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ABSTRACT: Ice cover on transmission lines is a significant issue that affects the safe operation of the power system.
Accurate calculation of the thickness of wire icing can effectively prevent economic losses caused by ice disasters and
reduce the impact of power outages on residents. However, under extreme weather conditions, strong instantaneous
wind can cause tension sensors to fail, resulting in significant errors in the calculation of icing thickness in traditional
mechanics-based models. In this paper, we propose a dynamic prediction model of wire icing thickness that can adapt to
extreme weather environments. The model expands scarce raw data by the Wasserstein Generative Adversarial Network
with Gradient Penalty (WGAN-GP) technique, records historical environmental information by a recurrent neural
network, and evaluates the ice warning levels by a classifier. At each time point, the model diagnoses whether the current
sensor failure is due to icing or strong winds. If it is determined that the wire is covered with ice, the icing thickness
will be calculated after the wind-induced tension is removed from the ice-wind coupling tension. Our new model was
evaluated using data from the power grid in an area with extreme weather. The results show that the proposed model
has significant improvements in accuracy compared with traditional models.
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1 Introduction
Transmission lines are critical for the power system, responsible for the transport and distribution

of electrical energy, and influential in socio-economic development and stability of daily life. However,
most transmission lines are in the wild environment without adequate protective measures, making them
vulnerable to various natural factors. Particularly, wire icing, a severe natural disaster, not only leads
to incidents such as conductor galloping, insulator flashovers, and tower collapses, but also results in
widespread power outages, causing significant economic losses and severe disruption of people’s daily lives.
Wire icing is one of the ice disasters that poses a major threat to the safe operation of transmission lines,
leading to accidents such as conductor galloping, insulator flashover, and tower collapses [1]. Traditional ice
monitoring methods mainly rely on manual inspection and image monitoring, which have the problems
of high labor intensity and long consumption [2]. To improve the monitoring efficiency, online monitoring
systems based on image recognition and stress analysis have been developed, which can monitor the wire

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2025.059169
https://www.techscience.com/doi/10.32604/cmes.2025.059169
mailto:15199110705@163.com


2092 Comput Model Eng Sci. 2025;142(2)

icing in real time and realize automatic warnings by image processing technology [3]. In addition, the ice
monitoring method based on capacitance measurement has been proposed and proved to be feasible in
practical applications through experimental research [4]. Random forest and WRF models have been used
to predict wire icing thickness, and the accuracy and stability of prediction are improved significantly by
Bayesian parameter optimization [5]. Fig. 1 shows ice-covered wires in cold weather.

Figure 1: Manual inspection of ice-covered wires

The grey prediction model has been widely used to predict wire icing thickness. By analyzing the
correlation between micrometeorological parameters (such as ambient temperature, relative humidity, wind
speed, and direction) and wire icing thickness, an effective prediction model has been established [6]. By
collecting transient traveling wave signals and calculating their arrival time, wire icing thickness can be
accurately measured by the transient traveling wave detection method of the Hilbert-Huang transform [2].
In the natural ice-covered environment, the wire icing thickness of the eight-split wires increases nonlinearly
with time [7]. When the wire is covered by light freezing fog, the ice-covered roughness increases and the
density decreases. Formulas for the stress, sag, and length of ice-covered conductors based on the catenary
theory have been derived in [8]. A numerical model of wire icing thickness under comprehensive load
conditions has been established by sag variation and temperature measurement [7]. Moreover, it has been
verified that the maximum relative error between the calculated value and the measured value in this model
is 10.7%.

At the present stage, more wire icing thickness prediction and monitoring methods have been proposed,
such as measuring icing thickness based on a binocular vision camera and accurately calculating icing
thickness combined with traveling wave positioning technology [2,6]. A method for calculating icing
thickness using infrared imagery has been proposed in [9]. A risk assessment model for heavily iced power
transmission lines based on a multilayer feedforward deep neural network (MLF-DNN) has been proposed
in [10]. The ice load monitoring system based on a fiber Bragg grating sensor is also used to calculate the
icing thickness of transmission lines, and its stability and accuracy in harsh environments are verified by
field experiments [11]. To cope with complex and changeable meteorological conditions, a prediction method
of wire icing thickness based on a multivariate grey prediction model has been developed. In addition, the
accuracy of this model is improved via grey correlation analysis [6].

