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ABSTRACT: The rapid growth of machine learning (ML) across fields has intensified the challenge of selecting the right
algorithm for specific tasks, known as the Algorithm Selection Problem (ASP). Traditional trial-and-error methods
have become impractical due to their resource demands. Automated Machine Learning (AutoML) systems automate
this process, but often neglect the group structures and sparsity in meta-features, leading to inefficiencies in algorithm
recommendations for classification tasks. This paper proposes a meta-learning approach using Multivariate Sparse
Group Lasso (MSGL) to address these limitations. Our method models both within-group and across-group sparsity
among meta-features to manage high-dimensional data and reduce multicollinearity across eight meta-feature groups.
The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) with adaptive restart efficiently solves the non-smooth
optimization problem. Empirical validation on 145 classification datasets with 17 classification algorithms shows that our
meta-learning method outperforms four state-of-the-art approaches, achieving 77.18% classification accuracy, 86.07%
recommendation accuracy and 88.83% normalized discounted cumulative gain.
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1 Introduction

The increasing implementation of machine learning (ML) in diverse fields has greatly transformed data-
driven decision-making. However, the growing number of available algorithms makes selecting the most
suitable one for a particular task challenging. This challenge, known as the Algorithm Selection Problem
(ASP), is becoming more complex and computationally demanding [1]. Conventional approaches, which rely
on comprehensive trial-and-error techniques are not only time-consuming and resource-intensive but also
require a high level of expertise, specifically when dealing with large datasets and multiple algorithms [2].

In response to these challenges, Automated Machine Learning (AutoML) is a rapidly expanding field
within machine learning that attempts to overcome these challenges and automates the entire process of
applying machine learning to real world problems [3]. AutoML systems are designed to recommend not
just the most suitable machine learning algorithms but also optimal hyperparameters and preprocessing

methods for a specific dataset. By intelligently narrowing down the search space and offering customized
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recommendations, AutoML greatly decreases the manual effort and expertise needed, hence enhancing the
accessibility of advanced machine learning techniques for both novice and experienced practitioners.

Recently, meta-learning has been receiving huge attention as one of the most promising ways to advance
algorithm selection within the AutoML pipeline [4]. Generally described as learning to learn [5,6], meta-
learning learns from past experiences derived from a wide range of machine learning tasks to recommend
the most appropriate algorithm or set of algorithms to use on a given task. For algorithm recommendation
systems, meta-learning is the process of building a knowledge base by systematically analyzing a wide variety
of datasets, their descriptive meta-features, and the performance of different algorithms on the datasets.
The acquired knowledge is then used to train a meta-model that learns the complex associations between
meta-features and algorithm performance. To recommend an appropriate algorithm for a particular dataset,
the first step is to extract and analyze its meta-features. Based on this extracted information, a trained
meta-model can then predict which algorithms are likely to perform best on the given dataset. In essence,
meta-learning operates as an “algorithm selection expert,” providing tailored recommendations by analyzing
the data. This approach streamlines the machine learning process by helping users identify the most suitable
algorithms without requiring extensive trial and error or specialized domain knowledge [7,8].

Meta-learning has demonstrated its effectiveness in recommending algorithms across a variety of fields.
In time series forecasting, for instance, it assists in identifying the most appropriate algorithms for accurate
predictions [9]. Similarly, in clustering tasks, meta-learning aids in selecting methods that best suit specific
datasets [10]. In the domain of classification, notably the most studied domain in meta-learning for algorithm
recommendation, has seen numerous studies demonstrating its success for example in these studies [11-14].
Furthermore, meta-learning has also been vital in identifying optimal pre-processing techniques, improving
the overall performance of machine learning workflows [15-18]. Additionally, it has significantly contributed
to automating hyper-parameter tuning, allowing for the selection of optimal configurations that enhance
algorithm performance [5,19,20].

Although considerable advances have been made in the area of AutoML for algorithm recommendation,
especially in classification, many current methods often overlook the group structures that exist within
meta-features. These meta-features are typically organized based on their origins or the relationships they
represent [1]. In the literature, meta-features are grouped according to their relationships with various dataset
attributes, such as statistical properties, information-theoretic characteristics, or model-based attributes.
However, current methods frequently treat these meta-features in isolation [21]. This neglect of group
structures introduces challenges, most notably high dimensionality. When meta-features from the same
group are treated independently, it complicates the feature space and leads to redundancy, thereby increasing
computational costs and reducing the efficiency of feature selection. The overlap of information within
these groups can degrade the performance of meta-models by incorporating an excess of irrelevant or
redundant features.

