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ABSTRACT: Unmanned aerial vehicles (UAVs) technology is rapidly advancing, offering innovative solutions for
various industries, including the critical task of oil and gas pipeline surveillance. However, the limited flight time of
conventional UAVs presents a significant challenge to comprehensive and continuous monitoring, which is crucial for
maintaining the integrity of pipeline infrastructure. This review paper evaluates methods for extending UAV flight
endurance, focusing on their potential application in pipeline inspection. Through an extensive literature review, this
study identifies the latest advancements in UAV technology, evaluates their effectiveness, and highlights the existing gaps
in achieving prolonged flight operations. Advanced techniques, including artificial intelligence (AI), machine learning
(ML), and deep learning (DL), are reviewed for their roles in pipeline monitoring. Notably, DL algorithms like You
Only Look Once (YOLO) are explored for autonomous flight in UAV-based inspections, real-time defect detection,
such as cracks, corrosion, and leaks, enhancing reliability and accuracy. A vital aspect of this research is the proposed
deployment of a hybrid drone design combining lighter-than-air (LTA) and heavier-than-air (HTA) principles,
achieving a balance of endurance and maneuverability. LTA vehicles utilize buoyancy to reduce energy consumption,
thereby extending flight durations. The paper details the methodology for designing LTA vehicles, presenting an analysis
of design parameters that align with the requirements for effective pipeline surveillance. The ongoing work is currently
at Technology Readiness Level (TRL) 4, where key components have been validated in laboratory conditions, with
fabrication and flight testing planned for the next phase. Initial design analysis indicates that LTA configurations could
offer significant advantages in flight endurance compared to traditional UAV designs. These findings lay the groundwork
for future fabrication and testing phases, which will be critical in validating and assessing the proposed approach’s real-
world applicability. By outlining the technical complexities and proposing specialized techniques tailored for pipeline
monitoring, this paper provides a foundational framework for advancing UAV capabilities in the oil and gas sector.
Researchers and industry practitioners can use this roadmap to further develop UAV-enabled surveillance solutions,
aiming to improve the reliability, efficiency, and safety of pipeline monitoring.

KEYWORDS: Airship vehicle; UAV technology; endurance enhancement; lighter-than-air vehicle; pipeline monitor-
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1 Introduction
The rapid advancement of unmanned aerial vehicles (UAV) technology has significantly impacted vari-

ous industries, with the oil and gas (O&G) industry being a notable beneficiary. UAVs, also known as drones,
have transformed traditional inspection, surveillance, and monitoring methods, offering a more efficient
and cost-effective approach [1,2]. In particular, drones have been increasingly employed to monitor O&G
pipelines [3,4], a critical infrastructure that demands regular inspection to prevent leaks, environmental
damage, and costly repairs. The industry’s pipelines, which often extend across remote, inaccessible areas,
present considerable challenges for maintenance. Traditional inspection methods, such as foot patrols, are
time-consuming, labor-intensive, and pose safety risks to personnel [5]. Furthermore, these methods often
lack the real-time data collection and precision necessary to detect potential issues, such as corrosion and
structural defects.

In addition to O&G pipelines, the industry faces a growing challenge with orphaned wells, wells that
have been abandoned by defunct companies and left without proper capping or maintenance [6]. These
wells pose significant environmental risks, as they often leak methane and other harmful greenhouse gases,
contributing to climate change [7]. According to recent studies, there are hundreds of thousands of orphaned
wells worldwide, with many located in remote or hard-to-reach areas, further complicating efforts to monitor
and remediate them [8,9]. Given the environmental urgency, there is a critical need for cost-effective,
scalable, and precise methods of detecting and assessing orphaned wells. Furthermore, the O&G industry
continues to face challenges in managing the environmental and operational complexities of unconventional
oil and gas reservoirs, which often involve complex gas transfer mechanisms and geomechanical factors.
These complexities necessitate more advanced models and monitoring techniques to optimize production
and maintain safety standards. Recent studies [10,11], have provided valuable insights into the gas transfer
mechanisms and geomechanics that influence reservoir performance. By improving our understanding of
these mechanisms, such models contribute to the development of more precise monitoring techniques,
which can be complemented by UAV-based surveillance systems for real-time inspection of infrastructure
like pipelines.

UAVs offer a versatile solution to these challenges. UAVs can be equipped with various cameras
and sensors, such as magnetometers and methane detectors, among others, to capture different types
of data, including visual, thermal, and multispectral imagery across large, remote areas [8,12,13]. This
capability makes them indispensable for monitoring the environmental impact of orphaned wells and
inspecting pipelines for leaks, structural integrity, and environmental conditions [14]. Moreover, UAVs can be
deployed in challenging environments, such as offshore platforms or mountainous regions, where traditional
inspection methods may be impractical or dangerous.

Despite these advantages, conventional UAVs face significant limitations, particularly flight endurance.
Most UAVs can operate for only 15 to 20 min [15], restricting their effectiveness for long-range pipeline
monitoring missions. Recent advancements have aimed to address this limitation by developing fixed-wing
drones that offer longer flight times compared to their multi-rotor counterparts, but they require runways
for takeoff and landing, limiting their operational flexibility [16]. Vertical TakeOff and Landing (VTOL)
drones have emerged as a hybrid solution, combining the endurance of fixed-wing drones with the flexibility
of multi-rotor designs. These drones can take off and land vertically, like helicopters, while achieving the
extended flight durations of fixed-wing aircraft [17]. Yet, these advancements have not fully solved the
endurance issue, prompting further exploration of alternative power sources and hybrid propulsion systems.

Various hybrid propulsion approaches have been explored, such as battery-swapping [18], solar power
energy harvesting [19], fuel cell and Li-Po battery hybrid propulsion systems [20], supercapacitor-based
hybrid electric propulsion system (HEPS) [21], and gasoline engines and electric motors hybrid propulsion
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system [22,23]. Wang et al. [24] evaluated the use of fuel and batteries as a power source for drones. The fuel
cell was used during the cruise flight mode, the battery was used for takeoff and landing, and the battery was
also set for other emergency flight modes. Another study by Chu et al. tested a 2-m wingspan UAV that is
controlled remotely and uses a mix of solar and battery power. They show that the solar power system on
the aircraft saves 22.5% of the battery capacity. While these approaches show promise, they often come with
increased costs, larger sizes, and more complex maintenance procedures.

Additionally, lighter-than-air (LTA) technology has been proposed as a potential solution for extending
UAV flight times [15,19]. LTA technology, commonly used in airships [25], relies on the buoyancy of lighter-
than-air gases, such as helium, to provide lift [26]. Integrating LTA elements into UAVs can reduce the energy
required for sustained flight, allowing the UAV to remain airborne for longer periods [27]. This approach
extends flight time and enhances the UAV’s ability to hover and perform precise maneuvers, which are
essential for detailed pipeline inspections. Burri et al. [28] demonstrated that a 2.7 m diameter spherical
drone that uses helium gas and four propellers can move and rotate freely in any direction and axis. However,
it is limited to being used indoors only.

Rae et al. [29] described a 15-m-long, teardrop-shaped blimp designed to optimize helium gas volume
for lift while minimizing drag. Unlike traditional airships, this aircraft has no propellers, relying on a unique
propulsion method. By filling and emptying an internal “lung” with air, the blimp can alternate between
being lighter and heavier than the surrounding air, propelling itself forward. However, these designs are still
primarily limited to indoor environments and have yet to be fully tested in outdoor, real-world conditions,
especially in the O&G sector.

The motivation for this study arises from the critical need to overcome the endurance limitations
of UAVs in oil and gas pipeline monitoring. While many recent studies have addressed incremental
improvements in UAV technology, such as hybrid propulsion and VTOL designs, none have fully resolved
the challenges of long-range, autonomous pipeline inspection. Furthermore, most studies fail to address the
specific environmental and operational conditions of remote pipeline monitoring, such as adverse weather
or the need for real-time, autonomous inspection capabilities. In response to these gaps, this study provides
a comprehensive review of current advancements in drone technology for pipeline monitoring, critically
examining the latest advances in hybrid propulsion systems and LTA integration.

The novelty of this work lies in its approach to incorporating LTA principles into UAVs specifically
designed for long-endurance pipeline monitoring, a domain where existing drone designs have not fully
addressed the challenges posed by remote, large-scale operations. Furthermore, by advocating for the use
of autonomous flight control systems powered by machine learning and computer vision, this study offers
new insights into how UAVs can perform fully autonomous inspections, reducing the need for human
intervention and enhancing overall inspection accuracy. The key contributions of this work are outlined as
follows:

• This review critically examines techniques for extending drone flight duration, with a particular focus
on those utilizing hybrid power systems. It also identifies recent developments, challenges, and research
gaps in the search for improving drone flight performance.

• It encourages researchers to explore integrating LTA design principles into drone architecture, proposing
this as an improved approach to enhance flight efficiency.

• Additionally, it highlights the importance of autonomous flight control for pipeline inspection, advocat-
ing for the use of computer vision and machine learning-based methodologies to achieve this goal.

• The paper provides ongoing work as proof of concept for the proposed solution through design
optimization, specifically by reducing the weight of hybrid drones.



1158 Comput Model Eng Sci. 2025;142(2)

The remainder of this paper is structured as follows. The paper examines the background of several
drone types for longer flight times, pipeline surveillance, and algorithms in Section 2. Section 3 discusses the
findings from the reviewed literature and proposes an optimal solution. The design methodology is described
in Section 4. Section 5 presents and discusses the preliminary results from the ongoing work and future
directions. Section 6 concludes the research. Fig. 1 shows the comprehensive organization of the paper, with
five main categories.

Figure 1: Organizational block diagram

2 Related Work

This section provides a comprehensive overview of drone technology, its various configurations,
and its application to pipeline inspection. We delve into specific use cases and techniques employed for
pipeline inspection, including advanced algorithms. The primary focus is identifying current limitations
and challenges hindering drone efficiency in this domain. Drones have grown in popularity due to their
unparalleled versatility and the transformative impact of cutting-edge technologies, especially artificial
intelligence (AI) advancements [30,31]. These innovations have significantly expanded drones’ potential
applications, enabling more sophisticated autonomous operations and enhancing their effectiveness across
various industries, including transportation [32,33], urban planning [34,35], powerline maintenance [36],
healthcare [37], and, crucially, pipeline monitoring [3,4]. However, the demand for extended flight times
in specific applications, such as pipeline inspection, often conflicts with weight and design complexity
constraints [38].