Nowadays abundant achievements have been made in the research of transmission line icing issues,
including the formation mechanism of icing, online monitoring technology, and icing thickness prediction
models. These studies provide important theoretical and technical support for improving the ice resistance
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capability of power grids. However, ice disaster is still one of the major threats to safe operation of
power grids, especially in extreme weather conditions. Monitoring data will appear to be distorted, greatly
increasing the prediction error of icing thickness. In addition, in the actual working environment, there is still
incomplete monitoring equipment, failing to obtain detailed data. Therefore, it is still necessary to further
study and optimize the ice cover identification and prediction model, as well as to develop a model that is
more adaptable to the actual production environment.

This paper proposes a method of wire icing thickness identification and measurement based on
discrimination by deep learning and calculation by a mechanical model. The WGAN-GP framework is
used to upsample the original ice monitoring data, and the cyclic neural network encodes the historical
environmental information into a message vector. Subsequently, the RTabNet model assesses the ice-covered
state of wires. Then, according to the tension-temperature relation of wires and the deformation coordination
equation, the mechanical calculation model of wire icing thickness is derived. The main contributions of the
paper are as follows:

1. We propose a dynamic predictive model for estimating wire icing thickness, which remains robust
under extreme weather conditions. The model uses GAN to generate synthetic data and can achieve
satisfactory training outcomes even with limited original data.

2. We combine deep learning with a mechanical model. Compared with traditional methods, our
method encodes historical environmental information and judgment results into message vectors. It also
integrates the RTabNet model to accurately assess the ice-covered state. Moreover, it removes the wind-
induced tension from the ice-wind coupling tension, enabling a more precise measurement of the icing
thickness of wires.

3. We evaluate our model by using ice-covered data from a region in Xinjiang, China. The results show
that our model is more accurate than several traditional models. It is less affected by wind-induced effects
than the traditional mechanical models.

2 GAN

2.1 GAN Model
Generative Adversarial Networks (GANs), introduced by Goodfellow et al. [12] in 2014, are widely used

to generate data distributions that approximate real-world distributions. A GAN consists of a generator,
denoted by G, and a discriminator, denoted by D, trained in an adversarial manner. The basic structure
of GAN is shown in Fig. 2. The generator creates synthetic samples G (z) from a noise vector z, while the
discriminator distinguishes real samples x from generated ones. The training process optimizes the following
objectives:

min
G

max
D

V (D, G) = Ex∼pd ata(x) [lg D (x)] + Ez∼pz(z) [lg (1 − D (G (z)))]. (1)

This adversarial setup allows G to generate samples that progressively align with the true data distri-
bution pd ata (x). However, traditional GANs often suffer from challenges like mode collapse and unstable
training, particularly in complex scenarios like generating ice-covered wire data.
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Figure 2: GAN structure diagram

2.2 WGAN-GP
To address the limitations of traditional GANs, Wasserstein GAN (WGAN) replaces the Jensen-

Shannon divergence with the Wasserstein distance to measure the discrepancy between real and generated
distributions [13]. The Wasserstein distance is defined as

W (pr , pg) = inf γ∈∏(pr , pg) E(x , y)∼γ [∥x − y∥]. (2)

where Pr and Pg represent the real and generated data distributions, and ∏(pr , pg) is the set of joint
distributions with marginals Pr and Pg .

