
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.058798

ARTICLE

GPU-Enabled Isogometric Topology Optimization with Bėzier Element
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ABSTRACT

Due to the high-order B-spline basis functions utilized in isogeometric analysis (IGA) and the repeatedly updating
global stiffness matrix of topology optimization, Isogeometric topology optimization (ITO) intrinsically suffers
from the computationally demanding process. In this work, we address the efficiency problem existing in the
assembling stiffness matrix and sensitivity analysis using Bėzier element stiffness mapping. The Element-wise and
Interaction-wise parallel computing frameworks for updating the global stiffness matrix are proposed for ITO with
Bėzier element stiffness mapping, which differs from these ones with the traditional Gaussian integrals utilized.
Since the explicit stiffness computation formula derived from Bėzier element stiffness mapping possesses a typical
parallel structure, the presented GPU-enabled ITO method can greatly accelerate the computation speed while
maintaining its high memory efficiency unaltered. Numerical examples demonstrate threefold speedup: 1) the
assembling stiffness matrix is accelerated by 10× maximumly with the proposed GPU strategy; 2) the solution
efficiency of a sparse linear system is enhanced by up to 30× with Eigen replaced by AMGCL; 3) the efficiency of
sensitivity analysis is promoted by 100× with GPU applied. Therefore, the proposed method is a promising way to
enhance the numerical efficiency of ITO for both single-patch and multiple-patch design problems.
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GPU Graphics processing units
HPC High performance computing
IGA Isogeometric analysis
ITO Isogeometric topology optimization
IW Interaction-wise
NURBS Non-uniform rational basis spline
PDE Partial differential equation
SGRAM Synchronous graphic random-access memory
SIMP Solid isotropic material with penalization
SM Streaming multiprocessor
TO Topology optimization

1 Introduction

As a new finite element method, Isogeometric analysis (IGA), first proposed by Hughes et al. [1],
has great potential in seamless integration between CAD and CAE. Over the last two decades, IGA
gradually takes place the traditional Lagrange-based finite element method (FEM) in solving the
Partial Differential Equation (PDE), accounting for its merits in high continuity, elimination of
geometry discretization error, and high efficiency of high order elements [2,3]. It has been applied
to various analysis problems, including fracture mechanics analysis [4,5], structural vibration analysis
[6,7], and fluid-structure interaction analysis [8,9]. Naturally, the research topic of IGA was extended
to topology optimization (TO), which is an effective tool for implementing innovative structural
design with superior structural performance subjected to specified constraints [10]. According to the
description of design variables, four major classical TO methods can be categorized into element-based
and boundary-based approaches. Through the variation interval of design variables, the element-based
TO methods can be further refined into Solid Isotropic Material with Penalization (SIMP) approach
[11,12] and Evolutionary Structural Optimization method (ESO) [13,14]. Similarly, boundary-based
TO methods can be divided into the implicit Level Set Method [15,16] and the explicit geometric
primitive approach [17,18].

Replacing FEM with IGA as the solver in these classical TO methods mentioned above, a series
of isogeometric topology optimization (ITO) methods have been put forward over the last decade.
Seo et al. first put forward the ITO method with new inner fronts allowed to be created, which can
eliminate the post-processing effort as the numerical analysis and design optimization share identical
spline information. Qian [19] proposed an implicit filter for TO by parametrizing the density field
with NURBS, and Costa et al. [20,21] implemented the minimum and maximum length control for
the NURBS-based implicit filter, as well as Yang et al. [22] significantly improve the efficiency of
the implicit filter by means of the decomposition of NURBS tensor product structure. Xie et al. [23]
proposed an adaptive explicit ITO method based on hierarchical B-splines with much improved
computational efficiency for precise, optimized designs, and the numerical accuracy of the adaptive
ITO method is significantly improved using truncated hierarchical B-spline under admissible mesh
constraint [24]. Zhang et al. used the ITO method to optimize the shell structures under the stress
constraint, with the optimized results linked to CAD systems directly. Gupta et al. [25] put forward
an adaptive ITO method in terms of PHT splines with complex multi-patch NURBS geometries
exported for analysis conveniently. Gao et al. [26] develop an ITO approach to cellular structures
on the design domain discretized into multiple IGA patches, where the non-conforming patches are
coupled using Nitsche’s method, and apply the ITO method to the innovative design processes of
piezoelectric actuators [27] and composite structures [28]. Wang et al. [29] proposed an immersed ITO
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method for complex design domains with an embedded domain method and accelerated the efficiency
by the composite strategies of multilevel mesh, MGCG, and local-update of design variables [30].
Montemurro et al. [31] presented a novel multilevel optimization method for concurrent topology
and anisotropy optimization of variable-stiffness structures using NURBS, which was extended into
anisotropic materials topology optimization design problems under mixed boundary conditions [32].
Moreover, the ITO method has been applied to the structural design of cross-flow heat exchangers
[33], strain gradient materials [34], and sound-absorption materials [35].

