure, and internal stress state. Depending on the nature and magnitude of the
impact, collision deformation can manifest as elastic collisions, plastic deformation, or material rupture and
damage. This section first examines the elastic collisions between the balls in bearing systems, as illustrated
in Fig. 3. Although the contact area is small, the rolling balls continuously undergo microelastic collisions
during high-speed operation, which, to some extent, affect the bearing’s lifespan and efficiency.

Based on the collision problem proposed by Sulsky et al. [5], an MPM model for elastic collisions
between balls is established. It is assumed that there are no boundary conditions or external forces involved.
Before the collision, the two balls are in a rigid body motion state, with both stress and strain being zero. The
physical model is solved using the CPDI-Q4 formulation.
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Figure 3: The schematic diagram of ball collisions in a bearing system

The collision process is captured in a physically realistic manner, where kinetic energy is reduced during
impact and subsequently recovered mainly after separation. The strain energy attains its peak magnitude
at the juncture of maximum deformation during the impact event, subsequently diminishing to a level
corresponding to the free vibration state of the ball. The parameter settings of the physical model are shown
in Table 1. The motion and stress state of the two balls are depicted in Fig. 4.

Table 1: Parameter configuration of the physical model

Young’s modulus (E) Poisson’s ratio (ν) Density (ρ) Velocity (v) Length of
region (l)

Radius (r)

1000 MPa 0.3 1000 kg/m3 (0.1, 0.1) mm/s 1 mm 0.2 mm

Figure 4: Elastic collision of balls in bearing systems: snapshots and stress states at different times (T = 0, 1, 1.5, 2 s)

The physical model established by MPM is usually ideal, so it is necessary to consider uncertainty factors
of the real situation, which include material properties, external loads, and so on. In this example, the sPCE
surrogate model is constructed using the adaptive randomized greedy algorithm with Young’s modulus and
density as input variables and the strain energy as output variable.

As shown in Fig. 5, the uncertainty ranges for Young’s modulus (E) and density (ρ) are set to a mean
value of 1000 and a standard deviation of 100, random sampling are performed in the range from Nθ = 100 to
Nθ = 500. Hermite polynomials are chosen for the orthogonal polynomials, and the dataset [ξ, θ(ξ)] obeys
a Gaussian distribution, so as to simulate the effects of the differences in material properties on the model.

To verify the feasibility of the response surface model as a surrogate model for MPM, as well as the
accuracy and efficiency of constructing sPCE using adaptive RGA, surrogate models for the structural
dynamics problem were constructed using a support vector machine with radial basis function chosen
for the kernel function (SVM-RBF), gaussian process regression (GPR), and decision tree (DT) with the
same training samples. The reason for choosing the above algorithms to construct the response surface
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models is that they perform excellently in handling nonlinear relationships and high-dimensional data,
effectively capturing complex input-output mappings. The parameter configuration of each algorithm is
shown in Appendix B.

Figure 5: Random sampling at different sample sizes from Nθ = 100 to Nθ = 500 where the dataset follows a Gaussian
distribution

The metrics for comparison include the mean relative error (MRE) and the relative standard deviation
(RSD) that approximate the statistics, and their formulas are as follows:

MRE = 1
N

N
∑
j=1

∣θo(ξ( j)) − θ(ξ( j))∣
θ(ξ( j))

(41)

RSD =

&
''*∑N

j=1[θo(ξ( j)) − θ(ξ)]2

N − 1
/θ(ξ) (42)

As shown in Fig. 5, with the increase of the number of training samples, the MRE and RSD of the
surrogate models obtained by the four algorithms show a decreasing trend. Among them, the relative error
of SVM-RBF is larger, indicating that the accuracy of the surrogate model is worse compared with other
algorithms. In contrast, the mean error of adaptive RGA has been at a low level, and the standard deviation
reaches a low level when the number of training samples reaches 300 or more and has maintained the
highest accuracy.