2.1 Drone Classification

Existing literature classifies drones into various categories, including size, form factor, flight
endurance,operational range, propulsion system, flight control system, payload capacity, landing mech-
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anism, airframe, and weight [16,17,39,40]. Fig. 2 illustrates classifications of drones based on landing
mechanism, airframe, and weight.

Figure 2: Classifications of drones

A notable classification is based on the landing mechanism, which includes VTOL, Horizontal TakeOff
and Landing (HTOL), and Short TakeOff and Landing (STOL). VTOL drones are characterized by their
ability to take off, hover, and land vertically without the need for a runway. This category includes
multi-rotor drones, such as twin-copters, tri-copters, quadcopters, penta-copters, hexacopters, octocopters,
deca-copters, and dodeca-copters, defined by the number of rotors or propellers they have. These rotors
generate their lifting forces. These drones excel in stationary tasks like inspections and monitoring due to
their ability to hover over a target for prolonged periods and their agility in maneuvering at specific points.
However, they have lower cruise speeds compared to HTOL drones.

HTOL drones, similar to conventional aircraft, require a runway for takeoff and landing. They have
faster cruise speeds but lack the maneuverability of VTOL drones. Fixed-wing drones typically fall into this
category. Hybrid configurations such as tiltrotor and tilt-wing drones have been developed to compromise
between the capabilities of HTOL and VTOL. Tilt-rotor drones demonstrate proficiency in hovering while
tilt-wing drones are optimized for cruise efficiency [16,40]. STOL drones, characterized by a lifting body
fuselage and rotating wing pair along the pitch axis, are designed to take off and land within short distances,
making them suitable for areas with limited runway length. This mechanism differs from fixed or tilt-
wing and rotor systems [41]. Free-wing tilt-body drones utilize this mechanism [42]. For a comprehensive
classification of drones based on other criteria, readers are referred to [16,17].



1160 Comput Model Eng Sci. 2025;142(2)

Another notable configuration is the ducted fan design based on drones’ airframes, where the fans acting
as thrusters are encased within a duct. This configuration, which uses a VTOL mechanism, can include
multiple fans, similar to multi-rotor drones. The duct’s primary function is to protect the fans from external
elements. Flapping wing drones represent a smaller and more compact airframe category. These drones
mimic the flight patterns of birds by opening and closing their wings, a method that allows for intricate
aerial maneuvers. Heli-wing drones are another innovative design that enables vertical takeoff, hovering, and
landing through a rotating wing that serves as the blade. This flexible configuration allows them to operate
vertically, like helicopters, and horizontally, like fixed-wing drones. The ornithopter configuration combines
the flapping wing design with that of a helicopter while eliminating the need for a tail rotor [43]. Lastly, the
cyclocopter utilizes cycloidal rotors to produce lift and thrust. This distinctive approach to rotorcraft design
offers potential advantages in aerodynamic efficiency and control [44]. Different classifications of UAVs are
presented in Fig. 3.

Figure 3: Classification of UAV types, (a) multi-rotor, (b) fixed-wing, (c) tilt-rotor, (d) tilt-wing, (e) flapping wing, (f)
heli-wing, (g) ducted fan, (h) unmanned helicopter, (i) cyclocopter
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Classifying drones based on Maximum TakeOff Weight (MTOW) and the maximum distance they can
cover, Brooke-Holland [39] classified drones with a Maximum TakeOff Weight (MTOW) of 0.2 kg or less as
nano drones, and represent the smallest category. Micro drones are slightly larger, with an MTOW ranging
from more than 0.2 to 2 kg while those with MTOW between 2 and 20 kg fall into the mini drone category.
Moving up the scale, small drones have an MTOW between 20 and 150 kg. Tactical drones are larger still,
with an MTOW ranging from more than 150 to 600 kg.

Singhal et al. [45] specified MTOW between 600 and 1000 kg as both Medium Altitude Long Endurance
(MALE) and High Altitude Long Endurance (HALE) drones but with different maximum ranges that each
could cover. The authors of [17] specified MTOW between 200 and 2000 kg as heavy and MTOW greater
than 2000 kg as super heavy. And for the maximum range covered, Singhal et al. [45] further classify drones
based on the maximum range that could be covered. The authors specify that nano drones can cover up to
5 km, micro drones up to 25 km, and mini drones up to 40 km. Small and tactical drones have a maximum
range of 150 km, while MALE and HALE drones can cover distances of up to 200 and 250 km, respectively.
Heavy drones have a maximum range of 1000 km, while super heavy drones can travel over 1500 km. A
comprehensive summary of weight classifications and their corresponding maximum range capabilities is
provided in Table 1.

Table 1: Classification of drones based on MTOW and maximum range [COMBINED from [17,39,45]]

Category Maximum TakeOff weight (kg) Maximum range (km)
Nano ≤0.2 5
Micro 0.2 <MTOW ≤ 2 25
Mini 2 <MTOW ≤ 20 40
Small 20 <MTOW ≤ 150 150

Tactical 150 <MTOW ≤ 600 150
MALE 600 <MTOW ≤ 1000 200
HALE 600 <MTOW ≤ 1000 250
Heavy 200 <MTOW ≤ 2000 1000

Super heavy >2000 1500

The short operational flight time is a significant challenge for different multitudes of drones. Nano,
micro, and mini drones use up their battery in around 20 to 30 min [18,45], and this challenge limits the
application of drones in oil and gas monitoring that demands longer flight duration. To enhance the reliability
of drones for oil and gas monitoring, researchers have explored various power sources and propulsion control
methods, such as battery swapping [18], solar power energy harvesting [19], fuel cell [20], supercapacitor [21],
gasoline engines and electric motors propulsion systems [22,23]. However, these approaches have drawbacks
such as higher cost, size, and weight of the drones and more complex maintenance and safety procedures.
Thus, a comprehensive study of the different power sources and their effects on the endurance of drones
for oil and gas pipeline monitoring is needed. The following subsections will focus on the advancements in
hybrid drones that utilize a combination of power sources, with particular attention to the efforts made to
extend their operational flight times.

2.2 Drone Hybridization
Efforts to extend drone operational time have led to exploring various strategies, including in-mission

battery swapping and recharging. This method necessitates the establishment of ground-based stations where
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batteries can be either recharged or replaced during missions, as reported in these studies [46–48]. However,
this approach introduces significant interruptions to the mission, as the drone must land and remain
grounded until the batteries are fully recharged or swapped. Fig. 4 illustrates the battery swapping method.

Figure 4: Battery swapping method

A novel approach to mitigate this issue is presented in [18], where a primary quadrotor is supported
by a secondary drone, referred to as a “flying battery.” This secondary drone carries additional batteries and
docks with the main quadrotor to provide supplementary power. During these operations, the primary drone
hovers in place while alternating between its primary and secondary power sources. Although innovative,
this method presents challenges, including the need for multiple drones to function as flying batteries and
the energy expenditure associated with the docking and undocking processes, ultimately diminishing overall
operational efficiency.

To address the problem of mission interruptions during power source transitions, wireless power
transfer has been proposed as an alternative solution by researchers [49–52]. In this approach, demonstrated
by Ouyang et al. [53], drones are equipped with photovoltaic (PV) panels that receive high-power trans-
missions from specialized ground-based laser sources. When the drone’s battery depletes, it connects to
the nearest laser source to recharge. However, this system imposes significant limitations on the drone’s
operational range and altitude, as it must maintain a direct line of sight with the laser source to ensure a
stable connection. Fig. 5 illustrates the fundamental concept of the wireless power transfer process.

Fuel cells have emerged as a promising alternative for extending drone flight time, as highlighted by
these studies [54–56]. These studies emphasize that fuel cells offer a higher energy density compared to
traditional lithium-ion (Li-Po) batteries. For instance, Mi et al. [57] reported that Li-Po batteries typically
provide an energy density of 130–200 Wh/kg, while fuel cells can achieve significantly higher values,
ranging from 250 to 540 Wh/kg. Additionally, these studies [58,59] have recognized fuel cells for their
environmentally friendly characteristics, highlighting their ability to produce low emissions while utilizing
renewable fuels. These studies also reported that the energy conversion process in fuel cells generates
electricity, with steam as the primary byproduct, highlighting their potential as a cleaner power source.

Among the various types of fuel cells, Pan et al. [60] identified hydrogen fuel cells as the most efficient
for drone applications. However, as noted by Kendall [61], the storage of hydrogen presents significant
challenges due to the need for high-pressure and low-temperature conditions. To address these challenges,
different hydrogen storage methods have been proposed, including compressed hydrogen gas [62], liquid
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hydrogen [63], and chemical hydrogen generation [58,64,65]. A comparative analysis conducted by Swider-
Lyons et al. [66] revealed that, despite their potential, fuel cells are both costly and complex to manufacture
and operate, noting that the storage processes are heavy and time-consuming. The studies by these
authors [20,67] suggest that the operational delays and limitations associated with using fuel cells for drones
have led to exploring power hybridization as a viable solution. This approach integrates fuel cells with
traditional batteries, creating a hybrid power system that leverages the strengths of both energy sources while
mitigating their weaknesses, as demonstrated by these studies [68–70].

Figure 5: Procedure illustrating drone charging through laser beams

Wang et al. [24] evaluated the use of both energy sources by feeding into a drone a fuel cell that could
generate 162.7 W of electrical power. The fuel cell was used during the cruise flight mode, the battery was used
for takeoff and landing, and the battery was also set for other emergency flight modes. Bayrak et al. [67] also
proposed a similar method, but in their case study, the authors used two batteries, Li-ion and Ni-MH, because
of their high energy density and combined them with a fuel cell with a switch. The switch decides which
power source should be used for operation. Boukoberine et al. [71] addressed the drawback of poor response
during takeoff and climbing when using fuel cells in drones by combining them with supercapacitors. They
employed a direct current (DC)/DC boost converter to connect the fuel cell to the DC bus, controlling the
power distribution through simulation. Their findings suggest a synergistic effect, with the fuel cell providing
low-frequency components and the supercapacitor supplying high-frequency components. However, they
also noted that this approach increases system complexity and weight, necessitating additional components
like converters and controllers for practical drone applications.