Due to the property of NURBS spanning multiple elements [36], stiffness matrix assembly
is one of the major efficiency bottlenecks for these ITO methods. To speed up the integration
process of IGA, various efficient quadrature techniques are developed for NURBS element, such as
reduced quadrature rule [37–39], weighted quadrature [40], sum factorization techniques [41], low-rank
approximation [42]. Moreover, Karatarakis et al. [43] first applied the GPU parallelization technique
to IGA and drastically accelerated computations of the stiffness matrix assembly process. Based on
the adaptive isogeometric-meshfree method, Zhang et al. [44] significantly improved computational
cost in the field of fracture resistance topology optimization. Szyszka et al. [45] applied graphics
processing units (GPU) to integrate three-dimensional (3D) B-spline functions efficiently for IGA,
and a multilevel concurrent integration algorithm was developed to bring extra speed up. Then,
similar to the FEM-based TO method using GPU [46–50], Xia et al. [51] applied the GPU parallel
strategy to assemble the stiffness matrix assembly process of ITO, causing the parallel assembly race
problem. Unlike the FEM-based TO method, the elemental stiffness matrices of IGA for different
elements cannot be represented by standard stiffness matrix [52,53], even for rectangular control
meshes. Borden et al. [54] present the Bėzier extraction operator and isogeometric Bézier elements
for non-uniform rational B-Spline (NURBS)-based isogeometric analysis. Over the last decade, the
Bėzier extraction operator has been utilized in T-splines [55], truncated hierarchical B-splines [56],
and polar splines [57] in the framework of IGA. More recently, Yang et al. [58] proposed a Bėzier
element stiffness mapping technique for the explicit generation of B-spline IGA elements stiffness
matrices, where only standard stiffness matrix and Bėzier extraction metrics are required to be pre-
computed for rectangular control meshes. Although the Bėzier element stiffness mapping technique
can significantly simplify the pre-computation and reduce the memory burden for the ITO method, it
inevitably results in more expensive stiffness matrix assembly than the traditional ITO method, as the
explicit stiffness matrix computation is required to be performed for each solid IGA element, rather
than fetching from memory directly.

To maximize the potential of ITO using Bėzier element stiffness mapping, this work put forward a
parallelization paradigm for the explicit stiffness matrix computation and assembling of IGA elements
based on the GPU technique. The stiffness matrix assembly processes between six different types
of ITO methods are thoroughly compared to illustrate the advanced performance of the presented
method. Afterward, we apply the GPU parallelization technique to the sensitivity analysis of ITO,
which can promote efficiency in updating the design variables. On the other hand, we extend the
parallel framework to a multi-patch design problem to reveal its potential in complex structures.
Overall, this work utilizes Bezier element stiffness mapping to further enhance the computing
efficiency of ITO while maintaining low memory consumption, thereby verifying the suitability of
this method for massively parallel systems with GPUs.

The outline of this work is organized as follows. Section 2 presents several key ingredients of
the GPU-enabled ITO method with explicit stiffness matrix generation. In Section 3, the element-
wise and interaction-wise approaches are introduced to implement the parallelization of stiffness
matrix assembly of ITO using Bėzier element stiffness mapping, and a new parallelization scheme
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is formulated for sensitivity analysis. The effectiveness of the GPU-enabled ITO method is validated
by the numerical examples shown in Section 4. Finally, the conclusions are drawn in Section 5.

2 Preliminaries

In this section, GPU and the programming model CUDA are first introduced, which lays the
foundation for the parallelization of ITO. Then, the optimization model of ITO is presented for the
structural compliance minimization problem. Lastly, Bėzier element stiffness mapping is illustrated to
generate the stiffness matrices of B-spline IGA elements explicitly.

2.1 GPU and CUDA Architecture
GPU devices are initially designed to fulfill the requirements of graphical and 3D displays, which

are extended to the high-performance computing (HPC) field due to their reasonable cost and vast
parallel hardware structures. As one of the most, representative GPU devices, NVIDIA [59] and its
programming model CUDA have been widely used for HPC. By means of CUDA, developers can
treat GPU as a set of computing kernels supporting data parallelization. The kernel functions are the
entries for developers to use GPU on the CPU host, which are the C language extension functions
essentially. Before using the kernel functions, developers need to configure thread information for the
GPU, including the data structures of the thread block on the thread grid and thread on each thread
block.

The threads of the GPU have two data access permissions, which are the Synchronous Graphic
Random-Access Memory (SGRAM) on GPU devices and Static Random-Access Memory on GPU
chips (on-chip SRAM). As depicted in Fig. 1, thread blocks consist of a set of threads sharing data
through shared memory. Similarly, the thread grid is made up of thread blocks, for which the execution
hardware basis is a Streaming Multiprocessor (SM) with multiple threads, and every thread is allocated
to SM, satisfying its execution requirement during the task period.

Figure 1: Thread hierarchies and memory model of CUDA
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As illustrated in Fig. 2, a set of registers per processor and shared memory are the on-chip memory
of each SM, which are used to read constant cache and texture cache only at a high speed. Therefore,
the access speed of on-chip GPU memory is much faster than host memory. However, the on-chip
GPU memory is shared by the threads on SM, which means that the number of thread blocks executed
simultaneously is determined by the number of registers for each thread and the shared memory size
for each thread block. Excessive use of shared memory is not conducive to parallel computation of
large-scale data, and the constant cache is more suitable for storing the public data with its optimized
data broadcast behavior.