Fig. 6 shows the performance of different models (SVM-RBF, GPR, DT, and Adaptive RGA) under
varying sample sizes. The results indicate that as the sample size increases, the MRE and RSD of all models
decrease, suggesting that a larger sample size improves the accuracy and stability of the models. Among all
sample sizes, Adaptive RGA consistently exhibits the lowest MRE and RSD, especially when the sample size
is small (e.g., N = 100), demonstrating superior accuracy and stability compared to the other models. In
contrast, SVM-RBF shows larger errors and more fluctuations when the sample size is small, indicating its
sensitivity to sample size. Overall, Adaptive RGA shows a significant advantage in handling small sample
problems, and it maintains good accuracy and stability even with larger sample sizes, making it suitable for
high-precision structural dynamic analysis.

In addition to accuracy, efficiency is another crucial factor for the suggested strategy. The time cost
function in MPM can be explicitly specified as

TMPM(Ñ) = Ñ × tMPM (43)
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which relies on the number of sampling points, the time tMPM is the time of a single MPM calculation. The
time cost of the general surrogate model and the sPCE surrogate model are defined as

Tsurmod(Nθ , Nθ o) = tsurmod ,train(Nθ) + tsurmod ,ev al(Nθ o) (44)

TsPCE(Nθ , Nθ o , o, d) = tsPCE ,train(Nθ , o, d) + tsPCE ,ev al(Nθ o) (45)

which relies on the training time tsPCE ,train and the predicting time tSPCE ,ev al with Nθ o = Ñ .

Figure 6: Comparison of relative errors of mean (left) and standard deviation (right)

As shown in Fig. 7, the left figure shows the variation in runtime with increasing sample size for five
methods (MPM, SVM-RBF, GPR, DT, and Adaptive RGA), while the right figure compares the runtime
trends of different orders of the sPCE model as sample size increases. In the left figure, the running time
of the MPM method is significantly higher than the other methods and increases rapidly as the sample size
grows. When calculating the same 500 samples, the computational efficiency of using a response surface
model as a surrogate model is improved by about 83% compared to MPM. Among them, the running time
of the Adaptive RGA remains the lowest, demonstrating its significant advantage in computational efficiency.
The right figure indicates that as the order increases, the runtime of the sPCE model slightly increases, but
the overall growth is slow, suggesting that the time complexity of the sPCE method is relatively stable across
different orders.

Figure 7: Comparison of runtimes with different sample sizes: physical model and different surrogate models (left),
sPCE surrogate model with different orders (right)

Table 2 demonstrates the regression evaluation metrics for the different surrogate models, including
mean (μ), standard deviation (σ), coefficient of variation (CV) and coefficient of determination (R2), and the
tests are performed with a training sample size of 500. The adaptive RGA is truncated at o = 2, resulting in a
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2nd-order sPCE model. In comparison, the SVM-RBF model exhibits the highest relative variability and the
lowest R2, indicating that its reliability for this application may be relatively low. Models such as GPR and DT
demonstrate reasonable accuracy and stability, making them viable alternatives. In conclusion, sPCE allows
customization of the order, providing greater flexibility, making it an effective alternative modeling method
for accurately capturing the structural dynamics of the MPM.

Table 2: Comparison of statistics for different bivariate surrogate models (Nθ o = Ñ = 500)

Model μ σ CV R2

MPM 2.1807 0.0021 / /

SVM-RBF 2.1809 0.0021 6.3138% 0.6406
GPR 2.1807 0.0019 3.7527% 0.8946
DT 2.1807 0.0020 3.1405% 0.8533

1st-order sPCE 2.1807 0.0017 5.2051% 0.6878
2nd-order sPCE 2.1807 0.0019 3.4112% 0.8659
3rd-order sPCE 2.1807 0.0020 1.3341% 0.9219

Table 3 shows the parameter configurations and local sensitivity results for the sPCE surrogate model. It
can be seen that the local sensitivities obtained by both the sPCE method and the FDM method are in a low
range, where Young’s modulus is more sensitive than the density, which has a greater impact on the results.
As shown in Fig. 8, the local sensitivity first decreases and then tends to stabilize with the increase of Young’s
modulus, the local sensitivity decreases slowly and then tends to decrease more as the density increases. It
is shown that the use of adaptive RGA to construct the sPCE surrogate model for local sensitivity analysis
is effective.