In addition to high dimensionality, sparsity within meta-feature spaces adds another layer of complexity.
Meta-features are often sparse, with only a few features or groups proving truly informative [3]. This aspect
of sparsity is currently not yet properly exploited. Current methods do not handle both intra-group and
inter-group sparsity. Ignoring this dual-level sparsity may lead to risks of overfitting models by selecting
too many features or underfitting, where the most relevant groups are not being captured. Furthermore,
the failure to address sparsity across groups diminishes the interpretability and effectiveness of algorithm
recommendations. It becomes difficult to identify which specific groups of meta-features are most influential,
obscuring the decision-making process of the model and making it challenging to determine which meta-
features contribute most to predictive performance.
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To overcome these limitations, this paper proposes a novel approach to algorithm recommendation
within the context of meta-learning by framing it as a multivariate sparse group lasso regression task
(Meta-MSGL). This approach directly addresses the challenges of managing high-dimensional, sparse, and
structured meta-feature spaces, improving both the efficiency of feature selection and the accuracy of
algorithm recommendations. The key contributions of this paper are as follows:

1. Multivariate Sparse Group Lasso (MSGL) for Meta-Learning: We propose the Meta-MSGL framework,
which extends traditional Lasso and Group Lasso methods by introducing multivariate sparse group
regularization. This allows the model to handle both individual and group-level sparsity, which is
particularly important for addressing high-dimensional meta-features and mitigating multicollinearity,
a challenge not fully addressed in previous algorithm recommendation methods.

2. Effective Meta-Feature Selection: Unlike prior works that either treat meta-features independently or
lack structured regularization, our method simultaneously considers meta-feature groups, leading to
improved accuracy in classifier selection by reducing redundancy and selecting only the most relevant
groups of meta-features.

3. Robust Performance Across Diverse Datasets: Through extensive empirical evaluation on 145 datasets,
we demonstrate that Meta-MSGL outperforms established baseline methods across key metrics, includ-
ing average classification accuracy (ACA), average recommendations accuracy (ARA), and normalized
discounted cumulative gain (NDCG). The structured feature selection and regularization lead to more
reliable algorithm recommendations, particularly in high-dimensional spaces.

The remainder of this paper is organized as follows: Section 2 provides an overview of existing
meta-learning methods for algorithm recommendation. In Section 3, we provide details of the proposed
meta-learning framework. Section 4 outlines our experimental design and results. Finally, in Section 5, we
conclude the paper.

2 Background and Related Works

In AutoML, various methodologies regarding meta-learning for algorithm recommendation have been
explored. This section reviews main approaches, including multi-label methods, instance-based methods,
and regression-based methods.

2.1 Multi-Label Methods

Wang et al. [22] introduces a multilabel learning-based approach for recommending classification
algorithms, treating the task as a multilabel problem. Meta-data is generated by evaluating 13 classification
algorithms across 84 UCI datasets, with five groups of meta-features characterizing the datasets. A multiple
comparison procedure, specifically the Friedman test followed by Holm’s procedure, is used to label algo-
rithms (meta-labels) for each dataset. The recommendation model is then constructed using the multilabel
k-nearest neighbors (ML-kNN) algorithm [23], with k set to 1%, 5%, 10%, and 10% of the training dataset
size to determine the best configuration. For a new dataset, extracted meta-features are input into the trained
ML-kNN model, which predicts suitable algorithms by identifying the k-nearest neighbors and aggregating
their labels. While the method exhibited enhanced accuracy in recommendations compared to single-label
approaches, it has several limitations. These include the requirement to train the meta-learner on each
group of meta-features separately, as well as the increased computational complexity associated with the
meta-labeling process.

Zhu et al. [11] proposed the EML (Ensemble of ML-KNN) method for classification algorithm rec-
ommendation, addressing key limitations in existing methods that often rely on single learners or simple
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combinations of meta-features. The EML method is structured as a two-layer learning framework where the
first layer (Tier-1) constructs 31 different meta-datasets by combining five types of meta-features, each used
to train an ML-KNN model. The outputs from these models serve as features for the second layer (Tier-2),
where binary classifiers are trained using AdaBoost with C4.5 as the base classifier. This ensemble approach
improves recommendation accuracy by leveraging the diversity and accuracy of multiple ML-KNN models.
Empirical validation on 183 datasets using 20 classification algorithms demonstrated that EML outperforms
existing methods (ML-KNN, random walk with restart (RWR), and OBOE (Collaborative Filtering for
AutoML Model Selection) across several metrics, including Hamming Loss, F-measure, Accuracy, and
Hit Ratio.

Zhu et al. [24] propose a classification algorithm recommendation method based on link prediction
within a heterogeneous network called the Data and Algorithm Relationship (DAR) Network, utilizing 131
datasets, five groups of meta-features, and 21 classification algorithms. The method involves three steps:
meta-data collection, DAR network construction, and algorithm recommendation via link prediction.
The DAR Network consists of two node types (datasets and algorithms) and two edge types (dataset-
algorithm and dataset-dataset). Dataset nodes are connected to their k-nearest neighbors (with k = 5) based
on Euclidean distance, forming dataset-dataset edges, while dataset-algorithm edges connect datasets to
suitable algorithms identified through statistical tests. Link prediction techniques (Katz, Local Random
Walk, and Superposed Random Walk) estimate the likelihood of links between new datasets and algorithms,
recommending the most suitable classifiers, and improving recommendation accuracy.