Figure 2: Memory hierarchies of CUDA

2.2 Isogeometric Topology Optimization Method
For the minimization problem of structural compliance, the objective of ITO model is the total

structural strain energy obtained from summing all elemental strain energies, which usually equals to
the external work of external force and is formulated as:

c
(
x̃
) = fT · u

(
x̃
)
. (1)

In Eq. (1), c denotes the structural compliance, f is the external force vector applied to the design
domain, u is the displacement vector associated with all degree of freedoms (DOFs) of IGA mesh. The
constraint function of ITO is the maximum material usage. Therefore, the mathematical model of ITO
for two-dimensional (2D) compliance design problems is written in:

find x̃ = (
x1, x2, x3, . . . , xnelx·nely

)
,

minimize c (x) = fT · u (x) =
nely∑
j=1

nelx∑
i=1

(
ui,j

)T · Ki,j

(
xi,j

) · ui,j,
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s.t.

K (x) · u (x) =
(

nely∑
j=1

nelx∑
i=1

Ki,j

(
xi,j

)) · u (x) = f,

V (x)

V0

≤ frac,

x ⊂ ℵ, ℵ = {
x ∈ R

nelx·nely, 0 ≤ x ≤ 1
}

. (2)

In Eq. (2), nelx and nely are the number of elements along the parametric directions of IGA mesh,
xi,j is the relative density design variable of (i, j)-th IGA element, ui,j represents the local displacement
vector associated with control points of (i, j)-th IGA element, K

(
x̃
)

is termed as the global stiffness
matrix of IGA mesh, V

(
x̃
)

and V0 denote the actual solid material and the design domain areas,
frac represents the upper limit of the percentage of solid material usage, ℵ is the admissible space for
the design variable set x̃. Moreover, the elemental stiffness matrix of (i, j)-th IGA element is denoted
by Ki,j

(
xi,j

)
, treated as the product between stiffness matrix K0

i,j occupied with solid material and the
Young’s elastic modulus Ei,j

(
xi,j

)
obtained by modified SIMP model, which are formulated as:

Ki,j

(
xi,j

) = Ei,j

(
xi,j

) · K0
i,j. (3)

With the modified SIMP model, the Young’s elastic modulus Ei,j

(
xi,j

)
is defined as follows:

Ei,j

(
xi,j

) = Emin + (
xi,j

)pen · (E0 − Emin) ,
(
xi,j ∈ [0, 1]

)
, (4)

where Emin and E0 are the elastic modulus of void and solid materials with 0 < Emin � E0, respectively,
pen is termed as penalty factor and takes 3 in this work.

2.3 Bėzier Element Stiffness Mapping
To bypass the ineffective stiffness matrix computation using Gaussian quadrature in ITO iteration,

the stiffness matrices of all solid IGA elements should be pre-computed and stored. However, it leads to
prohibitively huge memory burden in turn, especially for 3D design problems, which is undesirable for
the designers without high performance server. In [58], instead of performing full Gaussian quadrature,
Bėzier element stiffness mapping has been put forward for the explicit generation of IGA elemental
stiffness matrix, which makes use of the space-preserving property of Bernstein basis function within
an individual IGA element. Through the Bėzier element stiffness mapping, the stiffness matrix K0

i,j of
rectangular-shaped IGA element in Eq. (4) is expressed in the form of:

K0
i,j = Ci,jK

0,BėzierCT
i,j, (5)

where K0,Bėzier is the standard stiffness matrix of Bėzier element determined by Young’s elastic modulus
and Poisson’s ratio of solid material, Ci,j represents the transformation matrix to recover high order
smoothness of B-spline elements from C0 continuity of standard Bėzier element, which is formulated
as:

Ci,j =
[

Cextractor
i,j 0
0 Cextractor

i,j

]
, (6)

with the dimension size 2 (p + 1) (q + 1) × 2 (p + 1) (q + 1). p and q are the degrees of univariate B-
spline basis function for the knot vectors along the parametric directions. Cextractor

i,j with the size of
(p + 1)×(q + 1) is termed as global Bėzier extraction matrix and computed by the Kronecker product
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of univariate Bėzier extraction matrices associated with all knot vectors of IGA control mesh, which
is in the form of:

Cextractor
i,j = Cextractor

j ⊗ Cextractor
i . (7)

In Eq. (7), Cextractor
i and Cextractor

j are the univariate Bėzier extraction matrices for B-spline knot
vectors, of which the component is obtained from the knot insertion algorithm [60]:

Cextractor
j =

⎡
⎢⎢⎣

α1 1 − α1 · · · 0
0 α2 · · · 0
...

...
...

0 · · · α(n+j) 1 − α(n+j)

⎤
⎥⎥⎦ , (8)

where αi is the weight coefficient corresponding to the inserted knot. Therefore, as illustrated in Fig. 3,
the essential data of Bėzier element stiffness mapping is composed of univariate Bėzier extraction
matrices and standard Bėzier stiffness matrix, which is more suitable for GPU parallel computation.

Figure 3: Illustration of Bėzier element stiffness mapping for B-spline IGA control mesh

3 GPU Implementation of Isogeometric Topology Optimization

This section describes the GPU parallel schemes for the stiffness matrix assembly and sensitivity
analysis in detail, which are two of the key steps for ITO. With these two parallel schemes, the Bėzier
element stiffness mapping will be accelerated to a large extend.

3.1 Parallelization of Stiffness Matrix Assembly
For ITO using Bėzier element stiffness mapping, both Eqs. (3) and (5) are required to be invoked

frequently for the purpose of global stiffness matrix assembly at each iterative step. Similar to the
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parallelization schemes using full Gaussian quadrature presented in [43], both the element-wise and
interaction-wise parallelization methods are presented for the global stiffness matrix updating of ITO.