Table 3: Parameter configuration and local sensitivity results (3nd-order sPCE)

ξ1 = E ξ2 = ρ SsPCE
ξ1

SF DM
ξ2

Case 1 [500, 1500] MPa 1000 kg/m3 [−2.361 × 10−6, 1.328 × 10−4] [−2.360 × 10−6, 1.328 × 10−4]
Case 2 1000 MPa [500, 1500] kg/m3 [0.002, 0.023] [0.002, 0.023]

To discuss how the adaptive RGA scales in constructing the sPCE surrogate model with increasing struc-
tural system complexity, an MPM physical model of car collision deformation was established. Compared to
the ball collision problem in the bearing system, the structure of a car is more complex, with 67,300 material
points discretized. The material point model and stress states at different time steps are shown in Fig. 9, with
material properties provided in Table 1.

MCs were used to randomly sample within the uncertainty range, with the uncertainty ranges for
Young’s modulus and density set as a mean of 1000 and a standard deviation of 100. The sampling was
conducted with 1000 and 200 samples, respectively. The results from the 1000 samples, calculated through
MPM, serve as the benchmark for comparing the accuracy of the other three algorithms. The 200 samples,
calculated through MPM, are used as training data for the SVM-RBF, GPR, DT, and sPCE models. For
the sPCE model, Legendre polynomials were selected for the orthogonal polynomial, and truncation was
performed at o = 5 using the adaptive RGA.
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Figure 8: Comparison of local sensitivity between sPCE (d = 2, o = 3) and FDM

Figure 9: MPM modeling of automobile collisions and the stress state at different moments

Table 4 presents a comparison of probability statistics, evaluation metrics, and time cost between four
algorithms and the MPM method. In comparison, the four algorithms (SVM-RBF, GPR, DT, and Adaptive
RGA) maintain consistency in terms of the mean, while Adaptive RGA has a standard deviation closest
to that of MPM, the lowest CV (3.2051%), and the highest R2 (0.9262). This indicates that Adaptive RGA
outperforms the other algorithms in terms of accuracy and stability. In addition, compared to the MPM
method, the four surrogate modeling algorithms improved efficiency by about 80% when calculating 1000
datasets. Among them, the sPCE surrogate model constructed by the adaptive RGA achieved the shortest
computation time, demonstrating outstanding computational efficiency and accuracy.



Comput Model Eng Sci. 2025;142(2) 1531

Table 4: Comparison of probability statistics, evaluation metrics and time cost of four algorithms

Model μ σ CV R2 Time [s]
MPM 55.8742 27.6946 / / 279500

SVM-RBF 55.8742 30.2524 7.2439% 0.6863 55910.4
GPR 55.8742 28.3797 4.9868% 0.8546 55907.2
DT 55.8742 28.1452 5.7725% 0.8933 55907.9

Adaptive RGA 55.8742 27.7113 3.2051% 0.9262 55905.2

4.2 Vibration Deformation Analysis
In the process of bridge construction [41,42], the vibrational deformation of cantilever beams is one

of the key factors affecting structural performance and construction safety. During the construction phase,
cantilever beams bear loads and environmental influences that change continuously, causing complex vibra-
tional and deformation responses in both vertical and horizontal directions. These vibrational deformations
not only reduce construction accuracy, leading to the accumulation of deviations, but also have the potential
to trigger structural stability issues, increase fatigue stress, and negatively affect the long-term safety of the
bridge. Therefore, this chapter primarily analyzes the vibrational deformation of cantilever beams during
bridge construction, as shown in Fig. 10.