WGAN-GP [14] further improves this approach by introducing a gradient penalty term to ensure the
Lipschitz continuity of the discriminator D, defined as

LGP = Ex̂∼Px̂(x̂) [(∥∇x̂ D (x̂)∥2 − 1)2]. (3)

where x̂ is sampled along straight lines between real and generated samples.
The training process alternates between optimizing the discriminator and generator objectives.
Discriminator Loss:

LD = Ex∼Pd ata(x) [D (x)] − Ez∼Pz(z) [D (G (z))] + λEx̂∼Px̂(x̂) [(∥∇x̂ D (x̂)∥2 − 1)2]. (4)

Generator Loss:

LG = −Ez∼Pz(z) [D (G (z))]. (5)

The combined optimization goal is to alternately minimize LG and maximize LD , aligning the generated
data distribution Pg with the real data distribution Pr . This adversarial setup ensures that G learns to produce
synthetic samples that closely mimic the real data. At this point, the optimization problem of training GAN
is converted to

min
G

max
D

V (D, G) = Ex∼Pd ata(x) [D (x)] − Ez∼Pz(z) [D (G (z))] + λEx̂∼Px̂(x̂) [(∥∇x̂ D (x̂)∥2 − 1)2]. (6)
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2.3 Data Augmentation of the Ice-Covered Wires Generated Based on the WGAN-GP Data
The WGAN-GP framework is employed to generate synthetic ice-covered wire data to address the

scarcity of observational datasets. The data augmentation process involves the following steps:
1. A noise vector z ∼ Pz (z) is fed into the generator G, which produces synthetic samples G (z)matching

the dimensionality of real data.
2. The generator and discriminator are alternately trained to optimize LG and LD , and aligning the

generated data distribution Pg with the real data distribution Pr .
3. The trained generator produces m batches of synthetic samples, and the top n samples with the highest

similarity (Combined evaluation of Wasserstein distance and Jensen-Shannon divergence) to real data are
selected to form the augmented dataset. The process is shown in Fig. 3.

This augmented dataset enriches the training pool for downstream tasks, such as training the RTabNet
classifier. As demonstrated in Section 5, the generated data closely aligns with real-world distributions,
validated by metrics such as Wasserstein distance and t-SNE visualizations.

Figure 3: Flow chart of GAN training

3 An Ice-Covered State Discrimination Model Based on RTabNet
To efficiently identify whether the wires are in an ice-covered state and to eliminate misjudgment of the

ice-covered state of the wires under the influence of a strong wind environment, this section adopts an ice-
covered state discrimination model based on RTabNet, which adds the Long Short-Term Memory (LSTM)
network to encode historical environmental monitoring data and discrimination results into a message
vector. Combined with real-time environmental monitoring data, the model evaluates the true state of wires
and issues early warning alerts at different levels based on the severity of the wire icing.

The data on ice-covered wires in the extreme environment is relatively complex. If the Decision
Tree (DT)-based method is adopted, a lot of processes of feature engineering are required, which is not
conducive to providing timely feedback of monitoring status [15]. RTabNet, as a deep neural network model
for processing table data, retains the advantages of traditional DNN and utilizes the idea of a DT-based
method [16].

For the judgment of the state of ice-covered wires, RTabNet can directly input the raw monitoring data
without any data preprocessing operations. Training based on gradient descent can be easily integrated into
the end-to-end model.
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Due to the approximate hyperplane boundary of tabular data, the DT method can usually obtain
better results. RTabNet first uses the multiplication coefficient mask matrix to select the input features.
After linear transformation, the elements that meet the conditions are zeroed by the Rectified Linear Unit
(ReLU) function. Finally, the results are added and output by the Softmax function. The constructed network
structure can realize the DT-like output manifold and can learn sparse instance-level feature selection from
data with the advantage of the DT method. The learning ability of the model can be improved by nonlinear
processing [17]. The DT-like diagram is shown in Fig. 4.

Figure 4: DT-like diagram

A sequential attention mechanism is used to mimic the flow of the DT method [18], as shown in Fig. 5.
The whole model is composed of multiple submodules of the same decision steps. Step i inputs the
information from (i − 1) and decides which feature to use. The output features are aggregated into the
overall decision.

