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ABSTRACT

This study presents a generalized two-dimensional model for evaluating the stationary hygro-thermo-mechanical
response of laminated shell structures made of advanced materials. It introduces a generalized kinematic model,
enabling the assessment of arbitrary values of temperature variation and mass concentration variation for the
unvaried configuration at the top and bottom surfaces. This is achieved through the Equivalent Layer-Wise
description of the unknown field variable using higher-order polynomials and zigzag functions. In addition, an
elastic foundation is modeled utilizing the Winkler-Pasternak theory. The fundamental equations, derived from the
total free energy of the system, are solved analytically using Navier’s method. Then, the Fourier-based generalized
differential quadrature numerical method is adopted to efficiently recover the through-the-thickness distribution
of secondary variables in agreement with the hygro-thermal loading conditions. The formulation is applied in
some examples of investigation where the response of panels of different curvature and lamination schemes is
evaluated under external hygro-thermal fluxes and prescribed values of temperature and moisture concentration.
In addition, this study investigates the effect of the hygro-thermal coupling due to Dufour and Soret effect. The
present formulation is verified to be a valuable tool for reducing computational effort and determining the effect
on the mechanical response of laminated structures in a thermal and hygrometric environment.

KEYWORDS
Dufour and Soret effects; equivalent layer-wise; hygro-thermal analysis; generalized differential quadrature; Navier
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1 Introduction

In recent engineering applications, structural components of complex shapes are frequently
employed in severe environmental conditions [1,2], necessitating refined structural models to predict
the bending response under external environmental variables [3,4] with a reduced computational
effort. In some applications, high temperature and severe humidity can significantly orient the design
process, making it essential to understand their influence on the safety assessment [5–7]. In composite
materials, moisture can alter the mechanical properties of both matrix and reinforcing fibers [8–
10]. In addition, exposure to high temperature and humidity can lead to additional strains, which
alter the mechanical response of the structure [11]. Therefore, multifield formulations are found in
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literature, which couple various physical problems, including heat conduction, mass diffusion, and
electro-mechanical fields [12–15]. For hygro-thermal problems, experimental evidence shows that
moisture-induced and thermally-induced deformations are comparable and must be considered. Most
theories use classical Fourier and Fick equations to derive temperature and moisture concentration
distributions. Then, the corresponding deformations are calculated based on these results [16–18]. The
thermal and hygroscopic effects can be evaluated by assuming the analogy between heat conduction
and moisture diffusion, as shown in the literature [19,20]. When these phenomena are simultaneously
present, a stationary version of the Fourier heat transfer equations can be adopted because thermal
equilibrium usually reaches more rapidly than mass equilibrium within the solid [21,22]. However,
transient moisture diffusion eventually reaches equilibrium moisture content, which depends on
temperature and other environmental variables [23,24]. Research activities by Sih et al. [25–27]
highlight the connection between thermal and hygrometric problems from the Onsager reciprocity
theorem [28], thus enabling the computation of the Soret and Dufour effects [29–32]. These effects
indicate that temperature variation induces moisture to move within the solid, and mass migration
slightly alters the temperature. Once the coupled thermo-diffusion theory is established, modeling
strategies are introduced to derive the corresponding mechanical response. Many papers address
hygro-thermal analysis of laminated structures [33–37] using uncoupled formulations, solving Fick
and Fourier equations separately. In this context, a useful paper is Liu et al.’s [37], where the staggered
solution of the hygro-thermal problem is derived to update the diffusion coefficient of the constituent
material as the temperature varies within the solid. Most modeling strategies consider the infinite
body assumption for hygro-thermal analysis [38–40]. They adopt the Classical Plate Theory (CPT)
or the First Order Shear Deformation Theory (FSDT) to derive the corresponding mechanical
response [41–43]. The solution deviates from that derived from classical approaches for thick and
very thick structures, and temperature distribution differs from the typical linear distribution. For
example, when granular composite materials are adopted [44–48] with an arbitrary variation of
material properties along the panel thickness [49,50], the structural behavior cannot be investigated
through classical theories like the CPT and FSDT because they exhibit non-uniform bending [51,52].
For this reason, in mechanical elasticity problems, these structures are mainly studied employing
Higher Order Shear Deformation Theories (HSDT) [53–56] or three-dimensional formulations. In
addition, recent works [57,58] have shown that when an erroneous temperature and moisture content
along the thickness is predicted, inaccurate hygro-thermal deformations within a mechanical model,
thus invalidating the design process. Higher-order polynomials can thus be adopted to describe the
effective temperature and moisture concentration distribution, which can exhibit abrupt variations in
heterogeneous solids, as shown in the literature [59,60]. This aspect can be viewed as a generalization
of the zigzag behavior observed in the mechanical case, which was consistently proposed in the
literature [61,62]. Consequently, advanced kinematic models should be adopted [63–65], which employ
fewer Degrees of Freedom (DOFs). Starting from the pioneering Third Order Shear Deformation
Theory (TSDT), refined theories have been derived, namely HSDT, along with zigzag functions in
the case of laminated structures, which usually adopt a generalized kinematic model, first proposed
in the works by Washizu and Reddy [66,67], based on an arbitrary set of thickness functions. These
functions can be assessed following the Equivalent Single Layer (ESL) and the Layer-Wise (LW)
approaches [68–71]. In ESL, the configuration variables refer to the entire lamination scheme as they
are approximated along the whole thickness of the panel, while LW theories account for unknown
variables distributed along the thickness of each layer. In addition to ESL and LW, a hybrid approach
called Equivalent Layer-Wise (ELW) has been developed and extensively adopted in References
[72,73]. More specifically, the ELW theory allows one to prescribe arbitrary values of the displacement
fields at the top and bottom surfaces of the shell. The generalized formulation has been extensively
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applied to various laminated plate and shell structures with advanced materials [74–76], showing its
suitability even in the case of very complicated lamination schemes with softcore, porous anisotropic
material, three-dimensional variation of the material properties, and orientation angle. These advanced
models, applied to structures of very complex shape and boundary conditions, are tackled numerically
with advanced computational techniques like spectral collocation methods since classical approaches
usually require a very high computational effort. Among these methods, the Generalized Differential
Quadrature (GDQ) [77–79] enables the discretization of arbitrary order derivatives with proper
weighting coefficients that depend on the function’s interpolation. Several applications can be found in
the literature in which the GDQ weighting coefficients are evaluated with a recursive procedure based
on Lagrange interpolating polynomials [80–82]. However, in recent work [83], it has been shown that
the accuracy of GDQ-based numerical models using Fourier trigonometric approximating expansions
is comparable to that of Lagrange polynomials. For this reason, the Fourier-based GDQ (F-GDQ)
numerical technique is introduced. It is also possible to perform integrals after some considerations
regarding the GDQ method, leading to the assessment of the Generalized Integral Quadrature (GIQ)
numerical technique. The main advantage of the GDQ method is that it enables, from the derivative
discretization, the direct numerical solution of the differential equations governing a physical problem
in a strong form [84,85], exhibiting a very high convergence rate with a limited number of DOFs. For
this reason, it is extensively adopted in many applications that require a very high computational effort
when using classical approaches like the Finite Element Method (FEM). Such numerical solutions are
validated comparatively for analytical solutions, which can be derived, for instance, following Navier’s
method [86,87].

Accordingly, the literature presents some issues regarding hygro-thermal modeling of laminated
structures. Above all, most papers deal with subsequent modeling since they account for heat transfer
and mass diffusion equations separately and then derive the corresponding mechanical response due to
thermal and hygroscopic expansion. This can lead to inaccurate results in some applications since this
approach does not model the hygro-thermal coupling. A coupled model was developed in Tornabene
[12] to overcome this, where hygro-thermal loads were observed only as sinusoidal distribution
of temperature and moisture concentration variation. Therefore, further investigations into more
realistic hygro-thermal loading are required. However, the multifield model cited above is suitable
only for structures exhibiting complete multifield response. Therefore, a specific HSDT formulation
is required to perform hygro-thermal analysis of moderately thick laminated structures with advanced
lamination schemes without considering electromagnetic modeling. In this way, unlike Tornabene [12],
it is possible to investigate the hygro-thermal coupling even for those materials that cannot exhibit
electric and magnetic properties. This study adopts the ELW approach to derive a generalized model
for evaluating the fully-coupled hygro-thermo-mechanical response of anisotropic doubly-curved
shells under thermodynamic equilibrium conditions to overcome all these limitations. A generalized
kinematic model with higher-order theories and zigzag functions is adopted to predict stretching
and interlaminar effects. The fundamental relations are derived in curvilinear principal coordinates
considering the coupling effects between the physical problems involved in the formulation, and a semi-
analytical solution is found for simply supported cross-ply structures with uniform curvature. The
formulation in this study focuses on hygro-thermal coupling, while in Tornabene [12], a general formu-
lation is provided where various fields are considered, including electricity and magnetostatics, along
with hygro-thermal coupling. The recovery procedure is reported for cross-ply lamination schemes
to make the formulation efficient, while in Tornabene [12], it is provided for generally anisotropic
materials. The present model is not intended to investigate the possible generation of electric and
magnetic fluxes induced by pyroelectricity and pyromagnetic effects, as happens in Tornabene [12]
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instead. The model is applied in various numerical investigations. Preliminary validating simulations
are performed, where the bending response derived from the present formulation is compared to that
from a numerical model developed with commercial software based on the three-dimensional FEM
(3D-FEM). Then, a systematic investigation is presented, demonstrating the coupling between heat
conduction and mass diffusion equations. This analysis is entirely new from those in Tornabene [12],
where the sensitivity was not studied. Unlike the numerical examples in Tornabene [12], where only
prescribed values of multifield configuration variables with sinusoidal distributions are considered
external loads, arbitrary distributions are addressed of hygro-thermo-mechanical secondary variables.
The present formulation can be utilized to determine the bending response of laminated structures
for various curvatures in a thermal and hygrometric environment with general loads in terms of fluxes
and configuration variables. In addition, a semi-analytical procedure is applied to evaluate the coupling
effect of hygro-thermal equations on the bending response of the structures, making it a valuable tool
for design purposes.

2 Geometric Model and Kinematic Relations

Based on the ELW theory, a doubly-curved shell solid is expressed through the geometric
properties of the reference surface, denoted by r (α1, α2). The reference surface is intended to be located
in the middle thickness. As a consequence, the position vector R can be described as follows [12]:

R (α1, α2, ζ ) = r (α1, α2) + h
2

zn (α1, α2) (1)

where z = 2ζ/h is a dimensionless parameter that identifies the points distributed along the thickness
direction, while n (α1, α2) denotes the normal unit vector calculated in each point of the reference
surface. Finally, h is the total thickness of the solid, which is computed as the sum of the thicknesses
hk of each k-th layer of the stacking sequence, setting k = 1, . . . , l:

h (α1, α2) =
l∑

k=1

hk (α1, α2) =
l∑

k=1

(ζ k+1 − ζ k) (2)

The geometric properties of the shell solid are derived from those of the reference surface r
introduced in Eq. (1). To this end, the principal radii of curvatures Ri = R1, R2 and the Lamè
parameters Ai = A1, A2 are evaluated for each α i = α1, α2 principal direction:

Ri (α1, α2) = −r,i · r,i

r,ii · n
, Ai (α1, α2) = √

r,i · r,i (3)

The Lamè parameter Ai is required to compute the curvilinear abscissa, defined as dsi = Aidαi, of
an infinitesimal arc of the parametric lines along each principal direction, being dα i the infinitesimal
variation of the curvilinear coordinate α i. The integration of dsi along the closed interval

[
α0

i , α i

]
leads

to the definition of the curvilinear abscissa s i = s1, s2 defined so that s i ∈ [
s0

i, s1
i

]
. On the other hand,

the principal radii of curvature Ri, defined in Eq. (3), allows one to define the scaling parameter Hi =
H1, H2, which tells how the presence of curvature along α i affects the computation of distances within
the three-dimensional shell solid:

Hi (α1, α2, ζ ) = 1 + ζ

Ri

(4)



CMES, 2025, vol.142, no.2 1701

Finally, the principal curvature of the shell along α1 and α2 principal directions, denoted as kni =
kn1, kn2, are evaluated as kn1 = 1/R1 and kn2 = 1/R2, respectively.

The ELW approach and the unified formulation are adopted here to derive a generalized kinematic
model coupling the mechanical elasticity problem and the hygro-thermal fundamental relations in
stationary conditions. For a three-dimensional solid described with α1, α2, ζ principal coordinates, the
mechanical equations are written regarding the displacement field components U (k)

1 , U (k)

2 , U (k)

3 . On the
other hand, ΔT(k) = T(k)−T0 accounts for the variation of the absolute temperature of each point of the
shell for the reference temperature T0. In the same way, the variation ΔC(k) = C(k) −C0 of the moisture
concentration is considered for the reference condition C0, evaluated from the equilibrium moisture
content of the material. These quantities are conveniently arranged in the vector �(k)

(α1, α2, ζ ),
defined in each point of the three-dimensional solid, which collects the configuration variables of
the hygro-thermo-mechanical problem [12]. Employing the unified formulation, the vector �(k) is
expanded in terms of generalized thickness functions denoted by F (k)αi

τ
= F (k)αi

τ
(ζ ) with i = 1, . . . , 5,

depending on the thickness coordinate ζ and defined for each τ -th kinematic expansion order with
τ = 0, . . . , N + 1 [12]:

�(k) =
N+1∑
τ=0

F(k)

τ
δ

(τ ) ⇔

⎡
⎢⎢⎢⎢⎣

U (k)

1

U (k)

2

U (k)

3

ΔT(k)

ΔC(k)

⎤
⎥⎥⎥⎥⎦ =

N+1∑
τ=0

⎡
⎢⎢⎢⎢⎣

F (k)α1
τ

0 0 0 0
0 F (k)α2

τ
0 0 0

0 0 F (k)α3
τ

0 0
0 0 0 F (k)α4

τ
0

0 0 0 0 F (k)α5
τ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u(τ )

1

u(τ )

2

u(τ )

3

ξ (τ)

κ(τ)

⎤
⎥⎥⎥⎥⎦ (5)

where F(k)

τ
is the thickness function matrix, while δ

(τ ) = [
u(τ )

1 u(τ )

2 u(τ )

3 ξ (τ) κ(τ)
]T

denotes the vector
of the generalized configuration variables of the formulation, introduced for each τ = 0, . . . , N+1. The
kinematic expansion of Eq. (5) allows one to derive a generalized model with an arbitrary description
of the configuration variables, which can be selected based on the lamination scheme object of
investigation. Therefore, classical theories like FSDT and TSDT can also be described through Eq. (5).
This study considers a higher order axiomatic assumption of the unknown field variable accounting
for higher order power functions so that stretching effects and unusual in-plane deformations can be
predicted by the two-dimensional model. Hence, the following thickness functions set [12] is adopted
from τ = 0 to τ = N:

F (k)αi
τ

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − z̃
2

for τ = 0

z̃τ+1 − z̃τ−1 for τ = 1, .., N − 1

1 + z̃
2

for τ = N

(6)

where the dimensionless quantity z̃ ∈ [−1, 1] is expressed in terms of the thickness coordinate ζ so
that z̃ = 2ζ/h. A representation of the thickness functions of Eq. (6) for N = 7 can be found in Fig. 1.
The thickness functions associated with τ = 0 and τ = N allows for the assessment of kinematic
boundary conditions since they are alternatively equal to 0 and 1 at the top and bottom surfaces so
that the generalized configuration variable can be arbitrarily enforced. On the other hand, F (k)αi

τ
= 0

for τ = 0, . . . , N at ζ = ±h/2. When τ = N + 1, the kinematic expansion of Eq. (5) is performed in
terms of the zigzag functions reported below to predict the interlaminar issues:
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F (k)αi
N+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z1 = − ζ − ζ1

ζ2 − ζ1

zk = (−1)
k
(2zk − 1) , k = 2, . . . , l − 1

zl = (−1)
l ζ − ζl+1

ζl+1 − ζl

(7)

where zk = (ζ − ζk) / (ζk+1 − ζk). z1, z l, and zk are defined so that at the extreme heights of the laminated
shell the condition F (k)αi

N+1 = 0 is satisfied. In this way, the thickness functions of Eq. (6) allows one to
enforce the kinematic boundary conditions to the problem. Following the ELW approach, the values
assumed at ζ = −h/2 and ζ = h/2 by arbitrary element Δ(k)

i of vector �(k) with i = 1, . . . , 5 are equal
to that of the corresponding configuration variable δ

(τ)

i of the generalized vector δ
(τ ) for τ = 0 and

τ = N + 1, respectively:

Δ(1)

i

(
α1, α2, ζ = −h

2

)
= δ(0)

i (α1, α2)

Δ(l)
i

(
α1, α2, ζ = h

2

)
= δ(N)

i (α1, α2) (8)

Figure 1: Representation of the thickness functions adopted in a higher-order ELW formulation
employing a generalized zigzag function. The graphs are reported for the ELDZ5 theory, which
provides accurate results in all the presented numerical investigations

The following nomenclature is introduced to identify the thickness function set selected in each
simulation based on Tornabene [12]:

ELD − N
ELDZL − N (9)

where “ELD” means that the kinematic model is developed according to the ELW approach, while N
denotes the maximum expansion order in Eq. (6). Finally, ZL is adopted when the zigzag function (7) is
used for τ = N +1. Once the kinematic model is defined, the higher-order two-dimensional definition
equations are derived starting from the hygro-thermo-mechanical kinematic relations. These equations
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are expressed in curvilinear principal coordinates, and relate the displacement field vector U(k), the
temperature variation ΔT(k) and the moisture concentration variation ΔC(k) to the strain vector ε(k) =[
ε

(k)

1 ε
(k)

3 γ
(k)

12 γ
(k)

13 γ
(k)

23 ε
(k)

3

]T
and the temperature and moisture concentration gradients, denoted

by θ
(k) = [

θ
(k)

1 θ
(k)

2 θ
(k)

3

]T
and λ(k) = [

λ
(k)

1 λ
(k)

2 λ
(k)

3

]T
, respectively. These quantities are collected in

vector π (k) of the three-dimensional primary variables of the hygro-thermo-mechanical problem. One
gets the following relation [12]:

π (k) = D�(k) ⇔

⎡
⎢⎢⎢⎢⎢⎣

ε(k)

˜ΔT
(k)

¯ΔC
(k)

θ
(k)

λ(k)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

D(1) 0 0
0 D(3) 0
0 0 D(3)

0 D(2) 0
0 0 D(2)

⎤
⎥⎥⎥⎥⎦
⎡
⎣ U(k)

ΔT(k)

ΔC(k)

⎤
⎦ (10)

where D is the kinematic differential operator of the present multifield problem. This operator is built
from sub-operators D(1), D(2) and D(3). More specifically, D(1) is the symmetric part of the definition
operator for the mechanical case, while D(2) is the gradient of a scalar field. Finally, the operator
D(3) = 1 is conveniently introduced to derive multifield-induced strain components using the primary

variables ˜ΔT
(k)

and ¯ΔC
(k)

. The definition operator D is expressed as the product of matrices Dζ and
DΩ as follows:

D = Dζ DΩ (11)

where Dζ collects the derivatives for the thickness directions and takes the following aspect:

Dζ =

⎡
⎢⎢⎢⎢⎣

Dζ (1) 0 0 0 0
0 Dζ (3) 0 0 0
0 0 Dζ (3) 0 0
0 0 0 Dζ (2) 0
0 0 0 0 Dζ (2)

⎤
⎥⎥⎥⎥⎦ (12)

The sub-operators Dζ (1), Dζ (2) and Dζ (3) are defined as follows:

Dζ (1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
H1

0 0 0 0 0 0 0 0

0
1

H2

0 0 0 0 0 0 0

0 0
1

H1

1
H2

0 0 0 0 0

0 0 0 0
1

H1

0
∂

∂ζ
0 0

0 0 0 0 0
1

H2

0
∂

∂ζ
0

0 0 0 0 0 0 0 0
∂

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Dζ (2) =

⎡
⎢⎢⎢⎢⎢⎣

1
H1

0 0

0
1

H2

0

0 0
∂

∂ζ

⎤
⎥⎥⎥⎥⎥⎦ , Dζ (3) = 1

(13)
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On the other hand, the differential operator DΩ embeds the derivatives with respect to α1, α2

principal coordinates:

DΩ =

⎡
⎢⎢⎢⎢⎣

DΩ(1) 0 0
0 DΩ(3) 0
0 0 DΩ(3)

0 DΩ(2) 0
0 0 DΩ(2)

⎤
⎥⎥⎥⎥⎦ (14)

The quantities DΩ(1), DΩ(2) and DΩ(3) take the following form:

DΩ(1) = [�Dα1
Ω

�Dα2
Ω

�Dα3
Ω

]
DΩ(2) =

[
− 1

A1

∂

∂α1

− 1
A2

∂

∂α2

− 1
]T

DΩ(3) = 1 (15)

Finally, operators �Dαi

Ω
with i = 1, 2, 3 assume the aspect reported below:

�Dα1
Ω

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
A1

∂

∂α1

1
A1A2

∂A2

∂α1

− 1
A1A2

∂A1

∂α2

1
A2

∂

∂α2

− 1
R1

0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �Dα2
Ω

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
A1A2

∂A1

∂α2

1
A2

∂

∂α2

1
A1

∂

∂α1

− 1
A1A2

∂A2

∂α1

0

− 1
R2

0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �Dα3
Ω

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
R1

1
R2

0
0

1
A1

∂

∂α1

1
A2

∂

∂α2

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

The operator DΩ of Eq. (14) is now written as the sum of operators Dαi
Ω

with i = 1, . . . , 5:

DΩ =
5∑

i=1

Dαi
Ω

(17)

The quantities Dαi
Ω

introduced in Eq. (17) can be expressed as follows, setting �Dα4
Ω(2)

= �Dα5
Ω(2)

= DΩ(2)

and D̃
α4

Ω(3)
= D̃

α5

Ω(3)
= DΩ(3):
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Dα1
Ω

=

⎡
⎢⎢⎢⎢⎣

�Dα1
Ω

0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , Dα2

Ω
=

⎡
⎢⎢⎢⎢⎣

0 �Dα2
Ω

0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , Dα3

Ω
=

⎡
⎢⎢⎢⎢⎣

0 0 �Dα3
Ω

0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

Dα4
Ω

=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 �Dα4

Ω
0

0 0 0 0 0
0 0 0 D̃

α4

Ω
0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , Dα5

Ω
=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 �Dα5

Ω

0 0 0 0 0
0 0 0 0 D̃

α5

Ω

⎤
⎥⎥⎥⎥⎦ (18)

Substituting the generalized kinematic model of Eq. (5) within Eq. (10), the two-dimensional
definition equations with three-dimensional capabilities are provided for the present multifield model.
In this way, the vector π (k) of three-dimensional primary variables is expanded up to the τ -th order
using the generalized vector π (τ )αi , defined for each τ = 0, . . . , N + 1:

π (k) = D�(k) = Dζ

5∑
i=1

Dαi
Ω
�(k) =

N+1∑
τ=0

5∑
i=1

Z(kτ)αi Dαi
Ω
δ

(τ ) =
N+1∑
τ=0

5∑
i=1

Z(kτ)αiπ (τ )αi (19)

The kinematic relations of Eq. (19) account for the generalized definition operator Z(kτ)αi , which
relates the three-dimensional primary variables to the corresponding two-dimensional quantities. This
operator is obtained from the assembly of the generalized operators Z(kτ)αi

1 , Z(kτ)αi
2 and Z(kτ)αi

3 belonging
to each physical problem involved in the formulation. In a more expanded form, the previous relation
can be expressed as follows:⎡
⎢⎢⎢⎢⎢⎣

ε(k)

˜ΔT
(k)

¯ΔC
(k)

θ
(k)

λ(k)

⎤
⎥⎥⎥⎥⎥⎦ =

N+1∑
τ=0

5∑
i=1

⎡
⎢⎢⎢⎢⎣

Z(kτ)αi
1 0 0 0 0
0 Z(kτ)αi

3 0 0 0
0 0 Z(kτ)αi

3 0 0
0 0 0 Z(kτ)αi

2 0
0 0 0 0 Z(kτ)αi

2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ε(τ )αi

˜ΔT
(τ )αi

¯ΔC
(τ )αi

θ
(τ )αi

λ(τ )αi

⎤
⎥⎥⎥⎥⎥⎦ (20)

The sub-vectors Z(kτ)αi
1 , Z(kτ)αi

2 , and Z(kτ)αi
3 are defined for each τ = 0, . . . , N + 1 and i = 1, . . . , 5

using the differential operators of Eq. (13) and the thickness function F (k)αi
τ

so that Z(kτ)αi
m = Dζ (m)F (k)αi

τ

with m = 1, 2, 3. The vectors ε(τ )αi , ˜ΔT
(τ )αi

,¯ΔC
(τ )αi

, θ(τ )αi , and λ(τ )αi introduced in Eq. (20), referred to the
higher-order kinematic expansion of primary variables, are expressed using an extended notation as
follows:

ε(τ )αi (α1, α2) = [
ε

(τ)αi
1 ε

(τ)αi
2 γ

(τ)αi
1 γ

(τ)αi
2 γ

(τ)αi
13 γ

(τ)αi
23 ω

(τ)αi
13 ω

(τ)αi
23 ε

(τ)αi
3

]T

˜ΔT
(τ )αi

(α1, α2) = ˜ΔT
(τ )αi

, ¯ΔC
(τ )αi

(α1, α2) = ¯ΔC
(τ )αi

θ
(τ )αi (α1, α2) = [

θ
(τ)αi
1 θ

(τ)αi
2 θ

(τ)αi
3

]T
, λ(τ )αi (α1, α2) = [

λ
(τ)αi
1 λ

(τ)αi
2 λ

(τ)αi
3

]T
(21)

3 Constitutive Equations

This section derives the constitutive relations for the two-dimensional generalized formulation.
Each layer of the stacking sequence is modeled as a generally anisotropic elastic continuum, accounting
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for the full coupling between the mechanical, thermal, and hygrometric physical problems [12]. For an
arbitrary k-th layer of the lamination scheme, the following three-dimensional constitutive relation is
established:

χ (k) = �
(k)

π (k) ⇔

⎡
⎢⎢⎢⎢⎣

σ (k)

η(k)

μ(k)

h(k)

c(k)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

�
(k)

C −�
(k)T

z −�
(k)T

e 0 0
�

(k)

z �
(k)

TT �
(k)

TC 0 0
�

(k)

e �
(k)

TC �
(k)

CC 0 0
0 0 0 �

(k)

K �
(k)

Y

0 0 0 �
(k)

X �
(k)

S

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ε(k)

˜ΔT
(k)

¯ΔC
(k)

θ
(k)

λ(k)

⎤
⎥⎥⎥⎥⎥⎦ (22)

where σ (k) is the vector of stress components, while h(k) and c(k) are the thermal flux vector and the
mass flux vector, respectively. Finally, η(k) is the specific entropy of the system and μ(k) is the specific
chemical potential. Employing an extended notation, Eq. (22) can be expressed as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
(k)
1

σ
(k)
2

τ
(k)
12

τ
(k)
13

τ
(k)
23

σ
(k)
3

η(k)

μ(k)

h(k)
1

h(k)
2

h(k)
3

c(k)
1

c(k)
2

c(k)
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�C(k)
11

�C(k)
12

�C(k)
16

�C(k)
14

�C(k)
15

�C(k)
13 −z(k)

11 −e(k)
11 0 0 0 0 0 0

�C(k)
12

�C(k)
22

�C(k)
26

�C(k)
24

�C(k)
25

�C(k)
23 −z(k)

22 −e(k)
22 0 0 0 0 0 0

�C(k)
16

�C(k)
26

�C(k)
66

�C(k)
46

�C(k)
56

�C(k)
36 −z(k)

12 −e(k)
12 0 0 0 0 0 0

�C(k)
14

�C(k)
24

�C(k)
46

�C(k)
44

�C(k)
45

�C(k)
34 −z(k)

13 −e(k)
13 0 0 0 0 0 0

�C(k)
15

�C(k)
25

�C(k)
56

�C(k)
45

�C(k)
55

�C(k)
35 −z(k)

23 −e(k)
23 0 0 0 0 0 0

�C(k)
13

�C(k)
23

�C(k)
36

�C(k)
34

�C(k)
35

�C(k)
33 −z(k)

33 −z(k)
33 0 0 0 0 0 0

z(k)
11 z(k)

22 z(k)
12 z(k)

13 z(k)
23 z(k)

33 ξ
(k)

11 ξ
(k)

12 0 0 0 0 0 0

e(k)
11 e(k)

22 e(k)
12 e(k)

13 e(k)
23 e(k)

33 ξ
(k)

12 ξ
(k)

22 0 0 0 0 0 0

0 0 0 0 0 0 0 0 k
(k)

11 k
(k)

12 k
(k)

13 y(k)
11 y(k)

12 y(k)
13

0 0 0 0 0 0 0 0 k
(k)

12 k
(k)

22 k
(k)

23 y(k)
12 y(k)

22 y(k)
23

0 0 0 0 0 0 0 0 k
(k)

13 k
(k)

23 k
(k)

33 y(k)
13 y(k)

23 y(k)
33

0 0 0 0 0 0 0 0 x(k)
11 x(k)

12 x(k)
13 s(k)

11 s(k)
12 s(k)

13

0 0 0 0 0 0 0 0 x(k)
12 x(k)

22 x(k)
23 s(k)

12 s(k)
22 s(k)

23

0 0 0 0 0 0 0 0 x(k)
13 x(k)

23 x(k)
33 s(k)

13 s(k)
23 s(k)

33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
(k)
1

ε
(k)
2

γ
(k)
12

γ
(k)
13

γ
(k)
23

ε
(k)
3

ˆΔT
(k)

ˆΔC
(k)

θ
(k)
1

θ
(k)
2

θ
(k)
3

λ
(k)
1

λ
(k)
2

λ
(k)
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

Matrix ��(k)

is made of sub-matrices that account for a single physical problem. More specifically,
��(k)

C is the stiffness matrix of the mechanical elasticity case, while ��(k)

K and ��(k)

S denote the thermal and
moisture conductivity matrix, respectively. Finally, ��(k)

Y and ��(k)

X are the coupling matrices between the
temperature and moisture concentration gradients, which allow one to model the Dufour and Soret
effects [12]. Vectors ��(k)

z and ��(k)

e allow one to compute strains induced by a temperature variation and
a moisture concentration variation within the solid. They are calculated from the following expression:

��(k)T

z = ��(k)

C
��(k)

a , ��(k)T

e = ��(k)

C
��(k)

b (24)
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where ��(k)

a and ��(k)

b contain the rotated thermal and expansion coefficients a(k)

ij and the rotated

hygroscopic expansion coefficients b
(k)

ij , with i, j = 1, 2, 3. The constitutive relation (22) is written in
the reference system of the problem under consideration. For an arbitrary k-th layer, the elements of
the multifield stiffness matrix are provided in the reference system O′α̂(k)

1 α̂
(k)

2 ζ̂ (k), built on the material
symmetry axes of the k-th lamina. If π̂

(k) and χ̂
(k) are the vectors of the primary and secondary variables

indicated in the material reference system, the elastic constitutive relation is written as follows:

χ̂
(k) = �(k)π̂

(k) ⇔

⎡
⎢⎢⎢⎢⎣

σ̂
(k)

η(k)

μ(k)

ĥ
(k)

ĉ(k)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

�(k)

C −�(k)T
z −�(k)T

e 0 0
�(k)

z �(k)

TT �(k)

TC 0 0
�(k)

e �(k)

TC �(k)

CC 0 0
0 0 0 �(k)

K �(k)

Y

0 0 0 �(k)

X �(k)

S

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε̂
(k)

˜ΔT
(k)

¯ΔC
(k)

θ̂
(k)

λ̂
(k)

⎤
⎥⎥⎥⎥⎥⎥⎦

(25)

This study assumes that the axes ζ̂ (k) and ζ of the material and geometric reference system coincide
for each k = 1, . . . , l. Hence, the planes α1 − α2 and α̂

(k)

1 − α̂
(k)

2 turn out to be parallel. Both reference
systems have the same origin. If the angle between the axes α̂

(k)

1 and α1 is denoted by ϑ(k), the rotation
matrices H(k) and T(k) can be conveniently introduced:

H(k) =
⎡
⎣ cos ϑ(k) sin ϑ(k) 0

− sin ϑ(k) cos ϑ(k) 0
0 0 1

⎤
⎦ (26)

T(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos2 ϑ(k) sin2
ϑ(k) −2 sin ϑ(k) cos ϑ(k) 0 0 0

sin2
ϑ(k) cos2 ϑ(k) 2 sin ϑ(k) cos ϑ(k) 0 0 0

sin ϑ(k) cos ϑ(k) − sin ϑ(k) cos ϑ(k) cos2 ϑ(k) − sin2
ϑ(k) 0 0 0

0 0 0 cos ϑ(k) − sin ϑ(k) 0
0 0 0 sin ϑ(k) cos ϑ(k) 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(27)

The multifield constitutive matrix ��(k)

introduced in Eq. (22) can be derived from the rotation
of the constitutive relation (25) by means of matrices in Eqs. (26) and (27), based on the following
expression:

��(k) =

⎡
⎢⎢⎢⎢⎢⎣

T(k)�(k)

C T(k)T −T(k)�(k)

C T(k)T��(k)

a −T(k)�(k)

C T(k)T��(k)

b 0 0
��(k)T

a T(k)T�(k)

C T(k) �(k)

TT �(k)

TC 0 0
��(k)T

b T(k)T�(k)

C T(k) �(k)

TC �(k)

CC 0 0
0 0 0 H(k)T�(k)

K H(k) H(k)T�(k)

Y H(k)

0 0 0 H(k)T�(k)

X H(k) H(k)T�(k)

S H(k)

⎤
⎥⎥⎥⎥⎥⎦ (28)

The quantities a(k)

ij , b
(k)

ij with i, j = 1, 2, 3, which belong to vector ��(k)

a and ��(k)

b , respectively, are

conveniently arranged into the matrices �A(k)

,�B(k)

, defined through the Hadamard product “�” and the
rotation matrix H(k):

�A(k) = Y ε �
(

H(k)T�A(k)

H(k)

)
�B(k) = Y ε �

(
H(k)T�B(k)

H(k)

)
(29)
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where Y ε allows for the conversion between engineering strains and effective strain components, while
matrices A(k), �B(k)

of size 3 × 3 collect the thermal expansion coefficients a(k)

ij and moisture expansion
coefficients b(k)

ij , respectively, of the k-th layer with i, j = 1, 2, 3:

A(k) =
⎡
⎣a(k)

11 a(k)

12 a(k)

13

a(k)

12 a(k)

22 a(k)

23

a(k)

13 a(k)

23 a(k)

33

⎤
⎦ =

⎡
⎣1 2 2

2 1 2
2 2 1

⎤
⎦ �

⎡
⎣�a(k)

11
�a(k)

12
�a(k)

13

�a(k)

12
�a(k)

22
�a(k)

23

�a(k)

13
�a(k)

23
�a(k)

33

⎤
⎦ = Y ε � �A(k)

B(k) =
⎡
⎣b(k)

11 b(k)

12 b(k)

13

b(k)

12 b(k)

22 b(k)

23

b(k)

13 b(k)

23 b(k)

33

⎤
⎦ =

⎡
⎣1 2 2

2 1 2
2 2 1

⎤
⎦ �

⎡
⎢⎣

�b(k)

11
�b(k)

12
�b(k)

13

�b(k)

12
�b(k)

22
�b(k)

23

�b(k)

13
�b(k)

23
�b(k)

33

⎤
⎥⎦ = Y ε � �B(k)

(30)

The quantity �(k)

TT = ξ
(k)

11 introduced in Eq. (25) is defined in terms of density ρ(k) of the constituent
material and of the specific heat c(k), and allows one to express the specific entropy in terms of the

temperature variation ˜ΔT
(k) = ΔT(k). In contrast, the term �(k)

CC = ξ
(k)

22 relates the chemical potential to

the moisture concentration variation ¯ΔC
(k) = ΔC(k). The expressions of these quantities are derived

under the assumption of thermodynamic equilibrium conditions, leading to the following expression
of chemical potential [12]:

Δμ(k) = μ(k) − μ(k)

0 = RgT(k) log ΔC(k) (31)

where Rg = 461.9 J/ (kg K) is the universal gas constant. The following expressions are, thus, derived
for ξ

(k)

11 , ξ (k)

22 and ξ
(k)

12 :

ξ (k)

11 =
(

∂η(k)

∂T

)
ε,ΔC

=
(

∂η(k)

∂T

)
ε,C∞

= ρ(k)c(k)

T0

ξ (k)

22 =
(

∂μ(k)

∂C

)
ε,ΔT

=
(

∂μ(k)

∂C

)
ε,T0

= RgT0

C(k)
∞ − C(k)

0

∼= RgT0

C(k)
∞

= RgT0

ρ(k)M (k)
∞

ξ (k)

12 =
(

∂μ(k)

∂T

)
ε,ΔC

=
(

∂μ(k)

∂T

)
ε,C∞

=
(

∂η(k)

∂C

)
ε,ΔT

=
(

∂η(k)

∂C

)
ε,T0

=

= −Δμ(k)

T0

= −Rg log
(
C(k)

∞ − C(k)

0

) ∼= −Rg log C(k)

∞ = −Rg log
(
ρ(k)M (k)

∞
)

(32)

The quantity M (k)

∞ denotes the equilibrium moisture content of the material, which is usually
derived from experimental tests. Following the approach reported in Reference [25], the matrices �(k)

Y

and �(k)

X , which couple the thermal conductivity equations and the mass diffusion equations, thus
allowing the prediction of Soret and Dufour effects, respectively, are expressed in terms of the thermal
conductivity matrix �(k)

K and the mass diffusion matrix �(k)

S as follows:

h(k) = �(k)

K θ
(k)+�(k)

Y λ(k) = �(k)

K θ
(k)+ν(k)ρ(k)c(k)�(k)

S λ(k)

c(k) = �(k)

X θ
(k) + �(k)

S λ(k) = λ(k)

ρ(k)c(k)
�(k)

K θ
(k) + �(k)

S λ(k) (33)

Coupled hygro-thermal relations of Eq. (33) account for an additional thermal flux coming from
mass diffusion. The coupling coefficients λ(k), ν(k) are defined through the computation of the heat
of transport ratio, denoted by Q(k)

h , which is the amount of heat exchanged by the mass diffusion
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phenomenon. More specifically, the quantity ν(k) is calculated as follows:

ν(k) = Q(k)

h

ρ(k)c(k)
(34)

The heat of transport ratio Q(k)

h occurring in Eq. (34) is calculated according to the following
relation:

Q(k)

h = T0

√
ρ(k)c(k)λ(k)ν(k)Rg

u(k)

d C(k)
∞

= T0

√
c(k)λ(k)ν(k)Rg

u(k)

d M (k)
∞

(35)

where u(k)

d = 0.1, while the product λ(k)ν(k) is calibrated from experimental results. The adopted consti-
tutive relation is linear. Therefore, the matrix elements ��(k)

are independent of the specific value of the
configuration variables. In this way, the hygro-thermo-elastic equations can be solved monolithically,
and the modeling approach is realistic. In other words, the three-dimensional constitutive coefficients
in this theory are assumed to be independent of moisture diffusion phenomena or time. Consequently,
an experimental calibration of the theoretical framework may be considered to identify the limitations
of this study in the case of practical applications in terms of loading conditions and adopted lamination
schemes.