Figure 10: Schematic diagram of the vibration deformation of the cantilever beam during bridge construction

The deformation vibration model of a flexible cantilever beam during the bridge construction process
was developed using MPM with reference to the framework proposed by Sadeghirad et al. [43]. The cantilever
beam is characterized by its softness and substantial gravitational load. The cantilver beam is made of a
hyperelastic material, which is modeled by a Neo-Hookean constitutive model. The parameter settings of the
physical model are shown in Table 5. The background grid consists of 8 × 8 × 2 cells. The physical model was
solved using the CPDI-Tet4 formulation. Fig. 11 illustrates the time snapshots and the stress states in the X
and Y directions.
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Table 5: Parameter configuration of the physical model

Young’s modulus (E) Poisson’s ratio (ν) Density (ρ) Acceleration (g) Time (T) Time step (Δt)
1,000,000 Pa 0.3 1050 kg/m3 10 m/s2 0.002 s 0.002 s

Figure 11: The snapshots in time of the physical model and the stress state in the X and Y directions

In this example, the study considers both external and internal factors on the output. An adaptive RGA
was used to construct the sPCE surrogate model with acceleration (g) and Young’s modulus (E) as input
variables and displacement as output variables. The uncertainty range of acceleration is set to [0, 50] and
that of Young’s modulus is set to [800000, 1200000]. Sequential sampling is performed within the range.
Legendre polynomials are chosen for the orthogonal polynomials and the dataset is a 2D dataset obeying a
uniform distribution.

The SVM-RBF, DT, GPR, and sPCE surrogate models were trained using 200 uniformly distributed
samples. As shown in Table 6, the predicted mean values across models are mostly around −3.5710, with
a slight deviation in the SVM-RBF results. DT and higher-order sPCE models exhibit larger standard
deviations, indicating a broader variable range to capture system responses. The adaptive RGA terminates
at o = 3 with (CV = 4.3216%) and (R2 = 0.9396), suggesting good convergence and prediction performance
for the 3rd-order sPCE model. The (CV > 5%) in SVM-RBF and GPR reflects larger prediction errors and
limited generalization, while DT, with a low CV and R2 near 1, shows strong data fit.

Table 6: Comparison of statistics for different bivariate surrogate models (Nθ o = Ñ = 200)

Model μ σ CV R2

MPM −3.5710 0.6269 / /

SVM-RBF −3.6729 0.3151 10.927% 0.5920
DT −3.5711 0.6261 1.9368% 0.9878

GPR −3.5710 0.3617 5.2962% 0.7941
Adaptive RGA −3.5710 0.6107 4.3216% 0.9396

Fig. 12 illustrates the comparison of the sPCE surrogate model with the MPM results, as well as the
comparison of the relative errors of different orders. It can be seen that the 3rd-order sPCE surrogate
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obtained by the adaptive randomized greedy algorithm has higher accuracy, but the 5th-order sPCE is closer
to the physical model constructed by the material point method. The relative error is calculated as RE =
∣θo(ξ( j)) − θ(ξ( j))∣/θ(ξ( j)). The comparison of relative errors by different orders shows that an increase in
the order leads to a decrease in the model error and thus to a higher accuracy. In 5th-order sPCE, the model
error increases as the value of g decreases, while a higher value of g mitigates the error fluctuations. The
peaks at g = 19.8961 m/s2 and E = 1, 086, 460 Pa indicate that the model is unstable in this parameter space.

Figure 12: Comparison of sPCE surrogate model with MPM results (top), and comparison of normalized errors of
different orders (bottom)

The four cases and parameter configurations for local and global sensitivity analyses are given in Table 7.
As can be seen in Fig. 13, the 3rd-order sPCE constructed by the adaptive RGA can accurately demonstrate
the local sensitivity and match the sensitivity results of higher-order sPCE. In Case 1, the local sensitivity first
decreases with increasing Young’s modulus, minimizes at E = 982, 462 Pa, and then increases. In Case 2, the
local sensitivity first increases with increasing acceleration maximizes at g = 29.3 m/s2, and then decreases.

