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ABSTRACT: Accurate estimation of evapotranspiration (ET) is crucial for efficient water resource management,
particularly in the face of climate change and increasing water scarcity. This study performs a bibliometric analysis
of 352 articles and a systematic review of 35 peer-reviewed papers, selected according to PRISMA guidelines, to
evaluate the performance of Hybrid Artificial Neural Networks (HANNs) in ET estimation. The findings demonstrate
that HANNs, particularly those combining Multilayer Perceptrons (MLPs), Recurrent Neural Networks (RNNs), and
Convolutional Neural Networks (CNNs), are highly effective in capturing the complex nonlinear relationships and tem-
poral dependencies characteristic of hydrological processes. These hybrid models, often integrated with optimization
algorithms and fuzzy logic frameworks, significantly improve the predictive accuracy and generalization capabilities
of ET estimation. The growing adoption of advanced evaluation metrics, such as Kling-Gupta Efficiency (KGE) and
Taylor Diagrams, highlights the increasing demand for more robust performance assessments beyond traditional
methods. Despite the promising results, challenges remain, particularly regarding model interpretability, computational
efficiency, and data scarcity. Future research should prioritize the integration of interpretability techniques, such as
attention mechanisms, Local Interpretable Model-Agnostic Explanations (LIME), and feature importance analysis,
to enhance model transparency and foster stakeholder trust. Additionally, improving HANN models’ scalability and
computational efficiency is crucial, especially for large-scale, real-world applications. Approaches such as transfer
learning, parallel processing, and hyperparameter optimization will be essential in overcoming these challenges.
This study underscores the transformative potential of HANN models for precise ET estimation, particularly in
water-scarce and climate-vulnerable regions. By integrating CNNs for automatic feature extraction and leveraging
hybrid architectures, HANNs offer considerable advantages for optimizing water management, particularly agriculture.
Addressing challenges related to interpretability and scalability will be vital to ensuring the widespread deployment and
operational success of HANNs in global water resource management.

KEYWORDS: Artificial neural networks; bibliometric analysis; evapotranspiration; hybrid models; research trends;
systematic literature review; water resources management

1 Introduction
Evapotranspiration (ET) stands as a fundamental basis in the Earth’s hydrological cycle, representing a

complex and dynamic process that significantly influences global water and energy distribution patterns [1].
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It plays a significant role in global energy balance and water distribution [2,3]. ET is influenced by a variety
of climatic factors, such as wind speed, solar radiation, temperature, and humidity [4]. While actual ET is
challenging to measure directly, reference evapotranspiration (ET0) can be estimated using the Penman-
Monteith method [5]. ET0 serves as a benchmark for understanding actual ET in different land cover types
and climatic conditions [6].

Climate change has significantly impacted ET patterns globally, leading to increased variability [7]
and uncertainty [8] in water resource management [9]. Accurate ET forecasting is essential for sustainable
water use, particularly in agriculture [4]. Given the growing challenges posed by climate change on
evapotranspiration patterns and water resource management, employing hybrid artificial neural network
(HANN) models offers a promising avenue for improving the accuracy and reliability of ET estimations,
thus supporting more informed and sustainable water management practices. Traditional methods for ET
estimation often rely on complex meteorological data and can be computationally intensive [10–12]. The
need for precise ET estimation is further underscored in the context of changing climate patterns, where
its role in water resource planning and agricultural productivity becomes even more critical [13] While
direct measurements like lysimeters [14], flux tower data [15], and Bowen-ratio stations [16] are possible,
Indirect estimation methods are more commonly employed due to their practicality, lower cost, and ease of
implementation [17–19].

The indirect approach involves estimating ET by multiplying ET0 by a crop coefficient [6]. The FAO-56
Penman-Monteith equation can accurately calculate ET0, but it requires detailed meteorological data [20].
However, due to the challenges of obtaining complete datasets, various empirical and semi-empirical models
have been developed to estimate ET0 with fewer input parameters [21]. While these models have shown
success in many regions, their accuracy can vary depending on specific conditions [22]. Therefore, further
research is needed to refine and improve these models for accurate ET estimation.

In recent years, ANNs have emerged as powerful tools for estimating ET [23–25], a critical hydrological
process [26,27]. Studies have demonstrated their effectiveness in predicting both ET0 and actual crop
evapotranspiration (ETc) [28].

Researchers have employed various ANN architectures, including Multilayer Perceptron (MLP) [29–31],
Radial Basis Function (RBF) [32,33], Generalized Regression Neural Network (GRNN) [34,35], and Group
Method of Data Handling (GMDH) [36,37], to estimate ET. These models have consistently outperformed
traditional empirical methods, particularly in regions with limited meteorological data [38–40]. Their ability
to handle nonlinear relationships and process complex data makes them well-suited for this challenging
task [41].

However, ANN architectures are prone to overfitting, particularly when trained on small
datasets [20,41,42]. Additionally, determining the optimal neural network structure for a given problem
remains a challenge [43]. To address these limitations, HANN approaches have emerged. These models
offer a powerful framework for ET0 estimation by combining the strengths of ANNs with complementary
techniques [44]. These hybrid approaches can significantly enhance predictive accuracy, robustness,
and generalization performance, while also providing a more comprehensive representation of complex
hydrological processes [45].

This study presents a comprehensive review of research employing HANN approaches for ET esti-
mation. The primary objectives are to identify prevalent hybrid combinations, identify emerging research
trends, and provide valuable insights into the performance and potential of hybrid models in ET estimation.

The study is conducted in two phases. The first phase consists of a bibliometric analysis aimed
at mapping the research landscape, identifying key studies, and revealing emerging research trends.
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The bibliometric analysis offers a quantitative overview of the research field, enabling the identification of
the most active researchers, institutions, and countries contributing to HANN-based ET estimation. The
subsequent systematic review phase focuses on a qualitative assessment of selected studies, enabling a deeper
exploration of methodological approaches, data sources, and performance metrics. By integrating these
two complementary methodologies, we seek to offer a thorough and detailed understanding of the current
advancements in HANN-based ET estimation.

A unique contribution of this study lies in its focus on HANN approaches, which offer a promising
avenue for improving the accuracy and reliability of ET estimation. Unlike previous reviews that have
primarily focused on traditional ANN models or specific hybrid combinations, this study provides a more
comprehensive overview of the various hybrid methodologies employed in ET estimation. Furthermore,
the study addresses a significant knowledge gap by systematically evaluating the factors influencing the
performance of hybrid models. The insights gained from this review can inform future research and
applications. By identifying the most effective hybrid combinations and understanding the underlying
mechanisms driving their performance, researchers can develop more advanced and tailored hybrid models
for specific hydrological conditions. In addition, the insights gained from this study could play a crucial
role in shaping guidelines and establishing best practices for the application of HANN-based models in the
management of water resources.

2 Phase 1: Bibliometric Analysis Review
In the first phase of our study, we utilized a bibliometric method [46]. Bibliometric analysis offers a

comprehensive and systematic approach to understanding the intellectual structure, dynamics, and emerging
trends within a research field [47]. By examining the connections between different scientific elements
(such as authors, papers, and keywords), bibliometric analysis can reveal the underlying structure [48],
help uncover gaps in the current knowledge base, and inspire the formulation of innovative research
directions [49]. While bibliometric analysis is not a substitute for traditional review methods like meta-
analysis or systematic literature reviews, it complements them by providing a macro-level perspective.
Bibliometric studies employ quantitative methods to summarize the intellectual, social, and conceptual
capital of a field, offering a broader understanding than qualitative approaches [50]. By conducting well-
executed bibliometric research, scholars can establish a robust foundation for advancing a field in meaningful
and innovative ways [51]. Through bibliometric analysis, researchers gain meaningful insights into the
framework, progression, and emerging trends of a research domain, fostering a deeper comprehension
and supporting future investigative efforts [52,53]. Furthermore, bibliometric analysis can elucidate how
research on HANNs intersects with other domains such as water management, artificial intelligence, and
optimization. This cross-disciplinary perspective is crucial for identifying not only the strengths of current
methodologies but also the underexplored challenges and potential breakthroughs.

2.1 Data Collection
A systematic approach to literature retrieval was implemented utilizing two premier bibliographic

databases: Web of Science Core Collection and Scopus, which are widely acknowledged as knowledge-
leading platforms [54,55]. The selection of these databases was strategically motivated by their established
reliability, incorporating respected quality metrics such as Journal Citation Reports (JCR) and SCImago
Journal Rank (SJR). Furthermore, these platforms were chosen for their comprehensive historical coverage
and efficient functionality in bulk reference extraction. This methodological decision ensured the capture of
relevant, high-quality academic literature while maintaining research efficiency.
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A comprehensive search strategy was employed to identify relevant literature on ET estimation using
HANNs. The search utilized a combination of exact phrases, wildcard characters, and Boolean operators to
capture a broad range of potential terms.

The literature data, as of August 2024, was collected using an extensive research string that incorporated
a wide range of relevant keywords associated with the topic. The exact search query used was:

“evapotranspiration” AND (“predict*” OR “Forecast*”) AND (“ANN” OR “artificial neural network”)
AND (“hybrid” or “Optimiz*” or “Optimis*” or “Integrat*” or “Algorithm”)

This strategy effectively retrieved a diverse set of documents by combining exact phrases, wildcard
searches, and Boolean logic. The use of quotation marks around “evapotranspiration” ensured that only
documents containing the exact term were included. Wildcard characters (*) were appended to root words
like ‘predict’ and ‘algorithm’ to capture various forms and derivatives of these terms, expanding the search
scope. Boolean operators, such as AND and OR, were strategically used to refine the search and ensure that
only relevant documents were included. This comprehensive approach allowed for the identification of a
wide range of literature on the topic, providing a solid foundation for the research.

The datasets obtained from Scopus and WoS search results must first be generated and exported before
merging the two databases. Once the datasets were collected from Scopus, containing 236 entries, and WoS,
with 216 entries, a detailed manual review was carried out to remove irrelevant studies and any duplicates that
automated filtering processes might have missed. After applying initial filters, such as excluding non-English
articles and those published prior to 2004, a total of 352 articles were retained for bibliometric analysis.
This meticulous process ensured a high-quality dataset, specifically addressing the applications of HANNs
in ET prediction. The bibliometric analysis of these 352 articles provided a comprehensive understanding
of the evolution and research trends in this field. This analysis forms the foundation for understanding key
developments, supported by rigorous dataset refinement and merging. This study utilized the Biblioshiny
R-toolbox for bibliometric analysis [56–58]. After exporting the final datasets from Scopus and WoS in
“.bib” format, the two datasets were combined using the mergeDbSources function from the R package
Bibliometrix. To ensure a clean and non-redundant dataset, the remove.duplicated parameter was activated
during the merging process to eliminate any duplicate records.

Biblioshiny, an integral component of the bibliometric toolkit, facilitated comprehensive science map-
ping and analysis [57]. The merged dataset was then analyzed using the biblioAnalysis function, which
allowed for detailed exploration of bibliometric indicators. This methodological approach, combining the
PRISMA framework with advanced bibliometric tools, ensured a robust foundation for the subsequent stages
of the research (Fig. 1).

Figure 1: This workflow diagram illustrates the steps involved in merging databases from WoS (Web of Science) and
Scopus, including extraction, unification, and deduplication
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2.2 Results
2.2.1 Growth Pattern and Publication Characteristics

Fig. 2 presents an overview of ET estimation studies employing HANN models over the past two decades
(2004–2024), based on data sourced from Web of Science and Scopus. Our preliminary analysis highlights
trends in the development of this academic field. Fig. 3 summarizes the number of publications on HANN
models for ET prediction, revealing a steady growth in interest in understanding this relationship over the
past eight years.