Similarly, Fu et al. [72] proposed a hierarchical energy management strategy (EMS) for hybrid electric
vehicles equipped with fuel cells, batteries, and supercapacitors. Their EMS utilizes a low-pass filter to
optimize power distribution from the fuel cell and reduce hydrogen consumption. In this system, the
supercapacitor manages peak power demands and recovers braking energy while the battery enhances fuel
economy. The effectiveness of this EMS was validated through both simulation and experimental methods.
However, they acknowledged that the complexity of this system might limit its practical application in drones.
According to Xu et al. [73], while supercapacitors offer benefits for auxiliary power in UAVs, their use as a
secondary power source in conjunction with fuel cells is hindered by their dynamic output voltage. Unlike



1164 Comput Model Eng Sci. 2025;142(2)

batteries, which provide a relatively constant voltage during discharge, supercapacitors exhibit substantial
voltage variations directly linked to their remaining energy.

These studies [74,75] proposed a tri-hybrid system incorporating batteries and supercapacitors along-
side the fuel cell to compensate for the fuel cell’s output fluctuations. A study by Kaya et al. [76] investigates a
triple-hybrid system for UAVs, combining a fuel cell, a Li-ion battery, and a supercapacitor. The researchers
employed an electronic control unit to manage the energy flow and optimize system performance under
different flight conditions. In this configuration, the fuel cell serves as the primary energy source, the Li-
ion battery provides auxiliary power, and the supercapacitor handles sudden power demands, acting as a
buffer for high-power transients. The authors of [77] presented an energy management strategy for a similar
triple-hybrid system using a finite state machine method for power distribution. This method considers each
energy device’s power capabilities and state of charge. Their results demonstrate that the proposed method
ensures sufficient power delivery while potentially extending the fuel cell’s life cycle. Fig. 6 illustrates a UAV
powered by a fuel cell.

Figure 6: Fuel cell-powered UAV

Due to these challenges, researchers, as highlighted in their works [78–80] have turned their attention
to solar power as an alternative means to increase drone endurance, especially for high-altitude missions.
Goh et al. [80] demonstrated that solar-powered drones, which rely solely on solar panels without any battery
or energy storage device, could perform VTOL and hover operations. However, they pointed out that this
design is highly sensitive to weather conditions because solar cells require a large surface area to be effective.
Chu et al. [81] further investigated a hybrid solar-battery system in a 2-m wingspan UAV, showing that
incorporating solar power could save 22.5% of the battery capacity during flight. Despite challenges with
voltage, current, and power variations in drone solar modules, these researchers suggest that solar power
offers a simpler and potentially more efficient alternative to fuel cells, particularly by reducing the need for
heavy and complex energy storage systems. Lin et al. [82] moderated the challenges with voltage, current,
and power variations in drone solar modules using additional batteries. However, the peak power demand
wasn’t met.

Gao et al. [83] investigated the use of gravitational potential and rechargeable batteries for energy
storage in solar-powered drones, finding that these methods offer the potential for extending flight times
but are limited by their energy density and integration complexity. Shiau et al. [84] introduced a solar
power management system for hybrid solar/battery setups, incorporating maximum power point tracking
(MPPT), battery management, and power conversion. Their system effectively optimized energy extraction
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and battery charging, enhancing overall power efficiency for onboard systems. However, the study did not
address the integration challenges with other power sources.

Gang et al. [85] designed a hybrid power system combining fuel cells, batteries, and solar arrays mounted
on each wing. They implemented a solid-state relay-based power switching method to alternate between fuel
cell and solar power, accommodating load variations during flight. While this approach improved power
management, it introduced additional system complexity and weight. Lee et al. [86] developed a 200 W UAV
powered by a combination of solar cells, a fuel cell, and batteries. Their active power management system
(PMS) maintained operational boundaries and battery state-of-charge across various flight conditions,
improving overall power management. However, the study did not explore the effects of power source
variability on long-term reliability.

Lee et al. [87] examined a passive hybrid propulsion system integrating fuel cells, batteries, and solar
cells. This design eliminated the need for DC-DC converters but required all power sources to operate at
the same voltage level, which constrained the battery’s role in regulating solar power and ultimately reduced
solar conversion efficiency. Shiau et al. [84] emphasized the critical role of MPPT controllers in maximizing
solar energy utilization. Their findings showed that MPPT controllers significantly improve the efficiency
of solar power generation by dynamically adjusting the solar array’s operating voltage to ensure peak power
output despite varying environmental conditions and system voltage. However, the study did not address the
integration challenges of MPPT with other power sources in hybrid systems. Fig. 7 illustrates a solar-powered
drone. Table 2 provides a detailed comparison of various power sources used to enhance UAV endurance,
outlining their benefits and limitations.

Figure 7: Solar-powered drone

Table 2: Comparison of different power sources for UAVs

Ref. Hybrid methods Combinations Benefits Limitations
[18,46–53,88,89] Battery swapping Battery/wireless

power transfer
Enhanced
flexibility,
decreased

maintenance, and
optimized energy

management.

Limited operational
flight time, mission
obstruction, long
recharging time,
increased weight

and cost for
multiple batteries

and large batteries,
altitude constraint.

(Continued)
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Table 2 (continued)

Ref. Hybrid methods Combinations Benefits Limitations
[20,24,54–60,67–72,74–77,90–94] Fuel cell hybrid Fuel cell/battery Increased

endurance due to
high energy and
power densities,

improved
efficiency.

With increased
weight and more

complexity, an
energy

management
system is required,

and cost
implications, reliant
on the availability

of hydrogen.
Fuel

cell/supercapacitor
Rapid power
delivery and

acceleration during
flight modes,

improved reliability
and lifespan,

potential
lightweight

compared to fuel
cell/battery.

Inconsistent output
voltage, limited
backup (energy)
storage, system
complexity, and

reliant on the
availability of

hydrogen.

Fuel
cell/supercapacitor/

battery

Fast charging,
clean, high power

and energy
densities, improved
efficiency, increased

lifetime.

Reliant on the
availability of

hydrogen,
combined system

weight, and
increased system

complexity to
accommodate

integration.
[78–81,83–87,95] Solar hybrid Solar cells/battery Clean energy,

increased
endurance, silent

operations, reduced
operational cost.

Limited operational
flight range, reliant

on weather
conditions, MPPT

required.
Solar

cells/battery/fuel
cell

Saves hydrogen
fuel, and clean

energy, and
increases

endurance.

Weather
dependence,

system complexity.

2.3 Lighter-than-Air (LTA) Technology
Recent studies such as [15,19,96–98] have explored using LTA configurations, such as those found in

airships and blimps, to reduce drone weight and extend flight time by integrating these designs with heavier-
than-air (HTA) configurations, typically employed in drones, for added stability. Researchers such as [25,26]
have proposed that airships or blimps, utilizing buoyant forces generated by LTA gases like hydrogen or
helium, can reduce overall drone weight and improve aerodynamic efficiency. Chollet [99] reported helium
gas as the ideal choice LTA due to its inherent properties. It offers a significant lift with minimal weight, a
critical factor for maximizing flight time and payload capacity.

The potential benefits of helium-filled drones have been highlighted, with Song et al. [27] suggesting that
LTA designs offer lower power consumption and increased operational flight time. To validate these claims,
Macias et al. [100] developed a hybrid drone incorporating helium gas. Their findings, based on classical
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control theory, demonstrated a substantial increase in flight time, reaching 46 min. However, the design
exhibited aerodynamic instability and wobbling.

Yamada et al. [101] proposed a blade-free drone that employs a helium balloon and 24 micro blowers for
propulsion. This design enables vertical takeoff and landing, allowing the drone to remain airborne for weeks.
However, the drone’s ability to move or operate in windy or indoor environments with air conditioning is
limited due to its susceptibility to wind. Another design, demonstrated by Burri et al. [28], involves a 2.7-m
diameter spherical drone that uses helium gas and four propellers, allowing for free movement and rotation
in any direction. Despite its maneuverability, this drone is also constrained to indoor use.

Song et al. [27] designed a torus-shaped drone filled with helium gas to extend flight time, with a
control unit centrally located within the envelope to manage translational and rotational motions. This design
achieves a flight time of one hour, but its aerodynamics, particularly the shape of the balloon, make it highly
vulnerable to wind interference, thus limiting its application to indoor environments. Sharma et al. [102]
introduced a drone featuring a helium-filled balloon equipped with a rotor fault detection algorithm that
can identify rotor malfunctions within 5.5 s, ensuring a safe landing. However, due to its shape, the drone’s
design results in high aerodynamic drag.

Rae et al. [29] described a 15-m-long blimp with a teardrop shape designed to optimize helium gas
volume for lift while minimizing drag. This blimp, lacking propellers, propels itself by alternating between
being lighter-than-air and heavier-than-air, achieved by filling and emptying an internal “lung” with air
to adjust its weight relative to the surrounding air. Although innovative, this design was tested exclusively
indoors. Similarly, Tao et al. [103] developed an indoor miniature autonomous blimp capable of safe
interaction with humans and a two-hour flight time. However, its limited payload capacity of 12 g and
potential instability from wind or human touch pose significant drawbacks. Song et al. [104] introduced a
buoyancy-aided UAV design with a symmetric torus blimp equipped with multiple tiltable actuators. This
design, like many others in the field, was tested in indoor environments, where it demonstrated stable flight.
However, its application remains limited to indoor use due to the aerodynamic constraints imposed by the
design, particularly its susceptibility to external wind forces. Fig. 8 shows some examples of LTA drones.

Figure 8: Examples of LTA drones

Many of these studies highlight the limitations of current LTA drone designs, particularly their
unsuitability for outdoor use due to aerodynamic instability and vulnerability to wind. Consequently, there is
a clear need for more efficient designs that can overcome these challenges and be utilized in a wider range of
environments. Table 3 summarizes recent studies’ key findings and limitations, providing a comprehensive
overview of the current state of LTA designs for improved flight endurance.