Table 7: Parameter configuration and partial results of local sensitivity analysis

Method ξ1 = g ξ2 = E Sensitivity (ξ1) Sensitivity (ξ2)
Case 1 SsPCE

ξ1
[0, 50] m/s2 1,000,000 Pa [5.513 × 10−7, 6.874 × 10−7] /

Case 2 SsPCE
ξ2

10 m/s2 [800,000, 1,200,000] Pa / [-0.257, 0.012]
Case 3 SF DM

ξ1
& SF DM

ξ2
[0, 50] m/s2 [800,000, 1,200,000] Pa / /

Case 4 SF DM
ξ1 ξ2

[0, 50] m/s2 [800,000, 1,200,000] Pa [−5.104 × 10−4, 8.967 × 10−4]
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Figure 13: Comparison of local sensitivities for different orders of sPCE

In Case 3, the first-order second-order, and third-order sensitivities of the model are solved separately
by sPCE-FDM, as shown in Fig. 14. The first-order local sensitivity of the model tends to decrease with
increasing acceleration g by introducing small perturbations to the input parameter g while keeping E
constant, indicating a reduced effect on the output. The second-order local sensitivity changes from large to
small as g increases and fluctuates in the interval [10, 40] with a consequent increase in sensitivity. The third-
order local sensitivity is initially small in the interval [0, 17] and fluctuates with a gradual increase in g. The
magnitude of the fluctuations increases. Thus, the model output is highly sensitive to higher-order terms.

Figure 14: (a–c) represent the first-order, second-order and third-order local sensitivities of acceleration, (d–f)
represent the first-order, second-order and third-order local sensitivities of Young’s modulus

The first-order local sensitivity of the model does not show a significant trend as the parameter E
increases with a small perturbation of the input parameter E while the parameter g is kept constant, indicating
that the change in the parameter E does not have a significant effect on the output. The second-order local
sensitivity remains consistently small as E increases, but the sensitivity begins to fluctuate at g > 30 m/s2,
suggesting that the parameter E has a small effect on the model sensitivity, and conversely, the effect of the
parameter E on the model sensitivity is closely related to the parameter g. The third-order local sensitivity,
which is similar to the second-order local sensitivity, remains small as E increases. It is always affected by g,
indicating that the model output is insensitive to higher-order terms in E.
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In Case 4, the local sensitivity analysis using sPCE-FDM shows how the system output responds
to simultaneous changes in two input parameters. Fig. 15 shows that simultaneous tuning of the input
parameters g and E increases the sensitivity of the model. The sensitivity peaks between g = 50 m/s2 and E =
1, 150, 000 Pa, indicating high volatility. The sensitivity of the model is slightly affected by the E correction. A
comparison of the 1st-order sPCE, 3rd-order sPCE, and 5th-order sPCE models shows that the curvature of
the surrogate model increases with the increase of the model order, which is conducive to a better simulation
of the steep regions in the original model. FDM on sPCE above the third order allows a better representation
of sensitivity information and raw data.

Figure 15: Comparison of sPCE-FDM local sensitivity for bivariate surrogate models of different orders

Finally, the Sobel index was calculated on the basis of the 3rd-sPCE surrogate model, where S1 stands
for the first-order Sobol effect index, and ST stands for the Sobol total effect index. The global sensitivities
where the input variable is Young’s modulus are S1 = 0.01926 and ST = 0.01733, the global sensitivities of the
acceleration are S1 = 0.97136 and ST = 0.97694 The analysis of the first-order Sobol index and total Sobol
index for the different variables shows that the change in Young’s modulus has less effect on the model output
and the change in acceleration has more effect on the model output.