Figure 2: Bibliometric overview on HANN Models for Evapotranspiration estimation studies from 2004 to 2024
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Figure 3: Annual growth of publications related to ET estimation

Although the earliest study on the application of HANN models for ET estimation can be traced back
to 2004, the volume of publications has exhibited an exponential growth trend over time. Data analysis
reveals an average annual growth rate of 13.23% in publications within this domain since 2004. Moreover, a
significant increase in the number of publications has been observed in each decadeFor instance, although
this study includes only a partial count of documents published in 2024, the average annual number of articles
during the 2020–2024 period was the highest recorded, at n = 215, compared to n = 11.4 during 2010–2019
and n = 3.83 during 2004–2009 (Table 1). This steady progression highlights the increasing recognition of
HANN models as an essential tool for ET estimation.
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The sharp increase in research activity since 2015 aligns with several pivotal developments in both
technological and environmental domains. This period corresponds with significant advancements in
computational technologies, such as the integration of cloud computing [59] and GPU-based machine
learning frameworks [60], which have greatly enhanced the feasibility of applying complex hybrid models.
Additionally, this upward trend reflects heightened awareness of global water scarcity challenges, which has
led to increased research funding from organizations prioritizing climate resilience, precision agriculture,
and sustainable water resource management [61].

Table 1: Publication growth by decade

Years Total articles published Average per year
2004–2009 23 3.8
2010–2019 114 11.4
2020–2024 215 43

The exponential growth and widespread popularity of HANN-based ET estimation among scholars
underscore its relevance and potential impact. Looking ahead, this field is poised for further acceleration,
driven by the increasing accessibility of satellite-based climatic datasets and the global shift toward smart
irrigation technologies. These advancements are expected to enable more accurate, efficient, and scalable
applications of HANN models for ET estimation, further solidifying their role in addressing critical water
management challenges and advancing sustainable agricultural practices.

According to Fig. 4, China has emerged as the leading country in research publications on HANN-based
ET estimation, followed by Iran, India, the USA, Turkey, Egypt, Australia, Brazil, and Malaysia. This global
distribution highlights the international recognition and relevance of HANN architectures in ET prediction.
The increasing number of publications from these regions reflects the growing adoption of advanced machine
learning models for environmental management, driven by the need for accurate ET prediction under
varying climatic conditions.

To quantify the country-wise contribution to HANN-based ET estimation, we can calculate the Country
Contribution Index (CCI) as follows [62,63]:

CCIi =
Pi

Tp
× 100

where:

• Pi is the number of publications from country i,
• Tp is the total number of publications in the field.

In terms of regional representation, countries with arid and semi-arid climates, such as Iran and Egypt,
have played a pivotal role in advancing research on ET estimation due to the critical importance of water
management in these water-scarce regions. For instance, in the study by [64], the application of ANN
combined with genetic algorithms for estimating crop ET in Iran emphasizes the necessity for accurate
predictions under limited climatic data, particularly in regions facing water scarcity. This reflects a growing
body of work focusing on optimizing hybrid models for ET estimation under resource constraints. Iran’s
significant challenges related to water scarcity have fostered a strong focus on hybrid model optimization to
improve ET estimation accuracy under such constraints [65].
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Figure 4: Country-wise production map

Similarly, Egypt has made substantial contributions, as seen in the study by [1], which employs a stacking
hybridization of ANN and meta-heuristic algorithms to model daily reference ET across diverse agro-
climatic conditions. This hybridization approach is especially crucial for Egypt’s agricultural sector, which
relies heavily on Nile water, making accurate ET predictions essential for efficient water use. The integration
of hybrid artificial intelligence techniques is seen as a promising avenue for improving the sustainability of
water resources in such countries.

China has also emerged as a leading contributor, particularly with its focus on bio-inspired optimization
algorithms. A key study by [66] integrates PSO with ELM for daily ET estimation. This trend towards
adopting hybrid optimization techniques in ET prediction highlights China’s commitment to improving
water management strategies, especially in its arid and semi-arid regions, such as the Loess Plateau and
North-Western dry areas, where water stress is particularly severe. The combination of these bio-inspired
algorithms, such as PSO and genetic algorithms, with machine learning models, underlines China’s leading
role in advancing HANN-based ET estimation methodologies.

Notably, China and the USA exhibit a high degree of international collaboration, reflecting the growing
recognition of global water resource crises and the shared urgency for advanced predictive models that
transcend national borders. The research partnerships highlighted in Fig. 5a illustrate a rich global network,
underscoring how countries with different climatic zones and research focuses, including those from the
Middle East, North Africa, and Southeast Asia, have collaborated to tackle similar water management
challenges using hybrid artificial intelligence models. The interconnectedness of institutions worldwide, as
depicted in Fig. 5b, reflects the global nature of research on HANN-based ET estimation, with collaborative
efforts helping to address complex environmental and agricultural issues.

Scopus and Web of Science classify documents into two categories: single-country publications (SCP),
which involve authors from the same nation and reflect domestic collaboration, and multiple-country publi-
cations (MCP), which feature contributions from authors across different nations, highlighting international
partnerships [67]. Table 2 reveals that China ranks first among 49 countries in terms of the highest number
of publications in this field. Additionally, Chinese researchers have played a significant role in international
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collaborations, partnering with authors from various nations and driving progress in HANN-based ET
research. In terms of international collaboration, Iran ranks first with an MCP of 11, reflecting its active
engagement in global research efforts.

China has received the highest number of citations (1424 citations, 15.52% of total citations) in research
publications on HANN-based ET estimation, followed by Iran (1331 citations, 14.51%), India (777 citations,
8.47%), Turkey (745 citations, 8.12%), and Vietnam (735 citations, 8.01%), together accounting for nearly
55% of the total citations received in this research domain (Fig. 6). To quantify the citation impact of each
country, we can calculate the Citation Share Index (CSI) as [68,69]:

CSIi =
Ci

CTotal
× 100

where:
Ci is the total number of citations received by country i,
Ctotal is the total number of citations across all countries in the domain.

Figure 5: Collaboration network of countries and institutions. (a) Network map of countries, (b) network map of
institutions
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Table 2: Country impacts by corresponding authorship

Country Articles SCP MCP Freq MCP_Ratio
CHINA 73 68 5 0.207 0.068
IRAN 42 31 11 0.119 0.262
INDIA 36 32 4 0.102 0.111
USA 24 21 3 0.068 0.125

TURKEY 20 19 1 0.057 0.05
CANADA 13 10 3 0.037 0.231

AUSTRALIA 8 6 2 0.023 0.25
BRAZIL 8 8 0 0.023 0

MALAYSIA 8 6 2 0.023 0.25
SPAIN 8 8 0 0.023 0

Figure 6: Most cited countries on HANN models for ET estimation studies

The combined pressures of climate change, recurrent droughts, and inefficient water management have
exacerbated water scarcity in these countries, particularly in China, India, and Iran, which are experiencing
severe water stress. Turkey also faces significant water stress, especially in managing shared river basins
with neighboring countries [70]. Vietnam and Malaysia, situated in humid tropical regions and reliant on
agriculture, are experiencing water challenges exacerbated by climate change, including sea-level rise and
flooding [71,72]. These countries exemplify the complex interplay between population growth, economic
development, and water scarcity [73,74], highlighting the importance of advancing hybrid machine learning
models to address water management challenges in different climatic contexts [75].

2.2.2 Author and Article Analysis
Considering the local impact based on citations received, presented in Fig. 7a, Deo R. (1049 citations),

Yaseen Z. (1011 citations), and Kisi O. (996 citations) emerge as the most highly cited researchers in this
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domain. These leading researchers have played a pivotal role in advancing the field, particularly through
their innovative approaches to integrating bio-inspired optimization techniques with ANN models. Their
contributions have set benchmarks for predictive accuracy and scalability in evapotranspiration (ET)
modeling, establishing foundational frameworks that have driven the research agenda for hybrid approaches.

To quantify the citation impact, we can calculate the Citation Impact Factor (CIF) for each researcher,
as follows [68]:

CIFi =
Ci

Tp

where:
Ci is the total number of citations received by researcher i,
Tp is the total number of publications attributed to that researcher.

Figure 7: Analysis of contributing authors. (a) Author local impact by total citation, (b) top authors’ production over
time

Based on this formula, Deo R. stands out as the most influential with 1049 citations, while Yaseen Z. and
Kisi O. follow with 1011 and 996 citations, respectively. These values highlight their pivotal roles in advancing
the understanding and application of hybrid models in ET estimation.

Moreover, as illustrated in Fig. 7b, most of the top authors’ publications were produced between 2018
and 2024, a period marked by rapid advancements in hybrid modeling techniques and a growing focus on
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addressing global water resource challenges. The consistent rise in citations during this period is reflective
of the increasing relevance of their work. The publication output can be further quantified by calculating the
annual growth rate (AGR) of citations, which is defined as [76]:

AGR =
C f − Ci

Ci
× 100

where:
Cf is the final citation count at the end of the period (2024),
Ci is the initial citation count at the beginning of the period (2018).
Given this trajectory, it is anticipated that these researchers, along with others inspired by their

methodologies, will continue to produce impactful publications in the coming years, further advancing the
state-of-the-art in hybrid artificial neural network (HANN)-based ET estimation.

2.2.3 Citation Analysis
Table 3 presents the most frequently cited papers in this analysis. The integration of machine learning

models with hybrid methodologies has emerged as a transformative approach in predictive analytics, partic-
ularly within environmental and hydrological systems. These studies comprehensively explore diverse hybrid
ANN techniques for ETo prediction across various regions, combining neural networks with ensemble learn-
ing techniques to optimize performance metrics and model robustness. Each study demonstrates advanced
configurations, such as HANN enhanced with metaheuristic optimization algorithms, including adaptive
neuro-fuzzy inference systems (ANFIS), firefly, particle swarm optimization, and discrete wavelet transform
(DWT). These sophisticated methods enhance predictive accuracy, model efficiency, and generalization
capacity by effectively processing multi-dimensional data.

These frequently cited studies underscore the importance of combining neural network architectures
with metaheuristic optimization algorithms to tackle challenges such as overfitting, computational com-
plexity, and data sparsity. The breadth of regions covered in these studies also highlights the universal
applicability of hybrid approaches across diverse climatic and agricultural contexts. Moreover, recent findings
emphasize the critical role of hybrid models in addressing issues related to data scarcity, nonlinearity, and
high-dimensional feature spaces, ultimately refining and enhancing forecasting models.

The adoption of ensemble-based strategies and model interpretability frameworks presents a valuable
opportunity for future research, offering the potential to improve ET predictions while unraveling the
decision-making dynamics within complex hybrid systems. As hybrid approaches continue to evolve,
focusing on model scalability, interpretability, and computational efficiency will be crucial in broadening
their applicability in real-world, data-intensive environments.

The bibliometric and systematic analysis conducted in this study is supported by mathematical for-
mulations for the growth rate and citation analysis. Specifically, the average annual growth rate (AAGR) of
publications from 2004 to 2024 can be computed using the formula [77]:

AAGR = (
N f inal year

Nini t i a l year
)

1
t

− 1

where:

• N f inal year is the number of publications in the final year,
• Ninit i al year is the number of publications in the initial year, and
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• t is the number of years in the interval (2024–2004 = 20 years).

This calculation provides insights into the temporal growth pattern of the field, complementing the
citation analysis and reinforcing the exponential increase in interest in HANN models for ET estimation
over the past two decades.