3.1.1 Element-Wise Method

In order to update the global stiffness matrix of ITO using Bėzier element stiffness mapping,
the contributions of all calculated B-spline elements stiffness matrices need to be added, which are
formulated as:

K =
∑

e

Ee (xe) · Ke =
∑

e

Ee (xe) · Ce · K0,Bėzier · CT
e , (9)

where Ee is precomputed by Eq. (4) with e = (j − 1) · nelx + i. The stiffness transformation matrix
Ce is made up of the elemental univariate Bėzier extraction matrices Ce,η and Ce,ξ , which are trivial to
extract from the global univariate Bėzier extraction matrices, and for p = q = 2 these two matrices are
expressed in the following form:

Ce,ξ = Ce,η =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

1 0 0

0 1
1
2

0 0
1
2

⎤
⎥⎥⎥⎥⎥⎦ , i = 1 or j = 1,

⎡
⎢⎢⎢⎢⎢⎣

1
2

0 0

1
2

1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , i = nelx or j = nely,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2

0 0

1
2

1
1
2

0 0
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, otherwise.

(10)

In contrast to the element-wise (EW) method in [43], the proposed element-wise method requires
the standard Bėzier element stiffness matrix and the elemental Bėzier extraction matrices formulated
as Eq. (10) to be calculated in CPU, rather than computing the shape function derivatives for each
non-vanishing B-spline basis functions of every Gauss point. As shown in Fig. 4, the Bėzier element
stiffness mapping defined in Eq. (9) is parallelly executed for all elements, and each IGA element is
assigned to a thread block with 2(p + 1)(q + 1) threads. The reason for choosing the element stiffness
matrix data dimension as the number of threads lies in the maximum number of threads of block
in CUDA is limited. To implement the assembly of global stiffness matrix, the atomic operation is
executed for all threads. When a thread performs atomic operations, other threads are forbidden to
operate the specified memory to avoid data conflict.
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Figure 4: Illustration of EW implementation of ITO using Bėzier element stiffness mapping

As for the CUDA memory layout, Bėzier element stiffness matrix is stored in constant memory
which can be accessed by all threads. The shared memory is used to store values like relative densities,
the element Bėzier extraction matrix, etc. Other values like the global stiffness matrix are stored in
global memory. In order to save more memory, the global stiffness matrix is stored in the form of
coordinate format (COO) which is one of typical sparse format.

3.1.2 Interaction-Wise Method

Considering the GPU amenability to parallelism, the Interaction-wise (IW) method is also
efficient in updating the global stiffness matrix of ITO with Bėzier element stiffness mapping. The
nonzero entries of the global stiffness matrix are calculated in a control points pair manner and
appended to the matrix directly instead of updating the contribution from its influencing elements.
In IGA, each Gaussian quadrature point is involved in computations with control points within the
surrounding area. In the two-dimensional case, these two mutually influential control points are called
control point pairs.

As the basic unit, each control point pair used in the IW approach is assigned to a thread block,
and each thread handles the contribution of the associated nonzero values of a shared element. In
contrast to the IW method used in [43], the proposed IW method has the following advantages over
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the traditional method: Firstly, it replaces the calculation of the shape function derivatives with direct
matrix computations, which can avoid the time-consuming high-order derivative computation of B-
spline; Secondly, it is only required to store the standard stiffness matrix of the Bėzier element and the
univariate Bėzier extraction matrices rather than the shape function derivatives and the stiffness matrix
coefficients, which greatly improves the storage efficiency. It should be noted that the associated rows
and columns in the univariate Bėzier extraction matrices are extracted to compute the contribution
value of the shared element for the control point pair, which is different from the approach used
in the traditional IW method [43]. Once the contribution values of all shared elements have been
computed and stored in the shared memory, the corresponding entries of the global stiffness matrix
are summed through a parallel thread reduction strategy. Then, the updated global stiffness matrix will
be transferred to the global memory. Fig. 5 presents the flowchart of the proposed IW method, where
the partially filled rectangle indicates the control point pairs with idle threads in the thread block.
Finally, the CUDA Kernel for the proposed IW approach is described in Algorithm 1. The number of
allocated thread blocks is equal to the number of control point pairs, with threads allocated to each
thread block, where the maximum number of shared elements for control point pairs is.

Figure 5: Illustration of IW implementation of ITO using Bėzier element stiffness mapping

Algorithm 1: Kernel 1 interaction-wise method of stiffness matrix assembly
Input: Control point pair cp1, cp2; Shared elements array s; the local Bézier extraction vector Ci, Cj;
The maximum number of shared elements for control point pairs k; Bézier element stiffness matrix
K0,Bėzier; density matrix x̃
Output: global stiffness matrix K
1: get the nonzero entry’s index by cp1, cp2

2: get Ci, Cj corresponding to s
3: if threads < 4 × k then
4: get global degrees of freedom number
5: if threads < k then
6: compute the corresponding row or column of elemental Bėzier extraction matrix
7: Read the relative density x̃ in density matrix of the corresponding element

(Continued)
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Algorithm 1 (continued)
8: compute the contributions of Ki,j = Ci,jK

0,BėzierCT
i,j

9: end if
10: end if
11: use reduction to sum Kij

3.2 Parallelization of Sensitivity Analysis
According to the mathematical model presented in Eq. (2), we can obtain the sensitivity of

objective function as:

∂c
(
x̃
)

∂xe

= −∂Ee (xe)

∂xe

· (
ub

e

)T · K0,Bezier.ub
e

= −p (xe)
p−1

(E0 − Emin) · (
ub

e

)T · K0,Bezier . ub
e, (11)

with

ub
e = CT

e ue. (12)

Since the sensitivity is calculated in terms of the local displacement vector and stiffness matrix as
well as the Young’s elastic modulus for each design element, we choose the individual IGA design
element as the parallelization unit. Similar to the element-wise stiffness matrix assembly scheme
introduced aforementioned, a thread block is assigned to every IGA design element. Therefore, the
parallel algorithm for sensitivity calculation of ITO is shown in Algorithm 2. By using the Bėzier
element stiffness mapping, the algorithm is only required to store the standard Bėzier element stiffness
matrix and the corresponding univariate Bėzier extraction matrices in the efficient updating process
of design variables, rather than storing the stiffness matrices for all IGA elements.