At this point, it is helpful to introduce the modified vector of secondary variables, denoted by χ (k).
This vector is derived from the relation reported below, being I and �I the identity matrices of size 3×3
and 6 × 6, respectively:

χ
(k) = B χ (k) ⇔

⎡
⎢⎢⎢⎢⎣

σ (k)

η(k)

μ(k)

h
(k)

c(k)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�I 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0
1
T0

I
μ∞
T0

I

0 0 0 0
μ∞
C∞

I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

σ (k)

η(k)

μ(k)

h(k)

c(k)

⎤
⎥⎥⎥⎥⎦ (36)

The computation of the vector χ
(k) allows one to compute easily the total free energy of the doubly-

curved three-dimensional solid, denoted by ϒ . If the virtual variation of the vector of the primary
variables is identified with δπ

(k), after some mathematical manipulations, one gets the relation reported
below:

δϒ =
l∑

k=1

∫
α1

∫
α2

ζk+1∫
ζk

(
δπ

(k)T
χ

(k)
)

A1A2H1H2dα1dα2dζ =
N+1∑
τ=0

5∑
i=1

∫
α1

∫
α2

(
δπ

(τ )αi
)T �B	(τ )αi A1A2dα1dα2 (37)
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where the matrix �B is defined in terms of the identity matrices I and
�

I of size 3×3 and 9×9, respectively,
as follows:

�B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

I 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0
1
T0

I
μ∞
T0

I

0 0 0 0
μ∞
C∞

I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

The vector 	(τ )αi = [
S(τ )αiT E(τ )αi M (τ )αi H(τ )αiT C(τ )αiT

]T
, introduced for each τ -th kinematic

expansion order and i = 1, 2, 3, contains the vector of secondary variables of the problem under
consideration. More specifically, the quantities S(τ )αi , E(τ )αi , M (τ )αi , H(τ )αi , and C(τ )αi are expressed in
expanded form as follows:

S(τ )αi = [
N (τ )αi

1 N (τ )αi
2 N (τ )αi

12 N (τ )αi
21 T (τ )αi

1 T (τ )αi
2 P(τ )αi

1 P(τ )αi
2 S(τ )αi

3

]T

H(τ )αi = [
H (τ )αi

1 H (τ )αi
2 H (τ )αi

3

]T

C(τ )αi = [
C(τ )αi

1 C(τ )αi
2 C(τ )αi

3

]T
(39)

The introduction in Eq. (37) of the three-dimensional constitutive relation (22) and the higher-
order definition Eq. (20) leads to the assessment of the higher-order generalized constitutive relation-
ship of the model:

	(τ )αi =
N+1∑
η=0

5∑
j=1

⎛
⎜⎝ l∑

k=1

ζk+1∫
ζk

(
Z(kτ)αi

)T ��(k)

Z(kη)αj H1H2dζ

⎞
⎟⎠π (η)αj =

N+1∑
η=0

5∑
j=1

A(τη)αiαjπ (η)αj (40)

where A(τη)αiαj is the generalized stiffness matrix of the higher-order two-dimensional model, which
considers the entire lamination scheme and the geometry of the panel under consideration. This matrix
assumes the following extended form for each τ , η = 0, . . . , N + 1 and i, j = 1, . . . , 5:

A(τη)αiαj =

⎡
⎢⎢⎢⎢⎢⎣

A(τη)αiαj
εε

A
(τη)αiαj
εT A

(τη)αiαj
εC 0 0

A
(τη)αiαj
Tε A

(τη)αiαj
TT A

(τη)αiαj
TC 0 0

A
(τη)αiαj
Cε A

(τη)αiαj
CT A

(τη)αiαj
CC 0 0

0 0 0 A
(τη)αiαj
θθ A

(τη)αiαj
θλ

0 0 0 A
(τη)αiαj
λθ A

(τη)αiαj
λλ

⎤
⎥⎥⎥⎥⎥⎦ (41)

The sub-matrices occurring in the previous relation are defined as follows:
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A
(τη)αiαj
εε =

[(
A

(τη)[fg] αiαj
εεnm(pq)

)
hs

]
h = 1, . . . , 9
s = 1, . . . , 9

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(τη)[00]αiαj
11(20)

A
(τη)[00]αiαj
12(11)

A
(τη)[00]αiαj
16(20)

A
(τη)[00]αiαj
16(11)

A
(τη)[00]αiαj
14(20)

A
(τη)[00]αiαj
15(11)

A
(τη)[01]αiαj
14(10)

A
(τη)[01]αiαj
15(10)

A
(τη)[01]αiαj
13(10)

A
(τη)[00]αiαj
12(11)

A
(τη)[00]αiαj
22(02)

A
(τη)[00]αiαj
26(11)

A
(τη)[00]αiαj
26(02)

A
(τη)[00]αiαj
24(11)

A
(τη)[00]αiαj
25(02)

A
(τη)[01]αiαj
24(01)

A
(τη)[01]αiαj
25(01)

A
(τη)[01]αiαj
23(01)

A
(τη)[00]αiαj
16(20)

A
(τη)[00]αiαj
26(11)

A
(τη)[00]αiαj
66(20)

A
(τη)[00]αiαj
66(11)

A
(τη)[00]αiαj
46(20)

A
(τη)[00]αiαj
56(11)

A
(τη)[01]αiαj
46(10)

A
(τη)[01]αiαj
56(10)

A
(τη)[01]αiαj
36(10)

A
(τη)[00]αiαj
16(11)

A
(τη)[00]αiαj
26(02)

A
(τη)[00]αiαj
66(11)

A
(τη)[00]αiαj
66(02)

A
(τη)[00]αiαj
46(11)

A
(τη)[00]αiαj
56(02)

A
(τη)[01]αiαj
46(01)

A
(τη)[01]αiαj
56(01)

A
(τη)[01]αiαj
36(01)

A
(τη)[00]αiαj
14(20)

A
(τη)[00]αiαj
24(11)

A
(τη)[00]αiαj
46(20)

A
(τη)[00]αiαj
46(11)

A
(τη)[00]αiαj
44(20)

A
(τη)[00]αiαj
45(11)

A
(τη)[01]αiαj
44(10)

A
(τη)[01]αiαj
45(10)

A
(τη)[01]αiαj
34(10)

A
(τη)[00]αiαj
15(11)

A
(τη)[00]αiαj
25(02)

A
(τη)[00]αiαj
56(11)

A
(τη)[00]αiαj
56(02)

A
(τη)[00]αiαj
45(11)

A
(τη)[00]αiαj
55(02)

A
(τη)[01]αiαj
45(01)

A
(τη)[01]αiαj
55(01)

A
(τη)[01]αiαj
35(01)

A
(τη)[10]αiαj
14(10)

A
(τη)[10]αiαj
24(01)

A
(τη)[10]αiαj
46(10)

A
(τη)[10]αiαj
46(01)

A
(τη)[10]αiαj
44(10)

A
(τη)[10]αiαj
45(01)

A
(τη)[11]αiαj
44(00)

A
(τη)[11]αiαj
45(00)

A
(τη)[11]αiαj
34(00)

A
(τη)[10]αiαj
15(10)

A
(τη)[10]αiαj
25(01)

A
(τη)[10]αiαj
56(10)

A
(τη)[10]αiαj
56(01)

A
(τη)[10]αiαj
45(10)

A
(τη)[10]αiαj
55(01)

A
(τη)[11]αiαj
45(00)

A
(τη)[11]αiαj
55(00)

A
(τη)[11]αiαj
35(00)

A
(τη)[10]αiαj
13(10)

A
(τη)[10]αiαj
23(01)

A
(τη)[10]αiαj
36(10)

A
(τη)[10]αiαj
36(01)

A
(τη)[10]αiαj
34(10)

A
(τη)[10]αiαj
35(01)

A
(τη)[11]αiαj
34(00)

A
(τη)[11]αiαj
35(00)

A
(τη)[11]αiαj
33(00)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A
(τη)αiαj
εT =

[(
A

(τη)[fg] αiαj
εTnm(pq)

)
hs

]
h = 1, . . . , 9
s = 1

= −
[
Z

(τη)[00]αiαj
11(10) Z

(τη)[00]αiαj
22(01) Z

(τη)[00]αiαj
12(10) Z

(τη)[00]αiαj
12(01) Z

(τη)[00]αiαj
13(10) Z

(τη)[00]αiαj
23(01) Z

(τη)[10]αiαj
13(00) Z

(τη)[10]αiαj
23(00) Z

(τη)[10]αiαj
33(00)

]T

A
(τη)αiαj
Tε =

[(
A

(τη)[fg] αiαj
Tεnm(pq)

)
hs

]
h = 1
s = 1, . . . , 9

=
[
Z

(τη)[00]αiαj
11(10) Z

(τη)[00]αiαj
22(01) Z

(τη)[00]αiαj
12(10) Z

(τη)[00]αiαj
12(01) Z

(τη)[00]αiαj
13(10) Z

(τη)[00]αiαj
23(01) Z

(τη)[01]αiαj
13(00) Z

(τη)[01]αiαj
23(00) Z

(τη)[01]αiαj
33(00)

]
A

(τη)αiαj
εC =

[(
A

(τη)[fg] αiαj
εCnm(pq)

)
hs

]
h = 1, .., 9
s = 1

= −
[
E

(τη)[00]αiαj
11(10) E

(τη)[00]αiαj
22(01) E

(τη)[00]αiαj
12(10) E

(τη)[00]αiαj
12(01) E

(τη)[00]αiαj
13(10) E

(τη)[00]αiαj
23(01) E

(τη)[10]αiαj
13(00) E

(τη)[10]αiαj
23(00) E

(τη)[10]αiαj
33(00)

]T

A
(τη)αiαj
Cε =

[(
A

(τη)[fg] αiαj
Cεnm(pq)

)
hs

]
h = 1
s = 1, . . . , 9

=
[
E

(τη)[00]αiαj
11(10) E

(τη)[00]αiαj
22(01) E

(τη)[00]αiαj
12(10) E

(τη)[00]αiαj
12(01) E

(τη)[00]αiαj
13(10) E

(τη)[00]αiαj
23(01) E

(τη)[01]αiαj
13(00) E

(τη)[01]αiαj
23(00) E

(τη)[01]αiαj
33(00)

]
A

(τη)αiαj
TT =

[(
A

(τη)[fg] αiαj
TTnm(pq)

)
hs

]
h = 1
s = 1

= C
(τη)[00]αiαj
11(00)

A
(τη)αiαj
CC =

[(
A

(τη)[fg] αiαj
CCnm(pq)

)
hs

]
h = 1
s = 1

= T
(τη)[00]αiαj
11(00)

A
(τη)αiαj
TC = A

(τη)αiαj
CT =

[(
A

(τη)[fg] αiαj
TCnm(pq)

)
hs

]
h = 1
s = 1

= B
(τη)[00]αiαj
11(00)

A
(τη)αiαj
θθ =

[(
A

(τη)[fg] αiαj
θθnm(pq)

)
hs

]
h = 1, 2, 3
s = 1, 2, 3

=

⎡
⎢⎢⎣

K
(τη)[00]αiαj
11(20) K

(τη)[00]αiαj
12(11) K

(τη)[01]αiαj
13(10)

K
(τη)[00]αiαj
12(11) K

(τη)[00]αiαj
22(02) K

(τη)[01]αiαj
23(01)

K
(τη)[10]αiαj
13(10) K

(τη)[10]αiαj
23(01) K

(τη)[11]αiαj
33(00)

⎤
⎥⎥⎦
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A
(τη)αiαj
λλ =

[(
A

(τη)[fg] αiαj
λλnm(pq)

)
hs

]
h = 1, 2, 3
s = 1, 2, 3

=

⎡
⎢⎢⎣

S
(τη)[00]αiαj
11(20) S

(τη)[00]αiαj
12(11) S

(τη)[01]αiαj
13(10)

S
(τη)[00]αiαj
12(11) S

(τη)[00]αiαj
22(02) S

(τη)[01]αiαj
23(01)

S
(τη)[10]αiαj
13(10) S

(τη)[10]αiαj
23(01) S

(τη)[11]αiαj
33(00)

⎤
⎥⎥⎦

A
(τη)αiαj
λθ =

[(
A

(τη)[fg] αiαj
λθnm(pq)

)
hs

]
h = 1, 2, 3
s = 1, 2, 3

=

⎡
⎢⎢⎣

X
(τη)[00]αiαj
11(20) X

(τη)[00]αiαj
12(11) X

(τη)[01]αiαj
13(10)

X
(τη)[00]αiαj
12(11) X

(τη)[00]αiαj
22(02) X

(τη)[01]αiαj
23(01)

X
(τη)[10]αiαj
13(10) X

(τη)[10]αiαj
23(01) X

(τη)[11]αiαj
33(00)

⎤
⎥⎥⎦

A
(τη)αiαj
θλ =

[(
A

(τη)[fg] αiαj
θλnm(pq)

)
hs

]
h = 1, 2, 3
s = 1, 2, 3

=

⎡
⎢⎢⎣

Y
(τη)[00]αiαj
11(20) Y

(τη)[00]αiαj
12(11) Y

(τη)[01]αiαj
13(10)

Y
(τη)[00]αiαj
12(11) Y

(τη)[00]αiαj
22(02) Y

(τη)[01]αiαj
23(01)

Y
(τη)[10]αiαj
13(10) Y

(τη)[10]αiαj
23(01) Y

(τη)[11]αiαj
33(00)

⎤
⎥⎥⎦ (42)

The arbitrary element of the matrix A(τη)αiαj , denoted as A
(τη)[fg] αiαj
rsnm (pq) with r, s = ε, T, C, θ, λ, is

evaluated based on the relation reported below [12]:

A
(τη)[fg] αiαj
rs nm (pq) =

l∑
k=1

ζk+1∫
ζk

ϒ
(k)

nm

∂ f F (k)αi
τ

∂ζ f

∂gF
(k)αj
η

∂ζ g

H1H2

Hp
1 Hq

2

dζ

for τ , η = 0, . . . , N + 1
for n, m = 1, . . . , 14
for p, q = 0, 1, 2
for f , g = 0, 1
for i, j = 1, . . . , 5

(43)

The previous relation (43) requires the introduction of the positions ∂0F (k)αi
τ

/∂ζ 0 = F (k)αi
τ

and
∂0F

(k)αj
η /∂ζ 0 = F

(k)αj
η . On the other hand, the quantity ϒ

(k)

nm = �C(k)

nm , ±z(k)

nm, ±e(k)

nm introduced in Eq. (43)
account for the terms of the three-dimensional constitutive matrix of Eq. (23) and the reduced elastic
coefficients. Further details can be found in Tornabene [12]. Finally, the expression of the generalized
vector 	(τ )αi in terms of vector δ

(τ ) of configuration variables is derived, for each τ = 0, . . . , N + 1,
substituting the higher order definition relations of Eq. (19) in the generalized constitutive relation of
Eq. (40), remembering the generalized kinematic model of Eq. (5):

	(τ )αi =
N+1∑
η=0

5∑
j=1

A(τη)αiαj D
αj
Ω δ

(η) =
N+1∑
η=0

O(τη)αiδ
(η) (44)

The complete expression of each element of the vector 	(τ )αi in terms of the generalized configu-
ration variables of the formulation can be found in Appendix A.

4 Governing Equations

The fundamental equations that rule the present multifield problem are obtained from the Master
Balance principle [12] under thermodynamic equilibrium conditions. For an arbitrary time interval
[t1, t2], a consistent solution is found if the time integral of the virtual variation δE = δΥ − δL of the
total energy of the doubly-curved shell solid, restricted to [t1, t2], assumes a null value. The quantity
δL = δLT + δLs is the virtual work of external actions applied to the solid, while δΥ is the virtual
variation of the free energy of the laminated shell. The quantity δL consists of two contributions: δLT

is the virtual work associated with the reference entropy of the system, while δLs is the virtual work of
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the multifield external loads applied at the top and bottom surfaces of the shell. More specifically, the
surface external loads applied at the top side (ζ = h/2) are denoted by the symbol “+”, while those
associated with the bottom side (ζ = −h/2) are identified with “−”. The virtual work δLs of external
surface loads is computed through the sum of the virtual work δLes associated with mechanical loads,
the virtual work δLfs of an external elastic foundation and the virtual works δQTs and δQCs of surface
hygrothermal loads, namely δLs = δLes + δLfs + δQTs + δQCs. In an expanded form, one gets:

δLs =
∫
α1

∫
α2

((
q̃(−)

1s δU (−)

1 + q̃(−)

2s δU (−)

2 + q̃(−)

3s δU (−)

3 + q(−)

T

T0

δT(−) + μ∞q(−)

C

C∞
δ�C(−)

)
H (−)

1 H (−)

2 +

+
(

q̃(+)

1s δU (+)

1 + q̃(+)

2s δU (+)

2 + q̃(+)

3s δU (+)

3 + q(+)

T

T0

δ�T(+)

)
H (+)

1 H (+)

2 + μ∞q(+)

C

C∞
δ�C(+)

)
A1A2dα1dα2 (45)

The mechanical loads are defined so that q̃(−)

is = q(−)

is + q(−)

iefk and q̃(+)

is = q(+)

is + q(+)

iefk with i = 1, 2, 3,
where q(−)

is , q(+)

is are the surface loads, while q(−)

iefk, q(+)

iefk are the external surface actions induced by an elastic
foundation.