Table 3: Most cited articles on HANN models for ET estimation studies

Authors;
Publication year;

Journal

Title DOI Total citations

Deo, RC; 2015; ATMOS
RES

[78] 10.1016/j.atmosres.2015.03.018 218

Gocic, M; 2015; COMPUT
ELECTRON AGR

[79] 10.1016/j.compag.2015.02.010 135

Kisi, Ö; 2007; J IRRIG
DRAIN ENG

[80] 10.1061/
(ASCE)0733-9437(2007)133:4(368)

129

Sanikhani, H; 2019;
THEOR APPL

CLIMATOL

[81] 10.1007/s00704-018-2390-z 109

Zhu, B; 2020; COMPUT
ELECTRON AGR

[66] 10.1016/j.compag.2020.105430 107

Kisi, O; 2015; COMPUT
ELECTRON AGR

[82] 10.1016/j.compag.2015.04.015 99

Yin, J; 2020; AGR WATER
MANAGE

[83] 10.1016/j.agwat.2020.106386 94

Adnan, RM; 2021;
COMPUT ELECTRON

AGR

[84] 10.1016/j.compag.2021.106541 76

Alizamir, M; 2020; ACTA
GEOPHYS

[85] 10.1007/s11600-020-00446-9 68

Seifi, A; 2020; J WATER
CLIM CHANGE

[86] 10.2166/wcc.2018.003 61

The study [78] on the application of ANNs for estimating the Standardized Precipitation and
Evapotranspiration Index (SPEI) [87] in eastern Australia demonstrates a sophisticated integration of
hydrometeorological parameters and climate indices, significantly enhancing the predictive capabilities of
hybrid neural network models. In the materials and methods section, the authors meticulously constructed
a robust architecture utilizing 18 input variables, encompassing both site-specific and climatic attributes,
and systematically evaluated various ANN configurations through a trial-and-error approach to optimize
model performance. Notably, the research employed advanced training algorithms, such as the Levenberg–
Marquardt method [88] and BFGS quasi-Newton [89] backpropagation, to refine the learning process across
multiple ANN configurations. The results revealed impressive correlations (r values up to 0.999) between
observed and predicted SPEI values, underscoring the model’s efficacy in accurately capturing hydrological
dynamics. The utilization of various performance metrics, including Willmott’s Index of Agreement and
Nash-Sutcliffe Efficiency, further substantiated the model’s reliability, particularly for Gabo Island, which

http://dx.doi.org/10.1016/j.atmosres.2015.03.018
http://dx.doi.org/10.1016/j.compag.2015.02.010
http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:4(368)
http://dx.doi.org/10.1007/s00704-018-2390-z
http://dx.doi.org/10.1016/j.compag.2020.105430
http://dx.doi.org/10.1016/j.compag.2015.04.015
http://dx.doi.org/10.1016/j.agwat.2020.106386
http://dx.doi.org/10.1016/j.compag.2021.106541
http://dx.doi.org/10.1007/s11600-020-00446-9
http://dx.doi.org/10.2166/wcc.2018.003
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exhibited the best prediction accuracy. The findings not only highlight the potential of hybrid ANN models
in hydrological forecasting but also contribute significantly to the advancement of methodologies for
evapotranspiration estimation, thereby fostering greater attention and citations in the field. This work paves
the way for future research to leverage hybrid neural network approaches, enhancing their application in
climate variability assessments and water resource management strategies.

This paper [79] showcases a sophisticated hybrid methodology, leveraging ANNs combined with the
Firefly Algorithm (FFA) and Discrete Wavelet Transform (DWT) for predicting ET0, a critical parameter in
water resource management. The study’s methodological framework stands out for its integrative use of DWT
to decompose meteorological time-series data, effectively capturing non-stationary and multi-resolution
components essential for complex hydrological forecasting. By optimizing the ANN’s hyperparameters
through FFA, the authors achieved a significant boost in convergence speed, leading to a 15%–20% reduction
in training time compared to standard ANN models. Moreover, the wavelet-decomposed inputs enabled
the model to enhance its predictive accuracy by approximately 10%–15% over conventional models. The
hybrid ANN-FFA-DWT model exhibited marked improvements in metrics such as root mean square error
(RMSE) and mean absolute error (MAE), with reductions of up to 25% in RMSE and 18% in MAE in
comparison to standalone ANN and traditional statistical models. These enhancements underscore the
model’s robust adaptability to diverse climatic conditions and its increased generalizability in handling
complex, heterogeneous data. As a benchmark in ET0 prediction, this study not only emphasizes the efficacy
of hybrid models but also validates the powerful synergy of neural networks with metaheuristic optimization
and wavelet decomposition, guiding future advancements in AI-driven water resource forecasting.

Article [80] represents a seminal contribution to the field of hybrid artificial intelligence methodologies,
particularly in the estimation of ET. By seamlessly integrating ANFIS with traditional ANNs, the authors
present a robust framework that effectively capitalizes on the strengths of both approaches. The study
employs a dual-layer architecture that facilitates a comprehensive representation of nonlinear relationships
among climatic parameters, significantly enhancing predictive accuracy through the synergistic application
of fuzzy logic and neural networks. Notably, the hybrid model utilizes a sophisticated learning algorithm
that combines gradient descent with least-squares estimation, resulting in improved convergence rates and
overall model performance. Rigorous empirical validation, conducted using data from automated weather
stations, not only demonstrates the model’s efficacy in ET estimation but also highlights its potential for
broader applications in hydrometeorological modeling. This innovative approach is likely to have garnered
substantial citations due to its methodological rigor, adaptability to varying datasets, and the critical
relevance of accurate ET estimation in agricultural management and water resource planning. Consequently,
this work contributes to the evolution of hybrid neural network techniques in environmental sciences. The
implications extend to the refinement of hybrid models in predictive analytics, fostering advancements in
both theoretical frameworks and practical applications in climate-resilient agricultural practices.

This study [81] provides an advanced and meticulous examination of hybrid ANN models, with a
particular focus on temperature-based modeling of reference evapotranspiration (ET0), a crucial metric in
hydrological forecasting and agricultural planning. Through an extensive methodological framework, the
study explores and optimizes several ANN structures, including MLP, Radial Basis Function Neural Network
(RBNN), and ANFIS, and integrates these with empirical methods to enhance predictive performance. The
application of hybrid configurations enabled a robust comparison between traditional and ANN-enhanced
models, revealing a substantial improvement in accuracy metrics like RMSE and MAE, with reductions
reaching up to 30%. The unique cross-station scenario employed in this study is particularly noteworthy, as
it demonstrates the transferability of model predictions by utilizing data from a meteorologically monitored
station to forecast ET0 in less instrumented regions. This aspect highlights the model’s adaptability to
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diverse environmental conditions, an essential attribute for data-scarce areas. The findings underscore
the superiority of ANNs, particularly in hybridized forms, over empirical formulas like the calibrated
Hargreaves–Samani (CHS) model [90], which saw improved accuracy yet was outperformed by the ANN-
based methods. In addition to enhancing the CHS and other models, the study’s rigorous statistical validation
further confirms the reliability of the hybrid models, positioning them as essential tools in regions where
conventional data gathering is challenging. The application of error metrics such as Nash-Sutcliffe Efficiency
(NSE), RMSE, and MAE provides a clear performance benchmark, with the ANN configurations consistently
ranking highest in accuracy. By contributing significantly to the field’s understanding of temperature-based
ET0 modeling [91], this paper’s detailed findings support future applications and refinements in AI-driven
hydrological modeling for climate-resilient water management practices.

Article [66] explores innovative hybrid artificial neural network methodologies for predicting evapo-
transpiration, with a specific focus on arid regions of Northwest China. The research employs a sophisticated
combination of Extreme Learning Machine (ELM) [92] and PSO to enhance model accuracy. Utilizing a
dataset composed of daily climatic variables from multiple meteorological stations, the study establishes
a solid foundation for validation. A significant advancement is made through PSO’s role in refining the
weights and biases of the ELM, effectively addressing the random initialization challenge commonly faced in
ELM applications. The findings reveal a substantial improvement in predictive accuracy, demonstrating the
hybrid model’s superiority over traditional empirical methods such as Penman-Monteith and Hargreaves-
Samani, particularly in data-limited scenarios. The empirical results indicate a notable reduction in RMSE
by approximately 10%–15%, emphasizing the hybrid model’s capability to harness diverse methodologies and
effectively capture complex non-linear relationships. By tackling critical challenges in evapotranspiration
estimation, this study enriches the theoretical landscape of hybrid modeling in machine learning and offers
practical insights for water resource management in arid regions, enhancing its significance in real-world
applications. The rigorous focus on data quality and performance evaluation has resulted in increased
citations, reinforcing the article’s impact on the scientific community.

Article [82] presents a noteworthy evolution in the use of HANN methods for ET prediction, leveraging
an extensive dataset derived from 50 meteorological stations across Iran’s varied climatic zones. The study
adopts a hybrid approach that fuses ANFIS, MLP, and Gene Expression Programming (GEP) to model
long-term monthly ET without depending on traditional climatic datasets. This methodological framework
incorporates cutting-edge techniques like fuzzy logic and genetic programming, enhancing interpretabil-
ity and optimizing parameters via innovative training algorithms. The results showcase a remarkable
enhancement in predictive performance, with reductions in RMSE ranging from 25%–30% compared to
conventional models, highlighting the efficacy of hybrid methodologies in navigating the complexities of
evapotranspiration dynamics. Furthermore, this hybrid model demonstrates adaptability to diverse climatic
conditions, making it applicable to other arid and semi-arid regions globally. The successful integration of
multiple neural network paradigms marks a significant step forward in ET predictive modeling, promoting
a scalable approach that underscores the integration of data-driven methodologies and machine learning
principles. The contributions of this research extend beyond improving predictive capabilities in hydrological
modeling, paving the way for the global implementation of similar methodologies in the context of climate
resilience and water resource management.

Study [83] introduces a significant advancement in the prediction of daily Et0 through the implemen-
tation of a hybrid Bi-directional Long Short-Term Memory (Bi-LSTM) model. This robust methodology is
founded on data gathered from three meteorological stations in central Ningxia, China, an area characterized
by a semi-arid climate with limited meteorological variables. The study employs both the Penman-Monteith
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method and the adjusted Hargreaves-Samani method, providing a comprehensive basis for evapotranspi-
ration evaluation. The hybrid Bi-LSTM model is designed to leverage Bi-LSTM’s capabilities in processing
time-series data alongside an ANN for enhanced post-processing, significantly bolstering prediction accu-
racy. Key modifications to traditional LSTM components, including the use of soft sign and Rectified Linear
Unit (ReLU) [93] activation functions, effectively mitigate issues related to gradient vanishing and accelerate
training speeds. Performance metrics reveal that the model achieves high accuracy, with Pearson correlation
coefficients ranging from 0.8 to 0.94 for both maximum and minimum temperature forecasting—crucial
factors for ET0 prediction. The hybrid approach showcases a remarkable ability to learn adaptively from
sequential data, resulting in considerable advancements in prediction precision and addressing previous
limitations in the field. The implications of this research underscore the viability of hybrid models in
enhancing evapotranspiration forecasting while setting a benchmark for future investigations into machine
learning applications in environmental sciences. The potential for increased visibility and citations is
strong, particularly in light of the growing demand for accurate evapotranspiration modeling amid global
climate challenges.

Article [84] makes a substantial contribution to the domain of evapotranspiration prediction by merging
advanced hybrid methodologies, specifically the Adaptive ANFIS, with cutting-edge heuristic optimization
algorithms. The methodological framework is meticulously designed, and supported by robust data sources
and stringent quality control measures. The FAO56-PM model serves as the cornerstone for reference
evapotranspiration calculations, while the ANFIS framework adeptly integrates fuzzy logic with neural
networks to enhance adaptability to the non-linear dynamics present in climatic data. The introduction
of hybrid optimization algorithms, such as Moth-Flame Optimization (MFO) and Water Cycle Algorithm
(WCA), broadens the modeling approach and facilitates more accurate tuning of both linear and non-
linear parameters, leading to significant improvements in predictive accuracy. The results indicate a marked
enhancement in forecasting performance compared to traditional models, as evidenced by reduced MSE
metrics. This substantial boost in predictive precision emphasizes the article’s relevance and has generated
increased interest and citations within the academic community. This research enhances the predictive
accuracy of evapotranspiration through the development of advanced hybrid ANFIS models, paving the way
for further exploration and implementation of hybrid approaches in environmental modeling. This, in turn,
highlights the growing significance of artificial intelligence applications in hydrology.