Figure 5: Feature selection diagram of WGAN-GP-RTabNet. Two decision blocks are used as examples to separately
process features related to environmental factors and sensors to predict ice-covered levels

The distinction between instantaneous wind misjudgment and wire icing lies in the fact that, during
icing, the environmental temperature and humidity of the wire must meet the conditions necessary for ice
formation. Therefore, the model needs to be able to identify the relevant features. RTabNet has instance-level
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feature selection, with local and global interpretability. The model uses a learnable mask for the soft selection
of significant features [19]. Through this sparse selection, the learning ability of the decision-making step is
concentrated on the significant features, such as temperature and humidity, thereby improving the model’s
learning efficiency. At the same time, the mask can show the selected features in each decision step and the
contribution degree of the feature of a single sample to the step. Feature selection of all decision steps will
finally be aggregated and reflect the relative importance of each step in the final decision, as shown in Fig. 6.
Attentive transformers are used to obtain the following masks:

M [i] = Sparsemax (P [i − 1] ⋅ hi (a [i − 1])). (7)

Note that∑D
j=1 M [i]b , j = 1, hi is a trainable function, P [i] is a priori scale term indicating the extent to

which the feature has been used before, P [i] = ∏i
j=1 (γ −M [ j]), and γ is the relaxation parameter.

Figure 6: Coding structure of WGAN-GP-RTabNet

In feature processing, feature transformers are used to process the selected features and to segment the
output of the decision step and subsequent information. The first half of the feature transformer is responsible
for calculating common features, and parameters are shared in all steps. The personality characteristics are
calculated in the second half, and the parameters are updated only in the current step. This structure improves
the robustness of the model.

Due to the impact of instantaneous wind, the environmental monitoring data of adjacent periods is
prone to show large differences, which can lead to incorrect judgments. Therefore, we use the LSTM model
to encode the historical environmental monitoring data and the output of the classifier into a message
vector. The structure of this component is shown in Fig. 7. In the tth period, the classifier receives the
current environmental characteristic data xt and historical message vector ot−1, and outputs the classification
result yt . The historical message component will generate a new historical message vector ot based on the
environment feature data xt , output results yt and the historical message vector of the previous time ot−1 as
input. Its update method is as follows:

ot = LSTM (xt , yt , ot−1; θhm). (8)

Note that xt is the environmental monitoring data at time t, yt is the classification result, ot−1 is the
historical message vector, and θhm is the attenuation coefficient, which is used to control the weight of new
input information and historical information.
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Figure 7: Structure of WGAN-GP-RTabNet

The training process is shown in Algorithm 1. We divide data into mini batches to update the parameters
and obtain a generator to extend the data set. At each training step, we use a learnable mask to select the
significant features and update parameters, The specific process is shown in Fig. 8.

Figure 8: Training procedure of the WGAN-GP-RTabNet
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Algorithm 1: WGAN-GP-RTabNet
Require: Real data distribution pd ata . Generator’s prior distribution pz . Learning rates αG (Generator)
and αD (Discriminator). Adam hyperparameters β1 β2. Number of discriminator iterations per generator
iteration n.
Require: φ, initial discriminator’s parameters. θ, initial generator’s parameters.
while not converged do:

For t = 0 to n do:
Sample {z(i)}m

i=1 ∼ p(z) a batch of noise vectors.
Sample {x(i)}m

i=1 ∼ p(d ata) a batch of real date.

LD =
1
m ∑

m
i=1 [Dφ (x(i)) − Dφ (Gθ (z(i)))]

φ ← Adam (φ,∇φLD , αD , β1 , β2)
End
Sample {z(i)}m

i=1 ∼ p(z) a batch of noise vectors.