1168 Comput Model Eng Sci. 2025;142(2)

Table 3: Summary of recent studies on LTA

Ref. Design Configuration Key findings Limitations
[27] Torus-shaped drone

filled with helium gas
with a central control

unit for motion.

LTA Achieved a one-hour
flight time, central

control unit managed
translational and

rotational motions.

High vulnerability to
wind interference,
limited to indoor

environments.

[28] 2.7-m diameter
spherical drone using
helium gas and four

propellers.

LTA Enabled free
movement and
rotation in any

direction and axis.

Constrained to indoor
use due to

vulnerability to wind.

[29] 15-m-long blimp with
a teardrop shape and
an internal “lung” for

air exchange.

LTA Optimized helium gas
volume for lift,

reduced drag, and
achieved propulsion

by alternating between
lighter-than-air and

heavier-than-air
states.

Tested exclusively
indoors, no

movement—just
takeoff.

[100] Hybrid drone with
helium gas.

LTA +HTA Demonstrated a flight
time of 46 min using a
helium-based hybrid

design.

Exhibited
aerodynamic

instability and
wobbling.

[101] Blade-free drone with
24 micro blowers for

propulsion.

LTA Achieved vertical
takeoff and landing,

capable of staying
airborne for weeks.

Limited movement in
windy conditions;

unsuitable for indoor
environments with air

conditioning.
[102] Drone with a

helium-filled balloon
and rotor fault

detection algorithm.

LTA +HTA Equipped with a rotor
fault detection
algorithm that

identifies
malfunctions within
5.5 s, ensuring a safe

landing.

High aerodynamic
drag due to the
balloon shape.

[103] miniature blimp. LTA Achieved a flight time
of two hours, designed

for safe interaction
with humans.

Limited payload
capacity (12 g),

potential wind or
human touch

instability.
[104] Symmetric torus

blimp with multiple
tiltable actuators.

LTA Demonstrated stable
flight in indoor
environments.

Restricted to indoor
use due to wind

vulnerability.

2.4 Pipeline Inspection and Monitoring Techniques
In recent studies, the need for regular inspection and monitoring of pipelines has been emphasized due

to the potential development of defects such as cracks, joint failures, and corrosion, which can result from
extreme weather conditions, including temperature fluctuations, pressure, and humidity [105]. These defects,
as highlighted by Shukla et al. [106] pose significant risks, including the potential for oil and gas leaks that
could lead to environmental disasters and substantial revenue losses.

According to Shukla et al., visual inspection has traditionally been the primary method for detecting
pipeline defects, relying heavily on human operators who use their eyes or cameras to identify and assess
issues such as leaks by analyzing color, texture, and patterns in images or video data [5]. However, this method
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is not without its drawbacks. It requires specialized training and expertise, is time-consuming, carries risks,
and is prone to human error, making it a costly approach. Despite these challenges, it was once the most
commonly used inspection method.

To address these limitations, various alternative methods have been proposed. One approach involves
using in-pipe robots [107–109], which can navigate the inside of pipelines to detect issues such as corrosion,
metal loss, and cracks. These robots are equipped with sonar leakage detectors, HD cameras, LED lights, and
magnetic and ultrasonic sensors to identify potential problems. As demonstrated by Shukla et al. [106], the
robots are inserted into the pipeline through an entry point and are remotely controlled from a command
center, transmitting data back for analysis. However, the internal nature of this inspection method can disrupt
normal pipeline operations, leading to a preference for external inspection methods.

In response to this challenge, Tavakoli et al. [110] developed a novel pole-climbing robot with a V-shaped
gripper to enhance safety and stability. Their robot was designed to navigate the complexities of 3D tubular
structures, including bends and T-junctions. However, the authors acknowledged potential limitations in
handling complex geometries, varying pipeline diameters, and obstacles. A system for detecting gas pipeline
leaks using sensor fusion and model-based fault detection was proposed by [111]. This system utilizes a
generalized state-space model of the pipeline, adaptable to various measurement and boundary conditions.
It employs the Extended Kalman Filter and Fisher fusion techniques to estimate leak size and position from
noisy pressure data along the pipeline.

Drones have also been explored for external inspection operations [112,113]. According to a survey
by Cyberhawk, a North Sea E&P company, drone-based inspections can reduce costs by half and are
twenty times faster than conventional methods [114]. Also, as reported by Aljuaid et al. [115], the use of
drones for monitoring offers a promising alternative for the oil and gas industry, providing incredible
speed, cost-efficiency, and safety with minimal human intervention. This technology’s flexibility allows for
the integration of various sensors, addressing limitations in traditional inspection methods. However, as
noted in [109,116,117], current drone-based pipeline inspections often rely on manual control, requiring a
skilled engineer to manage drone flight, camera operation, and sensor data analysis, while another engineer
monitors the live video feed for inspection purposes. This approach, though effective, is time-consuming,
costly, and prone to human error, emphasizing the need for advancements in autonomous drone-based
inspection systems to fully harness the potential of this technology for oil and gas monitoring.

Alharam et al. [3] describe an autonomous pipeline inspection system that utilizes a drone equipped
with a thermal camera and parallel processing capabilities to achieve real-time performance. The system
also features a gas detector to identify leaks and cracks in pipelines. Similarly, Shukla et al. [5] developed
a method for autonomous tracking and inspection of pipelines, which operates in two stages: vision-based
pipeline identification and navigation control. Their approach employs a proportional-integral-derivative
(PID) controller with heuristic tuning to synchronize the drone’s position with the pipeline structure.
Usamentiaga et al. [117] introduced a semi-autonomous pipeline inspection method using a drone fitted
with an infrared camera. The drone follows a pre-programmed flight path aligned with the pipeline’s route,
enabling it to inspect pipelines at night and detect temperature variations over time.

In addition, a hybrid manipulator system was proposed by Cacace et al. [118], combining both aerial
and ground movement for pipeline inspection tasks. This system operates in fully autonomous and remote-
controlled modes, with capabilities to navigate like a land vehicle for pipeline inspections. It includes flight,
navigation, and stabilization components, allowing it to perform inspection tasks in complex environments.
However, the system still encounters reliability and accuracy challenges in dynamic and uncertain condi-
tions. A recent study proposed a visual-based UAV system for tracking and inspecting industrial pipes [119].
The system effectively utilized depth sensor data for pipe tracking and defect detection. While the study
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demonstrated promising results in controlled environments, further research is required to enhance system
robustness and accuracy in real-world scenarios. Table 4 provides an organized overview of the different
technologies, their features, benefits, and limitations, as reported in recent studies.

Table 4: Summary of pipeline inspection techniques

Ref. Method/Technology Key features Key findings Limitations
[5,106] Visual inspection Human operators use

visual assessment with
eyes or cameras.

Allows for direct
identification of pipeline
defects based on visual

cues.

Time-consuming,
requires specialized

training, error-prone,
risky, and costly.

[107–109] Internal pipeline
inspection

Equipped with sonar
leakage detectors, HD

cameras, LED lights, and
magnetic and ultrasonic

sensors.

Capable of detecting
corrosion, metal loss, and

cracks from within the
pipeline.

Can disrupt normal
pipeline operations,
limited to internal
inspections only.

[110] Pole-climbing robot V-shaped gripper design
can navigate bends and

T-junctions in 3D tubular
structures.

Safe and stable navigation
on pipeline structures.

Struggles with complex
geometries, varying

diameters, and obstacles.

[109,115–
117,119]

Drone-based
inspection

Drones are equipped with
various sensors for
external inspection.

Cost-effective, faster than
conventional methods,

enhances safety, and
reduces human

intervention.

Often relies on manual
control, requiring skilled

operators and being prone
to human error.

[3] Autonomous drone
with thermal camera

Real-time processing, gas
detector for detecting

leaks and cracks.

Autonomous operation
reduces human error and

improves detection
accuracy.

Technology requires
refinement for varied

environments.

[5,119] Vision-based
autonomous inspection

PID controller with
heuristic tuning for

pipeline identification and
navigation.

Synchronizes drone
position with pipeline
structure for accurate

inspection.

Requires precise initial
and parameter tuning.

Sensitive to
environmental factors.

Utilizes depth sensor data
for tracking and detecting
defects in industrial pipes.

Demonstrated promising
results in controlled

environments, improving
tracking accuracy.

Requires further research
to enhance robustness and

accuracy in real-world
scenarios.

[117] Semi-autonomous
infrared inspection

Pre-programmed flight
paths, infrared camera for

night inspection, and
temperature variation

detection.

Effective for night
inspections, capable of
detecting temperature
variations over time.

Limited to predefined
routes, less adaptable to
unforeseen conditions.

[118] Hybrid manipulator
system

Combines aerial and
ground movement, fully

autonomous and
remote-controlled modes.

Versatile in complex
environments, integrates

flight, navigation, and
stabilization components.

Faces reliability and
accuracy issues in

dynamic and uncertain
conditions.

[111] Sensor fusion and
model-based fault

detection

Generalized state-space
model, Extended Kalman

Filter, Fisher fusion
techniques for leak

estimation.

Accurate leak size and
position estimation,
adaptable to various

conditions.

Effectiveness varies with
the noise levels in pressure
data, potentially requiring
complex data processing.

In comparison to traditional inspection and monitoring methods such as visual inspection, in-pipe,
and pole-climbing robots, drone-based inspections have proven more cost-effective and reliable for pipeline
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monitoring. Visual inspections, while once common, are prone to human error, require specialized training,
and are time-consuming, leading to higher operational costs. In-pipe and pole-climbing robots, although
equipped with advanced sensors, often disrupt pipeline operations and face limitations when navigating
complex geometries. UAV technology, on the other hand, offers faster inspection times, reduced costs, and
increased safety with minimal human intervention. UAVs can be fitted with various sensors, including
thermal cameras and gas detectors, enabling them to detect leaks, corrosion, and temperature variations
without halting pipeline operations. Furthermore, UAVs are adaptable to different environments and can
perform inspections autonomously, reducing human error and improving data accuracy. With advancements
in autonomous navigation and sensor integration, drones are becoming the most promising solution for the
oil and gas industry, offering significant advantages in terms of scalability, efficiency, and cost savings over
other inspection methods.