This article [85] represents notable progress in evapotranspiration modeling by utilizing hybrid artificial
neural network techniques, particularly through the combination of ANFIS with PSO and Genetic Algorithm
(GA). The meticulous methodology outlined in the materials and methods section emphasizes the utilization
of comprehensive climatic data from automated stations in Antalya and Isparta, ensuring a robust analysis of
the Mediterranean climate’s influence on evapotranspiration. Notably, the results demonstrate a remarkable
enhancement in prediction accuracy, with ANFIS–PSO and ANFIS–GA outperforming traditional models
such as ANN and CART by 40% and 14% in RMSE, respectively. This notable improvement underscores
the efficacy of evolutionary strategies in optimizing neural network architectures, thereby addressing the
inherent limitations of classical models in capturing the complexities of climatic interactions. The study
not only contributes to the existing body of knowledge but also sets a precedent for future research aimed
at refining hybrid neural network methodologies for accurate environmental modeling. By illustrating
the substantial impact of including multiple input variables on model performance, this research fosters
a deeper understanding of the underlying climatic factors affecting evapotranspiration and encourages
further exploration into hybrid approaches. Such advancements are pivotal for enhancing the reliability of
evapotranspiration predictions, ultimately serving as a critical tool for effective water resource management
and agricultural planning.
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The study [86] explores advanced machine-learning techniques for predictive modeling of evapo-
transpiration. It employs the Gamma Test for effective feature selection, enhancing model performance
by identifying the most influential meteorological variables. The hybrid framework integrates least square
support vector machines (LSSVM), ANN, and ANFIS, evaluated against the FAO-56 Penman-Monteith
equation. Results indicate that the hybrid models outperform traditional methods, as evidenced by lower
MAE and RMSE. The study applies rigorous statistical techniques, including cross-validation and sensitivity
analysis, to ensure reliability and generalizability. This research advances the theoretical framework for
evapotranspiration modeling while addressing practical challenges in arid regions, such as data scarcity
and environmental variability. By examining the relationships among input parameters and their effects on
evapotranspiration rates, the findings enhance our understanding of hydrometeorological interactions. This
work highlights the potential of hybrid ANN approaches to improve predictive accuracy, setting the stage
for future research in environmental modeling and resource management. It aims to significantly influence
the fields of hydrology and artificial intelligence, promoting further scholarly discourse and citation.

2.2.4 Analysis of Keywords
Word cloud analysis is a technique used to visually represent the frequency of words in a specific

text or dataset (Fig. 8). In this analysis, words are displayed in various sizes based on their frequency and
importance. Frequently appearing words are larger, while less frequent words are smaller. This approach
allows researchers to identify the most relevant articles and trends in a field by focusing on prominent
keywords such as machine learning, deep learning, water management, smart irrigation, optimization, water
supply, learning algorithms, forecasting methods, reference evapotranspiration, artificial intelligence, climate
change, drought, neural networks, and ANN.

Figure 8: Word cloud of the most frequently used keywords

The frequency distribution of the authors’ keywords did not account for variations in form among
terms with equivalent meanings (e.g., singular vs. plural forms such as “climate change” vs. “climate
changes,” “optimization” vs. “optimizations,” and “drought” vs. “droughts”). To ensure greater accuracy,
similar keywords were manually consolidated, and their rankings were adjusted accordingly. The refined
analysis highlights “water management” (n = 222) as the most frequently cited term, emphasizing its critical
role in the integration of HANN methodologies with hydrological studies. This prominence signifies a critical
awareness among researchers of the urgent need for innovative solutions to enhance water resource efficiency
amid growing concerns over climate variability and urban demands. Simultaneously, “climate change” (n =
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92) emerges as a central theme, reflecting the increasing reliance on data-driven approaches to understand
its multifaceted impacts on hydrological processes.

The frequent co-occurrence of “drought” (n = 60) further emphasizes the interdependencies among
these concepts, highlighting the necessity for advanced predictive models capable of assessing and mitigating
the risks associated with water scarcity in an era of climatic uncertainty. Additionally, the prevalence of
terms like “machine learning” and “optimization” in keyword co-occurrence networks indicates a clear
methodological pivot towards leveraging advanced algorithms for ET estimation. This shift signals the
growing importance of computational intelligence in addressing the complexities of water management in
the face of global challenges. The relationships between these and other key terms are visualized in Fig. 9.
Notably, the frequent co-occurrence of “drought” with “climate change” underscores the pressing need for
predictive systems that can respond dynamically to extreme weather events.

Looking ahead, future research in this domain could benefit from the integration of real-time data
streams into HANN-based models. Incorporating such data would enhance their responsiveness to rapidly
changing climatic conditions, thus improving the accuracy and timeliness of evapotranspiration predictions.
By combining these cutting-edge approaches, HANN models can evolve into even more powerful tools for
managing water resources in a climate-altered world.

The bibliometric analysis of this study, including keyword co-occurrence, is supported by the following
mathematical formulation for determining keyword frequency (K) and co-occurrence strength (C) [94]:

Ki =
ni

N
× 100

where:
ni is the frequency of keyword iii,
N is the total number of keywords, and
Ki is the percentage frequency of keyword iii.
Additionally, co-occurrence strength (C) between two keywords iii and jjj is calculated as [95]:

C (i , j) = f (i , j)
f (i) + f ( j) − f (i , j)

where:
f(i, j) is the number of documents where both keywords i and j appear, and
f(i), f(j) are the individual frequencies of keywords iii and j, respectively.
These formulas provide a quantitative foundation for the bibliometric analysis, enhancing the robust-

ness and precision of the keyword frequency and co-occurrence analysis presented in this study.

2.2.5 Topic Analysis
The evolving landscape of research in hybrid artificial neural networks (HANNs) for evapotranspiration

(ET) estimation reflects the growing complexity of the field and its increasing focus on addressing real-world
challenges. As illustrated in Fig. 10, the scholarly preferences and emerging trends within this domain are evi-
dent. Initially, the application of mathematical models and backpropagation algorithms dominated HANN
research, establishing a foundational approach for further development. However, from 2016 onwards,
there has been a distinct shift towards hybrid architectures, with optimization techniques such as genetic
algorithms (GA) and particle swarm optimization (PSO) gaining prominence. The frequent appearance of
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these algorithms—particularly genetic algorithms—indicates an evolving recognition of their significant role
in optimizing model robustness and predictive accuracy, with GA being cited in 18 studies alone.

Figure 9: Co-occurrence of authors’ keywords

Figure 10: Trends in Research Terminology (2006–2024), illustrates the evolving use of key hydrologic and climate-
related terms over the past two decades
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The increasing presence of optimization techniques marks a pivotal transition in HANN research,
underscoring the growing demand for more robust and efficient models capable of addressing complex
environmental challenges. This trend suggests a collective effort within the research community to refine
hybrid systems by incorporating advanced optimization algorithms, enhancing their scalability and com-
putational efficiency. Moreover, as machine learning continues to advance, the intersection of HANNs with
emerging techniques such as deep learning frameworks and explainable AI (XAI) is gaining traction. These
developments signal a shift towards improving the interpretability and transparency of predictive models in
ET estimation, aligning with broader goals in AI for making models more interpretable and applicable in
real-world settings.

The year 2020 and beyond has seen an expansion of interest in terms like “artificial neural networks,”
“water management,” and “machine learning,” signaling a growing interdisciplinary approach to solving
hydrological challenges. This shift reflects the broader application of machine learning to water management
practices, incorporating insights from various domains to enhance model accuracy and efficiency in
addressing issues like water scarcity and climate variability. Additionally, the rise of convolutional neural
networks (CNNs) as a trending topic in 2023 and 2024 suggests a potential focus on utilizing CNNs for
feature extraction in ET estimation. The ability of CNNs to capture spatial dependencies is particularly
pertinent for improving the predictive capabilities of HANNs, as they can extract intricate spatial features
from environmental data, thereby enhancing model precision.

The transition from standalone ANN architectures to hybrid systems thus signifies the maturing state
of the field, with a growing emphasis on optimizing HANNs to effectively tackle real-world complexities.
The increased focus on techniques like deep learning and XAI points toward an exciting future for ET
estimation, one that balances high accuracy with interpretability and practical applicability in the face of
global environmental challenges.

The bibliometric trends identified in this study underscore the importance of hybrid approaches for
ET estimation. However, the geographic concentration of studies in specific regions highlights the need
for broader global participation, particularly from underrepresented areas such as sub-Saharan Africa.
Additionally, future bibliometric studies could incorporate text-mining techniques to analyze qualitative
aspects of the literature, offering deeper insights into thematic evolution.

3 Phase 2: Systematic Review
Phase 2 of this study employs a systematic review technique to investigate the use and implementation

of hybrid HANNs in ET prediction frameworks. In Phase 2, this research utilized a structured methodology
for systematic review, enabling a comprehensive and detailed examination. By leveraging extensive research
data, bibliometric analysis equips researchers with a broad and comprehensive understanding of a field.
In contrast, a systematic review provides a more focused and in-depth evaluation, critically analyzing the
state of HANN applications in ET prediction [96]. The meticulous analyses provide methods to discern
interrelationships and gaps in knowledge within the literature [97]. Systematic reviews need a series of
rigorous procedures for selecting samples, which include doing a thorough search, evaluating quality,
extracting data, and synthesizing information [98]. Due to the extensive amount of research conducted in this
field, a systematic review is very appropriate for examining the progression of HANN studies in predicting
ET throughout time.

3.1 Data Collection
In Phase 2, the data collection process started by applying the same strategy as Phase 1. This included

searching through papers using the search query in several fields such as subject, title, abstract, authorship,
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key terms, and keyword-plus for the search query. The method employed in this study is grounded in
the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), a widely respected
framework known for its structured approach to conducting literature searches [99,100]. The selection of
PRISMA was based on its extensive adoption, systematic approach, and simplicity of use [101]. In this
particular instance, the PRISMA approach has been carefully modified to respond to the study issues outlined
in the introduction. The following paragraphs offer a comprehensive analysis of the steps involved in this
process, with the flow of information presented according to the PRISMA approach, as illustrated in Fig. 11.

Figure 11: PRISMA flow diagram

Step 1: Identification of research studies
The documents included in this analysis contain bibliographic information obtained after a manual

review of the 236 relevant documents found in WoS and 216 found in Scopus. 75 duplicate documents were
eliminated. Before scanning, non-English papers and various document types, such as books, book chapters,
conference proceedings, reports, and review articles were excluded from the results. Additionally, the search
strategies were tailored to a specific timeframe, with the extension encompassing data from 2004 up to
October 2023.

Step 2: Screening of research studies
A total of 281 articles were considered for scanning. The retrieved list of publications was first subjected

to a preliminary exclusion based on title and abstract information. This initial screening was conducted by
two reviewers (M.G. and N.F.A.) independently. Any disagreements between the reviewers were resolved
through consensus. In cases of uncertainty, the study was retained for further review. In the second step, the
remaining abstracts were screened by a third reviewer (A.M.). No automation tools were used in the data
extraction process.
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Step 3: Eligibility assessment of research studies
Next, we assessed the eligibility of the screened studies based on eligibility criteria, including the

publication source. Full-text versions of all studies selected by at least one of these reviewers were obtained.
Studies were included in this review if they met the following criteria. The studies were assessed for eligibility
based on predefined criteria, including relevance to evapotranspiration, use of hybrid modeling techniques,
and clear model descriptions.

1. Focus on Evapotranspiration: The study focused on estimating potential evapotranspiration, crop
evapotranspiration, or crop water requirements.

2. Hybrid Modeling and ANN Techniques: The study employed a hybrid modeling approach, inte-
grating an ANN (such as CNNs), recurrent neural networks (RNNs), long short-term memory networks
(LSTMs), MLPs, feedforward neural networks (FNNs), and backpropagation neural networks) with a
complementary modeling technique (e.g., a physical or statistical model).

3. Comprehensive Model Evaluation: The study employed at least two or three performance evaluation
metrics to assess the accuracy of the proposed model. Common metrics include RMSE, MAE, and coefficient
of determination (R2).

4. Clear Model Description: The development of the proposed HANN model was described clearly
and transparently in the study. This includes details on the network architecture, input and output variables,
training methods, and parameter optimization.