LG = −
1
m ∑

m
i=1 Dφ (Gθ (z(i)))

θ ← Adam (θ ,∇θ LG , αG , β1 , β2)
End while
For each epoch in B do:

For each step i = 1 to k do:
Select the Feature by calculating the feature mask:
P [i] = ∏i

j=1 (γ −M [ j])
M [i] = Sparsemax (P [i − 1] ⋅ hi (a [i − 1]))

End
Generate the message:
ot = LSTM (xt , yt , ot−1; θhm)
Update the parameter:
yt = μ (xt , ot−1 , σ i)
L = −∑C

c=1 yc log (p (c; σ t))
σ i+1 ← σ i − α∇σ L

End

4 Dynamic Prediction of Wire Icing Thickness
In this section, based on the identification of ice-covered wires using the WGAN-GP-RTabNet model,

we use a mechanical model of wire icing thickness by combining the relation among temperature, wire
elongation, and wire tension [20]. If it is identified that the change in wire tension is affected by instantaneous
wind, no warning information will be issued. If it is identified that the change in wire tension is caused by
ice covering, the mechanical model is used to calculate the wire icing thickness.

We chose to use a parabolic configuration. A section of a wire is cut out for unit force analysis, as shown
in Fig. 9a. Assume that the horizontal component of tension at a point of the wire is Fx1 = F0 and the vertical
component is Fz1 = F0 tan θ. For uniformly ice-covered wires [21], it can be approximated that wires are only
subject to vertical loads, and according to the static equilibrium conditions of wires, it holds that

d2z
dx2 = −

q + q0

F0
. (9)
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Figure 9: Stress analysis diagram. (a) Stress analysis of wire unit; (b) Distribution of ice load along the wire

In this formula, q is the ice load, q0 is the deadweight loads, and F0 is the horizontal tension of the wire.
Assuming that the ice load is uniformly distributed along the wire, as shown in Fig. 9b. Let the

displacements of the wire along the x axis and the z axis be u and w, respectively. When the wire unit reaches
the final state [22], the total elongation of the wire is

ΔS = ∫
s

Δs = ∫
L
[ 1

2
(dw

dx
)

2
+ dz

dx
dw
dx
] dx . (10)

The elongation of the wire is related to the change of tension and temperature [23]. The total elongation
of the wire is

ΔS = ∫
L

0
(ΔF

EA
+ αΔt) ds = ∫

L

0
(ΔF

EA
ds
dx
+ αΔt) ds

dx
dx . (11)

In this formula, E is Young’s modulus (Pa), ΔF is the change of horizontal tension of the conductor
before and after icing (N), A is the cross-sectional area of the conductor is calculated (m2), α is the
temperature expansion coefficient of the conductor, and Δt is the temperature change before and after
icing (○C).

The wire finally satisfies the deformation coordination equation. The difference between the horizontal
tension F1 of the wire after ice covering and the horizontal tension F0 of the wire before ice covering can be
obtained according to the parabola formula:

ρice π ((d + 2hice)2 − d2

4
) g =

�
���24F2

1
L2 (

ΔF
EA
+ αΔt) + q2

0 (1 − F2
1

F0
) (12)

Note that d is conductor diameter and hice is the icing thickness.
The wind load per unit length of the wire is

qw =
1
2

ρv2Cd D. (13)

Note that qw is the wind load, ρ is the air density (kg/m3), v is the wind speed (m/s), Cd is the
aerodynamic drag coefficient, and D is the upwind length of the ice-covered wire (m).
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In the presence of wind, under the combined effects of wind-ice load and self-weight load, the dynamic
equation of the ice-covered wire is

F1
d2 y
dx2 + qw = 0. (14)

Note that y is the displacement in the vertical direction (m).
In the absence of wind or under low wind speeds, wire icing thickness can be calculated using Eq. (12).

After the wind begins, the mass of ice on wires does not increase significantly in a short period. The change
in wire tension is only related to the instantaneous wind speed. Therefore, after calculating the instantaneous
wind load using Eq. (13), wire icing thickness can be determined by solving Eqs. (12) and (14).