2.5 Pipeline Inspection Algorithms
In recent studies, drones have demonstrated significant potential for performing faster, cheaper, and

safer inspections than traditional methods. However, fully harnessing the capabilities of drones requires
the development of robust algorithms. These algorithms are essential for various aspects of drone-based
inspections, including image processing for anomaly detection [120,121], path planning for autonomous
navigation [122,123], and real-time data analysis for informed decision-making [124]. This subsection reviews
the current state-of-the-art algorithms in these areas and their potential to enhance the efficiency and
accuracy of oil and gas pipeline monitoring.

For pipeline monitoring, especially in leak detection, advancements in image processing algorithms
are proving transformative. The recent progress in AI, particularly in machine learning (ML) and deep
learning (DL) algorithms, is ushering in a new era of autonomous pipeline monitoring. These algorithms
are increasingly being applied to analyze data collected by drones and other sensors, enabling automated
anomaly detection and proactive maintenance. This ultimately contributes to safer and more efficient
pipeline operations [100,104,105]. Specifically, these algorithms can be trained to recognize particular features
in pipeline imagery, such as vegetation encroachment, discoloration, or surface anomalies, potentially
facilitating the early detection of leaks and minimizing environmental impact [100].

Alharam et al. [3] present an AI-based unmanned system designed for the inspection of oil and gas
pipelines, which aims to enhance efficiency by automating the inspection process and delivering real-time
alerts for leakages with a delay of less than 100 ms. The study compares several ML algorithms for detecting
leaks, including Decision Tree, Support Vector Machine, and Random Forest. However, the research is
limited by its reliance on a single dataset focused on methane gas leakage, indicating a need for the
inclusion of multiple datasets and the potential integration of image processing techniques for more robust
inspection validation.

Similarly, Al-Battbootti et al. [125] explore using UAV to capture images for subsequent analysis by
ML models to detect and locate oil pollution. Their framework, incorporating object detection techniques
and neural networks, was divided into training and operational models. While demonstrating promise,
the model’s reliance on hypothetical oil spill scenarios limited its generalizability. Real-world conditions,
characterized by diverse oil types, spill sizes, and environmental factors, could potentially impact the model’s
accuracy and effectiveness.

Sonkar et al. [126] investigate the detection of natural gas leaks using UAVs equipped with ML
algorithms, specifically the reduced support vector machine (RSVM) and artificial neural network (ANN),
applied to methane detection data. The study acknowledges limitations, including the dependency of
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RSVM’s performance on the kernel function and the necessity for higher-quality data to improve algo-
rithm performance. Furthermore, the current UAV system lacks the required endurance for extended
inspection tasks.

Iwaszenko et al. [127] present a study on the use of UAVs equipped with laser-based methane sensors
for detecting natural gas leaks in pipeline networks. The UAV’s capability to identify increased methane
concentrations was tested on both artificial and real gas leaks, with ML methods employed to analyze the
spatially correlated data. However, the study highlights challenges such as the difficulty in distinguishing
real leaks from background methane levels, particularly at higher altitudes, and the potential impact of UAV
propellers on methane dispersion at lower altitudes.

In recent advancements, DL algorithms have significantly enhanced pipeline inspection and monitoring
through UAVs. Unlike traditional ML approaches, DL leverages complex neural networks to process and
analyze vast amounts of data with improved accuracy and efficiency [128–130]. These algorithms, particularly
convolutional neural networks (CNNs), have demonstrated their capability to perform intricate image
analysis tasks, which are crucial for detecting anomalies in pipeline infrastructure.

Recent studies highlight the transformative impact of DL on pipeline inspection. For instance, Jiao
et al. [131] integrated DL and the Otsu algorithm into a UAV system for oil spill detection. Experimental
results demonstrated the system’s effectiveness in identifying oil spills at a lower cost compared to satellite-
based methods. To enhance model accuracy, the researchers recommended compiling a larger dataset of oil
spill images. Additionally, incorporating infrared cameras into the UAV system was suggested for improved
nighttime detection capabilities. A comprehensive review by [109] highlighted the potential of unmanned
systems, including UAVs, for oil and gas infrastructure inspections. The study emphasized the impact of
UAVs, particularly when coupled with advanced algorithms like visual simultaneous localization and DL.

Similarly, Altabey et al. [132] introduced a CNN-based crack contour network method to enhance the
efficiency and accuracy of identifying pipeline surface cracks through image processing. This method was
evaluated using metrics such as accuracy rate, recall rate, and F-score, and the metrics indicated its potential
for high-precision crack detection. However, the study also noted challenges, such as a high false detection
rate, which may limit the direct application of this algorithm in fully automated pipeline inspection systems.
Obaid et al. [133] present a DL approach for detecting oil pipeline leakages using aerial images captured by
a drone. The aerial images were analyzed using the DexiNed algorithm to identify contours indicative of oil
spills. The “CIELAB” color space is utilized to detect black-colored contours, which are potential oil spills.
Limitations include the system’s dependency on weather conditions and the precision of images varying with
the time of day and terrain.

A notable DL approach employed in pipeline inspection is the use of You Only Look Once (YOLO)
algorithms [134]. YOLO is a real-time object detection system that has been integrated into UAV-based
pipeline monitoring systems. According to [135], YOLO’s architecture allows for efficient and accurate
detection of objects within images by processing them in a single pass. This capability is particularly
beneficial for real-time applications where rapid detection and response are essential. YOLO models have
been successfully implemented in various pipeline inspection tasks, demonstrating the ability to identify and
classify pipeline defects and anomalies in real time.

This development aligns with recent work that leverages advanced deep neural networks and computer
vision models for anomaly detection in oil and gas infrastructure, demonstrating the potential for fully
automated drone systems to surpass traditional, human-reliant methods in both speed and accuracy [120]. A
similar study by da Silva et al. [136] used a drone with image processing techniques and a YOLO algorithm for
navigating complex unburied pipeline networks within the O&G industry. YOLO was utilized to accurately
detect pipelines, while additional image processing techniques, such as Canny edge detection and the Hough
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Transform, were applied to establish a reference line along the pipeline. However, the study highlights further
fine-tuning of the trained model to achieve better performance. Table 5 provides a detailed overview of the
studies, highlighting the detection method, technology, tools, and algorithm used.

Table 5: Overview of pipeline inspection algorithm

Ref. Detection method Technology Tools Algorithm Key findings Limitations
[3] Gas leakage

detection
ML Methane gas

sensors, UAV
Decision Tree,

Support
Vector

Machine,
Random

Forest

Real-time
alerts with
<100 ms delay

Reliance on a
single dataset
for methane
gas leakage

[125] Oil pollution
detection

ML UAV, High-
definition

camera

ML.NET Effective in
identifying

and locating
oil pollution

Reliance on
hypothetical

parameters for
various oil

spill scenarios
[126] Natural gas

leak detection
ML Methane

sensors, UAV
RSVM, ANN High

detection
accuracy in

methane leaks

RSVM’s
performance
depends on
the kernel

function; UAV
endurance
limitations

[127] Methane leak
detection

ML Laser-based
Methane

Sensors, UAV

Density-based
spatial

clustering
(DBSCAN)

Can detect
methane con-
centrations in

real and
artificial leaks

Difficulty
distinguishing

real leaks
from

background
methane

levels
[131] Oil spill

detection
DL High-

definition
camera, UAV

Custom deep
CNN, Otsu

Lower cost
compared to

satellite
methods;

Effective oil
spill detection

Requires
larger datasets
for accuracy;

lacks
nighttime
detection
without
infrared
cameras

[132] Surface crack
detection

DL High-
definition

camera, UAV

CNN-based
Crack

Contour
Network

Crack
detection

High false
detection rate,

limiting full
automation
capabilities

[133] Oil pipeline
leakage

detection

DL Camera, UAV,
“CIELAB”

Color Space

DexiNed Effective in
detecting oil
spill contours

High false
detection rate,

limiting full
automation
capabilities

(Continued)
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Table 5 (continued)

Ref. Detection method Technology Tools Algorithm Key findings Limitations
[136] Pipeline

detection and
navigation

DL Camera, UAV,
ROS, Gazebo

YOLO, Canny
Edge

Detection,
Hough

Transform

Accurate
real-time
pipeline

detection and
navigation

Requires
fine-tuning

for improved
performance

[120] Anomaly
detection in

pipeline

DL Onboard and
cloud

computation,
thermal
imaging

camera, gas
sensor, UAV

Deep neural
network,

YOLO

Fully
automated

system;
surpasses
traditional
methods in
speed and
accuracy

Anomalies
detection in
diverse and
unexpected

conditions not
fully

established

2.6 UAVs in Pipeline Inspection
Benyeogor et al. [137] developed a UAV equipped with gas leakage detectors, relying on Multiwii

software for 3D motion control. Their solution demonstrates the potential for UAV-based pipeline moni-
toring. However, the study fails to address endurance limitations, which is critical for extended surveillance
missions. Additionally, it lacks a detailed analysis of the sensors’ accuracy, which is vital for reliable leak
detection. Furthermore, environmental factors such as weather conditions, which significantly influence
UAV performance, are overlooked.

Prasetya et al. [138] explored the use of fixed-wing drones for aerial surveillance of pipeline right-of-
ways, focusing on the risks posed by expanding residential and industrial activities. While this research
highlights the relevance of aerial surveillance, it similarly neglects the drones’ endurance limitations.
Moreover, the paper omits key discussions on data processing and analysis methods, both essential for
ensuring the reliability and comprehensiveness of monitoring results.

Ondráček et al. [139] proposed a mathematical model to optimize UAV movement for pipeline
monitoring, focusing on potential damage and timely surveillance. Though it addresses the importance of
efficient UAV operations, the model overlooks real-world variables such as weather conditions, which could
significantly impair performance. Additionally, its reliance on fixed parameters rather than adaptive ones
limits its scalability and applicability in dynamic pipeline environments.

Xiaoqian et al. [140] presented a control mechanism for UAV-based pipeline visual tracking, focusing
on navigation using a PID controller. The study emphasizes precision in navigation but suffers from
limitations related to fluctuating terrain, adverse weather, and maintaining accurate tracking. This system’s
performance depends on height accuracy and UAV model stability, factors that are difficult to ensure in
unpredictable environments.