Algorithm 2: Kernel 2 element-wise method of sensitivity analysis
Input: Bėzier extraction matrix Cextractor

i , Cextractor
j ; old sensitivity dcold; Bėzier element stiffness matrix

K0,Bėzier; displacement matrix ue

Output: New sensitivity dcnew

1: Read the Bėzier element stiffness matrix K0,Bėzier

2: Compute the elemental Bėzier extraction matrix Ce based on Cextractor
i and Cextractor

j

3: Compute the Bėzier displacement ub
e

4: Sensitivity calculation
∂c (x)

∂xe

The formula for variable iteration update is as follows:

xnew
e =

⎧⎨
⎩

max (0, xe − m) if xeBη

e ≤ max (0, xe − m)

min (1, xe + m) if xeBη

e ≥ min (1, xe + m)

xeBη

e otherwise
, (13)
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where m is a positive move limit, η ( = 1/2) is a numerical damping coefficient, with

Be =
−∂c

(
x̃
)

∂xe

λ
∂V
∂xe

, (14)

∂V
∂xe

= 1. (15)

In order to avoid numerical artifacts, it is necessary to apply the sensitivity filter in sensitivity
analysis. Similar to the parallel strategy used above, each thread block is assigned to a design element.
The criteria for sensitivity filtering are as follows:

∂ ĉ
(
x̃
)

∂xe

= 1
xe

∑ne

a=1 wa

ne∑
a=1

waxa

∂c
(
x̃
)

∂xa

, (16)

where wa represents the weight of the a-th element, defined as:

wa =
{

rmin − dist (e, a) ,if dist (e, a) ≤ rmin

0, otherwise (e = 1, . . . , ne) , (17)

where dist (e, a) is represents the distance function, which determines the centroid distance between
elements, and rmin represents the user-defined filter radius.

4 Numerical Examples

In this section, several classic numerical examples are used to verify the effectiveness of the
presented GPU-based ITO implementation with Bėzier element stiffness mapping. The examples
are run on the following hardware: AMD Ryzen 7 5700X 8-Core CPU Processor. GPU, NVIDIA
GeForce RTX 3060. Windows 10 Operating System, Visual Studio 2019, and CUDA11.2 construct the
software environment for all tests. Moreover, the floating point operations are performed in double
arithmetic. Single-patch cases are programmed by C++/CUDA, and multi-patch case is programmed
by Matlab/CUDA. Besides, the AMGCL library [61,62] is used to solve the linear equations in the ITO
process, which greatly reduces the overall optimization time. Unless otherwise specified, all parameters
used in this work are treated as dimensionless.

4.1 Messerschmitt–Bolkow–Blohm (MBB) Beam
MBB beam is a typical example that is widely used in topology optimization. We use it as the first

numerical example to verify the effectiveness of the proposed parallel ITO methods. Due to symmetric
boundary conditions, only half of the design domain is considered. Half of the MBB structure used
for the design domain is shown in Fig. 6, of which the aspect ratio is 2, and the volume constraint is
prescribed to be 0.4. The left side is fixed in the horizontal direction, the right-bottom corner is simply
supported, and an external unit load is applied at the top left corner for the design domain.
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Figure 6: Illustration of problem setting for MBB beam