The overall workflow of the dynamic prediction approach for wire icing thickness is shown in Fig. 10.
The electric transmission line monitoring system saves the sensor data to the database after receiving it, and
the model extends the data through a generator and conducts offline training. The trained model parameters
are transferred to the operational model. If it is determined that the wire is covered with ice, the icing
thickness is calculated after excluding the tension caused by the wind, and the results are returned to the
monitoring system.

Figure 10: Flow chart of dynamic prediction approach for wire icing thickness

5 Experimental Results
In this paper, the data of transmission lines in a region of Xinjiang was selected as the experimental

object to test the accuracy of the model in identifying the ice-covered state and the calculation accuracy
of wire icing thickness. The wire model is LGJ-630/45, the span is 300 m, and the insulator is the type I
suspended glass insulator FC7P/146. The upper end of the insulator is fixed, the lower end of the insulator
has a degree of oscillation freedom, and the suspension point has no height difference.

All case studies were conducted on the same computer device with an NVIDIA GeForce GTX 1650, Intel
Core i7-9750H CPU, and 16 GB of RAM. The modeling and training of neural networks were conducted using
PyTorch, leveraging the WGAN-GP framework to address the scarcity of ice-covered wire data. A multi-
layer residual neural network [24] was designed as the generator, while a standard multi-layer neural network
served as the discriminator. After iterative training, the generator was fine-tuned to produce synthetic ice-
covered wire data that closely aligned with real-world observations, providing a diverse and realistic dataset
for subsequent analysis.



2102 Comput Model Eng Sci. 2025;142(2)

The generator in this model is specifically designed to capture the intricate distributions of ice-
covered wire data. It employs dense layers for dimensionality expansion, ReLU activations to introduce
non-linearity, and Batch Normalization to ensure stable learning. Residual Blocks are integrated to enhance
feature learning, allowing the generator to accurately model subtle ice accumulation patterns. The final
output layer applies a Tanh activation function, producing realistic synthetic data that effectively reflects the
characteristics of real-world observations.

The discriminator is designed to distinguish between real and synthetic data, incorporating Leaky
ReLU activations to mitigate vanishing gradients and Batch Normalization with Dropout to enhance
regularization. This architecture ensures robust performance in handling the variability of icing thickness
and environmental conditions, contributing to stable convergence during training. By guiding the gen-
erator, the discriminator facilitates the production of high-fidelity synthetic data that closely replicates
real-world scenarios.

To evaluate the performance of the trained generator, 50 sets of synthetic ice-covered wire data were
produced. The quality of these samples was assessed using the Jensen-Shannon (JS) divergence, calculated
against the original dataset. The JS divergence between the generated data of the 50 groups and the
original dataset is shown in Fig. 11. The nine sets with the lowest JS divergence values (the lowest being
approximately 0.02) were selected for further analysis and training of the RTabNet model. Fig. 12 presents
a t-SNE visualization of one selected dataset, illustrating the close alignment of the synthetic and real data
distributions. The clustering of data points indicates that the generator effectively captured the underlying
patterns of the original data, ensuring its suitability for downstream tasks.

Figure 11: JS divergence between the generated data and the original dataset for 50 groups
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Figure 12: t-SNE of generated data (a) and original data (b)

The Wasserstein distance between the generated and original datasets was evaluated across eight features
and four categorical labels, as shown in Fig. 13. Distances ranged from approximately 0.01 to 0.05, indicating
strong alignment between the generated and original data distributions. Most features exhibited minimal
distances (e.g., 0.01, 0.02), demonstrating the model’s ability to replicate the original dataset’s structure
accurately. Slightly higher distances (up to 0.05) were observed for specific features or labels, which may
reflect subtle variations introduced during the generative process. These variations likely stem from the
complexity of certain features or inherent noise in the dataset. However, all distances remained within an
acceptable range, confirming the WGAN-GP model’s effectiveness in producing high-quality synthetic data
suitable for downstream tasks.