4.3 Penetration Deformation Analysis
In the military field, protective structures such as Hardened Aircraft Shelter (HAS) are often exposed

to the threat of high-speed penetration weapons such as ballistic missiles and armor-piercing bullets. To
evaluate the structural deformation and impact resistance of the bunker when subjected to penetration
attack, it is of great significance to analyze its penetration deformation in depth. In this paper, the aircraft
shelter structure is selected as the research object, as shown in Fig. 16.

Figure 16: Schematic diagram for penetration analysis of HAS

The theoretical model of HAS was established with the shelter made of 6061-T6 aluminum and the
missile made of AISI 52-100 chrome steel. The modeling of penetration was developed concerning the
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problem posed by Sulsky et al. [44] and later explored by Coetzee [45] and inspired by experiments
performed by Trucano et al. [46]. The steel ball is presumed to be linearly elastic, while the aluminum target
follows an elastically perfect plastic behavior as per the von Mises yield criterion. The boundary represents
the computational domain (50 × 50 elements). There are 6700 particles for the aluminum target and 204
particles for the steel ball. The parameter configurations of the physical model are shown in Table 8. Motion
and von Mises stress distributions are illustrated in Fig. 17. Notably, the steel ball exhibits no deformation,
consistent with the findings of Trucano and Grady. The depth of penetration aligns well with MPM results
reported by Coetzee.

Table 8: Parameter configurations of the physical model

Young’s modulus (E) Poisson’s ratio (u) Density (ρ) Velocity (v) Time (T) Time step (Δt)
78,200 MPa 0.3 2700 × 10−12 kg/m3 1, 160, 000 mm/s 40 μs 1.18 × 10−8s

Figure 17: The process of penetration of a localized region of the HAS: von Mises stress distribution at different time
points

In this example, the sPCE surrogate model was constructed using an adaptive RGA with Young’s
modulus (E), Poisson’s ratio (u), and velocity (v) as input variables and strain energy as output variables. As
shown in Fig. 18, the variation range of Young’s modulus is [75,000, 80,000], Poisson’s ratio is [0.25, 0.35],
and the variation range of density is [1,100,000, 1,200,000]. Random samples are taken within the variability
range and the sampling results do for testing the variability of choosing different orthogonal polynomials for
constructing the sPCE surrogate model under the same training dataset.

Figure 18: Random sampling ranges for the three variables

As can be seen in Table 9 that the differences in several statistics of sPCE obtained by choosing different
orthogonal polynomials are small under a randomly sampled training dataset. The μ values of the prediction
results are the same under different orders, and the σ of the sPCE constructed by the Legendre polynomial
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is overall higher than that of the sPCE constructed by the Hermite polynomial. Both have good fit and
prediction performance at lower orders by comparison of CV and R2. It is verified that the variability of the
sPCE surrogate models constructed by choosing two different orthogonal polynomials is less as well as the
accuracy of the models is guaranteed under a training dataset that does not obey any distribution.

Table 9: Statistics of sPCE surrogate models of different orders under Legendre and Hermite polynomials (Nθ o = Ñ =
300)

Polynomial Model μ σ CV R2

/ MPM 102514.8853 4568.7749 / /

1st-order sPCE 102514.8853 4515.1636 1.3631% 0.9122
2nd-order sPCE 102514.8853 4569.4758 1.1793% 0.9343

Legendre 3rd-order sPCE 102514.8853 4575.4589 1.1572% 0.9367
4th-order sPCE 102514.8853 4575.1850 1.1582% 0.9366
5th-order sPCE 102514.8853 4588.9792 1.1053% 0.9423

1st-order sPCE 102514.8853 4515.1636 1.3631% 0.9122
2nd-order sPCE 102514.8853 4569.4692 1.1830% 0.9330

Hermite 3rd-order sPCE 102514.8853 4575.4139 1.1615% 0.9373
4th-order sPCE 102514.8853 4569.5896 1.1601% 0.9389
5th-order sPCE 102514.8853 4569.4757 1.0946% 0.9430

Table 10 shows the parameter configurations and relative mean errors (RME) of the two sPCE surrogate
models. The orthogonal polynomials are chosen for Legendre and Hermite, and the models both have low
RMEs, indicating that the models have good accuracy. Case 1 was selected for the sPCE-FDM sensitivity
analysis, and Case 1 and Case 2 were selected for the Sobol global sensitivity analysis.