Taking different mesh resolutions and different basis function degree combinations into consid-
eration, the average stiffness matrix updating time is obtained for the ITO optimization process with
different calculation strategies, as illustrated in Fig. 7. The calculation strategies are listed as follows: a)
traditional 1-core CPU-based EW method using full Gauss integration; b) the GPU-based EW method
with all element stiffness matrices pre-stored; c) GPU-based IW method with all element stiffness
matrices pre-stored, d) 1-core CPU-based EW method with Bėzier element stiffness mapping; e) the
GPU-based EW method with Bėzier element stiffness mapping; f) GPU-based IW method with Bėzier
element stiffness mapping. Four different mesh resolutions with bi-quadratic basis functions are used
to compare the assembly time between these six calculation strategies, which are set to 50 × 100, 100 ×
200, 150 × 300, and 200 × 400. Fig. 7 illustrates the average updating time in one iteration of the global
stiffness matrix by means of all the aforementioned six calculation strategies under different mesh
resolutions. According to the results presented in Fig. 7, the GPU-based EW method outperforms
the GPU-based IW method, and the GPU-based methods are superior to 1-core CPU-based EW
methods for the stiffness matrix updating of ITO, independent of the computing approaches used
in stiffness matrices of all solid elements and the IGA mesh resolution. Meanwhile, the GPU-based
EW method with Bėzier element stiffness mapping is a more efficient approach than the GPU-based
EW method with all element stiffness matrices pre-stored for the ITO method, regardless of the IGA
mesh resolution variation. Moreover, the average updating time in one iteration of the global stiffness
matrix is compared in Fig. 8 for all aforementioned six calculation strategies under three different
basis function degree combinations, where the IGA mesh resolutions are prescribed to 100 × 200. The
acceleration effect of GPU-based methods is significant compared to the associated 1-core CPU-based
methods observed from Fig. 7, independent of basis function degree, and it becomes more degraded as
the increase of basis degree for IW scheme using Bėzier element stiffness mapping rather than storing
all element stiffness matrices in advance. The underlying reason for the worst speedup performance
lies in the fact that the data coupling between adjacent IGA elements is increased, which complicates
the single thread task and increases data competition for the IW scheme using Bėzier element stiffness
mapping. The speedup ratios of the proposed two parallel methods compared to the single-core CPU-
based EW method are shown in Fig. 9 for the stiffness updating of ITO using Bėzier element stiffness
mapping. It can be observed that the stiffness matrix updating process is approximately accelerated by
one order of magnitude and three times for EW and IW schemes, respectively. On the other hand, the
convergence histories of ITOs using these six different stiffness updating schemes are shown in Figs. 10
and 11, and the history designs under mesh resolutions are shown in Fig. 12. The associated converged
results of ITO are shown in Figs. 13 and 14. According to these convergence histories and design
results, the equivalence is verified between ITOs with different stiffness matrix updating schemes.
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Figure 7: Illustration of variations in average stiffness matrix updating time with six different comput-
ing strategies for four different mesh resolutions

Figure 8: Illustration of variations in average stiffness matrix updating time with six different comput-
ing strategies for three different degrees combinations
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Figure 9: Illustration of speedup ratios of the proposed two parallel methods vs. to the single core
CPU-based EW method for ITO using Bėzier element stiffness mapping

Figure 10: Illustration of convergence histories of ITOs under four different IGA mesh resolutions
with bi-quadratic B-spline basis function
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Figure 11: Illustration of convergence histories of ITO under three different degrees combinations with
100 × 200 mesh resolutions

Figure 12: (Continued)
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Figure 12: Illustration of history results by ITOs with the proposed and traditional global stiffness
matrix updating schemes under 200 × 100 mesh resolutions

Figure 13: Illustration of optimal results of ITOs under four different mesh resolutions with identical
result generated for six different stiffness matrix updating schemes

Figure 14: (Continued)
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Figure 14: Illustration of optimal results of ITO under three different degrees combinations with
identical result generated for six different stiffness matrix updating schemes

Moreover, the sensitivity analysis parallelization effect is shown in Table 1 for ITOs using
Bėzier element stiffness mapping with four different IGA discretization resolutions. According to the
experimental results, the parallel acceleration effect of sensitivity filtering becomes more obvious than
sensitivity computation with an increase of mesh resolution, and maximum speedup is up to 190 and
1757 for the computation and filtering of sensitivity analysis, respectively. Finally, it is concluded that
our proposed GPU-based EW parallel scheme is a much more effective approach than single-core
CPU-based scheme for the global stiffness matrix updating and sensitivity analysis of ITO using Bėzier
element stiffness mapping, without altering the convergent process and results of 2D design problems.

Table 1: Average sensitivity analysis computation time and filtering time in one iteration of ITO using

Mesh resolutions Time (ms)

CPU GPU

Computation Filtering Computation Filtering

50 × 100 159.8235 1.1213 0.9705 0.0055
100 × 200 634.5730 4.5341 3.3402 0.0092
150 × 300 1428.1456 10.4451 7.0874 0.0065
200 × 400 2542.5295 16.8663 13.3922 0.0096

4.2 Michell Structure
Michell structure is used as another benchmark to verify the effectiveness of proposed parallel

ITO methods. Fig. 15 illustrates the problem setting concerning the Michell structure, where a unit
downward vertical load is applied to the middle of the bottom edge, and the lower left corner is fixed,
as well as the lower right corner is vertically fixed. The length-width ratio of the design domain is
prescribed to 2, and the maximum volume fraction of solid material is set to 0.4.

Considering 50 × 100, 100 × 200, 150 × 300, and 200 × 400 mesh resolutions, the average stiffness
matrix updating time for the ITO under different computational strategies is obtained as shown in
Fig. 16, with bi-quadratic basis functions used. Based on the results presented in Fig. 16, it is concluded
that the GPU-based EW method outperforms the GPU-based IW method in terms of stiffness matrix
updating in ITO for the Michell structure design problem, independent of the calculation strategy used
to obtain the stiffness matrix for each element. Furthermore, the GPU-based approaches have superior
computing performance over 1-core CPU-based EW methods, and the GPU-based EW method with
Bėzier element stiffness mapping is the most efficient approach among all the GPU-based methods
for updating the global stiffness matrix of ITO. To investigate the influence of basis function degree
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combinations on the proposed parallel methods, Fig. 17 provides a comparison in the average updating
time for the global stiffness matrix during one iteration between the six computational strategies
under three different degree combinations of basis function, with the IGA mesh resolutions fixed at
100 × 200. According to Fig. 17, the GPU-based methods exhibit significant acceleration compared to
the corresponding 1-core CPU-based methods, regardless of the basis function degree combinations.
The concerned speedup ratios for GPU-based EW and IW method using Bėzier element stiffness
mapping are presented in Fig. 18 in comparison with the 1-core CPU-based EW method, where the
observed speedup ratios under various mesh resolutions and basis function degree combinations are
comparable to those observed for MBB beam problem. This indicates that the acceleration effect
remains consistently effective across different scenarios for 2D TO problems, exhibiting reliable and
favorable performance. In order to compare the numerical process of ITOs using different strategies
in updating the global stiffness matrix, the convergence histories under different mesh resolutions and
degree combinations are presented in Figs. 19 and 20, respectively. The history designs under mesh
resolutions are shown in Fig. 21. While the corresponding converged results of ITO are displayed
in Figs. 22 and 23. It should be noted that these convergence histories and design results remain
unchanged with the variation in the computing strategies used for the global stiffness matrix since
the various global stiffness matrix updating schemes in ITO are equivalent numerically.