Figure 13: The Wasserstein distance between the generated and original datasets for 12 features, is represented on the
x-axis by their corresponding feature indices. These indices correspond to the following features: 0. ‘Temperature’, 1. ‘Air
humidity’, 2. ‘Wind speed’, 3. ‘Wind direction’, 4. ‘Atmospheric pressure’, 5. ‘Precipitation’, 6. ‘Pull value’, 7. ‘Tensile value
datum’, 8. ‘Warning level_Normal’, 9. ‘Warning Level_Yellow Alert’, 10. ‘Warning Level_Orange Alert’, and 11. ‘Warning
Level_Red Alert’
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Correlation heatmaps for both the original and generated datasets, as shown in Fig. 14, reveal a high
degree of consistency in feature relationships and categorical label associations. This consistency highlights
the generative model’s ability to learn and reproduce the key statistical patterns of the original data. However,
minor variations in correlation strength were observed, particularly for categorical labels such as “Warning
Level_Normal,” where deviations in magnitude were evident. These discrepancies may result from the
dataset’s complexity or suboptimal training conditions, such as mild overfitting or underfitting during
the generative process. Despite these differences, the generated data closely reflects the overall structure
of the original dataset, maintaining sufficient fidelity for use in RTabNet model training.

Figure 14: Correlation heatmaps

The effects of the RTabNet model and various parameters are shown in Table 1.

Table 1: RTabNet model parameters table

Parameter Value Parameter Value
Dimensions of the decoder 72 Adam 5−2

Dimensions of the attention 72 Gamma of StepLR 0.85
Number of decision steps 3 Step size of StepLR 20
Sparsity mask parameter 1.5 Numerical stability constant 1−15

Sparse regularization coefficient 1−4 Batch size 256

When we added the encoding structure based on LSTM into the framework, the accuracy of the model
greatly improved compared with the baseline model, and it converged more quickly in the training process.
The training result is shown in Fig. 15.

We evaluate the performance of the WGAN-GP-RTabNet model and other baseline models under four
distinct weather cases: (1) Normal weather conditions, (2) Strong wind conditions, (3) Ice disaster conditions,
and (4) Wind sensor failure. The results are summarized case by case as follows:
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Figure 15: Comparison of the training loss

Case 1 (Normal weather conditions): Under normal weather conditions with calm or low wind speeds,
icing thickness strongly correlates with temperature, humidity, and tension. In this case, the WGAN-GP-
RTabNet model and baselines demonstrate similar accuracy in predicting wire icing states. However, the
WGAN-GP-RTabNet model achieves slightly higher precision than the baseline models.

Case 2 (Strong wind conditions): We select historical data from monitoring stations in Xinjiang, where
strong wind conditions were previously misclassified as wire icing events. As shown in Table 2, the WGAN-
GP-RTabNet model achieves higher accuracy and precision compared to other baseline models. This also
demonstrates the model’s ability to effectively determine wire states based on data characteristics.

Table 2: Model performance comparison table

Case Indicator Tabtransformer Xgboost TabNet WGAN-GP-RTabNet

Case 1 Accuracy (%) 94.31 93.97 93.25 95.58
Precision (%) 92.35 89.63 92.74 93.42

Case 2 Accuracy (%) 88.57 85.02 88.36 92.91
Precision (%) 83.45 79.37 86.84 91.67

Case 3 Accuracy (%) 86.19 86.84 88.92 93.44
Precision (%) 84.76 82.51 85.16 91.12

Case 4 Accuracy (%) 68.62 54.59 61.95 86.77
Precision (%) 50.38 29.80 47.63 72.18

Case 3 (Ice disaster conditions): We test the models using data extracted from historical reports of
ice disaster incidents, where the temperature ranges between −10○C and −20○C. As shown in Table 2, the
WGAN-GP-RTabNet model achieves improved accuracy and precision compared to the TabNet model,
highlighting its superior performance in extreme icing conditions.