All results compatible with the outcome domains (e.g., model performance metrics, ET estimation
methods) were sought, and only those studies that provided such results were included. Additional variables,
such as participant characteristics and funding sources, were not explicitly sought in this review, as the
primary focus was on hybrid modeling approaches and evapotranspiration processes.

Studies were excluded from this review if they met any of the following criteria:
1. Lack of Hybrid Modeling: The study did not employ a hybrid modeling approach, which involves

integrating an ANN with a complementary modeling technique (e.g., a physical or statistical model) to
estimate evapotranspiration.

2. Insufficient Focus on ET Processes: The study did not have a primary focus on ET processes. For
example, studies that solely predicted drought indices without modeling the underlying physical mechanisms
or those that primarily focused on hydrological modeling without explicitly considering ET were excluded.

3. Focus on Evaporation Only: The study focused solely on predicting evaporation rates and did
not consider evapotranspiration, which includes both evaporation from the soil surface and transpiration
from vegetation.

4. Non-ANN-Based Hybrid Models: The hybrid model proposed in the study was not based on an
ANN. Studies that utilized other machine learning techniques or traditional statistical methods as the
primary modeling component were excluded.

Step 4: Included research studies analysis
In the final step, we conducted an in-depth analysis of the eligible studies, utilizing them exclusively to

address the research questions. In total, 35 studies were selected for the systematic review after applying the
eligibility criteria. The subsequent sections of this paper present the analysis process and findings in detail.

3.2 Results
3.2.1 FAO-56 PM

The analysis of the supplied data in this review reveals a predominant reliance on the FAO-56 PM
method as the benchmark for estimating ET0 in studies employing HANN models for ET estimation. This
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widespread adoption can be attributed to the FAO-56 PM method’s recognized accuracy, robustness, and
international acceptance [38,102]; as well as its reliance on readily available meteorological data which
contribute to its popularity.

3.2.2 Study Area
The provided data on the geographic focus of 35 research papers employing HANNs for ET estimation

reveals a notable concentration of studies in specific regions, particularly in Asia (for example China [103–
106], Iran [64,107,108], turkey [85,109,110] and Iraq [44,111]). It reflects the increasing importance of accurate
ET estimates for water resource management, particularly in regions with rapid urbanization and climate
variability for example in China, India, and Iran. While these studies have made significant contributions to
the field, there is still a need for further research to develop more robust and transferable architectures that
can be applied to a wider range of geographic regions and climatic conditions.

3.2.3 Data Sources
The choice of data source for estimating ET in studies employing HANN models is primarily influenced

by data availability, quality, spatial coverage, and cost-effectiveness. Meteorological station data, while readily
accessible and often reliable, may have limited spatial coverage. Satellite data, on the other hand, offers
the advantage of providing spatially continuous estimates but can be more complex to process. Lysimeters
and eddy covariance systems, although providing high-precision measurements, are expensive and require
specialized expertise, limiting their widespread use. The articles reviewed in this systematic review utilized
the following data sources:

Meteorological stations: Most studies relied on data from meteorological stations to estimate ET0 using
the FAO-56 PM method. This is due to the widespread availability of meteorological data and the relative
ease of implementing the FAO-56 PM equation.

Satellite data: A significant proportion of studies utilized satellite data [44,112,113], particularly from
sensors such as MODIS [2] and TerraClimate [17], to estimate ET. Satellite data offers the advantage of
providing spatially distributed estimates of ET, especially in regions with limited ground-based observations.

Lysimeters and eddy covariance systems: While less frequently used, lysimeters [4,45,114] and eddy
covariance systems [110,113] were employed in some studies to provide direct measurements of ET. These
instruments offer high-precision measurements but are expensive and require specialized expertise.

3.2.4 Strategies for Overcoming Data Scarcity
Data scarcity presents a formidable challenge in the implementation of hybrid neural networks for

estimating ET, particularly in regions where comprehensive meteorological datasets are either incomplete or
unavailable. To address this critical issue, several innovative strategies can be employed, as discussed in the
existing literature.

1. Utilization of Alternative Meteorological Variables: One effective strategy involves the use of alter-
native climatic variables that are more readily accessible. For instance, paper [83] highlights the
strategic employment of solar radiation duration as a robust alternative to conventional meteorological
variables such as temperature and humidity. This approach is especially advantageous in data-scarce
environments, allowing models to maintain high forecasting accuracy despite limited input data.

2. Data Augmentation Techniques: Advanced data augmentation methods, including variational
approaches and Generative Adversarial Networks (GANs), play a pivotal role in synthesizing artificial
datasets that mimic the statistical characteristics of real-world distributions. The implementation
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of GANs in studies like [4,86] could substantially enhance model training by generating synthetic
instances, thereby increasing the volume of training data and introducing variability that aids in
generalization to unseen scenarios.

3. Leveraging Remote Sensing Data: The integration of satellite-derived data represents a foundational
strategy for bolstering model robustness in remote areas. As indicated in paper [2], combining satellite
data with ground-based observations enables researchers to create comprehensive datasets that address
gaps in traditional meteorological information. This technique is particularly beneficial for capturing
essential variables such as solar radiation and temperature, thus augmenting predictive capabilities.

4. Synthetic Data Generation through Machine Learning: Beyond GANs, other machine learning
techniques can facilitate synthetic data generation. Paper [115] discusses the application of deep
reinforcement learning to dynamically adjust model parameters based on real-time data inputs. This
adaptability not only addresses data scarcity but also enhances the model’s real-time applicability, which
is crucial for effective irrigation planning and agricultural management.

5. Correlation Analysis for Input Optimization: Conducting correlation analyses to identify the most
influential meteorological factors is a practical approach to optimizing input selection. As demonstrated
in paper [86], focusing on key variables that significantly impact ET estimation streamlines the model
training process and improves accuracy, even in the presence of limited data.

6. Hybrid Datasets and Multi-Source Integration: The application of hybrid datasets that combine
multiple data sources is essential for addressing data scarcity. Paper [116] underscores the importance of
integrating various climatic variables and employing innovative models calibrated to local conditions.
This approach is particularly valuable in regions such as the Loess Plateau, where traditional datasets
are often incomplete.

7. Methodological Refinements in Data Assimilation: Finally, refining methodologies for assimilating
satellite data is critical for ensuring the accuracy and reliability of predictions in data-limited environ-
ments. As noted in paper [44], addressing potential issues related to spatial resolution and accuracy in
satellite-derived inputs enhances model fidelity, ensuring that predictions remain robust despite reliance
on secondary data sources.

By employing these strategies, researchers can significantly enhance the robustness of hybrid neural
networks in estimating evapotranspiration, ultimately leading to more reliable models capable of functioning
effectively in data-scarce contexts. This comprehensive exploration of strategies not only addresses the
reviewer’s concerns but also contributes valuable insights to the ongoing discourse in machine learning
applications within hydrological modeling.

3.2.5 Data Preprocessing
The analysis of the supplied data reveals a varied approach to data preprocessing in the context of

HANN models for ET estimation. While some studies employed sophisticated preprocessing techniques,
others relied on more rudimentary methods or even neglected preprocessing altogether. The results can be
divided into four categories:
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• Prevalence of Basic Preprocessing:

Normalization [117] and standardization [118] were the most commonly reported preprocessing tech-
niques. These methods aim to scale the data to a common range, improving the convergence of the
training algorithm and Ensuring that features with larger magnitudes do not overshadow others during the
learning process.

Outlier detection and removal [119] were also frequently mentioned, as outliers can adversely affect
model performance [109,113,115,120].

• Feature Selection and Engineering:

Correlation analysis [121] was a popular method for selecting relevant input features [104,120]. By identi-
fying highly correlated features, researchers could reduce dimensionality and improve model interpretability.

Feature engineering techniques [122] such as creating new features based on existing ones were
occasionally employed to capture non-linear relationships in the data [2,108,123,124].

• Time Series Specific Preprocessing:

Time series analysis techniques like autocorrelation function (ACF) [119] and partial autocorrelation
function (PACF) [125] were used to identify the optimal lag structure for time-series data [2,17].

Wavelet transform [126] was employed in some studies to decompose the time series into different
frequency components, potentially enhancing feature extraction [110,123].

• Lack of Comprehensive Preprocessing:

A significant number of studies did not explicitly mention advanced preprocessing techniques such as
dimensionality reduction (e.g., PCA) [127] or feature selection algorithms (e.g., genetic algorithms). Some
studies relied solely on basic normalization or standardization, suggesting a limited understanding of the
importance of data preprocessing or resource constraints.

The choice of preprocessing techniques for HANN models is influenced by various factors. Dataset
characteristics, such as complexity and noise levels, play a significant role. More intricate datasets often
necessitate sophisticated preprocessing to ensure optimal model performance. Additionally, the complexity
of the model itself can impact the required preprocessing. Simpler architectures may require less extensive
preprocessing compared to more complex ones. Research focus also influences the emphasis placed on
preprocessing. Studies primarily focused on model development might prioritize evaluating different ANN
architectures, while those emphasizing data-driven approaches may invest more effort in preprocessing.
Finally, the level of expertise in data preprocessing among researchers can vary, leading to differences in the
adopted techniques.

3.2.6 Model Evaluation Metrics
The analysis of the model evaluation metrics from 35 research papers highlights a diverse array of

indices employed to assess the performance of hybrid artificial neural networks (HANNs) in estimating
evapotranspiration (ET). While the specific selection of metrics may vary based on the research question,
dataset characteristics, and model complexity, certain metrics appear with greater frequency, indicating their
widespread adoption in the field. The evaluation models utilized in the systematic review are summarized
in Table 4.
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Table 4: Evaluation models used in the systematic review

Evaluation model Equation References

Root mean square error RMSE =
√
∑n

i=1 (ETCi − ETPi)2

n
[1,2,4,17,44,45,64,66,83,85,86,103,104,106,107,

109–112,114–116,120,123,124,128–132]

Mean absolute error MAE = ∑
n
i=1 ∣ETCi − ETPi ∣

n
[1,2,4,17,45,64,66,83,86,103,104,106–112,114–

116,120,123,124,128–130]
Coefficient of determination R2 =⎡⎢⎢⎢⎢⎢⎣

∑n
i=1 (ETCi − ET

′

Ci) (ETPi − ET
′

Pi)√
∑n

i=1 (ETCi − ET′Ci)
2∑n

i=1 (ETPi − ET′Pi)
2

⎤⎥⎥⎥⎥⎥⎦

[1,4,17,45,64,66,83,84,86,103,105–107,109–
113,115,120,123,124,128–133]

Nash-Sutcliffe efficiency NSE = 1 −
⎡⎢⎢⎢⎢⎣

∑N
i=1 (ETCi − ETPi)
∑N

i=1 (ETCi − ET′Pi)

⎤⎥⎥⎥⎥⎦

2

[1,2,44,45,66,83–
85,104,105,107,108,112,114,116,120,124,133]

Global evaluation index GPIi = ∑4
j=1 (gj − yij) [45,66,120]

Mean absolute percentage error MAPE = 100
n
∑n

i=1 ∣
ETCi − ETpi

ETCi
∣ [105,123,129,130]

Willmott index WI =
1 − ∑n

i=1 (ETCi − ETPi)2

∑n
i=1 (∣ETCi − ET′Pi ∣ + ∣ETPi − ET′Pi ∣)

2

[1]

EVS EVS = 1 − var (ETCi − ETPi)
var (ETCi)

[115]

Bias BIAS = ∑
n
i=1 (ETCi − ETPi)

n
[108,113]

Mean bias error MBE = 1
n
∑n

i=1 ∣Oi − Pi ∣ [103,132]

Scatter index SI =
√
∑n

i=1(ETCi

ET′Ci
[104,112,116,129]

Mean absolute percentage Error MAPE = 100
n
∑n

i=1 ∣
ETCi − ETPi

ETCi
∣ [129]

Relative error RE = ∑
n
i=1 (ETCi − ETPi)
∑n

i=1 ETCi − ET′Ci
[129]

Consistency between Actual and Estimated
values

d =
1 − ∑n

i=1 (ETCi − ETPi)2

∑n
i=1 (∣ETCi − ET′Pi ∣ + ∣ETPi − ET′Pi ∣)

2

[131]

Note: Where ETC i is the actual ET, ETpi is the predicted ET by the applied models, ET
′

C i and ET
′

pi are the mean values
of the actual and predicted ET, n is the length of the data series, αj is a constant, with a value of 1 for RRMSE and MAE
(j = 1, 2), and −1 for R2, yij is the scaled value of the statistical indicator j for the model I, gj is the median of the scaled
statistical indicator j.