Based on Eq. (45), the scaling factors H (+)

1 , H (+)

2 and H (−)

1 , H (−)

2 are calculated in each point of
the physical domain (4) setting ζ = h/2 and ζ = −h/2, respectively. If the virtual variations of
the configuration variables of the hygro-thermo-mechanical problem are expressed in terms of the
generalized kinematic model of Eq. (5), the virtual work δLs is expanded with higher-order theories
according to the following relation:

δLs =
∫
α1

∫
α2

N+1∑
τ=0

(
q̃(τ )

1s δu(τ )

1 + q̃(τ )

2s δu(τ )

2 + q̃(τ )

3s δu(τ )

3 + q(τ )

Ts

T0

δξ (τ) + μ∞q(τ )

Cs

C∞
δκ(τ)

)
A1A2dα1dα2 (46)

where δu(τ )

1 , δu(τ )

2 , δu(τ )

3 , δξ (τ), and δκ(τ) are the virtual variation of the generalized configuration variables
of the two-dimensional formulation. In addition, q̃(τ )

1s , q̃(τ )

2s , q̃(τ )

3s are the generalized external loads
associated with the mechanical elasticity problem, whereas q(τ )

Ts and q(τ )

Cs are the loads embedded in
the thermal conduction and mass diffusion problem, respectively. Following a similar approach of
Eq. (45), which is written for a three-dimensional solid, the relation q̃(τ )

is = q(τ )

is + q(τ )

iefk with i = 1, . . . , 3
can be easily derived. These quantities are calculated in each point of the physical domain, for
each τ = 0, . . . , N + 1, according to the relation reported below, setting F (1)αi(−)

τ
and F (1)αi(+)

τ
with

i = 1, . . . , 5 the value assumed by the thickness functions at the top and bottom surfaces of the shell,
respectively [12]:

q̃(τ )

1s = q̃(−)

1s F (1)α1(−)

τ
H (−)

1 H (−)

2 + q̃(+)

1s F (l)α1(+)

τ
H (+)

1 H (+)

2

q̃(τ )

2s = q̃(−)

2s F (1)α2(−)

τ
H (−)

1 H (−)

2 + q̃(+)

2s F (l)α2(+)

τ
H (+)

1 H (+)

2

q̃(τ )

3s = q̃(−)

3s F (1)α3(−)

τ
H (−)

1 H (−)

2 + q̃(+)

3s F (l)α3(+)

τ
H (+)

1 H (+)

2

q(τ )

Ts = q(−)

T F (1)α4(−)

τ
H (−)

1 H (−)

2 + q(+)

T F (l)α4(+)

τ
H (+)

1 H (+)

2

q(τ )

Cs = q(−)

C F (1)α5(−)

τ
H (−)

1 H (−)

2 + q(+)

C F (l)α5(+)

τ
H (+)

1 H (+)

2 (47)

The surface tractions q(+)

iefk, q(−)

iefk with i = 1, 2, 3 that act on a three-dimensional shell solid, induced
by an elastic foundation located at the top and bottom surfaces of the shell, are computed based on
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the following Winkler-Pasternak model:

q(±)

1efk = −k(±)

1f U (±)

1

q(±)

2efk = −k(±)

2f U (±)

2

q(±)

3efk = −k(±)

3f U (±)

3 + G(±)

f ∇2
(±)

U (±)

3 (48)

where k(±)

if with i = 1, 2, 3 is the elastic stiffness of uniformly-distributed linear elastic springs, while
G(±)

f is the shear modulus of the foundation. The Laplacian operator ∇2
(±)

defined at ζ = −h/2 and
ζ = h/2 is written in curvilinear principal coordinates α1, α2 as follows:

∇2
(±)

=
(

1

A2
1

(
H (±)

1

)2

∂2

∂α2
1

+ 1

A2
2

(
H (±)

2

)2

∂2

∂α2
2

+
(

1

A2
1A2

(
H (±)

1

)2

∂A2

∂α1

− h

2A2
1R2

2

(
H (±)

1

)2
H (±)

2

∂R2

∂α1

+

− 1

A3
1

(
H (±)

1

)2

∂A1

∂α1

− h

2A2
1R2

1

(
H (±)

1

)3

∂R1

∂α1

)
∂

∂α1

+
(

1

A1A2
2

(
H (±)

2

)2

∂A1

∂α2

+ h

2A2
2R2

1

(
H (±)

2

)2
H (±)

1

∂R1

∂α2

+

− 1

A3
2

(
H (±)

2

)2

∂A2

∂α2

− h

2A2
2R2

2

(
H (±)

2

)3

∂R2

∂α2

)
∂

∂α2

)
(49)

Unlike surface actions q(−)

is , q(+)

is with i = 1, 2, 3, the actions derived in Eq. (48) depend on the three-
dimensional displacement field components assumed by the doubly-curved shell solid at the top and
bottom surfaces.

The generalized actions q(τ )

1efk, q(τ )

2efk, q(τ )

3efk coming from the elastic foundation are, thus, derived
from Eq. (47). The introduction of the generalized kinematic model (5) for the computation of the
displacement components U (±)

1 , U (±)

2 , U (±)

3 in Eq. (48) leads to the following expression:

q(τ )

1efk = −L(τη)α1
fm1 u(τ )

1 = − (
k(−)

1f F (1)α1(−)

η
F (1)α1(−)

τ
H (−)

1 H (−)

2 + k(+)

1f F (l)α1(+)

η
F (l)α1(+)

τ
H (+)

1 H (+)

2

)
u(τ )

1

q(τ )

2efk = −L(τη)α2α2
fm2 u(τ )

2 = − (
k(−)

2f F (1)α2(−)

η
F (1)α2(−)

τ
H (−)

1 H (−)

2 + k(+)

2f F (l)α2(+)

η
F (l)α2(+)

τ
H (+)

1 H (+)

2

)
u(τ )

2

q(τ )

3efk = −L(τη)α3α3
fm3 u(τ )

3 = − ((
k(−)

3f − G(−)

f ∇2
(−)

)
F (1)α3(−)

η
F (1)α3(−)

τ
H (−)

1 H (−)

2

+ (
k(+)

3f − G(+)

f ∇2
(+)

)
F (l)α3(+)

η
F (l)α3(+)

τ
H (+)

1 H (+)

2

)
u(τ )

3 (50)

for τ = 0, . . . , N + 1. At this point, it may be convenient to arrange the generalized external loads
q(τ )

1s , q(τ )

2s , q(τ )

3s , q(τ )

Ts , q(τ )

Cs defined for each τ -th kinematic expansion order following the same approach
of Eq. (47), in the generalized vector q(τ )

s = [
q(τ )

1s q(τ )

2s q(τ )

3s q(τ )

Ts q(τ )

Cs

]T
written for each point of

the physical domain. In the same way, the generalized vector q(τ )

efk = [
q(τ )

1efk q(τ )

2efk q(τ )

3efk 0 0
]T

is
defined, whose elements are defined using Eqs. (47) and (48). In this way, the total external load vector
q(τ ) = q(τ )

s + q(τ )

efk can be introduced within the two-dimensional physical model.

The generalized virtual work of the reference entropy density η
(k) and of chemical potential μ

(k),
denoted by δLT and δLC, respectively, are computed as follows:

δLT = −
l∑

k=1

ζk+1∫
ζk

∫
α1

∫
α2

η
(k)

δΔT(k)H1H2A1A2dα1dα2dζ
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δLC = −
l∑

k=1

ζk+1∫
ζk

∫
α1

∫
α2

μ(k)
δΔC(k)H1H2A1A2dα1dα2dζ (51)

The quantities introduced in the previous relation assume a null value under thermodynamic
equilibrium conditions. In addition, the structure is in an equilibrium state; therefore, the different
convergence rates of the hygro-thermal transient conditions compared to the stationary one are not
considered as the stationary configuration is studied.

Substituting the expressions of energetic contributions within the Hamiltonian principle and
applying the integration by part rule, it is possible to derive the balance equations for any τ -th
kinematic expansion order with τ = 0, . . . , N + 1. The following expressions are thus obtained [12]:

1
A1

∂N (τ )α1
1

∂α1

+ N (τ )α1
1

A1A2

∂A2

∂α1

+ 1
A2

∂N (τ )α1
21

∂α2

+ N (τ )α1
21

A1A2

∂A1

∂α2

+ N (τ )α1
12

A1A2

∂A1

∂α2

− N (τ )α1
2

A1A2

∂A2

∂α1

+ T (τ )α1
1

R1

− P(τ )α1
1 + q(τ )

1s = 0

1
A2

∂N (τ )α2
2

∂α2

+ N (τ )α2
2

A1A2

∂A1

∂α2

+ 1
A1

∂N (τ )α2
12

∂α1

+ N (τ )α2
12

A1A2

∂A2

∂α1

+ N (τ )α2
21

A1A2

∂A2

∂α1

− N (τ )α2
1

A1A2

∂A1

∂α2

+ T (τ )α2
2

R2

− P(τ )α2
2 + q(τ )

2s = 0

1
A1

∂T (τ )α3
1

∂α1

+ T (τ )α3
1

A1A2

∂A2

∂α1

+ 1
A2

∂T (τ )α3
2

∂α2

+ T (τ )α3
2

A1A2

∂A1

∂α2

− N (τ )α3
1

R1

− N (τ )α3
2

R2

− S(τ )α3
3 + q(τ )

3s = 0

1
A1

∂H (τ )α4
1

∂α1

+ H (τ )α4
1

A1A2

∂A2

∂α1

+ 1
A2

∂H (τ )α4
2

∂α2

+ H (τ )α4
2

A1A2

∂A1

∂α2

− H (τ )α4
3 + q(τ )

Ts = 0

1
A1

∂C(τ )α5
1

∂α1

+ C(τ )α5
1

A1A2

∂A2

∂α1

+ 1
A2

∂C(τ )α5
2

∂α2

+ C(τ )α5
2

A1A2

∂A1

∂α2

− C(τ )α5
3 + q(τ )

Cs = 0 (52)

Employing a compact notation, Eq. (52) can be expressed as follows:
5∑

i=1

D∗αi
Ω

	(τ )αi + q(τ ) =
5∑

i=1

D∗αi
Ω

	(τ )αi + q(τ )

s + q(τ )

efk = 0 (53)

The balance operators D∗αi
Ω

with i = 1, . . . , 5 assume the following aspect:

D∗α1
Ω

=

⎡
⎢⎢⎢⎢⎣

�D∗α1
Ω

0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , D∗α2

Ω
=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
�D∗α2

Ω
0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , D∗α3

Ω
=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
�D∗α3

Ω
0 0 0 0

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

D∗α4
Ω

=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 �D∗α4

Ω
0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , D∗α5

Ω
=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 �D∗α5

Ω

⎤
⎥⎥⎥⎥⎦ (54)



1716 CMES, 2025, vol.142, no.2

In the previous definitions, the symbol 0 denotes a null vector of proper size, while the sub-
operators �D∗αi

Ω
with i = 1, . . . , 5 occurring in Eq. (54) assume the following extended form:

�D∗α1
Ω

=
[

1
A1

∂

∂α1

+ 1
A1A2

∂A2

∂α1

− 1
A1A2

∂A2

∂α1

1
A1A2

∂A1

∂α2

1
A2

∂

∂α2

+ 1
A1A2

∂A1

∂α2

1
R1

0 −1 0 0
]

�D∗α2
Ω

=
[
− 1

A1A2

∂A1

∂α2

1
A2

∂

∂α2

+ 1
A1A2

∂A1

∂α2

1
A1

∂

∂α1

+ 1
A1A2

∂A2

∂α1

1
A1A2

∂A2

∂α1

0
1

R2

0 −1 0
]

�D∗α3
Ω

=
[
− 1

R1

− 1
R2

0 0
1

A1

∂

∂α1

+ 1
A1A2

∂A2

∂α1

1
A2

∂

∂α2

+ 1
A1A2

∂A1

∂α2

0 0 −1
]

�D∗α4
Ω

= �D∗α5
Ω

=
[

1
A1

∂

∂α1

+ 1
A1A2

∂A2

∂α1

1
A2

∂

∂α2

+ 1
A1A2

∂A1

∂α2

−1
]

(55)

The boundary conditions of the two-dimensional problem are derived from some relations
obtained from applying the integration-by-part rule within the Hamiltonian principle. In this way,
it is possible to assess the boundary conditions of the physical domain by setting a null value for the
virtual variation of the configuration variable or, alternatively, for the parenthesis. In this way, the
simply supported (S) boundary conditions can be introduced for the generalized model:

N (τ )α1
1 = 0, u(τ )

2 = u(τ )

3 = ξ (τ) = κ(τ) = 0 at α1 = α0
1 or α1 = α1

1

N (τ )α2
2 = 0, u(τ )

1 = u(τ )

3 = ξ (τ) = κ(τ) = 0 at α2 = α0
2 or α2 = α1

2

(56)

The final form of the fundamental governing equations of the two-dimensional hygro-mechanical
higher-order model are derived by introducing the generalized constitutive relation (44) in the balance
relations of Eqs. (53). In this way, a relation is derived for τ = 0, . . . , N +1, directly expressed in terms
of generalized unknown variables from Eq. (5), collected in vector δ

(η), with η = 0, . . . , N + 1:
N+1∑
η=0

L(τη)δ
(η) + q(τ )

efk + q(τ )

s =
N+1∑
η=0

(
L(τη) − L(τη)

fm

)
δ

(η) + q(τ )

s = 0 (57)

Then, Eq. (57) is expanded to consider all terms occurring in the kinematic expansion within
Eq. (5). The size of matrices L(τη)

fm and L(τη) is 5 × 5 for each τ , η = 0, . . . , N + 1. In particular, the first
one is the generalized stiffness matrix of the elastic foundation acting at the top and bottom surface
of the shell, while the latter denotes the fundamental matrix of the system. The arbitrary element of
the matrix L(τη) is derived from the relation reported below:

L(τη) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�D∗α1
Ω

A(τη)α1α1
εε

�Dα1
Ω

�D∗α1
Ω

A(τη)α1α2
εε

�Dα2
Ω

�D∗α1
Ω

A(τη)α1α3
εε

�Dα3
Ω

�D∗α1
Ω

A(τη)α1α4
εT

�Dα4
Ω

�D∗α1
Ω

A(τη)α1α5
εC D̃

α5

Ω

�D∗α2
Ω

A(τη)α2α1
εε

�Dα1
Ω

�D∗α2
Ω

A(τη)α2α2
εε

�Dα2
Ω

�D∗α2
Ω

A(τη)α2α3
εε

�Dα3
Ω

�D∗α2
Ω

A(τη)α2α4
εT

�Dα4
Ω

�D∗α2
Ω

A(τη)α2α5
εC D̃

α5

Ω

�D∗α3
Ω

A(τη)α3α1
εε

�Dα1
Ω

�D∗α3
Ω

A(τη)α3α2
εε

�Dα2
Ω

�D∗α3
Ω

A(τη)α3α3
εε

�Dα3
Ω

�D∗α3
Ω

A(τη)α3α4
εT

�Dα4
Ω

�D∗α3
Ω

A(τη)α3α5
εC D̃

α5

Ω

0 0 0 �D∗α4
Ω

A(τη)α4α4
θθ

�Dα4
Ω

�D∗α4
Ω

A(τη)α4α5
λθ

�Dα5
Ω

0 0 0 �D∗α5
Ω

A(τη)α5α4
λθ

�Dα4
Ω

�D∗α5
Ω

A(τη)α5α5
λλ

�Dα5
Ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(58)
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Employing an expanded notation, Eq. (57) assumes the following aspect:

N+1∑
η=0

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

L(τη)α1α1
11 L(τη)α1α2

12 L(τη)α1α3
13 L(τη)α1α4

14 L(τη)α1α5
15

L(τη)α2α1
21 L(τη)α2α2

22 L(τη)α2α3
23 L(τη)α2α4

24 L(τη)α2α5
25

L(τη)α3α1
31 L(τη)α3α2

32 L(τη)α3α3
33 L(τη)α3α4

34 L(τη)α3α5
35

L(τη)α4α1
41 L(τη)α4α2

42 L(τη)α4α3
43 L(τη)α4α4

44 L(τη)α4α5
45

L(τη)α5α1
51 L(τη)α5α2

52 L(τη)α4α3
53 L(τη)α5α4

54 L(τη)α5α5
55

⎤
⎥⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

L(τη)α1α1
fm1 0 0 0 0

0 L(τη)α2α2
fm2 0 0 0

0 0 L(τη)α3α3
fm3 0 0

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

×

⎡
⎢⎢⎢⎢⎣

u(τ )

1

u(τ )

2

u(τ )

3

ξ (τ)

κ(τ)

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

q(τ )

1s

q(τ )

2s

q(τ )

3s

q(τ )

Ts

q(τ )

Cs

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎥⎦ (59)

A semi-analytical solution of the fundamental system (57) is now derived for the simply-supported
boundary condition already introduced in Eq. (56). Hence, a harmonic expansion for each generalized
configuration variable is assumed within the two-dimensional physical domain. To this end, the
curvilinear abscissa s i = s1, s2 with s i ∈ [

s0
i, s1

i

]
is considered. By defining with Li = s1

i − s0
i, the

physical domain length along α i = α1, α2 the principal direction, the expressions reported below can
be assumed [12], setting Ñ = M̃ = +∞:

u(τ )

1 (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

U(τ )

1nm cos
(

nπ

L1

s1

)
sin

(
mπ

L2

s2

)

u(τ )

2 (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

U(τ )

2nm sin
(

nπ

L1

s1

)
cos

(
mπ

L2

s2

)

u(τ )

3 (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

U(τ )

3nm sin
(

nπ

L1

s1

)
sin

(
mπ

L2

s2

)

ξ (τ) (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

Ξ(τ )

nm sin
(

nπ

L1

s1

)
sin

(
mπ

L2

s2

)

κ(τ) (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

K(τ )

nm sin
(

nπ

L1

s1

)
sin

(
mπ

L2

s2

)
(60)

The configuration variables u(τ )

1 , u(τ )

2 , u(τ )

3 , ξ (τ), and κ(τ) of the present formulation are expanded
for each τ = 0, . . . , N + 1, through trigonometric functions, and the wave amplitudes are set
equal to U(τ )

1nm, U(τ )

2nm, U(τ )

3nm, Ξ(τ )

nm and K(τ )

nm, respectively. They are conveniently arranged in vector
U(η)

nm = [
U(τ )

1nm U(τ )

2nm U(τ )

3nm Ξ(τ )

nm K(τ )

nm

]T
. Following a similar approach, even the generalized

external actions of Eq. (47) are expanded through trigonometric series according to Fig. 2. Thus,
generalized external actions are expressed according to the following relation, setting Q(τ )

snm =[
Q(τ )

1snm Q(τ )

2snm Q(τ )

3snm Q(τ )

Tsnm Q(τ )

Csnm

]T
the vector of the wave amplitudes:

q(τ )

1s (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

Q(τ )

1snm cos
(

nπ

L1

s1

)
sin

(
mπ

L2

s2

)
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q(τ )

2s (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

Q(τ )

2snm sin
(

nπ

L1

s1

)
cos

(
mπ

L2

s2

)

q(τ )

3s (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

Q(τ )

3snm sin
(

nπ

L1

s1

)
sin

(
mπ

L2

s2

)

q(τ )

Ts (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

Q(τ )

Tsnm sin
(

nπ

L1

s1

)
sin

(
mπ

L2

s2

)

q(τ )

Cs (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

Q(τ )

Csnm sin
(

nπ

L1

s1

)
sin

(
mπ

L2

s2

)
(61)

The introduction of the trigonometric expansion (61) of generalized external loads in Eq. (47)
allows one to derive the following expression of the quantities Q(τ )

1snm, Q(τ )

2snm, Q(τ )

3snm, Q(τ )

Tsnm, Q(τ )

Csnm:

Q(τ )

1snm = Q(−)

1snmF (1)α1(−)

τ
H (−)

1 H (−)

2 + Q(+)

1snmF (l)α1(+)

τ
H (+)

1 H (+)

2

Q(τ )

2snm = Q(−)

2snmF (1)α2(−)

τ
H (−)

1 H (−)

2 + Q(+)

2snmF (l)α2(+)

τ
H (+)

1 H (+)

2

Q(τ )

3snm = Q(−)

3snmF (1)α3(−)

τ
H (−)

1 H (−)

2 + Q(+)

3snmF (l)α3(+)

τ
H (+)

1 H (+)

2

Q(τ )

Tsnm = Q(−)

TsnmF (1)α4(−)

τ
H (−)

1 H (−)

2 + Q(+)

TsnmF (l)α4(+)

τ
H (+)

1 H (+)

2

Q(τ )

Csnm = Q(−)

CsnmF (1)α5(−)

τ
H (−)

1 H (−)

2 + Q(+)

CsnmF (l)α5(+)

τ
H (+)

1 H (+)

2 (62)

� �
fq
�

Figure 2: Three-dimensional representation of a rectangular plate subjected to a sinusoidal distribution
of external actions characterized by n = m = 1. The quantity q(±)

f denotes the amplitude of
the distribution. This kind of dispersion of external actions is applied to mechanical, thermal, and
hygrometric loading conditions

This study derives a semi-analytical solution of Eq. (57) for doubly-curved shell panels character-
ized by uniform radii of curvature Ri = R1, R2 and Lamé parameters Ai = A1, A2 within the physical
domain. In other words, the following geometric assumptions are considered for arbitrary values of
n, m:

Ai = cost ⇒ ∂n+mAi

∂sn
1∂sm

2

= 0, Ri = cost ⇒ ∂n+mRi

∂sn
1∂sm

2

= 0 (63)
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Hence, the quantities L1, L2 introduced in the previous sections can be evaluated. It should be
recalled that they are the lengths of the rectangular physical domain