Akande et al. [141] proposed a real-time autonomous UAV system that detects leaks in buried
and surface pipelines. While this system shows potential for responsive, real-time monitoring, its flight
duration of only 15 min severely limits its effectiveness. The study does not address critical factors such
as energy efficiency or battery sustainability, raising concerns about its practicality for large or remote
pipeline networks.

Zhai et al. [120] presented a cloud-enabled UAV system for oil and gas field surveillance, integrating
thermal imaging and deep learning for anomaly detection. While the system shows promise in terms of
automation and real-time analysis, it faces similar challenges to the other studies: insufficient attention to
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endurance and weather adaptability. The system’s reliance on fixed weather-dependent flight paths further
limits its flexibility in real-world scenarios.

Despite these advancements in UAV-based pipeline monitoring, the reviewed studies reveal several
inadequacies. Majorly the limited endurance of current UAV systems restricts their capability for long-
term, large-scale pipeline surveillance; the need for UAVs capable of carrying advanced sensor payloads
and operating autonomously over vast distances is evident. Additionally, most studies neglect crucial factors
like weather conditions and scalability, which are critical for reliable and sustained pipeline monitoring in
diverse environments.

3 Further Discussion
The pursuit of enhancing drone operational time has prompted the exploration of diverse strategies,

ranging from in-mission battery swapping and recharging to integrating fuel cells and hybrid power systems.
These methods represent significant advancements in drone technology, yet each comes with its technical
challenges that impact the overall mission efficiency and operational feasibility. The conventional approach
of in-mission battery swapping and recharging involves establishing ground-based stations where drones
can land to either recharge or replace their batteries. While this method is straightforward, it introduces
notable interruptions to the mission, as the drone must cease its operations during the battery replacement
or charging process. The time required for these procedures can lead to significant mission downtime, which
is especially problematic in long-duration surveillance or inspection tasks where continuous operation is
critical. An innovative approach to mitigate the downtime associated with battery swaps is the “flying battery”
concept, wherein a secondary drone equipped with additional batteries docks with the primary drone in
mid-air to provide supplementary power. This method allows the primary drone to hover in place while
transitioning between power sources. However, the implementation of such a system presents considerable
challenges. The requirement for multiple drones functioning as flying batteries adds complexity to the
operation and increases energy consumption due to the docking and undocking processes. Consequently,
while the concept is promising, the overall operational efficiency may be compromised, particularly in
missions requiring extended flight times.

Wireless power transfer has emerged as another potential solution, leveraging high-power laser trans-
missions to recharge drones equipped with PV panels. This method eliminates the need for the drone to land,
theoretically enabling continuous operation. However, the reliance on a direct line-of-sight with the ground-
based laser source imposes significant limitations on the drone’s operational range and altitude. The need
for precise alignment with the laser source further complicates the system’s integration into dynamic flight
environments, where maintaining a stable connection may prove challenging. Moreover, environmental
factors, such as weather conditions, can significantly impact the effectiveness of this power transfer method,
making it less reliable for consistent, long-duration missions.

Fuel cells have gained attention for their potential to extend drone flight times, owing to their higher
energy density compared to traditional Li-Po batteries. Fuel cells, particularly hydrogen fuel cells, offer
energy densities ranging from 250 to 540 Wh/kg, significantly surpassing the 130 to 200 Wh/kg typically
provided by Li-Po batteries. Despite these advantages, the storage of hydrogen, which requires high-pressure
and low-temperature conditions, poses substantial technical challenges. The complexity of hydrogen storage,
coupled with fuel cells’ cost and manufacturing intricacies, limits their widespread adoption in current drone
applications. Addressing these limitations led to combining fuel cells with traditional batteries to leverage
the strengths of both energy sources. For instance, hybrid systems have been developed where fuel cells
are utilized during cruise flight, and batteries are reserved for takeoff, landing, and emergency scenarios.
This configuration optimizes the use of each power source, but the added complexity of integrating multiple
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energy systems, including the need for converters and controllers, increases the overall system weight and
operational intricacy. The dynamic output voltage of supercapacitors, when combined with fuel cells, further
complicates power management, requiring sophisticated EMS to optimize performance and extend fuel
cell life.

Recent developments in tri-hybrid power systems, which integrate fuel cells, batteries, and supercapac-
itors, offer a promising solution to the limitations of single or dual power systems. These systems employ
advanced EMS to optimize power distribution, ensuring that each power source operates within its optimal
range. For example, supercapacitors can manage peak power demands and recover braking energy, while
batteries provide auxiliary power, and fuel cells serve as the primary energy source. However, the increased
system complexity, weight, and the need for precise control mechanisms to manage power flow among the
different sources present significant challenges to implementing tri-hybrid systems in drones.

Solar power offers an environmentally friendly option for extending drone flight times, particularly
in high-altitude missions where sunlight is abundant. By integrating solar panels with battery systems,
drones can reduce reliance on stored energy, theoretically allowing longer flight durations. However, the
effectiveness of solar power is highly dependent on environmental conditions, and the large surface areas
required to capture sufficient solar energy impose design constraints. Additionally, voltage and power
output fluctuations caused by varying sunlight intensity necessitate using MPPT controllers to optimize
energy usage. Although solar power systems are relatively simple and less complex than fuel cells, their
dependency on weather conditions and low energy density limits their utility in certain environments.
Hybrid solar battery systems have been explored to mitigate these limitations, but challenges remain in
achieving consistent performance across various weather conditions.

LTA configurations, such as airships and blimps, offer a unique approach to extending drone flight
time by leveraging buoyant gases like helium or hydrogen to reduce the energy required for lift. These
designs enable significantly longer flight durations compared to traditional drone configurations, making
them ideal for long-term surveillance or inspection tasks. LTA designs are particularly suited for applications
like pipeline inspection, where extended flight times are critical. However, LTA designs face challenges,
particularly in outdoor environments where aerodynamic instability and susceptibility to wind forces can
lead to unreliable performance. The optimized shapes for buoyancy often increase aerodynamic drag, further
complicating their use in windy conditions. Despite these limitations, the potential of LTA configurations
to enhance flight endurance and reduce power consumption remains significant. Advances in materials,
aerodynamics, and hybrid LTA-HTA designs could mitigate some of these drawbacks, positioning LTA
drones as a vital element in the future of aerial technology, offering a unique balance of endurance and
energy efficiency.

The deployment environments of oil and gas pipelines introduce additional challenges that UAV systems
must address. These pipelines often stretch across vast and rugged terrains spanning deserts, forests, arctic
regions, and offshore platforms, each presenting unique obstacles. In desert regions, extreme heat and
frequent sandstorms increase pipeline wear, necessitating early detection of corrosion or damage. Arctic
environments bring the risk of freezing pipelines and harsh weather conditions that obscure traditional
monitoring methods. Offshore platforms face the threat of saltwater corrosion and violent ocean conditions,
making continuous monitoring vital to ensuring the safety and integrity of both the pipelines and the
surrounding ecosystem.

UAVs have emerged as a powerful tool for external pipeline inspections, offering advantages in speed,
cost-efficiency, and safety while minimizing human involvement. However, current UAV-based inspections
still rely heavily on manual operations, which are time-consuming and prone to human error. To fully harness
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the potential of UAV technology in pipeline monitoring, there is a growing need for the integration of
autonomous systems.

The integration of AI, ML, and DL into UAV-based inspections offers transformative possibilities. AI-
driven systems can automate the detection of anomalies, such as identifying leaks and surface defects,
through real-time analysis of drone-captured imagery. DL models, particularly those based on YOLO
algorithms, have proven effective in real-time object detection and anomaly classification. By enabling
drones to detect and classify defects autonomously, these technologies allow for more proactive and efficient
maintenance processes.

However, significant challenges remain in enhancing drone endurance, reliability, and performance
in dynamic environments. AI and ML models must be trained on robust datasets to ensure consistent
accuracy across diverse scenarios, and ongoing refinement of these models is critical. As research progresses,
fully autonomous systems capable of real-time decision-making and data analysis will play a key role in
overcoming these obstacles, ultimately enhancing the safety and reliability of pipeline monitoring systems.
Integrating advanced technologies like AI promises to revolutionize UAV-based surveillance, providing more
efficient, accurate, and cost-effective solutions than traditional methods.

4 LTA Design Methodology
Given the limitations of conventional methods for extending drone flight time, such as fuel cell,

solar power, and battery optimization, LTA technology emerges as a promising alternative, offering unique
endurance and energy efficiency advantages. This section outlines the design methodology for LTA systems,
focusing on critical aspects such as geometry, aerodynamics, and mass distribution. The design process
begins with the geometry module, where the envelope shape and volume are determined. This is followed
by an analysis of the aerodynamics module, which assesses the impact of the envelope’s shape on drag
and stability. Finally, the mass/weight module evaluates the distribution and minimization of weight to
optimize performance.

4.1 Geometry Module
A review of LTA design literature highlights the importance of envelope shape in determining the

performance of LTA aircraft. Several shapes, including GNVR, named after G. N. V. Rao of the Indian
Institute of Science [142], ZHIYUAN-1 [143], Wang et al. [144], and the National Physics Laboratory
(NPL) [145,146], have been identified as baseline airship models due to their low drag characteristics. The
envelope profile significantly affects self-weight, drag, and lift generation. Although spheroids provide the
highest lift per unit surface area, they are not aerodynamically optimal. The GNVR shape, which combines
an ellipse, circle, and parabola, stands out for delivering the highest net lift per unit length among standard
profiles, especially in small LTA applications [147]. This shape was chosen for the design methodology due to
its low drag coefficient and practical design features. The geometric concept of this profile, parameterized by
its maximum diameter (d), is illustrated in Fig. 9. Computational and experimental studies [148,149] further
confirm its aerodynamic efficiency.
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Figure 9: Schematic of the GNVR shape with geometry defined based on its maximum diameter

The envelope’s volume is a crucial parameter, and it is a function of the individual volumes of the
ellipse, circle, and parabola. These shapes are not straightforward to model using basic geometric formulas,
especially when combined into a single continuous envelope. Traditional volume calculation methods, such
as approximating simple geometric volumes such as spheres and cylinders, may not capture the subtle
variations and intricate profile of the GNVR shape. By using the volume of revolution approach denoted by
Wilson et al. [150], we can precisely define the volume by revolving a curve around an axis. This method
accounts for the nuances of each shape, resulting in a more accurate representation of the envelope’s volume.
The volume of revolution is expressed as

Volume = ∫
b

a
πy2dx (1)

where y is the function being rotated about the x-axis, a and b represent the interval over which the curve is
being revolved. From the expression of the ellipse as defined for the GNVR shape, integrating the elliptical
cross-section area along its axis will give the volume. The volume of the ellipse, Vellipse is expressed as a
function of the envelope’s maximum diameter as illustrated in Eq. (2).