Yang et al. [25] developed OBOE, a collaborative filtering method for time-constrained model selection
and hyperparameter tuning. OBOE constructs a low-rank approximation of an error matrix, predicting
model performance based on latent meta-features inferred from cross-validated errors. This method offers
quick, accurate recommendations under time constraints, but its effectiveness may be limited if the error
matrix does not exhibit low-rank properties.

Although the multi-label approaches have shown success, they have several limitations such as training
meta-models separately on each group of meta-features, which restricts the full utilization of feature diversity.
Moreover, depending on statistical tests such as the Friedman test for meta-label estimation may fail to con-
sider potentially significant algorithms, therefore restricting the recommendations. The method that takes
into account all meta-features at the same time could improve the accuracy and adaptability of meta-models
and provide more extensive recommendations for algorithms and comprehensive algorithm suggestions.

2.2 Instance-Based Methods

Instance-based approaches utilize the notion of similarity, through the analysis of dataset meta-features,
to suggest appropriate algorithms. These methods are adaptable and scalable, as demonstrated by the
European METAL project, which led to the development of the Data Mining Advisor (DMA). DMA uses the
K-Nearest Neighbors (KNN) algorithm as a meta-learner, extracting meta-knowledge from 67 datasets and
10 algorithms. It recommends algorithms by identifying the K most similar datasets in the meta-knowledge
database and aggregating performance data from these datasets. A key advantage of this approach is its
ability to manage small training sets and incorporate new meta-examples without retraining the meta-model,
making it effective in expanding meta-knowledge bases [26].

Wang et al. [2] proposed a clustering-based approach where datasets are grouped based on feature
vectors using the EM algorithm. This method evaluates the performance of 17 classification algorithms on
84 UCI datasets, grouping similar datasets in the meta-knowledge database via clustering. To recommend
an algorithm for a new dataset, the system identifies the closest cluster and suggests algorithms that perform
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well in that cluster. However, the complexity of feature extraction, clustering, and the reliance on training
data quality poses challenges, especially when new datasets or algorithms are introduced.

Although instance-based methods offer advantages, they encounter challenges. Determining the opti-
mal value for the parameter k is sometimes challenging, as it directly influences recommendation accuracy
and computational efficiency. Moreover, these methods might exhibit limitations in terms of scalability when
dealing with large meta-knowledge bases and high-dimensional meta-features. To address these difficulties,
several authors, such as Lee et al. [27] and Wang et al. [2], have investigated the incorporation of unsupervised
learning approaches with instance-based methods. Their objective is to enhance the adaptability and
generalizability of these methods.

2.3 Regression-Based Methods

In the context of meta-learning for algorithm recommendation, regression methods have been found
beneficial in modeling the association between meta-features and algorithm performance. Such models are
very flexible, handle continuous target variables well, and suit a wide variety of algorithm recommendation
tasks, making them very popular for performance prediction and algorithm selection. For instance, using
ridge regression, Leyva et al. [28] found it is possible to predict classifier performance more accurately than
with simpler models. In another work, Garcia et al. [29] conducted work involving random forest regression,
which shows how flexible different regression methods are in this context.

Reif et al. [30] conducted a comprehensive assessment of the predictive capability of regression models
among five separate groups of meta-features: simple, statistical, information-theoretic, model-based, and
landmarking. This evaluation was conducted utilizing data from 54 UCI datasets. The work integrated an
automated feature selection technique that improved the regression models, thereby increasing prediction
accuracy and decreasing computational expenses.

Lai et al. [31] introduced a scalable digital twin framework that utilizes an adaptive ensemble surrogate
model to predict performance across varying conditions. While their method focuses on real-time system
optimization, our approach specifically targets algorithm recommendation in AutoML pipelines, leveraging
multivariate sparse group Lasso to handle high-dimensional meta-features.

Furthermore, Bensusan et al. [32] examined linear regression models to determine the association
between meta-features and the performance of algorithms. Although simple regression methods offered
meaningful insights, their research emphasized the need to develop more advanced models to tackle non-
linear connections. The primary advantage of regression-based methods in the field of AutoML is to offer
readily available and easily understandable performance estimates. In addition to providing dependable
predictions across diverse datasets, they also aid in the identification of the most influential meta-features,
therefore contributing to the development of more precise and efficient models and facilitating informed
decision-making in algorithm selection.

AutoML systems, such as Auto-sklearn [33] and A Tree-based Pipeline Optimization Tool for Automat-
ing Machine Learning (TPOT) [34], have introduced more advanced techniques for model selection and
hyperparameter optimization. These frameworks automate the machine learning pipeline by integrating
diverse classifiers and search strategies to identify optimal configurations for different tasks. However, these
systems primarily focus on general model selection and hyperparameter tuning and do not specifically
target the problem of meta-feature selection in the context of algorithm recommendation. In contrast, our
approach, Meta-MSGL, leverages multivariate sparse group Lasso to handle high-dimensional meta-features
while addressing the challenges of multicollinearity and redundant meta-features, leading to more precise
algorithm recommendations.
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3 Methodological Framework (Meta-MSGL): Multivariate Sparse Grouped Lasso Regression

In this study, we propose a novel framework for classification algorithm recommendation, leveraging
the Multivariate Sparse Group Lasso (MSGL) regression. This approach is designed to handle the high
dimensionality and multicollinearity that often arise in meta-feature-based algorithm recommendations.
Our key contribution lies in modeling both intra-group and inter-group sparsity within meta-features,
allowing for more efficient and accurate classification algorithm recommendations across diverse datasets.
Unlike existing methods that treat meta-features independently or fail to fully exploit group structures,
MSGL enables the simultaneous selection of relevant features both within and across predefined meta-feature
groups. By imposing structured sparsity, our method improves performance and computational efficiency.