[
α0

1 , α1
1

] × [
α0

2 , α1
2

] = [
ϕ0

1 , ϕ1
1

] ×[
ϑ 0

2 , ϑ 1
2

]
along α1, α2 principal directions. If the geometric assumptions of Eq. (63) are considered, a

closed-form analytical expression of L1, L2 is derived for a spherical surface with R = R1, R2:

s1 = R (ϕ − ϕ0) → L1 = s1
1 − s0

1 = R (ϕ1 − ϕ0)

s2 = R (ϑ − ϑ0) → L2 = s1
2 − s0

2 = R (ϑ1 − ϑ0) (64)

Finally, the Laplacian operator ∇2
(±)

of Eq. (49) is simplified, and the relation reported below is
derived at the top and bottom surface:

∇2
(±)

= 1(
H (±)

1

)2

∂2

∂s2
1

+ 1(
H (±)

2

)2

∂2

∂s2
2

(65)

As a particular case of Eq. (64), the following expressions of L1, L2 are derived for a cylindrical
panel, characterized by kn2 = 0:

s1 = R (ϕ − ϕ0) → L1 = s1
1 − s0

1 = R (ϕ1 − ϕ0)

s2 = y → L2 = s1
2 − s0

2 (66)

being R1 = R the radius of the cylindrical surface. If a rectangular plate is studied, the principal
curvature of the structure assumes a null value, namely kn1 = kn2 = 0. As a consequence, L1, L2 are
calculated as follows:

s1 = x → L1 = s1
1 − s0

1

s2 = y → L2 = s1
2 − s0

2 (67)

Even the expression of the generalized stiffness constants A
(τη)[fg] αiαj
rsnm (pq) is simplified for a rectangular

plate or a cylindrical panel. Another critical hypothesis that is considered here is made on the
hygro-thermo-elastic constitutive relationship (22). More specifically, the following relation, valid
for orthotropic materials, is assumed to relate the three-dimensional stress and strain components
expressed in the geometric reference system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
(k)
1

σ
(k)
2

τ
(k)
12

τ
(k)
13

τ
(k)
23

σ
(k)
3

η(k)

μ(k)

h(k)
1

h(k)
2

h(k)
3

c(k)
1

c(k)
2

c(k)
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�C(k)
11

�C(k)
12 0 0 0 �C(k)

13 −z(k)
11 −e(k)

11 0 0 0 0 0 0
�C(k)

12
�C(k)

22 0 0 0 �C(k)
23 −z(k)

22 −e(k)
22 0 0 0 0 0 0

0 0 �C(k)
66 0 0 0 0 0 0 0 0 0 0 0

0 0 0 �C(k)
44 0 0 0 0 0 0 0 0 0 0

0 0 0 0 �C(k)
55 0 0 0 0 0 0 0 0 0

�C(k)
13

�C(k)
23 0 0 0 �C(k)

33 −z(k)
33 −e(k)

33 0 0 0 0 0 0

z(k)
11 z(k)

22 0 0 0 z(k)
33 ξ

(k)

11 ξ
(k)

12 0 0 0 0 0 0

e(k)
11 e(k)

22 0 0 0 e(k)
33 ξ

(k)

12 ξ
(k)

22 0 0 0 0 0 0

0 0 0 0 0 0 0 0 k
(k)

11 0 0 y(k)
11 0 0

0 0 0 0 0 0 0 0 0 k
(k)

22 0 0 y(k)
22 0

0 0 0 0 0 0 0 0 0 0 k
(k)

33 0 0 y(k)
33

0 0 0 0 0 0 0 0 x(k)
11 0 0 s(k)

11 0 0
0 0 0 0 0 0 0 0 0 x(k)

22 0 0 s(k)
22 0

0 0 0 0 0 0 0 0 0 0 x(k)
33 0 0 s(k)

33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
(k)
1

ε
(k)
2

γ
(k)
12

γ
(k)
13

γ
(k)
23

ε
(k)
3

ˆΔT
(k)

ˆΔC
(k)

θ
(k)
1

θ
(k)
2

θ
(k)
3

λ
(k)
1

λ
(k)
2

λ
(k)
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(68)
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This constitutive behavior is obtained with orthotropic layers arranged in cross-ply lamination
schemes, which are oriented setting ϑ(k) = ±π/2 or ϑ(k) = 0. Introducing the geometric (63),
kinematic (60), and constitutive relations (68) in Eq. (57), the differential equations that govern
the hygro-thermo-elastic formulation are expressed as an algebraic linear system [12]. One gets for
Ñ = M̃ = +∞:

Ñ∑
n=1

M̃∑
m=1

(
N+1∑
η=0

(
L̃

(τη)

nm − L̃
(τη)

fnm

)
U(η)

nm + Q(τ )

snm

)
= 0 (69)

or equivalently in a more expanded form:

Ñ∑
n=1

M̃∑
m=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

N+1∑
η=0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L̃(τη)α1α1
11nm L̃(τη)α1α2

12nm L̃(τη)α1α3
13nm L̃(τη)α1α4

14nm L̃(τη)α1α5
15nm

L̃(τη)α2α1
21nm L̃(τη)α2α2

22nm L̃(τη)α2α3
23nm L̃(τη)α2α4

24nm L̃(τη)α2α5
25nm

L̃(τη)α3α1
31nm L̃(τη)α3α2

32nm L̃(τη)α3α3
33nm L̃(τη)α3α4

34nm L̃(τη)α3α5
35nm

L̃(τη)α4α1
41nm L̃(τη)α4α2

42nm L̃(τη)α4α3
43nm L̃(τη)α4α4

44nm L̃(τη)α4α5
45nm

L̃(τη)α5α1
51nm L̃(τη)α5α2

52nm L̃(τη)α5α3
53nm L̃(τη)α5α4

54nm L̃(τη)α5α5
55nm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎣

L̃(τη)α1α1
fm1nm 0 0 0 0

0 L̃(τη)α2α2
fm2nm 0 0 0

0 0 L̃(τη)α3α3
fm3nm 0 0

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣

U(η)

1nm

U(η)

2nm

U(η)

3nm

Ξ(η)

nm

K(η)

nm

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

Q(τ )

1snm

Q(τ )

2snm

Q(τ )

3snm

Q(τ )

Tsnm

Q(τ )

Csnm

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎥⎦ (70)

In practical applications, Eq. (69) does not consider an expansion of the solution with an infinite
number of terms, but it considers a finite integer value of Ñ, M̃, selected in terms of the acceptable
convergence rate of the solution. The complete expression of the coefficients L̃

(τη)αiαj
ijnm with i, j = 1, . . . , 5

belonging to the semi-analytical fundamental matrix, denoted by L̃
(τη)

nm , can be found in Appendix B. In
addition, the semi-analytical coefficients L̃(τη)α1α1

fm1nm , L̃(τη)α2α2
fm2nm , and L̃(τη)α3α3

fm3nm are calculated using the relation
reported below:

L(τη)α1
fm1nm = k(−)

1f F (1)α1(−)

η
F (1)α1(−)

τ
H (−)

1 H (−)

2 + k(+)

1f F (l)α1(+)

η
F (l)α1(+)

τ
H (+)

1 H (+)

2

L(τη)α2
fm2nm = k(−)

2f F (1)α2(−)

η
F (1)α2(−)

τ
H (−)

1 H (−)

2 + k(+)

2f F (l)α2(+)

η
F (l)α2(+)

τ
H (+)

1 H (+)

2

L(τη)α3
fm3nm =

(
k(−)

3f + G(−)

f

(
1(

H (−)

1

)2

(
nπ

L1

)2

+ 1(
H (−)

2

)2

(
mπ

L2

)2
))

F (1)α3(−)

η
F (1)α3(−)

τ
H (−)

1 H (−)

2 +

+
(

k(+)

3f + G(+)

f

(
1(

H (+)

1

)2

(
nπ

L1

)2

+ 1(
H (+)

2

)2

(
mπ

L2

)2
))

F (l)α3(+)

η
F (l)α3(+)

τ
H (+)

1 H (+)

2 (71)

5 Stress and Strain Recovery Procedure

In the present section, the two-dimensional solution of Eq. (69) is adopted to recover the response
of the three-dimensional doubly-curved shell panel under consideration, made up with l superimposed
laminae. To this end, a discrete grid of size IQ × 1 is selected along the thickness of an arbitrary k-th
layer, located between its lower and upper skin, located at ζk and ζk+1, respectively. The elements of
this grid are denoted by ζ

(k)

m̃ with m̃ = 1, . . . , IQ, and they are collected in the column vector ζ (k) =
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[
ζ

(k)

1 · · · ζ
(k)

m̃ · · · ζ
(k)

IQ

]T

:

ζ (k)

m̃ = ζk+1 − ζk

2
xm̃ + ζk+1 + ζk

2
= hk

2
xm̃ + ζk+1 + ζk

2
(72)

The one-dimensional grid (72) is defined according to the Chebyshev-Gauss-Lobatto (CGL)
harmonic distribution. For the interval [−1, 1], the arbitrary CGL element xm̃ reads as follows:

xm̃ = − cos
(

m̃ − 1
IQ − 1

π

)
(73)

Starting from Eq. (72), the vector ζ (k) associated with each k-th lamina is assembled into a vector
of size l IQ ×1 as follows, enabling the definition of a discrete grid throughout the interval [−h/2, h/2]:[
ζ1 · · · ζm · · · ζl IT

]T = [
ζ (1)T · · · ζ (k)T · · · ζ (l)T

]
(74)

The discretization of the rectangular physical domain is performed by defining a two-dimensional
computational grid of size IN × IM , whose sampling points

(
s1i, s2j

)
are selected according to the

following distributions [12]:

s1i = L1

2

(
1 − cos

(
i − 1

IN − 1
π

))
, s2j = L2

2

(
1 − cos

(
j − 1

IM − 1
π

))
(75)

with s1i ∈ [0, L1] and s2j ∈ [0, L2]. The combination of Eqs. (74) and (75) leads to the definition of
a three-dimensional computational grid representative of the entire doubly-curved shell solid. In this
way, the configuration variables, collected in the vector �(k)

(ijm)
, are calculated for an arbitrary point of

the grid starting from the harmonic expansion (60) of the semi-analytical solution (69) according to
Eq. (5):

�(k)

(ijm)
=

N+1∑
τ=0

F(k)

τ (ijm)
δ

(τ )

(ij) (76)

Matrix F(k)

τ (ijm)
contains the thickness functions within the three-dimensional solid while δ

(τ )

(ij) is the
vector of generalized configuration variables of the hygro-thermo-elastic problem associated with the
point of the physical domain located at

(
s1i, s2j

)
. In the same way, vector π (k)

(ijm) of three-dimensional
primary variables is derived from the discrete form of Eq. (19), being π

(τ )αi
(ij) the vector of discrete

generalized primary variables:

π (k)

(ijm)
=

N+1∑
τ=0

5∑
i=1

Z(kτ)αi
(ijm)

π
(τ )αi
(ij) (77)

Once the vector π (k)

(ijm) is derived from Eq. (77), only in-plane secondary variables of the problem
under consideration are derived from the constitutive relationship of Eq. (22). Thus, the following
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relations are obtained:

σ (k)

1(ijm)
= �C(k)

11 ε(k)

1(ijm)
+ �C(k)

12 ε(k)

2(ijm)
+ �C(k)

13 ε(k)

3(ijm)
− z(k)

11
˜ΔT

(k)

(ijm)
− e(k)

11
¯ΔC

(k)

(ijm)

σ (k)

2(ijm)
= �C(k)

12 ε(k)

1(ijm)
+ �C(k)

22 ε(k)

2(ijm)
+ �C(k)

23 ε(k)

3(ijm)
− z(k)

22
˜ΔT

(k)

(ijm)
− e(k)

22
¯ΔC

(k)

(ijm)

τ (k)

12(ijm)
= �C(k)

66 γ (k)

12(ijm)

h(k)

1(ijm)
= k

(k)

11 θ (k)

1(ijm)
+ y(k)

11 λ(k)

1(ijm)

h(k)

2(ijm)
= k

(k)

22 θ (k)

2(ijm)
+ y(k)

22 λ(k)

2(ijm)

c(k)

1(ijm)
= x(k)

11 θ (k)

1(ijm)
+ s(k)

11 λ(k)

1(ijm)

c(k)

2(ijm)
= x(k)

22 θ (k)

2(ijm)
+ s(k)

22 λ(k)

2(ijm)
(78)

Once the in-plane stresses are recovered from Eq. (78), the three-dimensional equilibrium equa-
tions [12] of the mechanical problem, written in curvilinear principal coordinates, are employed to
derive the out-of-plane stress components τ

(k)

13 and τ
(k)

23 :

∂τ
(k)

13

∂ζ
+ τ (k)

13

(
2

R1 + ζ
+ 1

R2 + ζ

)
= − 1

A1 (1 + ζ/R1)

∂σ
(k)

1

∂α1

+

+ σ
(k)

2 − σ
(k)

1

A1A2 (1 + ζ/R2)

∂A2

∂α1

− 1
A2 (1 + ζ/R2)

∂τ
(k)

12

∂α2

− 2τ
(k)

12

A1A2 (1 + ζ/R1)

∂A1

∂α2

∂τ
(k)

23

∂ζ
+ τ (k)

23

(
1

R1 + ζ
+ 2

R2 + ζ

)
= − 1

A2 (1 + ζ/R2)

∂σ
(k)

2

∂α2

+

+ σ
(k)

1 − σ
(k)

2

A1A2 (1 + ζ/R1)

∂A1

∂α2

− 1
A1 (1 + ζ/R1)

∂τ
(k)

12

∂α1

− 2τ
(k)

12

A1A2 (1 + ζ/R2)

∂A2

∂α1

(79)

The equilibrium Eq. (79) are solved in each k-th layer of the stacking sequence. For the first lamina
of the solid, i.e., k = 1, the boundary conditions are assessed from the loading conditions at the bottom
surface:

k = 1 ⇒
{

τ
(1)

13(ij1)
= q(−)

1s(ij)

τ
(1)

23(ij1)
= q(−)

2s(ij)

(80)

Once the through-the-thickness distribution of the out-of-plane shear stresses is found, the values
assumed by τ

(k)

13 and τ
(k)

23 at the top of the first layer are used as input parameters for the assessment of
the boundary conditions in the second layer (k = 2). This procedure is then applied for an arbitrary
(k + 1)-th layer starting from the stress distribution in the k-th layer:

k �= 1 ⇒
⎧⎨
⎩

τ
(k)

13(ij((k−1)IQ+1))
= τ

(k−1)

13(ij((k−1)IQ))

τ
(k)

23(ij((k−1)IQ+1))
= τ

(k−1)

23(ij((k−1)IQ))

(81)

The loading conditions at the top surface τ
(l)

13(ij(lIQ))
= q(+)

1(ij) and τ
(l)

23(ij(lIQ))
= q(+)

2(ij) are used to adjust

the through-the-thickness stress profile obtained from Eqs. (79)–(81), because the equilibrium of the
three-dimensional solid is governed by the first-order differential relations, according to Eq. (79). For
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an arbitrary point
(
s1i, s2j

)
of the computational grid, a linear correction of τ

(k)

13 and τ
(k)

23 distributions is
performed as follows [12]:

τ (k)

13(ijm)
= τ

(k)

13(ijm)
+

q(+)

1(ij) − τ
(l)

13(ij(lIQ))

h

(
ζm + h

2

)

τ (k)

23(ijm)
= τ

(k)

23(ijm)
+

q(+)

2(ij) − τ
(l)

23(ij(lIQ))

h

(
ζm + h

2

)
(82)

for m = 1, . . . , lIQ. In this way, the values obtained from the constitutive relationship (78) and the linear
correction of Eq. (82) can be adopted to derive the out-of-plane normal stress σ

(k)

3 from the following
equilibrium equation:

∂σ
(k)

3

∂ζ
+ σ (k)

3

(
1

R1 + ζ
+ 1

R2 + ζ

)
= − 1

A1 (1 + ζ/R1)

∂τ
(k)

13

∂α1

− τ
(k)

13

A1A2 (1 + ζ/R2)

∂A2

∂α1

+

− 1
A2 (1 + ζ/R2)

∂τ
(k)

23

∂α2

− τ
(k)

23

A1A2 (1 + ζ/R1)

∂A1

∂α2

+ σ
(k)

1

R1 + ζ
+ σ

(k)

2

R2 + ζ
(83)

In the same way, the three-dimensional hygro-thermal balance equations are solved once the in-
plane heat and mass flux h(k)

1 , h(k)

2 , and c(k)

1 , c(k)

2 are obtained from Eq. (78):

∂h(k)

3

∂ζ
+ h(k)

3

(
1

R1 + ζ
+ 1

R2 + ζ

)
= − 1

A1 (1 + ζ/R1)

∂h(k)

1

∂α1

− h(k)

1

A1A2 (1 + ζ/R2)

∂A2

∂α1

+

− 1
A2 (1 + ζ/R2)

∂h(k)

2

∂α2

− h(k)

2

A1A2 (1 + ζ/R1)

∂A1

∂α2

∂c(k)

3

∂ζ
+ c(k)

3

(
1

R1 + ζ
+ 1

R2 + ζ

)
= − 1

A1 (1 + ζ/R1)

∂c(k)

1

∂α1

− c(k)

1

A1A2 (1 + ζ/R2)

∂A2

∂α1

+

− 1
A2 (1 + ζ/R2)

∂c(k)

2

∂α2

− c(k)

2

A1A2 (1 + ζ/R1)

∂A1

∂α2

(84)

The boundary conditions of the previous equation are thus set from the loading conditions at
ζ = −h/2 in the case of the first layer and from the interlaminar compatibility conditions for the
other laminae of the stacking sequence:

k = 1 ⇒

⎧⎪⎪⎨
⎪⎪⎩

σ
(1)

3(ij1)
= q(−)

3(ij)

h
(1)

3(ij1)
= q(−)

T(ij)

�C(1)

3(ij1) = q(−)

C(ij)

, k �= 1 ⇒

⎧⎪⎪⎨
⎪⎪⎩

σ
(k)

3(ij((k−1)IT +1))
= σ

(k−1)

3(ij((k−1)IT))

h
(k)

3(ij((k−1)IT +1)) = h
(k−1)

3(ij((k−1)IT))
�C(k)

3(ij((k−1)IT +1))
= �C(k−1)

3(ij((k−1)IT))

(85)
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Following a similar approach to Eq. (82), the adjusted values of the out-of-plane secondary
variables σ

(k)

3 , h(k)

3 and c(k)

3 is derived from the following relation:

σ (k)

3(ijm)
= σ

(k)

3(ijm)
+

q(+)

3s(ij) − σ
(l)

3(ij(lIQ))

h

(
ζm + h

2

)

h(k)

3(ijm)
= h

(k)

3(ijm)
+

q(+)

T(ij) − h
(l)

3(ij(lIQ))

h

(
ζm + h

2

)

c(k)

3(ijm)
= �C(k)

3(ijm)
+

q(+)

C(ij) − �C(l)

3(ij(lIQ))

h

(
ζm + h

2

)
(86)

At this point, the out-of-plane primary variables of the hygro-thermo-mechanical formulation are
obtained from the inverse form of the three-dimensional constitutive relationship (68):

γ (k)

13(ijm)
= τ

(k)

13(ijm)

�C(k)

44

γ (k)

23(ijm)
= τ

(k)

23(ijm)

�C(k)

55

ε(k)

3(ijm)
= 1

�C(k)

33

(
σ (k)

3(ijm)
− �C(k)

13 ε(k)

1(ijm)
− �C(k)

23 ε(k)

2(ijm)
− z(k)

33
˜ΔT

(k)

(ijm)
− e(k)

33
¯ΔC

(k)

(ijm)

)

θ (k)

3(ijm)
= h(k)

3(ijm)s
(k)

33 − c(k)

3(ijm)y
(k)

33

k
(k)

33 s(k)

33 − x(k)

33 y(k)

33

λ(k)

3(ijm)
= c(k)

3(ijm)k
(k)

33 − h(k)

3(ijm)x
(k)

33

k
(k)

33 s(k)

33 − x(k)

33 y(k)

33

(87)

for i = 1, . . . , IN, j = 1, . . . , IM and m = 1, . . . , l IQ. Once all the primary variables are derived, it
is possible to compute the improved values of in-plane mechanical stresses and hygro-thermal flux
components by applying Eq. (23).