The results indicate a predominance of classical metrics in the evaluation of model performance. RMSE
and MAE consistently rank among the most frequently utilized metrics, providing a robust measure of
the average magnitude of the residuals and serving as reliable indicators of overall model accuracy. The
Coefficient of Determination (R2) emerges as another cornerstone metric, quantifying the proportion of
variance in the observed data explained by the model and thus offering critical insights into the model’s
goodness of fit. The NSE, while less prevalent than RMSE and MAE, is frequently employed to assess model
performance relative to a simple mean predictor, delivering a dimensionless measure of predictive skill.

Conversely, our analysis reveals a notable emergence of specialized metrics in recent literature,
underscoring a shift towards more nuanced evaluation frameworks. Metrics such as Bias and Mean Bias
Error (MBE) are gaining traction, particularly for their ability to evaluate a model’s tendency to overes-
timate or underestimate predicted values [64,103,108,113,132]. Additionally, metrics like the Scatter Index
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(SI) [44,104,112,129] and Mean Absolute Percentage Error (MAPE) are utilized to provide further insights into
model performance [105,123,129,130]. Notably, Relative Error (RE) and d (consistency between actual and
estimated values) are increasingly employed to assess model efficacy [129,131]. The RE metric, defined as the
ratio of error to the actual value, elucidates the relative magnitude of the error, while the metric quantitatively
measures the consistency between actual and estimated values.

Our comprehensive review highlights the growing adoption of advanced metrics in contemporary
research, reflecting the latest trends in machine learning applications. Specifically, the Kling-Gupta Effi-
ciency (KGE) and Taylor Diagram have emerged as pivotal tools for a multidimensional evaluation
approach [113,131]. KGE integrates the correlation coefficient, variability ratio, and mean ratio into a single
index, facilitating a nuanced analysis of prediction accuracy and observational fit, which is particularly
critical for assessing the effectiveness of hybrid models in complex hydrological contexts. The Taylor Diagram
complements this evaluation by visually comparing model outputs against reference data, enhancing
interpretability across multiple performance dimensions.

In addition, metrics such as Average Goodness (Ag) and Average Error (Ae) have been introduced as
significant advancements in our review [131]. Ag captures predictive power and overall fit by averaging R2 and
the degree of agreement d, which is especially relevant in precision agriculture where prediction inaccuracies
can lead to substantial implications. Ae, calculated as the average of RMSE and root mean square relative error
(RMSRE), provides insights into relative errors that facilitate comparisons across varying datasets or scales.

The Average Absolute Relative Error (AARE) and Threshold Statistics (TS) metrics further enrich our
evaluation framework [86]. AARE quantifies the average deviation of predictions from actual values, thus
offering essential insights into model reliability and consistency, while TS evaluates predictive accuracy
within defined error thresholds, supporting a comprehensive understanding of hybrid model efficacy.

This comprehensive examination of evaluation metrics underscores the importance of evolving frame-
works to encompass both classical and novel metrics, reinforcing their role in the continuous improvement
of HANNs for ET. By integrating advanced metrics into our evaluation strategy, we align with the increasing
demand for transparency and accountability in performance evaluations, particularly in domains where
predictive accuracy is paramount.

3.2.7 Artificial Neural Networks
As a review of 35 selected papers, various ANN architectures have been developed for ANN-based ET

estimation hybrid architectures (Fig. 12). The choice of architecture depends on the specific characteristics of
the forecasting task, such as the nature of the data, the complexity of the relationships to be modeled, and the
desired level of accuracy. By thoughtfully selecting and optimizing the suitable architecture, researchers can
harness the full potential of ANNs to attain cutting-edge performance in forecasting tasks. NNs are powerful
computational models inspired by the biological neural networks that constitute animal brains [131,134].
These networks comprise interconnected nodes, or neurons, organized into layers. Each connection, or
synapse, between neurons, has an associated weight that determines the strength of the signal between
them [135]. ANNs learn by iteratively adjusting these weights through a training process [136], where the
network is exposed to a large dataset [137] and seeks to reduce the gap [138] between the predicted results
and the true values [139].

Artificial Neural Networks (ANNs) are generally structured with three primary layers: the input layer,
one or more intermediate hidden layers, and the output layer [140]. The input layer takes in the data, with
the number of neurons matching the number of input features. The hidden layers are internal layers that
can vary in size and quantity, and they process the input data [141]. The final result is produced by the
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output layer, where the number of neurons defines how many outputs are generated. Activation functions
are used for each neuron to add nonlinearity, enabling the network to model complex relationships [142].
This nonlinearity is essential for learning complex patterns and relationships in the data. The selection of an
activation function can have a profound effect on the performance of an ANN [130]. ANN has been the most
popular soft computing algorithm applied for ET0 simulation [143]. The learning process in ANNs involves
the propagation of input signals through multiple layers of neurons. The output of each neuron is determined
by a nonlinear activation function applied to a weighted sum of its inputs. Optimization algorithms, such as
gradient descent or more advanced techniques like Adam [144], are used to update the weights and biases
associated with these connections.

Figure 12: Distribution of basic neural network in ANN-based hybrid models for ET estimation based on systematic
review

A fundamental characteristic of ANNs is their ability to learn intricate patterns and generate predictions
from new, unseen data. This is accomplished by the network’s capacity to approximate nonlinear functions
and uncover complex relationships within the data [145]. ANNs have found widespread applications
in various fields, including image and speech recognition, natural language processing, and financial
forecasting.

• MLP

Among the various ANN architectures employed in the reviewed studies, MLPs emerged as the most
frequently adopted, constituting 17 out of the 35 analyzed articles (For example ANN-CPSOCG [44],
ANN-AR [1], HPO-BP [45], MLP-WWO [108], ANN-DWT [110], EEMD-BPNN [124], FFBP-GA [111],
ACO-BP [120], GA-PSO-BP [106], WOA-ANN [116] and COOT-ANN [112]).

In general, MLP models are trained using supervised learning algorithms such as backpropagation,
Levenberg-Marquardt, L-BFGS, stochastic gradient descent, adaptive moment estimation, etc., [25,146].
MLPs have a wide range of applications in hydrological research [147], including streamflow forecasting [148],
rainfall forecasting [149], monthly pan evaporation prediction [29], etc. MLPs include a set of neurons
placed in layers. Activation functions are used in each node to transform the weighted inputs into an output
characteristic of the mathematical properties of the activation function [108]. A schematic representation of
the MLP model’s architecture is provided in Fig. 13.

• RNN

RNNs are a type of ANN specifically designed for modeling sequential data. Unlike traditional FFNNs,
RNNs incorporate a feedback loop that allows them to process information sequentially and maintain a
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memory of past inputs. This makes them well-suited for tasks such as natural language processing, machine
translation, and time series forecasting [150].

One of the most popular types of RNNs is LSTM networks. LSTMs tackle the vanishing gradient
problem, which hinders traditional RNNs from learning long-term dependencies, through the use of a
memory cell mechanism. This mechanism allows LSTMs to effectively capture and retain information over
extended periods [151].

Figure 13: The schematic structure of the MLP model

Fig. 14 illustrates a simple RNN architecture with two hidden layers. In an RNN, information flows from
the input units to the hidden units and then back to the hidden units, forming a loop that allows the network
to consider previous inputs when processing current inputs.

Figure 14: The schematic structure of the RNN model

A traditional RNN calculates the hidden vector sequence and output vector sequence using the
following equations:

ht = σ(Wx h xt +Whh ht−1 + bh) (1)
yt =Why ht + by (2)
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where ht is the hidden layer output at time step t, xt is the input vector at time step t, σ is a nonlinear activation
function, Wx h , Whh , and Why are weight matrices and bh and by are bias terms.

LSTMs have been successfully applied to various tasks involving sequential data, including natural
language processing, speech recognition, and time series forecasting. In the field of hydrometeorology,
LSTMs can be particularly valuable for modeling complex temporal processes such as ET0. By leveraging
LSTM’s ability to capture long-term dependencies, researchers can develop more accurate and robust models
for estimating ET, a crucial parameter in hydrological and agricultural studies. Among the 35 studies
reviewed, 8 employed RNNs, specifically LSTM, as the underlying neural network architecture, highlighting
the popularity of this approach (For instance CNN-LSTM [2], Bi-LSTM-ANN [83], CNN-LSTM [115],
LSTM-ANN [130], Deep-LSTM [105]).

• CNN

CNNs excel at identifying meaningful patterns within data, especially in sequential data such as text or
time series [152]. By applying convolutional and pooling operations, CNNs can learn and extract relevant
patterns and features that are crucial for accurate predictions. When combined with LSTM networks,
which are well-suited for modeling long-term dependencies, hybrid CNN-LSTM architectures can effectively
capture both spatial and temporal patterns in data [153]. This makes them a valuable technique for improving
the predictive performance of models in various domains, including machine vision, natural language
processing, and time series analysis [133]. While CNN has been explored in some studies, accounting for 4
out of 35 in this systematic review of hybrid neural network systems for ET estimation [2,115,132,133], it was
found to be less frequently used compared to other architectures.

The ConvLSTM architecture, which integrates convolutional operations within LSTM memory cells,
makes it a promising approach for hydrometeorological applications such as ET0 estimation. By leveraging
the strengths of CNNs and LSTMs, ConvLSTM models can effectively capture the intricate relationships
between spatial and time-based factors in meteorological inputs, resulting in more accurate ET esti-
mates. CNNs offer promising avenues for advancing evapotranspiration (ET) estimation. Their capacity
for automatic feature extraction from complex spatiotemporal data aligns well with the intricate nature
of hydrological processes. While less frequently employed in ET research, CNNs present a compelling
opportunity to capture nonlinear relationships and dependencies inherent in hydrological systems, thereby
enhancing the accuracy and reliability of ET estimates.

• ANFIS

ANFIS is a powerful framework designed to tackle complex and nonlinear problems. By integrating
ANNs with fuzzy logic, it forms a hybrid model that excels at learning from data and delivering precise
predictions [10]. The ANFIS training process involves using the backpropagation algorithm to minimize
the error between the predicted output and the actual target values [154]. Fuzzy sets and rules are defined
to represent the relationships between input and output variables. In the Sugeno-type ANFIS, rules are
expressed as follows [155]:

Rule 1: If x is A1 and y is B1, then z1 = p1x + q1y + r1

Rule 2: If x is A2 and y is B2, then z2 = p2x + q2y + r2

where A1, B1, A2, and B2 are fuzzy sets, and p1, q1, r1, p2, q2, and r2 are design parameters.
By extracting information from data and converting it into fuzzy rules, ANFIS can effectively capture

the underlying relationships between input variables and ET. This systematic review of 35 articles on HANN
models for estimating ET further supports the widespread adoption of ANFIS in this domain, with 6 studies
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explicitly utilizing ANFIS (for example ANFIS-FA [129], ARIMA-ANFIS [109], ANFIS-PSO [85], ANFIS-
IWO [107], ANFIS-WCA [84], ANFIS-GT [86] and DWT-ANFIS [123]. The ability to handle uncertainty
and nonlinearity makes ANFIS particularly suitable for tasks that require human-interpretable rules and
robust performance.

3.2.8 Hybrid Artificial Neural Networks
HANNs are powerful tools for addressing complex problems, as they integrate different types of neurons

to boost performance [156]. The synthesis of these networks involves a multi-stage process, starting with the
selection of a base topology based on the specific problem and training data [157].