To solve this challenging optimization problem, we employ the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) with adaptive restart, which efficiently handles the non-smooth regularization terms
involved in MSGL. This innovation ensures that the model is not only accurate but also interpretable, as it
allows us to identify the most critical meta-features for algorithm recommendation.

In this section, we describe the methodology used in this study. We first introduce the necessary
notations and present the basic formal definition of algorithm selection. We then frame this problem as a
multi-objective, multivariate sparse group lasso regression task and explain our approach to solving it. To
present our approach, we first define the following notations:

e D={Dy,D,,...,Dy} represents a set of N classification problems;

o A={A,A,,..., Ay} represents a set of k potential candidate classification algorithms;

o« F:Dw~ R™is a function that extracts m features from each classification problem D; € D, known as
meta-features, which are represented in the space R™;

o X={X,X,,..., XN} S R" corresponds to the meta-features of the N classification problems in I, as
extracted by the function F. For each i where 1 < i < N, X; represents the meta-features of problem D,
specifically X; = F(D;);

e Y={Y,Y,,..., Yy} represents the meta-labels for the N classification problems in ID. Here, Y; denotes
the performance scores of the candidate algorithms in A for dataset D;.

Given these notations, and following the framework proposed by Smith [35], the algorithm recommen-
dation process can be formally defined as follows:

1. Construct a mapping function ¢:X+— Y that models the intricate associations between the
meta-features X of classification tasks and the corresponding performance scores Y of the candi-
date algorithms.

2. For a new dataset dyey, apply the function ¢(F(dyew)) to recommend the algorithms most likely to
achieve optimal performance on the given task.

In the field of algorithm selection through meta-learning, the construction of the mapping function
is a process that seeks to align the inherent biases and capabilities of candidate algorithms with the meta-
features characterizing classification tasks. Each algorithm operates under specific data assumptions, such
as linearity, smoothness, or feature independence, influencing its performance across diverse scenarios. As
elaborated in Section 2, various methodologies have been employed to construct such a mapping function,
each leveraging distinct underlying assumptions and computational paradigms, including instance-based
approaches, multi-label learning techniques, and ranking-based approaches. In this paper, we formulate the
meta-learning task of classifier recommendation as an optimization problem, specifically a multi-objective
multivariate sparse group lasso regression task.
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3.1 MSGL Optimization Problem: A Detailed Derivation

To establish a formal definition of our problem, we introduce two fundamental matrices that represent
the data utilized for our meta-learning process: the Meta-Feature matrix (X) and the Meta-Label matrix
(Y). The meta-feature Matrix, denoted by X € R"*?, stores the meta-features of datasets. Each row x; of X
represents a single dataset, and each column corresponds to a specific meta-feature. Mathematically, this can
be expressed as:

Xu X2 o Xip
X21 X2 X2

x=| ot (1)
Xnl  Xn2 o Xnp

Here n is the number of datasets, p is the number of meta-features, and x;; represents the value of the
j-th meta-feature for the i-th dataset.

The Meta-Label matrix, denoted by Y € R"*9, contains the performance scores of the candidate
algorithms on the datasets. Each row y, corresponds to a dataset at the meta-level, and each column
represents a specific candidate algorithm. Mathematically, this can be expressed as:

yn Yz o Vi
y=| S e @
ynl ynZ }/nq

Here q is the number of algorithms, and y;; represents the performance (classification accuracy) of the
j-th algorithm on the i-th dataset.

For the accurate construction of the mapping function ¢ : X Y, the central task involves learning
a coefficient matrix B € RP*9. Each element b of this matrix quantifies the association between the j-th
meta-feature and the performance of the k-th algorithm. If b j; is positive and large, it indicates that the meta-
feature strongly and positively influences the algorithm’s performance. Conversely, a negative b suggests a
negative influence. A value close to zero implies that the meta-feature has little or no impact on the algorithm’s
performance. By learning the values in B, we create a model that can predict the performance matrix Y given
the meta-feature matrix X. The foundation of our approach lies in the standard linear regression model,
where we aim to predict a response variable (algorithm performance) based on a set of predictor variables
(meta-features). In matrix form, this model is expressed as:

Y-XB+E 3)

where Y is the meta-label matrix (actual performance), X is the meta-feature matrix, B is the coeflicient
matrix we want to learn, and E is the error matrix, representing the difference between the actual and
predicted performance. To find the optimal coefficient matrix B, we minimize the sum of squared errors,
known as the ordinary least squares (OLS) objective:

1
Lois(B) = | Y - XB[} @

While OLS regression is a powerful tool, it can lead to overfitting when the number of features is large
relative to the number of observations. To overcome this issue, we introduce regularization techniques. In
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particular, we employ the Lasso (Least Absolute Shrinkage and Selection Operator) regularization, which
adds an L1 penalty on the coefficients:

p
LLasso(B) = LOLS(B) + Al Z HB]"HZ (5)
j=1

where 1, is a hyperparameter that controls the strength of the regularization. The L1 penalty encourages
sparsity by driving some coefficients to exactly zero, effectively performing feature selection.