Case 4 (Wind sensor failure): In extreme weather conditions, the wind speed sensor components of
meteorological monitoring devices may freeze and fail when the temperature drops below−60○C. This failure
causes wind speed and direction features to return constant values. To simulate this case, we insert constant
values into the dataset. As shown in Table 2, the accuracy and precision of all models significantly decrease
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compared to normal conditions. However, the WGAN-GP-RTabNet model produces only a slight decline,
demonstrating strong robustness under these adverse conditions.

Table 2 shows that the proposed WGAN-GP-RTabNet is superior to the traditional tree model, and the
addition of GAN significantly improves the accuracy of judgment on the premise of improving the robustness
of the model. The incorporation of a Recurrent Neural Network (RNN) effectively reduces the impact of rapid
data fluctuations caused by strong transient winds. From the aggregate feature importance mask (Fig. 16),
the WGAN-GP-RTabNet model only pays attention to valuable features, and the aggregate mask of irrelevant
features is almost zero, which improves the interpretability and realizes the feature selection at the case level.

Figure 16: Mask matrix of the WGAN-GP-RTabNet model

From the mask matrix in Fig. 16, it can be observed that a feature mask matrix was constructed by
selecting 30 sample data points and dividing the whole decision process into seven steps. Each decision step
has a mask matrix with eight columns, representing the following eight features in sequence: air temperature,
humidity, wind speed, wind direction, atmospheric pressure, rainfall, tension value, and tension reference
value. The brighter the color, the higher the model’s attention to the corresponding feature for that data
sample at each decision step. The model has learned all the features across the seven decision steps, with a
higher focus on the first four features in the sample data.

Fig. 17 illustrates the global mask matrix for all sample data, reflecting the model’s global attention to
each feature at every decision step. From Fig. 17, it is evident that the WGAN-GP-RTabNet model accurately
selects effective features as the criteria for judging the ice-covered state. Temperature, air humidity, wind
speed, and wind direction (i.e., the first four features) have a great influence on ice-covered wires. The above
features are selected as the key learning objectives in the initial and final decision-making steps. In the
intermediate steps, try to select other features, so that the model can focus on learning the features with
significant influence based on ensuring the effective use of data features, which greatly improves the learning
efficiency of the model.
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Figure 17: Global mask matrix of the WGAN-GP-RTabNet model

Fig. 18a shows the growth of icing thickness over a day when an ice disaster occurs on a power
transmission line in a region of Xinjiang and the icing thickness calculated by the model. The maximum
error between the actual value and the calculated value of the model is 3.7%, which can be used to calculate
the wire icing thickness more accurately. Combined with Fig. 18b, when the temperature of the transmission
line is below 0○C and the humidity is above 92% rh, the transmission line is prone to be ice-covered.

Figure 18: Comparison between actual and predicted icing thickness

6 Conclusion
In this paper, a method based on the combination of the WGAN-GP-RTabNet discrimination model,

and the icing thickness mechanical calculation model is proposed, which effectively solves the misjudgment
about wire state caused by strong instantaneous wind in extreme weather conditions. After eliminating the
influence of wind load on wires, the wire icing thickness is calculated according to the mechanical model.
The specific conclusions of the case study are as follows:

(1) Compared with the traditional decision tree model, the WGAN-GP-RTabNet discriminant model
has stronger robustness and interpretability and reduces the complicated processes of data preprocessing.
At the same time, the accuracy of the model in the real environment data set is 91.41%, which is better than
other models.
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(2) Based on the deformation caused by ice load and self-weight load and combined with the influence of
temperature, the calculation model of icing thickness is finally obtained through the coordination equation
of traverse deformation. The maximum error between the actual value and the calculated value is 3.7%.

(3) By analysis of the environment in the ice disaster area, it is shown that when the monitored
environment’s temperature is below 0○C and the relative humidity is above 92%, the probability of wire icing
significantly increases.

In the follow-up research work, the timing of ice-covered wires will be considered, and the historical
data of wires will be encoded, so that the model can judge the current state combined with the historical
icing situation of wires, and the accuracy rate of the model will be mentioned.
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