Vel l i pse = ∫
1.25d

0
π [0.5d2 (1 − x2

1.25d2 )] (2)

Likewise, revolving the circular segment along its axis gives the volume of the circle, Vc irc l e and is given
as Eq. (3).

Vc irc l e = ∫
1.625d

0
π [
√

16d2 − x2 − 3.5d]
2

(3)
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The volume of the parabola is given as shown in Eq. (4).

Vparabol a = ∫
1.8d

1.625d
π [0.1373d (1.8d − x)] (4)

Since the envelope’s shape is an approximate combination of these geometric shapes, the envelope
volume, Venv e l o pe can be expressed as shown in Eq. (5).

Venv e l o pe = Vel l i pse + Vc irc l e + Vparabol a (5)

Another important parameter is the surface area, Sw which is also called the wetted area. This has a
significant effect on the weight of the envelope, and it is expressed as a function of the ellipse area, Se , circle
area, Sc , and parabola area Sp. To accurately calculate this, the approach of the area of revolution is used. As
expressed in Eq. (6), this mathematical approach helps determine the surface area generated by revolving a
two-dimensional curve around an axis, effectively capturing the complex curvature of the LTA envelope.

Sur f ace area = 2π∫
b

a
ydx (6)

where y represents the curve being revolved, a and b are the limits of integration, defining the interval
over which the curve extends. Similarly, the ellipse, circle, and parabola areas are expressed as Eqs. (7)–(9),
respectively.

Se = ∫
1.25d

0
2π
⎡⎢⎢⎢⎢⎣

√
0.5d2 (1 − x2

1.25d2 )
⎤⎥⎥⎥⎥⎦

(7)

Sc = ∫
1.625d

0
2π [
√

16d2 − x2 − 3.5d] (8)

Sp = ∫
1.8d

1.625d
2π [
√

0.1373d (1.8d − x)] (9)

The envelope’s surface area, Sw can be expressed as given in Eq. (10).

Sw = Se + Sc + Sp (10)

Another crucial design consideration for LTA’s envelope design is the interplay between fineness and
thickness ratios. The fineness ratio, l/d, represents the proportion of the envelope’s length (l) to its diameter
(d). According to Leishman [151], the fineness ratio, a measure of an airship’s slenderness, significantly
influences drag and stability. A higher fineness ratio corresponds to a more elongated shape with reduced
drag, while a lower ratio results in a stubbier configuration with increased drag. Maintaining a balanced
fineness ratio is crucial for ensuring flight stability. Excessive slenderness can lead to instability, particularly
in crosswind conditions, whereas an overly short and wide airship may suffer from higher drag and reduced
efficiency. The optimal fineness ratio typically falls within the range of 3 to 6, depending on specific design
and operational considerations.

Conversely, the thickness ratio, d/l , which is the reciprocal of the fineness ratio, focuses on the
envelope’s relative thickness compared to its length. As discussed by Khoury [146], a lower thickness ratio
correlates with a thinner envelope profile, potentially reducing drag but limiting internal volume for essential
components like batteries and control systems. To mitigate this, external components such as gondolas can be
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incorporated. Achieving an optimal balance between aerodynamic performance and structural requirements
is crucial in determining the ideal thickness ratio.

Accurate estimation of the envelope’s weight is crucial for LTA aircraft design. The envelope weight is
determined by the weight of the envelope fabric, along with additional material for overlapping joints and
reinforcement patches [146]. The fabric’s weight is influenced by the envelope’s surface area and the material’s
specific density. To minimize the envelope’s impact on overall weight, a material with a high strength-to-
weight ratio is essential. Low helium permeability is also required to prevent gas loss and maintain a stable
lift. The envelope material must also exhibit high resistance to environmental factors to ensure durability.
The total envelope weight, Wenv e l o pe , can be estimated using Eq. (11) as

Wenv e l o pe = ∫
Sw

0
ρ f abr ic dSw +

n
∑
n=1
(ρpatch .Apatch + ρ joint .L joint .Tjoint) (11)

where ρ f abr ic is the density of the fabric, Sw is the envelope’s surface area, ρpatch and Apatch are the specific
density and area of the reinforcement patches, respectively. ρ joint , L joint , Tjoint are the specific density, length,
and thickness of the overlapping joints, respectively. The summation considers all reinforcement patches and
joints across the envelope, denoted by n.

4.2 Aerodynamic Module
This module concentrates on the aerodynamic forces influencing LTA aircraft, specifically buoyant lift

and drag force. Accurate drag estimation is crucial as it directly impacts the aircraft’s performance, power
requirements, and dynamic behavior. Consequently, this module develops functions to calculate these forces,
correlating them with the aircraft’s geometric characteristics.

4.2.1 Envelope Lift
The total lift experienced by an LTA aircraft consists of the buoyant lift from the envelope and dynamic

lift. Dynamic lift encompasses contributions from the aerodynamically shaped lifting body, tail lift including
fins and control surfaces, and propulsive lift. The total lift, Ltotal of an LTA aircraft is expressed as

Ltotal = Fb + Fd (12)

The buoyancy force, Fb , is determined by the difference between the weight of the displaced air and the
weight of the helium within the envelope, and it can be estimated using Archimedes’ principle:

Fb = (ρa − ρh)Venv e l o pe g (13)

According to [146], at standard sea level and over an altitude range of 0 to 20 km, the air density, ρa ,
is typically 1.225 kg/m3, while the density of helium gas, ρh , 0.169 kg/m3 at 100% purity. The gravitational
constant, g, is 9.81 N/kg. However, the helium gas is unlikely to be 100% pure, as it may contain some
impurities, such as air. Therefore, impurity considerations are necessary. The density with impurities can be
estimated using Eq. (14).

ρh = k × ρh + (1 − k) ρa (14)

where k is the percentage purity.
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4.2.2 Drag Estimation

For the estimation of drag in a LTA envelope, Cheeseman [152] derived an equation for the volumetric
drag coefficient based on experimental data. This equation incorporates the fineness ratio, l/d, its reciprocal,
thickness ratio, d/l , and the Reynolds number in a turbulent flow at zero angle-of-attack. The drag coefficient
can be expressed as

Cdv = C f (4(l/d)0.3 + 6(d/l)1.2 + 24(d/l)2.7) (15)

The friction coefficient, C f , as defined by Hoerner, depends on the Reynolds number, Re is presented
in Eq. (16).

C f =
0.045
Re 1

6
(16)

By combining Eqs. (15) and (16), Cdv can be expressed as

Cdv =
0.18(l/d)0.3 + 0.25(d/l)1.2 + 1.08(d/l)2.7)

Re 1
6

(17)

The total drag, D is a function of the drag coefficient Cdv , air density ρa , velocity flow V , and reference
area A. The total drag is expressed as

D = 1
2

ρaV 2ACdv (18)

The reference area A can be further expressed as, A = Venv e l o pe
2
3 .

4.3 Mass Module

Weight estimation is conducted using analytical methods and established UAV design principles,
incorporating material properties, component specifications, and design parameters. A detailed weight
breakdown of the LTA’s key components is provided to optimize flight performance, payload capacity, and
overall efficiency. The total weight Wtotal , of the LTA aircraft is calculated as

Wtotal =Wenvs ystem +Wpro ps ystem +Wpa yl oad +Wstruc ture +Wothers (19)

The weight of the envelope system is denoted as Wenvs ystem , the propulsion system weight as Wpro ps ystem ,
the payload weight as Wpa yl oad , the structure weight as Wstruc ture , and the weight for other components
as Wother . This breakdown is crucial for analyzing and optimizing weight distribution within the system,
ensuring each component contributes effectively to the performance and stability of the LTA vehicle. The
weight for the envelope system Wenvs ystem consists of the mass of the lifting gas Massgas and the total
envelope weight Wenv e l o pe

Massgas = ρhVenv e l o pe (20)
Wenvs ystem = Massgas +Wenv e l o pe (21)
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The weight of the propulsion system Wpro ps ystem encompasses the propellers, electronics speed con-
trollers, brushless DC motors, and the thrust vectoring for the tail configuration (the fins and control
surfaces). Wpro ps ystem is calculated as

Wpro ps ystem = Pthrust/ρpro p (22)

where Pthrust is the thrust power and ρpro p is the power density.
The payload system houses various sensors and equipment for mission-specific purposes. This study

assumes a representative payload of 500 g, including cameras for navigation and data acquisition of the oil
and gas pipeline. The structural weight, Wstruc ture encompasses the gondola, landing gear, motor mounts,
and the gas management system. The individual weight of each component is determined through material
selection, design specifications, and manufacturer data (if using pre-made components). These weights are
then summed to obtain the total structural weight, as expressed in Eq. (23).

Wstruc ture =Wgondol a +Wl and ing gear +Wmotormounts +Wgass ystem (23)

Finally, the weight of other components Wother , captures the mass of various miscellaneous hard-
ware essential for drone operation, including the battery pack, onboard computer, fasteners, wires, and
other minor components. Each component’s weight can be obtained from manufacturer specifications or
datasheets, and their sum represents Wother .

Wother =Wbatter y +Wcom puter +Wf asteners +Ww ires +
m
∑
i=1

Wminor , i (24)

where Wminor , i represents the weight of other minor components, with i ranging from 1 to m, where m is
the number of additional minor components.

5 Numerical Results and Discussions
This section presents a hybrid drone design concept that integrates LTA and HTA configurations,

demonstrating the feasibility and advantages of combining these two technologies. The proposed hybrid
drone leverages the strengths of both LTA and HTA systems to achieve enhanced flight performance and
operational efficiency. The core innovation lies in using LTA elements to provide 85% of the required lift
through buoyant force, significantly reducing power consumption and extending the drone’s flight duration.
The remaining 15% of the lift is supplied by HTA components, which enhance the drone’s maneuverability,
speed, and control which is crucial for agile tasks like pipeline inspection. Fig. 10 illustrates the design
algorithm of our hybrid drone.