F=-1 E0=1 μ=0.3 

volfrac=0.4  DW:DH=2:1

DW

D
H

F

Figure 15: Illustration of problem setting for Michell structure problem [58]

Figure 16: Illustration of variations in the stiffness matrix updating time with six different computing
strategies for four different mesh resolutions
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Figure 17: Illustration of variations in the stiffness matrix updating time with six different computing
strategies for three different degrees combinations

Figure 18: Illustration of speedup ratios of the proposed two parallel methods vs. to the single core
CPU-based EW method for ITO using Bėzier element stiffness mapping
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Figure 19: Illustration of convergence histories of ITO under different mesh resolutions with bi-
quadratic B-spline basis function order

Figure 20: (Continued)
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Figure 20: Illustration of convergence histories of ITO under three different degrees combinations with
100 × 200 mesh resolutions

Figure 21: Illustration of history results by ITOs with the proposed and traditional global stiffness
matrix updating schemes under 200 × 100 mesh resolutions

Figure 22: (Continued)
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Figure 22: Illustration of optimal results of ITOs under four different mesh resolutions with identical
result generated for six different stiffness matrix updating schemes

Figure 23: Illustration of optimal results of ITO under three different degrees combinations with
identical result generated for six different stiffness matrix updating schemes

For ITO, the solver usually plays a key role in affecting its efficiency, and an appropriate numerical
solver can accelerate the sparse matrix-solving process significantly. In this numerical example, we
compared the solution time of a sparse matrix in one iteration using Eigen and AMGCL, where
the conjugate gradient method is treated as the numerical solver. Besides, the relaxation method of
the algebraic multigrid method is Sparse approximate inverse (SPAI) smoother, and the coarsening
strategy is smoothed aggregation. As shown in Fig. 24, the AMGCL solver exhibits an increasingly
pronounced acceleration effect as the increase of number of IGA elements than the Eigen solver,
where the maximum speedup ratio reaches 30.3. The GPU-enabled EW schemes are compared with
the 1-core CPU-based scheme in Table 2 for sensitivity analysis of ITO using Bėzier element stiffness
mapping, where a significant acceleration effect is obtained by the proposed GPU method. Finally, it
arrives at a conclusion that the proposed GPU-based EW parallel scheme with AMGCL treated as a
solver is a promising method to improve the numerical efficiency of ITO using Bėzier element stiffness
mapping.

4.3 L-Shaped Multi-Patch Structure
In this section, we focus on the L-shaped cantilever discretized into multi-patch IGA mesh as

presented in Fig. 25a, to validate the extension of the proposed EW parallel scheme from single patch
case to multi-patch case for ITO using Bėzier element stiffness mapping. Since the GPU-based EW
method outperforms the GPU-based IW method, as shown in the aforementioned benchmarks, only
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the GPU-based EW scheme is taken into consideration for this multi-patch design problem. As shown
in Fig. 25b, a fixed boundary condition is applied to the top edge of the first patch, and an external
unit force is vertically downward imposed on the top right corner of the third patch. Additionally, a
volume constraint of 0.4 is set for solid material usage.

Figure 24: Illustration of solving time for linear equations with Eigen and AMGCL

Table 2: Average sensitivity analysis computation time and filtering time in one iteration

Mesh resolutions Time (ms)

CPU GPU

Computation Filtering Computation Filtering

50 × 100 156.8431 1.0412 0.9811 0.0061
100 × 200 628.4823 4.3595 3.5361 0.0098
150 × 300 1414.4330 9.8599 7.4039 0.0092
200 × 400 2487.9942 16.3990 13.6474 0.0092

For all IGA patches, the B-spline basis function order is selected as bi-quadratic. The average
updating time for the global stiffness matrix updating of ITOs with 1-core CPU and GPU-based EW
methods is tabulated. Considering the optimization of computation within Matlab, the acceleration
ratio has decreased compared to previous examples written in C++. The difference between the matrix
computation environment and data transmission has a certain impact on the results.