The procedure described above is, thus, repeated until a convergence of results is reached. In
this way, the two-dimensional semi-analytical solution can accurately predict the three-dimensional
multifield response of the laminated panel under consideration.

6 Generalized Taylor-Based Differential Quadrature

The computation of the generalized stiffness constants A
(τη)[fg] αiαj
rsnm (pq) in the present investigation is

performed using Eq. (43). Since a generalized kinematic model is adopted in Eq. (5), a closed-form
expression of these coefficients is not known a-priori. Therefore, a numerical method is adopted to
perform the integrals. In addition, the post-processing recovery procedure is based on the computation
of the partial derivatives of three-dimensional secondary variables for α1, α2 principal directions.
These derivatives are performed on the computational grid defined within the three-dimensional solid
employing a numerical procedure. To this end, the F-GDQ method is adopted to compute derivatives,
while the integrals are calculated with the GIQ method.
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If D(n) denotes the n-th order differentiation matrix, the derivative of an arbitrary smooth function
f = f (x) with x ∈ [a, b] can be expressed as follows:

f(n) = D(n)f (88)

The quantity f is the vector of size IQ × 1 containing the values assumed by the function f in a
discrete set of nodes, while f(n) is the corresponding vector of the n-th order derivative:

f =
[
f (x1) f (x2) · · · f

(
xIQ

)]T

f(n) =
[

∂nf
∂xn

∣∣∣∣
x1

∂nf
∂xn

∣∣∣∣
x2

· · · ∂nf
∂xn

∣∣∣∣
xIQ

]T

(89)

Following the Weierstrass interpolation theorem, the elements f (xi) with i = 1, . . . , IQ of vector
f are approximated through a linear combination of the values, denoted by ψij = ψj (xi) with
i, j = 1, . . . , IQ, assumed by a set of IQ basis functions within the same computational grid [12].

f (xi) ∼=
IQ∑
j=1

λ ijψj (xi) ⇔ f = Aλ (90)

with weighting coefficients λ ij. The arbitrary element of the matrix A is denoted as Aij = ψ j (xi).
Hence, the n-th order derivative of f is expressed in matrix form as follows:

f(n) = A(n)
λ with A(n)

ij = ∂nψj

∂xn

∣∣∣∣
xi

(91)

or equivalently with an extended notation:

∂nf
∂xn

∣∣∣∣
xi

=
IQ∑
j=1

λ ij

∂nψj

∂xn

∣∣∣∣
xi

(92)

The computational grid employed in Eq. (89) is defined according to the CGL distribution. For
the interval [−1, 1], the arbitrary node r i of the grid is evaluated as follows for i = 1, . . . , IQ:

r i = − cos
(

i − 1
IQ − 1

π

)
(93)

Matrix λ of interpolation weighting coefficients occurring in Eq. (90) is invertible; therefore,
Eq. (91) can be expressed as λ = A−1f. Therefore, the relation reported below can be derived with
proper substitutions:

f(n) = A(n)
λ = A(n)A−1f = D(n)f (94)

In other words, Eq. (94) introduces the quadrature procedure for the computation of the n-th
order derivative of a smooth function f , evaluated at a given set of IQ sampling points:

f (n) (xi) = ∂nf (x)

∂xn

∣∣∣∣
x=x i

∼=
I Q∑
j=1

D(n)

ij f
(
xj

)
(95)
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for i = 1, . . . , IQ. D(n)

ij = (
A(n)A−1)

ij
with i, j = 1, . . . , IQ denotes the arbitrary element of the

differential quadrature matrix D(n). The evaluation of the elements D(n)

ij can be performed once the basis
functions are provided for the interpolation of Eq. (90) and their n-th order derivative. The following
trigonometric functions [12] are adopted for ψij = ψj (xi), defined in the closed interval [−1, 1]:

ψij = ψj (r i) = cos
(

− (−1)
j j − 1

2
r i + π

4

(
1 − (−1)

j−1
))

(96)

The quantities D(n)

ij can be evaluated through Eq. (96), can be computed once a proper coordinate
transformation is performed because expression (96) refers to the dimensionless domain [−1, 1], while
function f is defined in the physical domain [a, b]. The relation reported below is, thus, considered for
i = 1, . . . , IQ:

xi = xIQ
− x1

rIQ
− r1

(r i − r1) + x1 (97)

with xi ∈ [a, b], while r i ∈ [−1, 1] has been defined in Eq. (93). The following relation is obtained:

D(n)

ij =
(

rIQ
− r1

xIQ
− x1

)n

D̃(n)

ij (98)

where D̃(n)

ij refers to the n-th order derivative coefficients associated with the interval [−1, 1].

The numerical integrations occurring in the paper are performed through the T-GIQ numerical
technique, which is derived from the F-GDQ rule of Eq. (95). Based on the T-GIQ method, the integral
of an arbitrary one-dimensional smooth function f = f (x) defined in a closed interval [a, b], restricted
to

[
xi, xj

] ⊆ [a, b] with i, j = 1, . . . , IQ, can be evaluated as follows:
xj∫

xi

f (x) dx =
I Q∑
k=1

wij
kf (xk) (99)

where the quantities wij
k with k = 1, . . . , IQ are the T-GIQ quadrature coefficients. The expression of

wij
k is derived by expanding through Taylor’s series the integrand function f near the sampling point

xi:
xj∫

xi

f (x) dx =
m−1∑
r=0

(
xj − xi

)r+1

(r + 1) !
drf
dxr

∣∣∣∣
xi

(100)

setting m ≤ IQ. A more accurate evaluation of the integral (100) is obtained if the integration interval
is divided into two sub-domains, as shown in the relation reported below:

xj∫
xi

f (x) dx =
xj+xi

2∫
xi

f (x) dx −
xj+xi

2∫
xj

f (x) dx (101)
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Employing the F-GDQ rule (95), the previous relation can be expressed as follows:
xj∫

xi

f (x) dx =
m−1∑
r=0

(
xj − xi

)r+1

2r+1 (r + 1) !

N∑
k=1

ς(r)
ik f (xk) −

m−1∑
r=0

(
xi − xj

)r+1

2r+1 (r + 1) !

N∑
k=1

ς(r)
jk f (xk) =

=
N∑

k=1

(
m−1∑
r=0

( (
xj − xi

)r+1

2r+1 (r + 1) !
ς(r)

ik −
(
xi − xj

)r+1

2r+1 (r + 1) !
ς(r)

jk

))
f (xk) =

=
N∑

k=1

(
m−1∑
r=0

(
xj − xi

)r+1

2r+1 (r + 1) !

(
ς(r)

ik + (−1)
r+2

ς(r)
jk

))
f (xk) =

N∑
k=1

wij
kf (xk) (102)

where ς
(r)
ij = D(r)

ij . Further details can be found in Reference [12]. In this way, the integral of a function in
the interval [a = x1, b = xN] is obtained from the sum of values restricted to [xi, xi+1] with i = 1, . . . , IQ,
as shown below:

b∫
a

f (x) dx =
N−1∑
i=1

xi+1∫
xi

f (x) dx =
N−1∑
i=1

(
N∑

k=1

wi(i+1)

k f (xk)

)
=

N∑
k=1

(
N−1∑
i=1

wi(i+1)

k

)
f (xk) =

N∑
k=1

w1N
k f (xk) (103)

7 Applications and Results

The ELW semi-analytical formulation is applied to some examples of investigation, where the
hygro-thermo-mechanical response of various laminated panels is derived. The structures considered
are characterized by various sizes, curvatures, and lamination schemes. In addition, the effect of
various loading conditions is deemed. Further details are reported in Fig. 3, where a representation
of the geometric model of each panel is provided, along with the geometric input parameters.
Validation of the formulation is performed by comparing, for each case, the semi-analytical solution
with the numerical predictions of high-computationally demanding 3D FEM models developed with
commercial software.

The lamination schemes consist of the superimposition of two orthotropic materials, namely
E-glass and R-glass composites. The hygro-thermo-mechanical properties of these materials are
evaluated from the analytical expressions reported in Appendix C. To this end, an isotropic polymeric
matrix is employed, while the volume fraction of the adopted E-glass and R-glass reinforcing fibers is
Vf = 0.7. In the following, some valuable properties of the polymeric matrix are reported:

ρm = 1200 kg/m3, Em = 4.5 GPa, νm = 0.4

am = 1.1 × 10−61/K, bm = 0.33 × 1/ρm

km = 0.2 J/K, sm = 2.29 × 10−12

Mm∞ = 6.83%, cm = 1000 J/kg K (104)
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Figure 3: Three-dimensional representation of panels of different curvature adopted in the examples.
The reference surface equation is provided in curvilinear principal coordinates for each case. The
lamination scheme is characterized by a softcore behavior; therefore, higher-order theories and zigzag
functions are needed to accurately predict its hygro-thermo-mechanical response
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The hygro-thermo-mechanical properties of E-glass fibers, modeled as isotropic materials, are
reported below:

ρ f = 2600 kg/m3, Ef = 74 GPa, ν f = 0.25

af = 0.5 × 10−51/K, bf = 0

kf = 1 J/K, s f = 0

Mf ∞ = 0%, cf = 800 J/kg K (105)

In the same way, R-glass fibers assume the following elastic constants:

ρ f = 2500 kg/m3, Ef = 86 GPa, ν f = 0.2

af = 0.3 × 10−51/K, bf = 0

kf = 1 J/K, s f = 0

Mf ∞ = 0%, cf = 800 J/kg K (106)

The selection of R-glass and E-glass as reinforcing phases allows for obtaining a lamination
scheme in which each layer is characterized by different stiffness compared to its adjacent one. In
this way, the zigzag effect is evident, and the model’s advantages are indicated. The influence of the
selection of higher-order polynomials in the ELW kinematic model is checked by including some soft
layers in the lamination schemes. The material properties of these laminae are derived from those of R-
glass epoxy and E-glass epoxy, respectively, by multiplying their three-dimensional constitutive matrix
(68) by 1/3 and 1/2. The soft materials considered are the E-glass-soft epoxy and R-glass-soft epoxy.

In all simulations presented in this section, the external surface actions q(+)

1s , q(+)

2s , q(+)

3s , q(+)

T , q(+)

C

and q(−)

1s , q(−)

2s , q(−)

3s , q(−)

T , q(−)

C acting at the top and bottom surfaces, respectively, are expanded with
trigonometric series according to Eqs. (61) and (62). In other words, an arbitrary distribution of
external loads is expressed as follows:

q(±)

1s (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

Q(±)

1λnm cos
(

nπ

L1

s1

)
sin

(
mπ

L2

s2

)

q(±)

2s (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

Q(±)

2λnm sin
(

nπ

L1

s1

)
cos

(
mπ

L2

s2

)

q(±)

3s (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

Q(±)

3λnm sin
(

nπ

L1

s1

)
sin

(
mπ

L2

s2

)

q(±)

Ts (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

Q(±)

Tλnm sin
(

nπ

L1

s1

)
sin

(
mπ

L2

s2

)

q(±)

Cs (s1, s2) =
Ñ∑

n=1

M̃∑
m=1

Q(±)

Cλnm sin
(

nπ

L1

s1

)
sin

(
mπ

L2

s2

)
(107)

where λ is the surface load distribution under consideration, and Q(±)

1λnm, Q(±)

2λnm, Q(±)

3λnm, Q(±)

Tλnm, and Q(±)

Cλnm

are the magnitude of each term associated with indices n, m. Starting from Eq. (107), various
load distributions can be modeled by adopting some proper expressions for the quantities
Q(±)

1λnm, Q(±)

2λnm, Q(±)

3λnm, Q(±)

Tλnm, Q(±)

Cλnm, as detailed in Fig. 4 and Reference [12]. In case of uniform distribution
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of the load over an area A = 4c10c20 of the physical domain, a patch load (λ = p) centered in the point
(s10, s20), one gets the following expression for Q(±)

iλnm with i = 1, 2, 3, T, C:

Q(±)

ipnm = 16q(±)

ip

π 2nm
sin

(
nπs10

L1

)
sin

(
mπs20

L2

)
sin

(
nπc10

L1

)
sin

(
mπc20

L2

)
(108)

where c10 and c20 are the lengths of the region along α1 and α2, respectively. As a particular case of
the patch load, uniformly-distributed surface actions (λ = u) account for the following expression of
Q(±)

iλnm:

Q(±)

iunm = 4q(±)

iu

π 2nm
(1 − cos (nπ)) (1 − cos (mπ)) (109)

Hydrostatic loads with linear variation along α1 are computed in Eq. (107) using the relations
reported below:

Q(±)

ihnm = − 4q(±)

ih

π 2nm
cos (nπ) (1 − cos (mπ)) (110)

In the same way, the hydrostatic load along α2 the principal direction is expanded as follows:

Q(±)

ihnm = − 4q(±)

ih

π 2nm
(1 − cos (nπ)) cos (mπ) (111)

Finally, sinusoidally-distributed external actions are expressed as follows:

Q(±)

isnm = q(±)

is (112)

The quantities q(±)

ip , q(±)

iu , q(±)

ih and q(±)

is in Eqs. (108)–(112) are the maximum value of the external
load for each case. In other words, they can be as a scaling value of the adopted distribution.

The first example considers a simply supported rectangular plate made of five layers of R-glass
and R-glass-soft composite materials with a central core of E-glass arranged in a cross-ply lamination
scheme. Further details on the geometric inputs and the stacking sequence can be depicted in Fig. 3.

Various simulations are performed on this structure, investigating the coupling effects among
hygrometric diffusion, thermal conduction, and mechanical elasticity problems. The thickness plots
of configuration, primary, and secondary variables are evaluated for points located at (s1, s2) =
(0.25L1, 0.25L2), and they are illustrated in Figs. 5–10.
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Figure 4: Different loading conditions applied at the top and bottom surfaces of the structure and
general expression of the terms of a two-dimensional Fourier series. These quantities are adopted in
the semi-analytical method by employing a finite number of terms up to the convergence of results
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Figure 5: Through-the-thickness plots of the three-dimensional displacement field components of a
simply-supported rectangular plate subjected to hygro-thermal sinusoidal loading with Ñ = M̃ = 1.
Effect of the coupling between the governing equations. Comparison to 3D FEM simulations. The
results are provided for the point located at (s1, s2) = (0.25L1, 0.25L2) within the physical domain
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Figure 6: Through-the-thickness plots of the three-dimensional strain components of a simply-
supported rectangular plate subjected to hygro-thermal sinusoidal loading with Ñ = M̃ = 1. Effect of
the coupling between the governing equations. Comparison to 3D FEM simulations. The results are
provided for the point located at (s1, s2) = (0.25L1, 0.25L2) within the physical domain

Figure 7: (Continued)
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Figure 7: Through-the-thickness plots of the three-dimensional stress components of a simply-
supported rectangular plate subjected to hygro-thermal sinusoidal loading with Ñ = M̃ = 1. Effect of
the coupling between the governing equations. Comparison to 3D FEM simulations. The results are
provided for the point located at (s1, s2) = (0.25L1, 0.25L2) within the physical domain

Figure 8: (Continued)
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Figure 8: Through-the-thickness plots of the temperature variation and moisture concentration
variation of a simply-supported rectangular plate subjected to hygro-thermal sinusoidal loading with
Ñ = M̃ = 1. Effect of the coupling between the governing equations. Comparison to 3D FEM
simulations. The results are provided for the point located at (s1, s2) = (0.25L1, 0.25L2) within the
physical domain

Figure 9: (Continued)
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Figure 9: Through-the-thickness plots of the temperature gradient components (a) and thermal flux
components (b) of a simply-supported rectangular plate subjected to hygro-thermal sinusoidal loading
with Ñ = M̃ = 1. Effect of the coupling between the governing equations. Comparison to 3D FEM
simulations. The results are provided for the point located at (s1, s2) = (0.25L1, 0.25L2) within the
physical domain

Figure 10: (Continued)
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Figure 10: Through-the-thickness plots of the moisture diffusion gradient components (a) and
hygrometric flux components (b) of a simply supported rectangular plate subjected to hygro-thermal
sinusoidal loading with Ñ = M̃ = 1. Effect of the coupling between the governing equations.
Comparison to 3D FEM simulations. The results are provided for the point located at (s1, s2) =
(0.25L1, 0.25L2) within the physical domain

Two preliminary investigations account for the thermo-mechanical (T-D) and the hygro-
mechanical (H-D) problems. The semi-analytical solution is derived using the ELDZL7 theory in
which a higher-order polynomial is assumed along the thickness direction with N = 7 and the
ELW zigzag function (7). The results are compared with those coming from a 3D FEM model
that employs 20-node brick elements characterized by 1,820,139 DOFs. External loads consist of
a sinusoidal distribution of external thermal and hygrometric fluxes applied at the top and bottom
surfaces characterized by Ñ = M̃ = 1:

q(+)

Ts = −10 J/m2, q(−)

Ts = −6 J/m2

q(+)

Cs = −1.3063 × 10−12 kg/m2, q(−)

Cs = −8.9194 × 10−13 kg/m2
(113)

In addition to T-D and H-D simulations, an uncoupled hygro-thermo-mechanical (H-T-D)
simulation is conducted with both the ELW two-dimensional model and the 3D FEM model. In other
words, in this case, the additional deformations coming from the presence of hygro-thermal loads
are considered, while coupling between thermal conduction and mass diffusion problem is denied.
The Soret and Dufour coupling effects are, thus, neglected. In addition to T-D, H-D, and H-T-D
simulations, some numerical investigations are performed with fully-coupled equations, including
Dufour and Soret hygro-thermal effects. More specifically, a parametric investigation is performed
in which different product values between the quantities ν are considered, ranging from 1 × 10−12

to 1 × 10−9. As extensively shown in the work by Sih [25], the value of λν must be calibrated for
experimental results. The value obtained here depends significantly on the hygro-thermal loading
conditions and the material selected for the analysis. Hence, no general values can be provided which
can be adopted in all laminated structures. Fig. 5 represents the through-the-thickness distribution of
the displacement field components for the selected plate. As can be seen, the introduction of coupling
between heat conduction and mass diffusion equations provides a significant variation in the deflection
of the structure. If the uncoupled H-T-D deflection is essentially due to the sum of the thermal
and hygrometric contributions, when Dufour and Soret phenomena are predicted by the model, a
reduction in the magnitude of the upward bending response is noticed in both in-plane and out-of-
plane components. Similar considerations are made for Fig. 6, which plots the strain components
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through the thickness direction. The hygro-thermal full coupling leads to minor deformations. The
contribution from hygrometric loading is balanced because the structural response gradually varies
from H-T-D results to T-D simulations in all deformation components. Fig. 7 shows the thickness plots
for the three-dimensional stress components. It indicates that thermal and hygrometric loads induce
additional stresses whose magnitudes are comparable to those obtained for an external mechanical
pressure applied to the structure. Finally, Fig. 8 illustrates the through-the-thickness distribution of
temperature and moisture concentration for the reference state of the structure. The presence of
soft regions within the lamination scheme is also visible in this case because the profile of these
configuration variables deviates from a conventional linear distribution, and a zigzag behavior is
observed. This fact is found also in simulations with fully-coupled equations. In particular, in this
case, a variation of the moisture concentration dispersion is noticed for an increased product value
λν, while the temperature profile remains unvaried. This is because the Soret constants are higher
than those associated with the Dufour phenomenon because, from a physical point of view, a positive
temperature variation enables the migration of moisture within the solid. Therefore, water tends to
leave the structure with a reduction in mass concentration. In contrast, an additional amount of
moisture within the solid does not induce any significant variation in the overall temperature of the
structure. This aspect can also be observed in plots of Fig. 9, representing the distribution of the
temperature gradient and heat flux components. Based on these plots, the temperature gradient is
the same for both T-D and H-T-D simulations. Even though the thermal generalized load is applied
along the thickness direction, the orthotropic nature of the materials induces non-negligible in-plane
thermal fluxes. In addition, the recovery procedure allows for the perfect fulfillment of the external
loading conditions at the top and bottom surfaces of the panel. Finally, Fig. 10 collects the primary
and secondary variables of the hygrometric equations. Unlike the corresponding quantities of the
previous figure, the coupling between mass diffusion and thermal conduction equations is more
clearly evident since different dispersions of mass concentration gradients and hygrometric fluxes are
obtained, compared to uncoupled simulations. The lamination scheme with softcore induces the in-
plane components derived from the uncoupled simulation to be very similar to those obtained with
fully-coupled equations in the soft layers, while a more significant variation of the moisture flux is
noticed in the remaining laminae.