Table 10: Parameter configurations and relative mean errors of two sPCE surrogate models

ξ1 = E ξ2 = ν ξ3 = v Order Polynomial MRE
Case 1 [75,000, 80,000] MPa [0.25, 0.35] [1,100,000, 1,200,000] mm/s 5 Legendre 0.003743
Case 2 [75,000, 80,000] MPa [0.25, 0.35] [1,100,000, 1,200,000] mm/s 5 Hermite 0.002980

As shown in Fig. 19, the first-order local sensitivity increases with E after introducing a perturbation to
E. At u = 0.25, it begins to decline and then slopes over the interval, indicating a transition from a negative
to a positive correlation. At u = 0.35, the local sensitivity shifts from a positive to a negative correlation. This
emphasizes the interaction of the parameters E and u on the model output. The second-order local sensitivity
fluctuates with increasing E, especially within [76,500, 78,500], which indicates that the rate of change is
significantly affected in this range. The introduction of a perturbation to u results in significant fluctuations
in the first-order local sensitivity of the model. The range of these fluctuations will gradually expand as u
increases. The second-order local spirit shows a decreasing trend in the interval [0.28, 0.32]. It rises sharply
at u > 0.32, suggesting that the effect of the parameters on the rate of change intensifies as u increases. The
first-order local sensitivity of the model shows a clear upward trend as v rises after introducing perturbations
to v, and generally stays at a low level. However, the second-order local sensitivity is more pronounced for
specific values of E and u, suggesting that the effect of v on the rate of change is greater in this range.

It can be seen in Fig. 20 that the global sensitivity analysis of the model is performed using sPCE-FDM.
The effects of E and u on the overall sensitivity of the model are more pronounced when small perturbations
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are applied to the three input parameters (E, u, and v) at the same time, while the effects of the changes in
v are relatively small. The use of 3rd-order or higher order surrogate models helps to better represent the
sensitivity information and raw data.

Figure 19: The sPCE surrogate model of Case 1 is used to compare the local sensitivity of sPCE-FDM for different
variables: (a) first-order local sensitivity of E, (b) first-order local sensitivity of u, (c) first-order local sensitivity of v, (d)
second-order local sensitivity of E, (e) second-order local sensitivity of u, (f) second-order local sensitivity of v

Figure 20: Comparison of sPCE-FDM global sensitivities for trivariate surrogate models of different orders under
Case 1

To further explore the extent to which the three variables influence the objective function, global
sensitivity analysis was carried out for the calculation of the Sobol index. Fig. 21 demonstrates the global
sensitivity of the three parameters under Case 1 and Case 2. It can be seen that the results of choosing different
orthogonal polynomials to construct the sPCE under the same training dataset are the same. The results of
each input variable in order of results from largest to smallest are: u > E > v. Therefore, Poisson’s ratio is
the main factor causing the fluctuation of strain energy. GSA is more suitable for analyzing the interactions
among the variables of the structural dynamic system under uncertainty compared to LSA.
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Figure 21: Sobol global sensitivity for Case 1 and Case 2

5 Conclusion
This study explores the application of MPM in structural dynamics problems, using it to simulate

collisions, vibrations, and penetrations. While MPM offers high accuracy compared to other numerical
simulation methods, its long single computation time presents challenges for Monte Carlo simulation
and sensitivity analysis. To address this, a new approach for constructing response surface models is
proposed to accelerate the MPM computational process. After comparing SVM-RBF, DT, and GPR methods,
examples demonstrate that the proposed adaptive RGA for constructing sPCE achieves high accuracy
and computational efficiency. The utility of local and global sensitivity analysis based on sPCE, which
integrates the FDM and Sobol methods, is shown to effectively evaluate structural dynamics responses under
complex conditions. This advancement not only enhances computational efficiency in structural dynamics
but also provides a robust tool for understanding and optimizing such systems. In the future, sensitivity
analysis methods based on MPM and sPCE are expected to play a crucial role in applied mathematical
modeling, including material characterization, structural performance evaluation, and system reliability
studies. These applications will extend across automotive, aerospace, civil engineering, and manufacturing
fields, promoting a deeper understanding and optimization of complex engineering systems.