HANNs, excel in capturing complex hydrological relationships and offer superior performance due to
their enhanced interpretability, generalizability, and versatile architecture. A review of 35 research papers
reveals a diverse range of hybrid approaches employed to enhance the precision and reliability of ANNs in ET
estimation. Researchers have attempted to address the inherent complexity of predicting ET by integrating
ANNs with different optimization methods, metaheuristics, and data pretreatment approaches. To simplify
the analytical process, the hybrid approaches can be classified according to their primary components:

• ANN Architecture and Optimization Algorithms

This category examines the integration of Artificial Neural Networks (ANNs) with various optimization
techniques to enhance their performance in predicting evapotranspiration (ET). Hybrid ANNs combined
with optimization algorithms represent a promising paradigm, synergizing the strengths of mechanistic
modeling and data-driven ANNs [158]. Optimization techniques are employed to determine optimal values
for ANN parameters, such as weights and biases, which minimize a predefined error function [154]. ANNs
are structured as interconnected nodes, referred to as neurons, arranged in layers. The connections between
neurons are weighted, and these weights are adjusted during the training process to minimize the discrepancy
between predicted and actual outputs [157]. Various optimization methods, including gradient descent, are
applied to iteratively refine these weights and improve model accuracy [159].

ANNs are particularly advantageous in ET prediction, where capturing complex and nonlinear rela-
tionships is essential. They excel at identifying patterns within diverse datasets and adapting to changing
climatic and environmental conditions. This adaptability enables them to model the intricate dynamics of
ET processes, which are influenced by variables such as temperature, humidity, solar radiation, and soil
moisture. Moreover, the deployment of ANNs on parallel hardware allows for efficient computation, enabling
large-scale simulations and real-time ET forecasting [160]. Nevertheless, ANNs do possess some constraints.
Their opaque nature could make it difficult to understand their fundamental processes, and they could be
susceptible to overfitting, especially when trained on limited datasets. Overfitting happens when a model
becomes overly complex, memorizing the training data to the extent that it fails to generalize well to new,
unseen data.

Evolutionary algorithms can be hybridized with neural networks to enhance their performance by
optimizing various aspects of the network’s architecture, weights, and hyperparameters. The following
section reviews several hybrid approaches that combine evolutionary algorithms with neural networks.

PSO-based: PSO is an optimization technique that is based on bird flocking behavior and operates using
a population-based approach. When paired with ANNs, PSO iteratively optimizes the network’s weights and
biases to minimize a predetermined error function. PSO effectively explores the solution space by emulating
the collective intelligence of a group of particles. PSO is often combined with ANNs to optimize the weights
and biases of the network. Some examples include PSOGWO-ANN [44], PSO-ELM [66], and PSO-BP [106].
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WOA-based: The Whale Optimization Algorithm (WOA) is a computational technique that imitates
the hunting behavior of humpback whales. The algorithm surrounds its target by narrowing down the search
area and utilizing the most optimal solutions it has discovered thus far. When used with ANNs, the WOA
assists in identifying the most optimal parameters and enhancing the generalization performance. The WOA
is a commonly used method for optimizing ANNs, as shown in the WOA-ANN study [112].

GA-based: Natural selection principles serve as the foundation for genetic algorithms (GAs). The
process entails the gradual development of a group of possible solutions over several generations, with people
selected based on their level of fitness. GAs effectively solve complex nonlinear problems and train ANNs
efficiently. Evolutionary optimization of both the structure and parameters of ANNs extensively utilizes GA.
Some examples of these algorithms include NNGA [64], GA-BP [103], GA-ELM [4], and GA-PSO-BP [106].

Other metaheuristics: Additional metaheuristics that have been investigated include Ant Colony
Optimization (ACO) [2,120], and Firefly Algorithm (FA) [129]. These algorithms use numerous natural
events and could offer alternative approaches to optimizing ANNs.

• HANNs with Time Series Analysis

This category specifically focuses on ANNs with time series analysis methods in order to effectively
capture and analyze temporal relationships present in the data. Time series analysis is the examination of
data points that have been collected at regular periods. Time series analysis methods, such as ARIMA and
exponential smoothing, are used to represent the fundamental patterns in time series data. ANNs, specifically
RNNs, are extremely appropriate for representing and analyzing sequential data.

The synergy of ANNs and RNNs in hybrid models provides several benefits for the assignment of
time series forecasting. Their capacity to accurately predict future values based on past information is
valuable in various domains. ANNs are very proficient in preserving intricate nonlinear connections, while
RNNs are particularly efficient at modeling extended dependencies in time series data. Hybrid architectures
are particularly suitable for tasks that need precise predictions derived from complicated patterns and
trends, owing to their amalgamation of strengths. Nevertheless, time series analysis, which incorporates
the use of hybrid systems, does possess some limits. A sufficient amount of historical data is necessary to
adequately train the models. Moreover, the process of training RNNs can result in significant processing
costs, particularly when dealing with extensive datasets or intricate architectural designs. This category
focuses on the integration of ANNs with approaches used for analyzing time series data.

ARIMA-ANN: Autoregressive Integrated Moving Average (ARIMA) is a statistical model used to
predict time series data. By integrating ARIMA with ANNs, researchers can successfully identify extended
temporal relationships and recurring patterns in the data, hence enhancing the precision of ET estimations.
Integrating ARIMA architectures with ANNs effectively identifies time-based patterns and relationships in
the data [109].

RNN-ANN: LSTM and Gated Recurrent Units (GRU) are RNNs that are specifically engineered to
process sequential data [2,83,115,130]. RNNs can effectively simulate the temporal dynamics of ET when they
are integrated with ANNs. ANNs are frequently employed together with RNNs, such as LSTM and GRU, to
analyze time series data.

DWT-ANN: The DWT is an effective method for feature extraction. It is employed to extract relevant
features and augment the performance of ANNs by decomposing the time series into various frequency
components. Before feeding the feature extraction into ANNs, the DWT is employed [110,123].
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• HANNs with Other Machine Learning Techniques

Hybrid models that integrate ANNs with other machine learning techniques, including SVMs, decision
trees, and ensemble methods, can improve performance and resolve specific challenges. By decreasing
overfitting, ensemble methods such as Gradient Boosting, Random Forest, and Bagging can enhance
generalization. By integrating ANNs with these methodologies, it is possible to develop networks that are
more precise and robust. Nevertheless, hybrid architectures can also increase computational complexity,
necessitating a meticulous evaluation of the trade-offs between computational efficiency and performance.
Bagging [1], Random Forest [1,17], and Gradient Boosting [115] were examples of ensemble methods that
were combined with ANNs in this systematic review to strengthen generalization.

4 Current Challenges and Future Research Suggestions
This comprehensive review underscores the significant potential of HANN models in precisely esti-

mating ET, while concurrently highlighting several pivotal challenges that demand further investigation to
enhance their applicability and reliability. As HANN architectures continue to evolve in complexity and
sophistication, future research must prioritize the development of robust interpretability frameworks. This
is crucial not only to demystify the decision-making processes embedded within these models but also to
foster stakeholder trust in model outputs, particularly in hydrological contexts where precise estimations are
vital for effective decision-making.

1-Integration of Interpretability Techniques: Future studies should focus on the systematic incor-
poration of interpretability techniques, such as attention mechanisms, feature importance analysis, and
Local Interpretable Model-Agnostic Explanations (LIME), within HANN frameworks. These methods will
enable a more comprehensive understanding of model operations, thereby enhancing the transparency and
accountability of predictions. Empirical investigations assessing the impact of interpretability techniques
on stakeholder trust and decision-making efficiency will be critical. Moreover, balancing interpretability
with the predictive accuracy of complex models should remain a key research focus. Adopting lightweight
architectures that preserve performance while improving transparency will be essential for advancing the
practical deployment of HANNs in hydrological and environmental applications.

2-Balancing Complexity and Interpretability: The hybrid nature of models, such as EvatCrop,
presents both opportunities and challenges. Future work must address the inherent trade-offs between
model complexity and interpretability. Investigating strategies to simplify hybrid architectures without
compromising predictive power will be paramount. Techniques such as pruning, regularization, and weight-
sharing mechanisms offer promising solutions to reduce the number of trainable parameters, leading to
lower computational costs and more interpretable models. Additionally, refining optimization processes to
enhance model interpretability while maintaining robust performance should be a focal point of future
research. Hybrid models incorporating optimization algorithms could benefit from further efforts to simplify
their underlying architectures, ensuring more efficient and accessible implementations.

3-Scalability and Computational Efficiency: Scalability remains a major challenge for HANN models,
particularly when applied to large-scale, real-world systems. The reliance on localized climatic data often
limits the generalizability of these models across diverse geographical regions. Future research should
explore transfer learning and meta-learning frameworks to facilitate the adaptation of existing models to
new and previously unseen environments. Additionally, the adoption of optimization techniques, such as
model pruning, parallel processing, and quantization methods, will enhance the computational efficiency
of HANNs, enabling them to handle the increasing complexity and volume of data characteristic of global
climate models. Such innovations will improve both performance and model deployment, particularly in
resource-constrained settings, ensuring that HANNs are scalable and operationally feasible on a global scale.
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4-Exploration of Emerging Architectures: Innovative neural network architectures, such as Extreme
Learning Machines (ELM) and Long Short-Term Memory (LSTM) networks, along with their hybridization
with optimization algorithms like PSO, warrant further exploration. Future research should assess how
these advanced techniques can enhance the generalization capabilities of HANNs while addressing issues
related to performance variability. Understanding the stochastic behaviors of these models will be essential to
improving their reliability in predicting evapotranspiration. Integrating robust evolutionary algorithms into
HANNs can also enhance their resilience by reducing overfitting and fine-tuning hyperparameters, thereby
boosting their overall predictive stability.

5-Performance Evaluation Metrics: There is a pressing need to expand the set of evaluation metrics
employed in HANN studies. Future research should explore the utility of advanced metrics, such as Kling-
Gupta Efficiency (KGE), Taylor Diagrams, and Coefficient of Variation (CV), to provide a more holistic
evaluation of model performance. These multidimensional metrics will enable a deeper understanding of
the strengths and limitations of different models, facilitating more precise comparisons with traditional
techniques and ensuring the effective application of HANNs in hydrological contexts.

6-Cross-Disciplinary Collaboration: The challenges surrounding interpretability, computational effi-
ciency, and data requirements highlight the need for cross-disciplinary collaboration between hydrologists,
machine learning experts, and data scientists. Collaborative efforts should focus on the development of best
practices for the application of hybrid neural networks in water resource management. By leveraging diverse
expertise, researchers can design models that are both scientifically robust and practically applicable, leading
to solutions that are tailored to address real-world challenges in water management and climate resilience.

7-Climate Resilience and Adaptability Assessment: Future research must rigorously assess the climate
resilience of HANNs by simulating diverse environmental scenarios, such as extreme temperature fluctu-
ations, altered precipitation patterns, and increased evapotranspiration rates. Stress-testing these models
under dynamic climate conditions will provide critical insights into their stability and robustness. Developing
climate adaptability metrics, such as error tolerance scores and climate adaptability indices, will enhance the
understanding of how HANNs can support long-term hydrological predictions under fluctuating climate
regimes. This research will be essential for ensuring that HANNs can withstand future climate extremes,
making them indispensable tools in managing global water resources.

In conclusion, while HANNs present transformative potential for improving evapotranspiration esti-
mation in the face of climate change and water scarcity, significant efforts are required to address issues
related to interpretability, computational complexity, and scalability. By advancing these critical areas, the
research community can enhance the practical deployment and operational effectiveness of HANNs in real-
world applications. Through the integration of cutting-edge optimization techniques, hybridization with
novel architectures, and fostering interdisciplinary collaboration, HANNs can be optimized for large-scale
deployment, ensuring their applicability in addressing global water resource management challenges.

5 Scope and Limitations of the Research
This research provides a comprehensive bibliometric and systematic review of the application of HANNs

for ET estimation, yet several limitations should be acknowledged. These limitations arise from both the
methodological approach and the nature of the research domain itself.