A further investigation is then conducted on the plate, showing the influence of hygro-thermal
loads on the overall deflection of the plate. More specifically, the panel is subjected to external
loads with sinusoidal distribution, considering increasing magnitudes q(+)

Ts = −10ψ J/m2, q(+)

Cs =
−1.3063×10−12ψ kg/m2 and q(−)

Ts = −6ψ J/m2, q(−)

Cs = −8.9194×10−13ψ kg/m2 at the top and bottom
surfaces, respectively, being ψ a scale parameter. For each simulation, the overall deflection has been
evaluated regarding the maximum value of the U3 displacement field component within the reference
surface, located at ζ = 0, for different magnitudes of the external loads. The results have been collected
in Table 1. More specifically, the first column refers to pure hygro-mechanical simulations, while the
first row contains the results from thermo-mechanical analysis. All the remaining cells contain the
plate’s vertical deflection for various combinations of hygro-thermal loads. The results point out the
linearity of the model. The fundamental Eq. (57) are developed so that an increase in the source
variable results in an increase in the value of the configuration variables. Indeed, if the magnitude of
both thermal and moisture diffusion loads doubles, even the displacement field components double.
Similar considerations can be made also for strain and stress components.
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Table 1: Vertical deflection of a simply-supported rectangular plate subjected to various combinations
of thermal and hygrometric loads with different amplitudes. The simulations are conducted using the
ELDZL7 theory. The results are expressed in 10−4 m

ψ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.00 0.12 0.25 0.37 0.49 0.61 0.74 0.86 0.98 1.11 1.23
0.1 0.15 0.28 0.40 0.52 0.64 0.77 0.89 1.01 1.14 1.26 1.38
0.2 0.31 0.43 0.55 0.68 0.80 0.92 1.04 1.17 1.29 1.41 1.54
0.3 0.46 0.58 0.71 0.83 0.95 1.07 1.20 1.32 1.44 1.57 1.69
0.4 0.61 0.74 0.86 0.98 1.10 1.23 1.35 1.47 1.60 1.72 1.84
0.5 0.77 0.89 1.01 1.13 1.26 1.38 1.50 1.63 1.75 1.87 2.00
0.6 0.92 1.04 1.17 1.29 1.41 1.53 1.66 1.78 1.90 2.03 2.15
0.7 1.07 1.20 1.32 1.44 1.56 1.69 1.81 1.93 2.06 2.18 2.30
0.8 1.23 1.35 1.47 1.59 1.72 1.84 1.96 2.09 2.21 2.33 2.45
0.9 1.38 1.50 1.62 1.75 1.87 1.99 2.12 2.24 2.36 2.49 2.61
1.0 1.53 1.65 1.78 1.90 2.02 2.15 2.27 2.39 2.52 2.64 2.76

At this point, the model is validated and adopted in the case of panels with single curvature.
A cylindrical shell is, thus, considered, whose reference surface equation is reported in principal
coordinates in Fig. 3. The lamination scheme is the same as in the rectangular plate of the previous
simulation. In contrast, a Winkler foundation is modeled at the bottom surface, with an equal elastic
spring stiffness k(−)

3f = 1 × 108 Pa/m. Two different hydrostatic loads are applied to the structure. At
the bottom surface, we apply a thermal and moisture flux of magnitude q(−)

Th = −3 J/m2 and q(−)

Ch =
−8.9194 × 10−13 kg/m2, respectively, with a hydrostatic distribution along α1 the principal direction.
Thermal and moisture fluxes of magnitude q(−)

Th = −10 J/m2 and q(+)

Ch = −2.3063 × 10−12 kg/m2 are
applied at the top surface with a hydrostatic variation along α2. Various simulations are performed on
this structure with the present model for Ñ = M̃ = 150, including T-D, H-D, and H-T-D simulations.
The thickness plots, evaluated at the point in the physical domain located at (s1, s2) = (0.25L1, 0.25L2),
can be found in Figs. 11–16.
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Figure 11: Through-the-thickness plots of the three-dimensional displacement field components of a
circular cylinder lying on a Winkler foundation subjected to hygro-thermal hydrostatic loads along
α1 and α2, evaluated for Ñ = M̃ = 150. Effect of the coupling between the governing equations by
means of Dufour and Soret effects. Comparison to 3D FEM simulations. The results are provided for
the point located at (s1, s2) = (0.25L1, 0.25L2) within the physical domain
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Figure 12: Through-the-thickness plots of the three-dimensional strain components of a circular
cylinder lying on a Winkler foundation subjected to hygro-thermal hydrostatic loads along α1 and
α2, evaluated for Ñ = M̃ = 150. Effect of the coupling between the governing equations using Dufour
and Soret effects. Comparison with 3D FEM simulations. The results are provided for the point located
at (s1, s2) = (0.25L1, 0.25L2) within the physical domain
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Figure 13: Through-the-thickness plots of the three-dimensional stress components of a circular
cylinder lying on a Winkler foundation subjected to hygro-thermal hydrostatic loads along α1 and
α2, evaluated for Ñ = M̃ = 150. Effect of the coupling between the governing equations using Dufour
and Soret effects. Comparison with 3D FEM simulations. The results are provided for the point located
at (s1, s2) = (0.25L1, 0.25L2) within the physical domain
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Figure 14: Through-the-thickness plots of the temperature variation and moisture concentration
variation for the reference state of a circular cylinder lying on a Winkler foundation subjected to hygro-
thermal hydrostatic loads along α1 and α2, evaluated for Ñ = M̃ = 150. Effect of the coupling between
the governing equations using Dufour and Soret effects. Comparison with 3D FEM simulations. The
results are provided for the point located at (s1, s2) = (0.25L1, 0.25L2) within the physical domain
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Figure 15: Through-the-thickness plots of the three-dimensional temperature gradient components (a)
and thermal flux components (b) of a circular cylinder on a Winkler foundation subjected to hygro-
thermal hydrostatic loads along α1 and α2, evaluated for Ñ = M̃ = 150. Effect of the coupling between
the governing equations using Dufour and Soret effects. Comparison with 3D FEM simulations. The
results are provided for the point located at (s1, s2) = (0.25L1, 0.25L2) within the physical domain
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Figure 16: Through-the-thickness plots of the three-dimensional moisture concentration gradient
components (a) and hygrometric flux components (b) of a circular cylinder lying on a Winkler
foundation subjected to hygro-thermal hydrostatic loads along α1 and α2, evaluated for Ñ = M̃ = 150.
Effect of the coupling between the governing equations using Dufour and Soret effects. Comparison
with 3D FEM simulations. The results are provided for the point located at (s1, s2) = (0.25L1, 0.25L2)

within the physical domain

As in the previous example, T-D, H-D, and uncoupled H-T-D numerical results are compared to
those of a 3D FEM simulation of 765,772 DOFs. A perfect agreement between the displacement field
components obtained with the present formulation and those of the 3D FEM model is seen in Fig. 11.
In addition, from a mechanical point of view, the presence of the Dufour and Soret coupling effect
reduces the panel deflection, especially along the thickness direction and along α1, in the absence of
curvatures. A variation of the strain components distribution due to a hygrothermal coupling is noticed
in the strain components of Fig. 12. This behavior is particularly evident in the strain components,
ε1, ε2, and ε3, while the variation of the shear strains γ13 and γ23 is noticed in the second and fourth layer,
since the semi-analytical solution is found for the case of cross-ply stacking sequences and not for a
general lamination scheme. In contrast, an excellent agreement is found with the reference solution. As
far as the three-dimensional stress components are concerned, in Fig. 13, the hygrothermal stresses are
very significant for the selected loading conditions, and the influence of the Dufour and Soret coupling
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is particularly evident in the case of in-plane stress components. At the same time, a similar profile is
observed for the out-of-plane stresses. In addition, an increased out-of-plane normal stress coming
from the elastic foundation is found at the bottom surface. Even in this simulation, a zigzag profile of
temperature and moisture variation is derived, as shown in Fig. 14. An increase in temperature is found
from the bottom to the top of the cylinder because it is assumed that a thermal flux heats the panel
from its top lamina, while the loading condition at the bottom surface cools down the structure. This
behavior is not varied by the presence of moisture concentration. On the other hand, the moisture
distribution within the solid is influenced by the temperature distribution since the zigzag profile is
gradually transformed into a straight vertical line. The variation of moisture profile due to an abrupt
change of diffusion properties from a layer to its adjacent can be overcome by heating the structure.

Fig. 15 depicts the three-dimensional temperature gradient and thermal flux components for
this example. It indicates that the semi-analytical solution with Ñ = M̃ = 150 predicts well the
outcomes of 3D FEM. In addition, more stable results are provided in the interlaminar region. The
little discrepancy found for primary variables is not present in the case of secondary variables, where a
perfect alignment exists among different approaches. Also, in this case, the results are not influenced by
the Dufour and Soret coupling effect. In the case of moisture concentration gradients and hygrometric
fluxes of Fig. 16, the results of hygro-thermo-elastic fully coupled simulations deviate from those of
uncoupled models, especially for in-plane components. Finally, the loading conditions at the top and
bottom surfaces are perfectly matched due to the adoption of the post-processing recovery procedure
that employs the T-GDQ numerical method with IN = IM = 31.

The last example investigates the hygro-thermo-elastic behavior of a laminated spherical panel.
The geometric and material properties are detailed in Fig. 3. A mechanical loading is applied, whose
magnitude q(+)

3u = −7 × 105 N/m2 is uniformly distributed along the top surface. The hygro-
thermal loading conditions account for a patch distribution of thermal flux at the top surface with
q(+)

Th = −30 J/m2 characterized by (c10, d20) = (0.25L1, 0.25L2) and (s10, s20) = (0.5L1, 0.5L2), while
hygrometric loads of magnitudes q(+)

Ch = −2×10−12 kg/m2 and q(−)

Ch = −6×10−12 kg/m2 are characterized
by a hydrostatic distribution along α1 and α2, respectively. Finally, the value ΔT(−) = 0 K is prescribed
at the bottom surface by means of the ELW thickness functions of Eq. (6). In addition, an elastic
foundation is present at the bottom surface, modeled with the Winkler-Pasternak model of Eq. (48),
where the elastic spring stiffnesses are k(−)

1f = k(−)

2f = 5 × 107 Pa/m and k(−)

3f = 5 × 108 Pa/m, while the
shear modulus is set equal to G(−)

f = 5×106 Pa. Thickness plots, collected in Figs. 17–22, are evaluated
with the ELDZL7 kinematic model with the present formulation setting Ñ = M̃ = 150. Fig. 17
depicts the thickness plots for the displacement field components. As can be seen here, introducing a
generally distributed hygrothermal external load exhibits a variation of deflection of the shell, while the
stretching behavior remains almost unvaried. Note that the zigzag effect, though present, is less evident
as in the previous examples. In addition, a change of U2 slope is found when the value of the product
λν increases, while the variation in U1 profile is less evident. Three-dimensional strain components
are reported in Fig. 18, showing that the axial strain along α2 varies for the mechanical case under a
hygrothermal load. Adding hygrothermal coupling terms within the fundamental equations induces
a variation in the slope of γ12, which becomes more evident as the quantity λν increases. In the same
way, various γ23 thickness plots are found in all these simulations, even though the kinematic equations
are always respected at the top and bottom surfaces once the post-processing multifield procedure is
applied. In Fig. 19, the three-dimensional stress components of the spherical shell are collected. More
specifically, it is shown that σ1 exhibits an unusual slope change of its profile in the central core of the
structure, while σ2 distribution is not characterized by this peculiarity. On the other hand, shear stress
distributions obtained from the mechanical elasticity simulation are varied when hygro-thermal loads
are applied to the structure. Instead, σ3 component is not significantly influenced by these external
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actions. As far as the effect of the Winkler-Pasternak elastic foundation is concerned, the influence of
linear springs is more clearly evident than that of the shear layer.

Figure 17: Through-the-thickness plots of the three-dimensional displacement field components of a
spherical panel lying on a Winkler-Pasternak foundation subjected to uniformly-distributed mechan-
ical loads, hydrostatic hygrometric loads, a prescribed value of temperature and patch-distributed
thermal flux evaluated for Ñ = M̃ = 150. Effect of the coupling between the governing equations
using Dufour and Soret effects. Comparison with 3D FEM simulations. The results are provided for
the point located at (s1, s2) = (0.25L1, 0.25L2) within the physical domain
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Figure 18: Through-the-thickness plots of the three-dimensional strain components of a spherical
panel lying on a Winkler-Pasternak foundation subjected to uniformly-distributed mechanical loads,
hydrostatic hygrometric loads, a prescribed value of temperature and patch-distributed thermal flux
evaluated for Ñ = M̃ = 150. Effect of the coupling between the governing equations utilizing Dufour
and Soret effects. Comparison with 3D FEM simulations. The results are provided for the point located
at (s1, s2) = (0.25L1, 0.25L2) within the physical domain
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Figure 19: Through-the-thickness plots of the three-dimensional stress components of a spherical
panel lying on a Winkler-Pasternak foundation subjected to uniformly-distributed mechanical loads,
hydrostatic hygrometric loads, a prescribed value of temperature and patch-distributed thermal flux
evaluated for Ñ = M̃ = 150. Effect of the coupling between the governing equations utilizing Dufour
and Soret effects. Comparison with 3D FEM simulations. The results are provided for the point located
at (s1, s2) = (0.25L1, 0.25L2) within the physical domain
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Figure 20: Through-the-thickness plots of the temperature variation and of a moisture variation
with respect to the reference state of a spherical panel lying on a Winkler-Pasternak foundation
subjected to uniformly distributed mechanical loads, hydrostatic hygrometric loads, a prescribed value
of temperature and patch-distributed thermal flux evaluated for Ñ = M̃ = 150. Effect of the coupling
between the governing equations by means of Dufour and Soret effects. Comparison with 3D FEM
simulations. The results are provided for the point located at (s1, s2) = (0.25L1, 0.25L2) within the
physical domain
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Figure 21: Through-the-thickness plots of the temperature gradient components (a) and of the thermal
flux components (b) of a spherical panel lying on a Winkler-Pasternak foundation subjected to uni-
formly distributed mechanical loads, hydrostatic hygrometric loads, a prescribed value of temperature
and patch-distributed thermal flux evaluated for Ñ = M̃ = 150. Effect of the coupling between the
governing equations utilizing Dufour and Soret effects. Comparison with 3D FEM simulations. The
results are provided for the point located at (s1, s2) = (0.25L1, 0.25L2) within the physical domain



1752 CMES, 2025, vol.142, no.2

Figure 22: Through-the-thickness plots of the moisture concentration gradient components (a) and
of the hygrometric flux components (b) of a spherical panel lying on a Winkler-Pasternak foundation
subjected to uniformly-distributed mechanical loads, hydrostatic hygrometric loads, a prescribed value
of temperature and patch-distributed thermal flux evaluated for Ñ = M̃ = 150. Effect of the
coupling between the governing equations utilizing Dufour and Soret effects. Comparison with 3D
FEM simulations. The results are provided for the point located at (s1, s2) = (0.25L1, 0.25L2) within
the physical domain

Unlike the displacement field components of Fig. 17, the temperature and moisture concentration
variation thickness plots shown in Fig. 20 exhibit a typical zigzag behavior in all simulations. The
prescribed temperature at the bottom surface is always respected. On the other hand, Dufour and
Soret coupling enables scaling of the mass concentration dispersion along the thickness direction.
In particular, the hygrometric configuration variable exhibits a vertical distribution for increased
coupling of the equations by quantities. Hygro-thermal primary and secondary variables can be found
in Figs. 21 and 22. In particular, the same temperature gradient components and thermal fluxes
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distributions exhibit a significantly nonlinear aspect, along with zigzag effects. In addition, the same
results are obtained in both uncoupled and coupled hygro-thermal numerical investigations. For the
moisture flux components in Fig. 22, the c3 distribution always fulfills the loading conditions at the top
and bottom surfaces, and only a slight deviation from the uncoupled structural behavior is found for
coupled simulations. In contrast, the λ3 thickness plot depends significantly on the choice of product
λν. As far as λ1 and λ2 are concerned, introducing Dufour-Soret effects leads to a significant variation
of results. In addition, a zigzag response is induced in some interlaminar regions, while in other ones,
this structural behavior is balanced, with a smoother distribution.