Despite the significant improvements in computational efficiency offered by the proposed method,
constructing sPCE surrogate models for high-dimensional complex structures still requires a large training
dataset, which is time-consuming to compute. Therefore, future research will focus on addressing these issues
to further enhance the efficiency of the model.
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Appendix A: Adaptive Randomized Greedy Algorithm for sPCE

Algorithm A1: Adaptive randomized greedy algorithm

Input: Dictionary D of basis functions {ψ i}
P
i=1; Stopping criteria; i.i.d. samples of model inputs

{ξ j}
N
j=1 and outputs {θ (ξ j)}

N
j=1

Output: Indices of selected basis functions J ; Solution vector c; o-th order sPCE model.
1: o ← 1; k ← 0; J (0) ← ∅; D(0) ← D ; r(0) ← θ.
2: if Coefficient of variation ≥ 5% then
3: o ← o + 1
4: while Stopping criteria are not met do
5: k ← k + 1.
6: Select subset D M ⊆ D(k−1).
7: Find ψ i(k) that minimizes residual: i(k) = argmax j∈D M (ψT

j r(k−1))
2
/ ∥ψ j∥

2

2
.

8: Update set of selected basis functions: J (k) ← J (k−1) ∪ i(k).
9: Update candidate dictionary: D(k) ← D(k−1)/i(k).
10: Update residual: r(k).
11: Evaluate stopping criteria.
12: end while
13: Solve system Ψ(k)c(k) = θ where the columns of Ψ(k) contain basis functions ψ i for i ∈ J (k).
14: end if
15: Output o-th order sPCE model.

Appendix B: Surrogate Model Configurations

Surrogate model Parameter Description
SVM-RBF Kernel function Radial Basis Function (RBF), effective for capturing complex

relationships in the data.
Penalty parameter

(C)
Set to 0.0001. Controls the trade-off between maximizing the
margin and minimizing classification error. A smaller value

allows for a wider margin, improving generalization by
reducing overfitting.

Gamma parameter
(γ)

Set to 0.01. Defines the influence of a single training example.
A small γ results in a smoother decision boundary, while a

larger value can lead to overfitting.
Cross-validation

strategy
K-fold cross-validation with K = 10. The dataset is partitioned
into 10 subsets, training on 9 and validating on 1, repeating this
for each subset. Each subset serves as the validation set once.

DT Splitting criterion Set to Mean Square Error (MSE). Aims to minimize the
average squared difference between predicted and actual

values, enhancing accuracy.
Maximum depth Limited to 10. Restricts the depth of the tree to prevent

overfitting and excessive complexity.
Minimum leaf node

samples
Set to 5. Specifies the minimum number of samples required in

a leaf node, ensuring sufficient data for generalization.
(Continued)
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(continued)

Surrogate model Parameter Description
Pruning method Specified as ‘none’. No pruning is performed, allowing the full

tree structure to capture all potential data patterns.
GPR Kernel function Utilizes a squared exponential kernel, known for its

smoothness and suitability for modeling continuous functions
in regression tasks.

Length scale
parameter

Set to 1. Determines the distance over which the function can
vary, indicating that changes are expected over relatively short

distances.
Noise variance Set to 0.0001. Accounts for noise in observations, indicating

that the model assumes the data is relatively clean with
minimal observation noise.

Optimization
method

Uses the limited memory BFGS (lbfgs) algorithm for efficient
optimization of hyperparameters, particularly effective for

large datasets.
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