In many real-world scenarios, features naturally exhibit inherent grouping structures. This is especially
relevant in our meta-learning problem, where meta-features are categorized into eight predefined groups
based on established literature, which have been consistently validated across various studies [19]. Conven-
tional Lasso regularization does not explicitly consider this group structure, which can lead to sub-optimal
feature selection [36]. To address this, we introduce the group Lasso regularization, which adds L2 penalty
on groups of coeflicients. This approach leverages domain-specific groupings to enforce sparsity at both the
individual feature and group levels.

LGraupLasso(B) = LLassa(B) + AZ Z HBg”F (6)
g€

where A, is a hyperparameter controlling the strength of the group-level regularization, ¢ is a set of groups of
meta-features, and By is the submatrix of B containing the coefficients for the meta-features in group g. This
penalty encourages sparsity at the group level, meaning that either all features within a group are selected or
the entire group is discarded.

By integrating the OLS loss with both Lasso and group Lasso regularization, we formulate our final
optimization problem, thus defining the grouped multivariate sparse Lasso:

. (1 P
rrgnLG,oume(B) = min {EHY -XB|; + A Y IBilz+ A Y ||Bg||F} (7)

j=1 gev

The above general optimization problem we aim to solve is derived from the principles of penalized
regression, specifically the multivariate sparse grouped Lasso [37].

The first term in the equation, 5-|Y — XB| }, quantifies the difference between the actual performance
matrix Y and the predicted performance matrix XB. This is measured using the Frobenius norm which is
defined as the square root of the sum of the squares of all elements in a matrix.

2
n 9 P

||Y_XB||12U:Z;(yik_zxijbjk) (8)
i=1 k=1

j=1

Each term in the summation quantifies the squared difference between the observed performance of
the k-th algorithm on the i-th dataset y;; and its predicted performance based on the meta-features and
coefficients )’ ; x;;b jx. Minimizing this term encourages the model to learn coefficients that result in precise
predictions of algorithm performance across the datasets.



Comput Model Eng Sci. 2025;142(2) 1619

The second term, A, Zle |IB;.|2, promotes sparsity at the individual feature level. The £, norm (| - |2)
of each row B;. (representing the coefficients for a single meta-feature across all algorithms) is calculated as
follows:

‘ q
IBilla=~| D b% )
k=1

This factor quantifies the extent of coeflicients associated with a particular meta-feature. Incorporating
this term into the objective function, weighted by 1, encourages the model to assign zero or near-zero
coeflicients to irrelevant or redundant meta-features, thereby effectively implementing feature selection and
prioritizing the most impactful meta-features for predicting algorithm performance.

The third term, 1, ¥ || By |, promotes structured group-level sparsity, a critical component of our
feature selection strategy. Meta-features naturally cluster into distinct groups ¢, where features within each
group collectively contribute to modeling the mapping function ¢ : X — Y. By penalizing the Frobenius
norm of the submatrix B, corresponding to each group, our method induces sparsity across entire groups.
This approach effectively reduces the coefficients of less relevant groups to zero, improving recommendation
accuracy and reducing the computational cost of meta-feature extraction.

The balance between prediction accuracy and model complexity is determined by the hyper-parameters
Ay and A,. These parameters are optimized through cross-validation, a systematic procedure that evaluates
the model’s performance across various data subsets, ensuring an optimal trade-off between model complex-
ity and accuracy. To further ensure the robustness of our model and mitigate overfitting, we employed nested
cross-validation throughout the training process. Nested cross-validation is a more stringent validation
method compared to traditional k-fold cross-validation, as it optimizes hyperparameters in an inner loop
while evaluating model performance in an outer loop. This approach ensures that the model’s hyperparame-
ters do not overfit to any particular training set, and it provides a more reliable estimate of the model’s ability
to generalize to unseen data. Moreover, the regularization inherent in the multivariate sparse group Lasso
model plays a critical role in controlling overfitting. The inclusion of both ¢; (Lasso) and ¢, (group Lasso)
penalties reduces the risk of overfitting by driving irrelevant or redundant meta-features and meta-feature
groups to zero, thus maintaining model simplicity while preserving predictive accuracy.

The overall loss function, combining both the data-fitting term and regularization terms, plays a key
role in controlling model complexity and ensuring the selection of relevant meta-features. By minimizing
the squared error between the predicted and actual performance values, the model achieves high predictive
accuracy. Simultaneously, the L1 and group regularization terms work together to prevent overfitting by
enforcing sparsity, both at the feature and group levels. This structured approach to regularization helps the
model generalize well to unseen datasets by selecting only the most important meta-features.