5.1 Optimization Objectives and Strategy
The design was systematically optimized to address three critical objectives: maximizing lift-to-weight

ratio, enhancing flight endurance, and minimizing drag to improve overall energy efficiency. By focusing on
weight reduction and strategic lift enhancement, we optimized both the material composition and structural
components of the hybrid design.
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Figure 10: The design algorithm

5.1.1 Material Selection and Structural Optimization
In developing the hybrid drone’s envelope, polyurethane with a thickness of 0.1 mm and net density,

ρ f of 0.14 kg/m2 was chosen for its superior strength-to-weight ratio, helium retention, and environmental
resilience. Compared to other common materials like nylon and polyester, polyurethane exhibits notably
lower helium permeability, which significantly minimizes gas leakage over extended periods, as highlighted
by these studies [153–155]. This characteristic is critical for LTA configurations where prolonged buoyancy
is essential for extended surveillance tasks. While nylon and polyester are durable, they tend to allow faster
gas diffusion, requiring more frequent refills that impact both operational efficiency and maintenance.
The polyurethane envelope’s durability further ensures stable lift, even in varying weather conditions,
reducing the need for constant gas management. These align with our objective to extend the drone’s
operational life and minimize the need for frequent gas refills, thereby enhancing efficiency and reliability in
pipeline inspections.
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5.1.2 Lift-to-Weight Ratio and Design Efficiency
Our primary goal was to achieve 85% lift from the LTA elements, ensuring that only 15% of lift relies

on HTA components, thereby reducing reliance on active power. To maintain this distribution, we refined
the design using iterative simulations in CATIA and validated these with numerical calculations using the
design approach from Section 4. The derived numerical results align closely with the data obtained from our
design simulations in CATIA, as reported in Table 6. The analysis of the hybrid design confirms a balanced
distribution of lift and drag forces, promoting stable flight while maintaining the flexibility needed for
maneuverability. The resulting lift of approximately 127 N supports the total weight of 12.668 kg, including all
payloads and structural components. The drag force of 21.3327 N is within acceptable limits, demonstrating
the drone’s streamlined configuration.

Table 6: Numerical result for geometry and aerodynamic modules

Parameters Value Units
Envelope diameter, d 2.130 m

Envelope length, l 6.497 m
Ellipse volume, V e l l i pse 6.325 m3

Circle volume, V c irc l e 7.905 m3

Parabola volume, V parabol a 0.064 m3

Envelope volume, V e nv e l o pe 14.294 m3

Ellipse area, Se 14.805 m2

Circle area, Sc 18.182 m2

Parabola area, S p 0.516 m2

Envelope surface area, Sw 33.502 m2

Density of envelope fabric, ρ f 0.140 kg/m2

Fineness ratio, l/d 3.050
Thickness ratio, d/l 0.330

Envelope weight, W e nv e l o pe 4.690 kg
Total lift, Ltotal 127.252 N
Total drag, D 21.3327 N

5.1.3 Aerodynamic Shape Optimization
The GNVR-shaped envelope, characterized by its combination of elliptical, circular, and parabolic

sections, was optimized for aerodynamic performance. This shape minimizes drag and maximizes lift,
aligning with our design objective to maintain efficient flight dynamics. Figs. 11–14 present CATIA simulation
results that align closely with the values in Table 6, confirming the envelope’s effectiveness in optimizing
aerodynamic performance.

5.1.4 Propulsion System and Weight Distribution
The weight distribution was configured to support agile maneuverability while maintaining flight

stability. Table 7 outlines the weight distribution of the hybrid drone, which is visually represented in Fig. 15.
The envelope system, constituting the largest percentage of the total weight (approximately 38%), aligns
with existing studies [156], validating the design approach. The hybrid drone, shown in Fig. 16, utilizes six
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brushless DC motors for controlled propulsion. Four motors (Motors 1, 2, 5 and 6) are vertically aligned for
lift during takeoff, landing, and hovering, while the remaining two motors (Motors 3 and 4) are horizontally
aligned to provide forward thrust. This dual configuration optimizes energy use, enabling precise control
in various flight modes and improving flight endurance by tailoring power delivery to different stages of
the flight.

Figure 11: Simulation results from CATIA showing the envelope length

Figure 12: Simulation results from CATIA showing the envelope volume and surface area
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Figure 13: Simulation results from CATIA showing the density of the envelope fabric

Figure 14: Simulation results from CATIA showing the mass of the envelope

Table 7: Weight distribution of the hybrid drone

Parameters Value (kg)
Total envelope weight, W e nvs yste m 4.878

Motors and mounting weights, W pro ps yste m 3.026
Payload, W pa y l oad 0.500

Structural weight, W struc ture 2.158
Others, W others 2.106

Total, W total 12.668
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Figure 15: The mass distribution of the hybrid drone

The motor mounts are attached to lightweight balsa wood rods, minimizing the overall weight of
the mounting structure. This setup connects horizontally positioned motors with vertical mounts, further
conserving energy by optimizing thrust allocation. The gondola, designed to maximize weight efficiency,
houses critical components like the battery, camera, and autopilot system. For stability, each motor leg is
secured using Velcro pads and three individually adjustable strings, allowing structural adaptability and
avoiding material strain from envelope shifts over time.

5.2 Safety and Reliability
The proposed hybrid drone in this study has been conceptualized to ensure high reliability and

operational safety, particularly in conditions where human intervention is limited. Key safety features of the
LTA design include the use of helium as the lifting gas, which eliminates the risk of fire or explosion during
flight. Additionally, the airship’s envelope is designed to last at least three years without needing replacement,
ensuring long-term operational durability. The maximum takeoff weight, including the mission payload, is
kept below 13 kg to optimize the system’s buoyancy and ensure stable flight even in mild winds (1.5–5 km/h).
The hybrid drone’s mission payload includes a high-resolution AI camera for navigation and data acquisition
for inspection tasks. The payload is also designed to easily integrate advanced sensors capable of detecting
gas leaks, corrosion, and other structural issues, which is critical for ensuring pipeline safety in areas with
challenging environmental conditions.

The proposed hybrid drone enhances reliability by minimizing the risk of mission failure due to
power loss. It operates using a combination of electric power for propulsion and a buoyant gas for lift,
with ground-based charging capabilities to ensure that no in-flight charging complications occur. This dual
configuration emphasizes energy efficiency and operational reliability, offering advantages over traditional
UAVs that rely solely on fuel or batteries for extended missions. In the event of a motor failure, the drone’s
buoyant, balloon-like design enables it to remain afloat in the air, preventing unnecessary crashes and
reducing the risk of damage to people or property. Additionally, the drone’s low energy consumption and
extended flight endurance help reduce the carbon footprint of pipeline monitoring operations. This eco-
friendly approach is particularly beneficial in environmentally sensitive areas, such as offshore platforms and
protected wilderness regions.

5.3 Use Case Application
The proposed hybrid drone solution in this study is tailored for pipeline monitoring in environments

that pose challenges to conventional UAVs. For example, in Arctic environments, where traditional UAVs
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may struggle due to freezing conditions, the hybrid drone’s buoyancy-driven flight and optimized thermal-
resistant material ensure continued operation. In desert regions, the vehicle’s ability to fly at a lower altitude
and hover over specific waypoints enables it to capture high-resolution data even in high-temperature
conditions that could compromise sensor accuracy. Additionally, the hybrid drone’s modular payload system
allows it to be adapted for various pipeline inspection needs, including leak detection, structural integrity
assessments, and environmental monitoring. This flexibility ensures the drone can be deployed across
multiple regions with different geological and operational requirements, making it a versatile solution for
comprehensive pipeline monitoring.

Figure 16: The hybrid drone (a) top view (b) other views
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Upon full implementation, we intend to validate the effectiveness of our proposed approach through
real-flight operations within an oil and gas pipeline test area spanning 2 km2. The drone will be flown at a fixed
altitude of 40 m above the ground level, autonomously. This demonstration will showcase the hybrid drone’s
capabilities in monitoring pipeline infrastructure, collecting high-resolution data, and operating efficiently
in various environmental conditions. The results from this test will offer critical insights into the drone’s
performance, stability, and overall suitability for widespread pipeline inspection applications.

6 Conclusion
This review presents a hybrid drone design that combines LTA and HTA technologies to enhance

flight performance. By utilizing LTA for 85% lift and HTA for 15% stability, the design achieves a balance
of endurance and maneuverability for complex tasks. The analysis and numerical results demonstrate the
hybrid configuration’s viability and benefits, such as lower power use and improved efficiency in pipeline
monitoring. The LTA methodology discussed here is a crucial resource for establishing baseline specifications
in the conceptual design of LTA drones. The ongoing work focuses on fabricating the hybrid drone’s design
by following the design parameters noted in this paper. Once finalized, this drone will autonomously
inspect pipelines, providing an efficient solution for oil and gas surveillance and maintenance. Its low-power
navigation capabilities will significantly enhance monitoring efficiency over extensive pipelines.

The integration of LTA drone configurations with DL algorithms such as YOLO marks notable progress
in UAV pipeline inspection. This synergy overcomes traditional inspection challenges and paves the way for
more autonomous and dependable monitoring systems. As research advances, these technologies are poised
to become fundamental in modern pipeline management, ensuring infrastructure integrity and safety. Future
publications will present results from flight tests and performance metrics, contributing to the evolution of
drone technology in autonomous pipeline inspection. This initiative aspires to establish a standard for hybrid
drones in industrial use, showcasing the advantages of merging LTA and HTA principles within a singular
aerial platform.

Despite the significant advancements presented, the hybrid drone design combining LTA and HTA
configurations also faces limitations, particularly in handling high-wind conditions and balancing power
consumption across extended missions. The computational demand of integrating advanced DL algorithms
for real-time detection adds further challenges, especially in remote deployments with limited maintenance
infrastructure. Addressing these limitations will enhance the model’s robustness and reliability in varied
operational environments.
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