8 Conclusions

The study investigates the hygro-thermo-mechanical response of doubly-curved solids using a
refined two-dimensional formulation with curvilinear principal coordinates, where an innovative ELW
kinematic model is introduced in which arbitrary values of the configuration variables are prescribed
at the top and bottom surfaces of the solid. In addition, a generalized distribution of external loads
is applied, accounting for surface tractions, thermal fluxes, and mass fluxes. Unlike most recent
research on the topic, the fundamental equations in this study account for the full coupling between
the displacement field, temperature, and moisture concentration through hygrothermal expansion
constants, along with Dufour and Soret effects. A semi-analytical solution is provided using Navier’s
method, and an efficient recovery procedure based on the hygro-thermo-mechanical balance equations
is adopted to derive the three-dimensional response of the laminated panel from a two-dimensional
solution. Therefore, the solution is suitable for simply supported panels with uniform curvature and
cross-ply lamination scheme, whereas a possible enhancement of the model can be its numerical
implementation involving further boundary conditions, variable curvature, and lamination scheme.
The formulation is validated and applied in some examples involving structures of different geometric
shapes. Uncoupled simulations are successfully compared to those of a 3D FEM model developed with
commercial software. Then, useful parametric investigations are performed to show the influence of
hygro-thermal coupling. This parametric analysis aims to demonstrate that hygro-thermal coupling
can affect the mechanical response of laminated structures as the model can predict this additional
response. The results, provided for different values of coupling coefficients, should be calibrated
against experimental results to evaluate the effective deviation from those associated with uncoupled
simulations for practical applications. The present formulation is a valid tool for predicting the
response of doubly-curved panels simultaneously subjected to mechanical and hygro-thermal loading
conditions.
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Appendix A

This section presents the extended expression, reported in matrix form in Eq. (44), of the
generalized higher-order secondary variables of the formulation, which are the elements of the vector
	(τ )αi . These quantities are expressed in terms of the hygro-thermo-mechanical configuration variables
of the model, which are arranged in vector δ

(η), with η = 0, . . . , N + 1.
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− A(τη)[10]αiα2

45(01)

R2
+ A(τη)[11]αiα2

45(00)

⎞
⎠ u(η)

2 +

+
⎛
⎝A(τη)[10]αiα3

14(10)

R1
+ A(τη)[10]αiα3

24(01)

R2
+ A(τη)[10]αiα3

44(10)

A1

∂

∂α1
+ A(τη)[10]αiα3

45(01)

A2

∂

∂α2
+ A(τη)[11]αiα3

34(00)

⎞
⎠ u(η)

3 − Z(τη)[10]αiα4
13(00)

ξ (η) − E(τη)[10]αiα5
13(00)

κ(η)

⎞
⎠

P(τ )αi
2 =

N+1∑
η=0

⎛
⎝
⎛
⎝A(τη)[10]αiα1

15(10)

A1

∂

∂α1
+ A(τη)[10]αiα1

25(01)

A1A2

∂A2

∂α1
− A(τη)[10]αiα1

56(10)

A1A2

∂A1

∂α2
+ A(τη)[10]αiα1

56(01)

A2

∂

∂α2
− A(τη)[10]αiα1

45(10)

R1
+ A(τη)[11]αiα1

45(00)

⎞
⎠ u(η)

1 +

+
⎛
⎝A(τη)[10]αiα2

15(10)

A1A2

∂A1

∂α2
+ A(τη)[10]αiα2

25(01)

A2

∂

∂α2
+ A(τη)[10]αiα2

56(10)

A1

∂

∂α1
− A(τη)[10]αiα2

56(01)

A1A2

∂A2

∂α1
− A(τη)[10]αiα2

55(01)

R2
+ A(τη)[11]αiα2

55(00)

⎞
⎠ u(η)

2 +

+
⎛
⎝A(τη)[10]αiα3

15(10)

R1
+ A(τη)[10]αiα3

25(01)

R2
+ A(τη)[10]αiα3

45(10)

A1

∂

∂α1
+ A(τη)[10]αiα3

55(01)

A2

∂

∂α2
+ A(τη)[11]αiα3

35(00)

⎞
⎠ u(η)

3 − Z(τη)[10]αiα4
23(00)

ξ (η) − E(τη)[10]αiα5
23(00)

κ(η)

⎞
⎠

S(τ )αi
3 =

N+1∑
η=0

⎛
⎝
⎛
⎝A(τη)[10]αiα1

13(10)

A1

∂

∂α1
+ A(τη)[10]αiα1

23(01)

A1A2

∂A2

∂α1
− A(τη)[10]αiα1

36(10)

A1A2

∂A1

∂α2
+ A(τη)[10]αiα1

36(01)

A2

∂

∂α2
− A(τη)[10]αiα1

34(10)

R1
+ A(τη)[11]αiα1

34(00)

⎞
⎠ u(η)

1 +

+
⎛
⎝A(τη)[10]αiα2

13(10)

A1A2

∂A1

∂α2
+ A(τη)[10]αiα2

23(01)

A2

∂

∂α2
+ A(τη)[10]αiα2

36(10)

A1

∂

∂α1
− A(τη)[10]αiα2

36(01)

A1A2

∂A2

∂α1
− A(τη)[10]αiα2

35(01)

R2
+ A(τη)[11]αiα2

35(00)

⎞
⎠ u(η)

2 +

+
⎛
⎝A(τη)[10]αiα3

13(10)

R1
+ A(τη)[10]αiα3

23(01)

R2
+ A(τη)[10]αiα3

34(10)

A1

∂

∂α1
+ A(τη)[10]αiα3

35(01)

A2

∂

∂α2
+ A(τη)[11]αiα3

33(00)

⎞
⎠ u(η)

3 − Z(τη)[10]αiα4
33(00)

ξ (η) − E(τη)[10]αiα5
33(00)

κ(η)

⎞
⎠

E(τ )αi =
N+1∑
η=0

⎛
⎝
⎛
⎝Z(τη)[00]αiα1

11(10)

A1

∂

∂α1
+ Z(τη)[00]αiα1

22(01)

A1A2

∂A2

∂α1
− Z(τη)[00]αiα1

12(10)

A1A2

∂A1

∂α2
+ Z(τη)[00]αiα1

12(01)

A2

∂

∂α2
− Z(τη)[00]αiα1

13(10)

R1
+ Z(τη)[01]αiα1

13(00)

⎞
⎠ u(η)

1 +

+
⎛
⎝Z(τη)[00]αiα2

11(10)

A1A2

∂A1

∂α2
+ Z(τη)[00]αiα2

22(01)

A2

∂

∂α2
+ Z(τη)[00]αiα2

12(10)

A1

∂

∂α1
− Z(τη)[00]αiα2

12(01)

A1A2

∂A2

∂α1
− Z(τη)[00]αiα2

23(01)

R2
+ Z(τη)[01]αiα2

23(00)

⎞
⎠ u(η)

2 +

+
⎛
⎝Z(τη)[00]αiα3

11(10)

R1
+ Z(τη)[00]αiα3

22(01)

R2
+ Z(τη)[00]αiα3

13(10)

A1

∂

∂α1
+ Z(τη)[00]αiα3

23(01)

A2

∂

∂α2
+ Z(τη)[01]αiα3

33(00)

⎞
⎠ u(η)

3 + C(τη)[00]αiα4
11(00)

ξ (η) + B(τη)[00]αiα5
11(00)

κ(η)

⎞
⎠

M(τ )αi =
N+1∑
η=0

⎛
⎝
⎛
⎝E(τη)[00]αiα1

11(10)

A1

∂

∂α1
+ E(τη)[00]αiα1

22(01)

A1A2

∂A2

∂α1
− E(τη)[00]αiα1

12(10)

A1A2

∂A1

∂α2
+ E(τη)[00]αiα1

12(01)

A2

∂

∂α2
− E(τη)[00]αiα1

13(10)

R1
+ E(τη)[01]αiα1

13(00)

⎞
⎠ u(η)

1 +

+
⎛
⎝E(τη)[00]αiα2

11(10)

A1A2

∂A1

∂α2
+ E(τη)[00]αiα2

22(01)

A2

∂

∂α2
+ E(τη)[00]αiα2

12(10)

A1

∂

∂α1
− E(τη)[00]αiα2

12(01)

A1A2

∂A2

∂α1
− E(τη)[00]αiα2

23(01)

R2
+ E(τη)[01]αiα2

23(00)

⎞
⎠ u(η)

2 +

+
⎛
⎝E(τη)[00]αiα3

11(10)

R1
+ E(τη)[00]αiα3

22(01)

R2
+ E(τη)[00]αiα3

13(10)

A1

∂

∂α1
+ E(τη)[00]αiα3

23(01)

A2

∂

∂α2
+ E(τη)[01]αiα3

33(00)

⎞
⎠ u(η)

3 + B(τη)[00]αiα4
11(00)

ξ (η) + T (τη)[00]αiα5
11(00)

κ(η)
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H (τ )αi
1 = −

N+1∑
η=0

(
K (τη)[00]αiα4

11(20)

A1

∂

∂α1

+ K (τη)[00]αiα4
12(11)

A2

∂

∂α2

+ K (τη)[01]αiα4
13(10)

)
ξ (η)+

−
N+1∑
η=0

(
Y (τη)[00]αiα5

11(20)

A1

∂

∂α1

+ Y (τη)[00]αiα5
12(11)

A2

∂

∂α2

+ Y (τη)[01]αiα5
13(10)

)
κ(η)

H (τ )αi
2 = −

N+1∑
η=0

(
K (τη)[00]αiα4

12(11)

A1

∂

∂α1

+ K (τη)[00]αiα4
22(02)

A2

∂

∂α2

+ K (τη)[01]αiα4
23(01)

)
ξ (η)+

−
N+1∑
η=0

(
Y (τη)[00]αiα5

12(11)

A1

∂

∂α1

+ Y (τη)[00]αiα5
22(02)

A2

∂

∂α2

+ Y (τη)[01]αiα5
23(01)

)
κ(η)

H (τ )αi
3 = −

N+1∑
η=0

(
K (τη)[10]αiα4

13(10)

A1

∂

∂α1

+ K (τη)[10]αiα4
23(01)

A2

∂

∂α2

+ K (τη)[11]αiα4
33(00)

)
ξ (η)+

−
N+1∑
η=0

(
Y (τη)[10]αiα5

13(10)

A1

∂

∂α1

+ Y (τη)[10]αiα5
23(01)

A2

∂

∂α2

+ Y (τη)[11]αiα5
33(00)

)
κ(η)

C(τ )αi
1 = −

N+1∑
η=0

(
X (τη)[00]αiα4

11(20)

A1

∂

∂α1

+ X (τη)[00]αiα4
12(11)

A2

∂

∂α2

+ X (τη)[01]αiα4
13(10)

)
ξ (η)+

−
N+1∑
η=0

(
S(τη)[00]αiα5

11(20)

A1

∂

∂α1

+ S(τη)[00]αiα5
12(11)

A2

∂

∂α2

+ S(τη)[01]αiα5
13(10)

)
κ(η)

C(τ )αi
2 = −

N+1∑
η=0

(
X (τη)[00]αiα4

12(11)

A1

∂

∂α1

+ X (τη)[00]αiα4
22(02)

A2

∂

∂α2

+ X (τη)[01]αiα4
23(01)

)
ξ (η)+

−
N+1∑
η=0

(
S(τη)[00]αiα5

12(11)

A1

∂

∂α1

+ S(τη)[00]αiα5
22(02)

A2

∂

∂α2

+ S(τη)[01]αiα5
23(01)

)
κ(η)

C(τ )αi
3 = −

N+1∑
η=0

(
X (τη)[10]αiα4

13(10)

A1

∂

∂α1

+ X (τη)[10]αiα4
23(01)

A2

∂

∂α2

+ X (τη)[11]αiα4
33(00)

)
ξ (η)+

−
N+1∑
η=0

(
S(τη)[10]αiα5

13(10)

A1

∂

∂α1

+ S(τη)[10]αiα5
23(01)

A2

∂

∂α2

+ S(τη)[11]αiα5
33(00)

)
κ(η) (A1)

Appendix B

In the following, the interested reader can find the semi-analytical coefficients denoted by L̃
(τη)αiαj
ijnm

with i, j = 1, . . . , 5, of the fundamental matrix of Eq. (70). They are calculated for each wave number
n, m of the harmonic expansion of the configuration variables reported in Eq. (60).

L̃(τη)α1α1
11nm = −A(τη)[00]α1α1

11(20)

(
nπ

L1

)2

− A(τη)[00]α1α1
66(02)

(
mπ

L2

)2

− A(τη)[00]α1α1
44(20)

R2
1

+ A(τη)[01]α1α1
44(10) + A(τη)[10]α1α1

44(10)

R1

− A(τη)[11]α1α1
44(00)
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L̃(τη)α1α2
12nm = −

(
A(τη)[00]α1α2

12(11) + A(τη)[00]α1α2
66(11)

)(
nπ

L1

)(
mπ

L2

)

L̃(τη)α1α3
13nm =

(
A(τη)[01]α1α3

13(10) − A(τη)[10]α1α3
44(10) + A(τη)[00]α1α3

11(20) + A(τη)[00]α1α3
44(20)

R1

+ A(τη)[00]α1α3
12(11)

R2

)(
nπ

L1

)

L̃(τη)α1α4
14nm = −Z(τη)[00]α1α4

11(10)

(
nπ

L1

)

L̃(τη)α1α5
15nm = −E(τη)[00]α1α5

11(10)

(
nπ

L1

)

L̃(τη)α2α1
21nm = −

(
A(τη)[00]α2α1

12(11) + A(τη)[00]α2α1
66(11)

)(
nπ

L1

)(
mπ

L2

)

L̃(τη)α2α2
22nm = −A(τη)[00]α2α2

66(20)

(
nπ

L1

)2

− A(τη)[00]α2α2
22(02)

(
mπ

L2

)2

− A(τη)[00]α2α2
55(02)

R2
2

+ A(τη)[01]α2α2
55(01) + A(τη)[10]α2α2

55(01)

R2

− A(τη)[11]α2α2
55(00)

L̃(τη)α2α3
23nm =

(
A(τη)[01]α2α3

23(01) − A(τη)[10]α2α3
55(01) + A(τη)[00]α2α3

22(02) + A(τη)[00]α2α3
55(02)

R2

+ A(τη)[00]α2α3
12(11)

R1

)(
mπ

L2

)

L̃(τη)α2α4
24nm = −Z(τη)[00]α2α4

22(01)

(
mπ

L2

)

L̃(τη)α2α5
25nm = −E(τη)[00]α2α5

22(01)

(
mπ

L2

)

L̃(τη)α3α1
31nm =

(
A(τη)[10]α3α1

13(10) − A(τη)[01]α3α1
44(10) + A(τη)[00]α3α1

11(20) + A(τη)[00]α3α1
44(20)

R1

+ A(τη)[00]α3α1
12(11)

R2

)(
nπ

L1

)

L̃(τη)α3α2
32nm =

(
A(τη)[10]α3α2

23(01) − A(τη)[01]α3α2
55(01) + A(τη)[00]α3α2

12(11)

R1

+ A(τη)[00]α3α2
22(02) + A(τη)[00]α3α2

55(02)

R2

)(
mπ

L2

)

L̃(τη)α3α3
33nm = −A(τη)[00]α3α3

44(20)

(
nπ

L1

)2

− A(τη)[00]α3α3
55(02)

(
mπ

L2

)2

− A(τη)[00]α3α3
11(20)

R2
1

− A(τη)[00]α3α3
22(02)

R2
2

− 2A(τη)[00]α3α3
12(11)

R1R2

+

−A(τη)[01]α3α3
13(10) + A(τη)[10]α3α3

13(10)

R1

− A(τη)[01]α3α3
23(01) + A(τη)[10]α3α3

23(01)

R2

− A(τη)[11]α3α3
33(00)

L̃(τη)α3α4
34nm = Z(τη)[00]α3α4

11(10)

R1

+ Z(τη)[00]α3α4
22(01)

R2

+ Z(τη)[10]α3α4
33(00)

L̃(τη)α3α5
35nm = E(τη)[00]α3α5

11(10)

R1

+ E(τη)[00]α3α5
22(01)

R2

+ E(τη)[10]α3α5
33(00)

L̃(τη)α4α1
41nm = 0

L̃(τη)α4α2
42nm = 0

L̃(τη)α4α3
43nm = 0

L̃(τη)α4α4
44nm = K (τη)[00]α4α4

11(20)

(
nπ

L1

)2

+ K (τη)[00]α4α4
22(02)

(
mπ

L2

)2

+ K (τη)[11]α4α4
33(00)
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L̃(τη)α4α5
45nm = Y (τη)[00]α4α5

11(20)

(
nπ

L1

)2

+ Y (τη)[00]α4α5
22(02)

(
mπ

L2

)2

+ Y (τη)[11]α4α5
33(00)

L̃(τη)α5α1
51nm = 0

L̃(τη)α5α2
52nm = 0

L̃(τη)α5α3
53nm = 0

L̃(τη)α5α4
54nm = X (τη)[00]α5α4

11(20)

(
nπ

L1

)2

+ X (τη)[00]α5α4
22(02)

(
mπ

L2

)2

+ X (τη)[11]α5α4
33(00)

L̃(τη)α5α5
55nm = S(τη)[00]α5α5

11(20)

(
nπ

L1

)2

+ S(τη)[00]α5α5
22(02)

(
mπ

L2

)2

+ S(τη)[11]α5α5
33(00) (A2)

Appendix C

This appendix presents some analytical expressions selected from existing literature, which are
adopted to derive the equivalent hygro-thermo-mechanical properties of composite materials. In this
way, it is possible to model with a continuum-based approach heterogeneous materials made of an
isotropic matrix (m) and a reinforcing phase consisting of long fibers (f ), which are assumed to be
uniformly distributed within the reference volume element and modeled as isotropic cylinders. The
homogenized material properties are computed in terms of the volume fraction of the matrix and
reinforcing fibers, here denoted by Vm and Vf , respectively. This study assumes that no voids are
present within the heterogeneous material, namely Vm + Vf = 1.

Density

ρ = Vmρm + Vf ρ f (A3)

Orthotropic engineering constants

E1 = Ef Vf + EmVm

v12 = v13 = vf Vf + vmVm

G12 = G13 = Gm

Gf

(
1 + Vf

) + GmVm

Gf Vm + Gm

(
1 + Vf

)
G23 = GmGf

(
Vf + η4Vm

)
GmVf + η4Gf Vm

, η4 = (3 − 4vm) Gf + Gm

4 (1 − vm) Gf

Kf = Ef

2
(
1 + vf

) (
1 − 2vf

) = Ef

2
(
1 − vf − 2v2

f

)
Km = Em

2 (1 + vm) (1 − 2vm)
= Em

2
(
1 − vm − 2v2

m

)
K = Km

(
Kf + Gm

)
Vm + Kf (Km + Gm) Vf(

Kf + Gm

)
Vm + (Km + Gm) Vf

m = 1 + 4Kv2
12

E1

E2 = E3 = 4KG23

K + mG23
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v23 = K − G23m
K + G23m

(A4)

Thermal expansion coefficients

a11 = Vf Ef af + VmEmam

E1

a22 = a33 = (
1 + ν f

)
af Vf + (1 + νm) amVm − ν12a11 (A5)

Hygroscopic expansion coefficients

b11 = Vf Ef bf + VmEmbm

E1

b22 = b33 = (
1 + ν f

)
bf Vf + (1 + νm) bmVm − ν12b11 (A6)

Specific heat capacity

cp = Vf ρf cpf + Vmρmcpm

ρ
(A7)

Equilibrium moisture content

M∞ = VmρmM∞m + Vf ρf M∞f

ρ
(A8)

Thermal conductivity

k11 = Vmkm + Vf kf = (
1 − Vf

)
km + Vf kf = (

kf − km

)
Vf + km

if kf > km → Bk = 2
(

km

kf

− 1
)

→ k22 = k33 =
(

1 − 2

√
Vf

π

)
km

+ km

Bk

⎛
⎜⎜⎝π − 4√

1 − B2
kVf

π

⎞
⎟⎟⎠ arctan

⎛
⎜⎜⎝
√

1 − B2
kVf

π

1 +
√

B2
kVf

π

⎞
⎟⎟⎠

if kf ≤ km → k22 = k33 =
(

1 − 2

√
Vf

π

)
km (A9)

Diffusion coefficients

s11 = Vmsm + Vf s f = (
1 − Vf

)
sm + Vf s f = (

s f − sm

)
Vf + sm

if s f > sm → Bs = 2
(

sm

sf

− 1
)

→ s22 = s33 =
(

1 − 2

√
Vf

π

)
sm

+ sm

Bs

⎛
⎜⎜⎝π − 4√

1 − B2
s Vf

π

⎞
⎟⎟⎠ arctan

⎛
⎜⎜⎝
√

1 − B2
s Vf

π

1 +
√

B2
s Vf

π

⎞
⎟⎟⎠
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if s f ≤ sm → s22 = s33 =
(

1 − 2

√
Vf

π

)
sm (A10)

Dufour coefficients

y11 = Vmym + Vf yf = (
1 − Vf

)
ym + Vf yf = (

yf − ym

)
Vf + ym

if yf > ym → By = 2
(

ym

yf

− 1
)

→ y22 = y33 =
(

1 − 2

√
Vf

π

)
ym

+ ym

Bs

⎛
⎜⎜⎝π − 4√

1 − B2
s Vf

π

⎞
⎟⎟⎠ arctan

⎛
⎜⎜⎝
√

1 − B2
s Vf

π

1 +
√

B2
s Vf

π

⎞
⎟⎟⎠

if yf ≤ ym → y22 = y33 =
(

1 − 2

√
Vf

π

)
ym (A11)

Soret coefficients

x11 = Vmxm + Vf xf = (
1 − Vf

)
xm + Vf xf = (
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(
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− 1
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(

1 − 2

√
Vf

π

)
xm

+ xm

Bs

⎛
⎜⎜⎝π − 4√

1 − B2
s Vf

π

⎞
⎟⎟⎠ arctan

⎛
⎜⎜⎝
√

1 − B2
s Vf

π

1 +
√

B2
s Vf

π

⎞
⎟⎟⎠

if xf ≤ xm → x22 = x33 =
(

1 − 2

√
Vf

π

)
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