By minimizing the combined objective function, the resulting coefficient matrix B not only predicts
algorithm performance with high accuracy but also enhances the ranking and recommendation process. Our
approach identifies key meta-features at both individual and group levels, leading to a model that is both
precise and computationally efficient. The integration of Lasso regularization controls sparsity, utilizing the
relationships between meta-features to enhance recommendation accuracy and minimize redundancy.

3.2 Fast Iterative Shrinkage-Thresholding Algorithm for MSGL (FISTA)

The multivariate sparse group Lasso regression problem we have formulated is the main component of
our meta-learning framework. However, appropriately solving this problem requires an adequate optimiza-
tion approach due to its inherent complexity, which involves both individual and group-level sparsity. To
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manage this complexity, it is important to employ an algorithm capable of efficiently handling the smooth
and non-differentiable components of the objective function. In this part, we present the mathematical
formulation of the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) with adaptive restart. We follow
the approach proposed by Beck et al. [38] and enhanced by the adaptive restart scheme of Donoghue
et al. [39]. This optimization algorithm is particularly well-suited to solving our MSGL problem because it
ensures accurate minimization of the objective function while maintaining both predictive accuracy and
computational efficiency. We here provide a step-by-step derivation of the algorithm and show how it
addresses our specific optimization problem.

FISTA is designed to minimize composite objective functions of the form f(B) = g(B) + h(B), where
¢(B) is a smooth and differentiable function, while #(B) is convex but non-differentiable. The algorithm
works by iteratively updating the coefficient matrix B through two main steps. First, it uses the gradient of
the smooth function g(B) to guide the update. Then it applies a proximal operator to handle the non-smooth
function h(B). This approach makes FISTA particularly effective for solving our optimization problem where
both smooth and non-smooth components are involved. In our case, in our formulated optimization problem
in Eq. (7), the smooth component g(B) represents the prediction error and is defined as:

1
B)= —|Y-XB|?
g(B) 2nll I

This term represents the squared Frobenius norm of the residuals, where Y denotes the meta-labels, X
the design matrix of meta-features, and B the coefficient matrix. Minimizing g(B) ensures accurate modeling
of the mapping function ¢. The non differentiable component /#(B) is expressed as:

P
h(B) =AY IBjl2+A2 Y [Bgle (10)

j=1 g

This term incorporates the Lasso and group Lasso regularizations, promoting sparsity in individual
meta-features and groups of meta-features. By minimizing /#(B), we achieve a more interpretable model by
selecting the most relevant meta-features.

The gradient of g(B), which guides the direction of optimization, is given by:
1
vg(B) = —X"(XB-Y) (11)
n

The gradient indicates the direction in which g(B) gets the greatest increase. Throughout each iteration
of FISTA, the gradient plays an important role in guiding the update of B, gradually bringing it closer to the
optimal solution. The update involves a shrinkage-thresholding step that enforces the sparsity constraints
determined by /(B). The proximal operator for the non-differentiable part (B) is defined as:

(1
prox, , (U) :argmBm{§||B—U§+17h(B)} (12)

The above operator works well in addressing the non-smooth component of our objective function
through the implementation of a proximal gradient step. It ensures that the updated solution maintains the
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sparsity properties induced by the regularization terms. In our case, h(B) includes both ¢, and Frobenius
norms. Here is the proximal operator for this combined norm:

Wleaitba) g, i U] > 7(h + 4s)

roX, . 1. 1.4(U) = 101 )
PTOX, (i [la+A2 IIF)( ) {0’ otherwise

To improve the performance of FISTA, we have implemented an adaptive restart strategy based on
the recommendation made by Donoghue et al. [39]. This technique can automatically restart the algorithm
when the objective function shows a specific non-monotonic behavior. This facilitates faster convergence by
ensuring that the iterations do not become stuck.

The FISTA algorithm starts by initializing the coefficient matrix B(®) and the auxiliary variable Z(*)
as zero matrices. Additionally, the momentum parameter ¢ is set to 1. This sets the starting point for the
iterative optimization process.

During each iteration k, the algorithm proceeds by first computing the gradient of the smooth part of
the objective function, given by Vg(Z*)) = 1x7’ (XZ® - Y), and updating the coefficients using B) =
prox, h(Z(k) - nvg(Z™)). Here, the proximal operator is applied to enforce sparsity according to the

grouped multivariate sparse Lasso regularization. Following this, the momentum parameter t., is updated

1+ /1+4¢£2
>—, which accelerates convergence by incorporating information
from previous iterations. The auxiliary variable is then updated using Z(¥*9 = B%) 4 (t"—_l) (B(k) — B(k-1)),

78]

according to the formula #,; =

which combines current and previous estimates to further speed up convergence.