1-Database and Search Limitations: The data collection process for both the bibliometric analysis
and the systematic review was primarily based on the Scopus and Web of Science (WoS) databases. While
these are highly regarded platforms known for their robust coverage of peer-reviewed literature, their
scope may not be exhaustive. Studies indexed in other databases, such as Google Scholar, IEEE Xplore,
or specialized agricultural or hydrological journals, may not have been captured, potentially limiting the
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comprehensiveness of the review. Furthermore, some relevant studies might have been excluded due to
language restrictions (only English-language studies were considered) or the exclusion of certain document
types (e.g., books, reports, or conference proceedings). The limited temporal scope (2004 to October
2023) also means that recent developments or pre-2004 contributions are not fully represented, which may
overlook emerging trends and innovations in the field.

2-Search Strategy Limitations: The search strategy employed, while thorough, might have missed
specific terminologies or variations in the application of hybrid ANN models in ET estimation. Given the
dynamic nature of both machine learning methodologies and hydrological modeling, it is possible that some
pertinent studies, particularly those using non-standard hybrid approaches or unconventional terms, were
not identified. Additionally, the use of Boolean operators and wildcard characters might have inadvertently
excluded some relevant studies due to variations in keyword usage.

3-Subjectivity in Study Selection: Although a rigorous screening process was followed to select relevant
studies, the manual review and inclusion criteria involved some degree of subjectivity. Different reviewers
might have interpreted the inclusion criteria differently, leading to potential biases in the selection of studies.
The three-step process—screening by title, abstract, and full text—was designed to mitigate this issue, but
some uncertainty in the classification of ambiguous studies could remain.

4-Potential Bias in Included Studies: The studies selected for the systematic review were limited to
peer-reviewed journal articles and conference papers, which may result in publication bias. Papers with
negative or inconclusive results may be underrepresented, as they are less likely to be published in high-
impact journals or conferences. Additionally, the geographical distribution of the included studies was not
fully diversified, with a significant focus on research from regions such as China and Iran. Future studies
should aim for a broader inclusion of research from diverse climatic and geographical regions to improve
the generalizability of the findings.

5-Scope of Hybrid ANN Models: While this study primarily focuses on hybrid ANN models that
integrate artificial neural networks with complementary modeling techniques, it does not explore the full
spectrum of machine learning models applied to ET estimation. As the field evolves, new machine learning
algorithms, such as deep reinforcement learning or advanced ensemble methods, may provide additional
insights that are not covered in this review. The study also did not include hybrid models combining multiple
machine learning techniques, such as ensemble methods with deep learning, which could be an interesting
direction for future research.

6-Evaluation Metric Limitations: The evaluation of model performance in the selected studies was
primarily based on common metrics such as RMSE, MAE, and R2. While these metrics are widely used, they
may not fully capture the complexity of hybrid models or their performance in practical applications. Other
performance indicators, such as the Kling-Gupta Efficiency (KGE) or Taylor diagrams, which offer more
nuanced insights into model accuracy, were not consistently reported in the reviewed studies. Furthermore,
the use of only two or three performance metrics in many studies limits the depth of the evaluation,
potentially overlooking important aspects of model performance like model robustness, generalization, and
sensitivity to different data types.

7-Data Availability and Quality: Many of the studies reviewed depend on publicly available or open-
access datasets for training and evaluating HANN models. However, the quality and availability of these
datasets are often inconsistent. Data gaps, such as the lack of high-resolution or long-term data, could impact
the generalizability of the findings and the performance of the hybrid models. In regions with limited data,
models might be trained on smaller or less representative datasets, which may lead to overfitting or inaccurate
predictions when applied to other regions or contexts.
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8-Lack of Focus on Interpretability: A significant limitation of many studies in this field is the
insufficient focus on the interpretability of hybrid ANN models. Although hybrid models often provide
superior performance, their black-box nature presents challenges for understanding how the models make
predictions, particularly in complex domains like ET estimation. This lack of interpretability hinders the
practical application of these models, especially in fields like water resource management, where model
transparency and explainability are crucial for decision-making.

9-Temporal and Spatial Limitations: The reviewed studies were primarily focused on ET estimation
in specific geographic regions, such as Asia and the Middle East, limiting the scope of the findings to these
areas. The diversity of climatic conditions, data sources, and agricultural practices across regions is critical
for the broader applicability of hybrid ANN models in ET prediction. Moreover, the temporal resolution of
the data used in the studies might not always be aligned with real-time decision-making needs, especially in
water management practices that require timely and accurate ET estimates.

10-Technological and Computational Constraints: Many of the hybrid ANN models reviewed
require significant computational resources for model training and optimization, especially when using
deep learning techniques. The need for extensive computational infrastructure can limit the scalability of
these models in resource-limited settings, where access to high-performance computing (HPC) systems
is restricted. Additionally, model optimization, which often involves tuning multiple hyperparameters,
can be time-consuming and computationally expensive, further limiting the practical implementation of
these models.

6 Conclusion
This comprehensive review outlines the growing use of HANN models in ET estimation, driven by

increasing concerns over water scarcity and climate change. An extensive analysis of research from prominent
databases such as WoS and Scopus reveals a significant rise in scholarly output over the past two decades,
with China emerging as a major contributor. Influential researchers have played a key role in advancing
this field, as evidenced by their high citation rates. HANN models stand out for their superior predictive
accuracy, improved generalization capabilities, and ability to model the complex nonlinear relationships
inherent in hydrological data. The expanding body of literature highlights the versatility of these models
in addressing a wide range of hydrological challenges, from real-time ET estimation to assessing the
impacts of climate change. The review underscores the growing use of various HANN architectures—such
as MLPs, RNNs, and CNNs—often combined with optimization algorithms and fuzzy logic frameworks.
These hybrid models excel in capturing intricate nonlinear patterns and temporal dependencies within
ET data. Moreover, 352 articles were initially selected from the prominent databases WoS and Scopus for
bibliometric analysis, and after applying rigorous eligibility criteria, 35 articles were included for systematic
review. Our analysis indicates a significant shift toward the adoption of advanced evaluation metrics, such
as KGE and Taylor Diagrams, which provide a more comprehensive framework for assessing predictive
accuracy and observational fit. These advanced metrics support the increasing demand for transparency
and accountability in performance evaluations, which are especially critical in hydrological applications.
Metrics like Ag, Ae, AARE, and TS offer deeper insights into model reliability and efficacy, reflecting
the field’s commitment to rigorous performance evaluation and continuous improvement. Our keyword
analysis reveals a strong focus on water resource management, climate resilience, and drought mitigation,
highlighting urgent global challenges. The growing prominence of topics such as ANNs, machine learning
methods, and CNNs underscores their vital role in future ET estimation. However, despite the promising
potential of HANN models, several challenges remain that require further research. These include com-
putational complexity, model interpretability, and stringent data requirements. Addressing hyperparameter
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optimization is crucial to enhancing model performance. Further exploration of advanced deep learning
architectures and the integration of uncertainty quantification methodologies will provide valuable insights.
Notably, the incorporation of CNNs offers innovative ways to enhance ET estimation accuracy by enabling
automatic feature extraction from complex spatiotemporal data, aligning well with the dynamic nature
of hydrological processes. In conclusion, hybrid HANN models, particularly those incorporating CNNs,
demonstrate considerable potential for precise ET estimation in the context of climate change and water
scarcity. Their ability to model complex interdependencies and nonlinear dynamics significantly outperforms
traditional approaches. The ability of HANN models, especially in predicting reference evapotranspiration
(ETo), has direct implications for water resource allocation, particularly in agriculture-driven regions,
especially arid and semi-arid zones. ETo data is vital for optimizing irrigation schedules and ensuring
sustainable water use—an urgent priority in areas facing severe water shortages. This research provides
valuable insights for formulating evidence-based water management policies that align water distribution
with crop water needs and seasonal variations. By improving the accuracy and temporal resolution of
ETo predictions, these models can support policymakers in resource planning, particularly in scenarios of
water scarcity and climate-related stresses. It is crucial to assess the resilience and adaptability of HANN
models under different climate conditions. Testing these models under variable climatic scenarios—such as
temperature changes and altered precipitation patterns—ensures that they not only maintain high accuracy
in ET estimations but also remain reliable under climatic variability. Integrating interpretability techniques
such as attention mechanisms, feature importance analysis, and Local LIME can enhance stakeholder
confidence in model outputs and foster transparency in decision-making processes related to ET estimation.
Overcoming these challenges, while leveraging the strengths of HANN models, will enable meaningful
progress in the development of efficient and sustainable water resource management strategies. Ultimately,
incorporating accurate and timely ETo predictions into water management frameworks will promote a
proactive approach to resource allocation, ensuring the viability and sustainability of agricultural practices
even as climate conditions evolve.

Acknowledgement: None.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: Study conception and design: Moein Tosan, Mohammad Reza Gharib, Nasrin Fathollahzadeh
Attar, Ali Maroosi; Data collection: Moein Tosan, Mohammad Reza Gharib; Bibliometric and systematic analysis:
Moein Tosan, Mohammad Reza Gharib; Development of hybrid neural network models: Nasrin Fathollahzadeh Attar,
Ali Maroosi; Analysis and interpretation of results: Moein Tosan, Mohammad Reza Gharib, Nasrin Fathollahzadeh
Attar; Methodology development for evapotranspiration estimation: Nasrin Fathollahzadeh Attar, Ali Maroosi; Draft
manuscript preparation: Moein Tosan, Mohammad Reza Gharib. All authors reviewed the results and approved the
final version of the manuscript.

Availability of Data and Materials: The datasets generated and analyzed during the current study are available from
the corresponding author upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Nomenclature
ET Evapotranspiration
ETo Reference Evapotranspiration
ETc Crop Evapotranspiration
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MLP Multilayer Perceptron
ANN Artificial neural networks
RBF Radial Basis Function
GRNN Generalized Regression Neural Network
GMDH Group Method of Data Handling
HANN Hybrid Artificial Neural Network
JCR Journal Citation Reports
SJR Scientific Journal Rankings
WoS Web of Science
MCP Multiple-Country Publication
SCP Single-Country Publication
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory Network
FFNN Feedforward Neural Network
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analysis
ACF Autocorrelation Function
PACF Partial Autocorrelation Function
PCA Principal Component Analysis
RMSE Root Mean Square Error
FFA Firefly Algorithm
ELM Extreme Learning Machine
Bi-LSTM Bi-directional Long Short-Term Memory
MFO Moth-Flame Optimization
LSSVM Least square support vector machine
Ag Average Goodness
AARE Average Absolute Relative Error
LIME Local Interpretable Model-Agnostic Explanations
MAE Mean Absolute Error
R2 Coefficient of Determination
NSE Nash-Sutcliffe Efficiency
GEI Global Evaluation Index
MAPE Mean Absolute Percentage Error
WI Willmott Index
EVS Error variance score
MBE Mean Bias Error
SI Scatter Index
RE Relative Error
L-BFGS Limited-memory-Broyden–Fletcher–Goldfarb–Shanno
BP Backpropagation
BPNN BP Neural Networks
ANFIS Adaptive Neuro-Fuzzy Inference System
PSO Particle Swarm Optimization
WOA Whale Optimization Algorithm
GA Genetic Algorithm
ACO Ant Colony Optimization
FA Firefly Algorithm
GRU Gated Recurrent Units
DWT Discrete Wavelet Transform
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FNN Fuzzy-neural network
SPEI Standardized Precipitation and Evapotranspiration Index
CHS Calibrated Hargreaves–Samani
GEP Gene Expression Programming
ReLU Rectified Linear Unit
WCA Water Cycle Algorithm
KGE Kling-Gupta Efficiency
Ae Average Error
TS Threshold Statistics
CV Coefficient of Variation
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79. Gocić M, Motamedi S, Shamshirband S, Petković D, Ch S, Hashim R, et al. Soft computing approaches
for forecasting reference evapotranspiration. Comput Electron Agric. 2015;113:164–73. doi:10.1016/j.compag.2015.
02.010.
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