Table 3 in one iteration under three different mesh resolutions for all patches. As the number
of elements increases for each IGA patch, the acceleration effect of the proposed GPU-based EW
method is increasingly improved. Similar to the single patch cases, both the convergence histories and
converged designs are illustrated in Figs. 26 and 27, respectively, which advocate the numerical equiv-
alence between the proposed GPU-based and CPU-based methods in updating the global stiffness
matrix. The history designs under mesh resolutions per patch are shown in Fig. 28. This indicates that
the proposed GPU parallel framework has a promising potential to enhance the numerical efficiency
for multi-patch ITO design problems. Considering the optimization of computation within Matlab,
the acceleration ratio has decreased compared to previous examples written in C++. The difference
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between the matrix computation environment and data transmission has a certain impact on the
results.

patch1

patch2 patch3

F

F=-1 E0=1 =0.3 volfrac=0.4 

2*DW

D
W

D
W

(a) (b)

Figure 25: (a) L-shaped computational domain discretized into three IGA patches with regular shape;
(b) Problem setting for L-shaped structure

Table 3: Average time consumed in updating the global stiffness matrix in one iteration with three
different mesh resolutions and corresponding acceleration ratios

Mesh resolutions
for all patches

EW using Bėzier element
stiffness mapping (1-core CPU)

EW using Bėzier element
stiffness mapping (GPU)

Speedup ratio

50 × 50 0.1439 0.0824 1.7
75 × 75 0.3234 0.0918 3.5
100 × 100 0.5703 0.1233 4.6

Figure 26: (Continued)
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Figure 26: Illustration of convergence histories of ITO under different mesh resolutions per patch with
bi-quadratic B-spline basis function

Figure 27: Illustration of the converged design results by ITOs with the proposed and traditional global
stiffness matrix updating schemes under different mesh resolutions per patch
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Figure 28: Illustration of history results by ITOs with the proposed and traditional global stiffness
matrix updating schemes under 75 × 75 mesh resolutions per patch

4.4 Three-Dimensional Cantilever Beam
The 3D cantilever beam serves as the final numerical example in this study, demonstrating the

effectiveness of the proposed GPU-enabled ITO with Bėzier element stiffness mapping in 3D scenarios.
Fig. 29 illustrates the problem setup, where the left face is fixed, and an external unit force is applied
in the center of the right side. The volume constraint is set to 0.4.

For all IGA elements, the order of the B-spline basis functions is chosen to be bi-quadratic. The
average time required for updating the global stiffness matrix of ITOs with 1-core CPU and GPU-
based EW methods is presented in Table 4. The convergence histories, history designs and converged
designs are illustrated in Figs. 30–32, demonstrating the consistency of the results obtained through
the two methods. It can be observed that the maximum speedup ratio is 1.22 in the 3D cantilever
beam case, and the acceleration effect increases with the increase of the number of elements. However,
compared with the 2D case, the overall acceleration effect is reduced. On the one hand, the data load
of each thread in the 3D case is significantly larger, such as the increase in the size of the standard
stiffness matrix of Bėzier element K0,Bėzier and the extraction operator. These changes have also led to
a substantial increase in the computational workload of threads. On the other hand, the acceleration
performance is limited by the used GPU hardware equipment.
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Figure 29: The problem setting for 3D cantilever numerical example

Table 4: Average time consumed in updating the global stiffness matrix in one iteration with three
different mesh resolutions and corresponding acceleration ratios

Mesh resolutions EW using Bėzier element
stiffness mapping (1-core CPU)

EW using Bėzier element
stiffness mapping (GPU)

Speedup ratio

30 × 15 × 15 0.6930 0.6421 1.08
40 × 20 × 20 1.6138 1.4642 1.10
60 × 30 × 30 5.3185 4.3687 1.22

Figure 30: (Continued)
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Figure 30: Illustration of convergence histories of ITO under different mesh resolutions per patch with
bi-quadratic B-spline basis function

Figure 31: Illustration of history results by ITOs with the proposed and traditional global stiffness
matrix updating schemes under 40 × 20 × 20 mesh resolutions



1510 CMES, 2025, vol.142, no.2

Figure 32: Illustration of the converged design results by ITOs with the proposed and traditional global
stiffness matrix updating schemes under different mesh resolutions

5 Conclusions

To accelerate the computing efficiency of ITO using Bėzier element stiffness mapping, we put
forward a parallelization paradigm for the explicit stiffness matrix computation and assembling the
global stiffness matrix from all IGA elements in terms of GPU technique, divided into EW and IW
methods based on the assembly method of elemental stiffness matrices into global stiffness matrix. Our
proposed ITO using Bėzier element stiffness mapping possesses triple acceleration effects as follows:

1. Compared to the traditional single-core CPU updating scheme in an element-wise manner, the
GPU-based EW and IW methods exhibit maximum accelerations of 12.6 and 3.1, respectively, with
identical convergence history and design results for single-patch design problems.

2. The GPU-based EW parallel strategy is also proposed for sensitivity analysis of ITO using
Bėzier element stiffness mapping, considering its characteristics of parallel computing, achieving a
significant improvement in numerical efficiency, and the associated speedup is up to 100×.

3. Apart from updating the global stiffness matrix, the solution of the sparse matrix is another
step that affects the optimization efficiency of ITO. We replace Eigen with AMGCL as the numerical
solver for ITO, by which the speedup of the solver reaches a maximum of 30.3.

Compared to traditional GPU-based EW and IW with stiffness matrices pre-stored for all ele-
ments, the proposed schemes in this work may achieve better computing efficiency while maintaining
the consumption of hardware memory at an extremely low level. At the same time, we extend the
GPU-based EW updating scheme from a single-patch to a multi-patch situation, which can effectively
update the global stiffness matrix in a parallel manner.
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Since current Bėzier element stiffness mapping is limited to rectangular and circular IGA elements
with stricter geometric constraints, it still encounters difficulties in handling other shapes of IGA
elements. In the future, we will extend this work to more complex structures and 3D design problems
with the immersed isogeometric analysis method in combinations with efficient quadrature rules and
considering the anisotropy of the material.
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