To avoid potential stalling, the algorithm includes an adaptive restart mechanism. If the condition
(B(k) - Bk, z(*) —B(k)) >0 is met, indicating that the momentum is not aiding convergence, the
momentum term is reset to f; = 1. This periodic resetting ensures that the optimization process remains
efficient by mitigating the negative effects of potential stalling phases. A common convergence criterion is to
check if the relative change in the objective function value falls below a predefined tolerance. The algorithm
stops iterating when:

F(BED) - F(BW)|
£(B®)

In summary, the combination of FISTA with adaptive restart offers an efficient solution to our MSGL
optimization problem. By effectively minimizing the composite objective function, this approach balances
the trade-offs between prediction accuracy, sparsity, and computational efficiency, resulting in a robust and
interpretable model (Algorithm 1).

tol (14)

Algorithm 1: FISTA with Adaptive Restart for GMSL

Require: X, Y, A, A,, max_iter, tol
Ensure: B
1: /* Step 1: Initialization */
2: Initialize B = Z(® = 0,1, =1,k = 0
3: while not converged and k < max_iter do
4. /* Step 2: Gradient Calculation */
5: vg(z™®) = %XT(XZ(") -Y)// Gradient of the smooth part

(Continued)
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Algorithm 1 (continued)

6: /* Step 3: Proximal Step */

7: B(k):proxﬂh (Z(k)—an(Z(k))) // Proximal operator for the
non-differentiable part

8: /* Step 4: Update Momentum Parameter */

2
9: trs1 = ﬂ // Update momentum parameter
10: /* Step 5: Update Auxiliary Variable */
11:  z*D =) 4 (%) (B —B(k-DY) // Update auxiliary variable
12:. /* Step 6: Aélaptive Restart Condition */
13 if (B —B*D,z() _ B} 5 0 then
14: tr =1// Reset momentum parameter if the condition is met
15:  endif
16: k=k+1// Increment iteration counter
17: end while
18: /* Step 7: Convergence Check */

(k+D)y_ gk
19: if W < tol then

20: Convergence achieved
21: end if

3.3 Meta-Learning Via MSGL

Within this subsection, we show how Meta-MSGL is used for the recommending classifiers. To
illustrate, we consider g candidate algorithms within the algorithm search space .7, defined as &/ =
{ay,a,,..., aq}, and n datasets, denoted as %, %,, ..., Z,. For each dataset, the classification performance
of these algorithms is evaluated using balanced classification accuracy, and the results are compiled into
the Meta-Label Matrix Y. The performance matrix Y is constructed as Y = [y,,y,,...,Yy,] € R"4, where
each row vector y, = [yi1, yi2> ..., Yiq] represents the performance of the g algorithms on dataset ;.
The performance matrix Y is obtained through tenfold cross-validation, using stratified dataset splitting to
address class imbalance typically found in real-world datasets. Alongside, for each dataset, a set of meta-
features is computed to characterize its properties, compiled into the Meta-Feature Matrix X. This matrix is
defined as X = [x1,X;,...,X,]" € R™, where each row vector x; = [xi1, Xi2,..., X, ] represents the values
of p meta-features for dataset Z;.

The training of the GMSL model begins with the initialization of the matrix B to zero, and the setting
of hyperparameters A; and A,. The optimization is performed using FISTA with adaptive restart, iteratively
updating B by considering the gradient of the smooth part and applying the proximal operator to manage
the non-smooth part. As the iterations proceed, the Lasso and group Lasso penalties progressively drive
certain coeflicients in B towards zero. Upon completion of the optimization, we obtain the coefficient matrix
B= [B(l), B®,. . . B )], which includes zero columns as anticipated.

The vector v € ]Rr,, where 1’ < p, contains the indices of the non-zero columns of B, which are used to
identify the chosen meta-features. The association between the chosen meta-features and the performance
of candidate algorithms over the n datasets is shown below:

Y= B[:,V]X[v,:] (15)

Here X[.,) and B[, .} denote the submatrices formed by selecting the columns of X and the corre-
sponding rows of B indexed by v. This meta-feature selection offers multiple benefits: it decreases the total
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number of predictors thereby lowering the model complexity, it improves accuracy by eliminating irrelevant
or redundant meta-features and it enhances efficiency in the algorithm recommendation phase by requiring
only the chosen meta-features to be extracted for a dataset.

3.4 Algorithm Recommendation Using Meta-MSGL

For a new dataset D, the performance of each candidate algorithm A; from the available pool of
algorithms A is estimated using the trained GMSL (Grouped Multivariate Sparse Lasso) model. The process
is as follows:

1. Meta-feature Extraction: Extract relevant meta-features of Dy, represented as xy = Fy(Dyew ), here
Xy € R” and F, refers to the extraction of meta-features specifically indexed by v, which have been
selected during the meta-model training phase.

2. Performance Estimation: Using the selected meta-features, the trained meta-model estimates the
performance of each algorithm:

YDy, = Blav]Xv (16)

wherey,, €R7%and(y, );,j=12,...,q,represents the predicted performance of the j-th algorithm
in the search space A.

The algorithm(s) predicted to achieve the best performance on Dy, are then recommended based
on these predictions. To facilitate selection, the predicted performance values y, = [y, y2,..., Ym]" are
ranked in descending order:

[yiliyiz)'-.’yim]) Where yil 2}/12 2 e 2y1m (17)

This ranking serves as an elementary step to prioritize algorithms. The configuration with the highest
predicted value is recommended for Dy, while the ranking helps in understanding the relative performance
of the other algorithms.

3.5 Metafeature Extraction and Selection

Our methodology employs an extensive set of meta-features across eight categories: General, Statistical,
Landmarking, Information Theory, Clustering, Model-Based, Itemset, and Complexity. Unlike prior studies
with limited meta-features, our approach effectively handles the high dimensionality and multicollinearity
inherent in these diverse groups. Due to space limitations, we cannot provide detailed descriptions, mathe-
matical formulations, and extensive discussions of the eight meta-feature groups here. For a comprehensive
overview of these meta-features, including their formulations and detailed descriptions, we refer readers
to [40,41].

Inconsistencies in extraction techniques can affect reproducibility across studies [42]. To address this,
we utilize the standardized reproducible meta-feature extraction (MFE) framework [43] available in R and
Python, specifically using the Python package pymf e for meta-feature extraction. Post-extraction, we apply
preprocessing steps: (1) normalize measures to [0, 1] using min-max scaling; (2) remove constant or missing-
value-dominant measures; and (3) eliminate duplicate measures, retaining only one instance.

We have shown the multicollinearity by calculating correlation matrices and eigenvalues from meta-
features extracted from 145 UCI datasets in Fig. 1. Some eigenvalues nearing zero indicate high correlation,
potentially degrading linear regression model performance if not addressed. The Meta-MSGL method
facilitates the selection of the most informative meta-features, mitigating multicollinearity and reducing
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redundancy. By managing a broad range of meta-features, our methodology significantly enhances the
accuracy and reliability of classification algorithm selection in AutoML systems.
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Figure 1: Multicollinearity is present between the different groups (eight) of meta-features. The near-zero eigenvalues
indicate that some meta-feature variables are strongly correlated with each other

4 Experimental Evaluation

In this section, we conduct an empirical investigation to evaluate the effectiveness of our proposed
approach. We begin by detailing the experimental setup which includes the datasets, classification algo-
rithms, and evaluation metrics used. We then present the results, highlight key findings, and compare the
performance of our approach with four existing benchmark methods.

4.1 Datasets and Candidate Algorithms

This study utilizes 145 classification datasets sourced from OpenML [44], with 105 datasets allocated
for training and validation, and 40 datasets randomly selected as the test set. The datasets were split such
that 80% of the datasets were used for model training and cross-validation, while 20% were reserved for
independent testing. The training set was further divided into training and validation subsets using 10-
fold cross-validation to tune the hyperparameters A, and A,. The test set was used only for final evaluation
after all model parameters were tuned. This setup ensures that the model’s performance is evaluated on
unseen data, providing a robust assessment of its generalizability. The dataset details are provided in the
supplementary materials.

To ensure a thorough evaluation, we included 17 classification algorithms in our meta-learning
setup. These algorithms are widely used in previous studies on classifier selection. The algorithms
include probabilistic learners such as Bayesian Network (weka.classifiers.bayes.BayesNet) and Naive Bayes
(weka.classifiers.bayes.NaiveBayes), tree-based learners like C4.5 (weka.classifiers.trees.J48), Random Tree
(weka.classifiers.trees.RandomTree), and Random Forest (weka.classifiers.trees.RandomForest), rule-based
learners including Ripper (weka.classifiers.rules.JRip) and PART (weka.classifiers.rules.PART), an instance-
based learner, K-Nearest Neighbors (weka.classifiers.lazy.KStar), and a Support Vector Machine, SMO
(weka.classifiers.functions.SMO). We also included several ensemble methods, such as AdaBoostMI com-
bined with Naive Bayes, KStar, PART, and J48, as well as Bagging combined with Naive Bayes, KStar,
PART, and J48. This diverse selection of algorithms enables a thorough assessment of different classification
methods, ensuring the collection of high-quality meta-data essential for adequate training the meta-learner.

We used WEKA version 3.8.2 [45], a Java-based open-source data mining software, to implement these
candidate classifiers at the meta-level. We followed the default settings provided by WEKA for each classifier.
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This included using a polynomial kernel for the Support Vector Machine and a linear search for the K-Nearest
Neighbors algorithm, aligning with configurations used in previous studies.

4.2 Evaluation Against Benchmark Approaches

To assess the effectiveness of our proposed method, we compared it with four established baseline
methods, each representing a different approach to recommending classification algorithms:

1. Wang et al. (2014) - Meta-MLKNN: This method uses multilabel learning, treating the task of
recommending classification algorithms as a multilabel problem, implemented through the ML-kNN
algorithm [22].

2. Zhuetal. (2018) - Meta-DAR: This method uses link prediction within a heterogeneous network called
the Data and Algorithm Relationship (DAR) Network to recommend classifiers [24].

3. Zhu et al. (2021) - Meta-EML: An ensemble approach that uses ML-KNN as the base learner to
recommend classification algorithms based on meta-features [11].

4. Giraud-Carrier et al. (2005) - Meta-DMA: An instance-based method developed under the European
METAL project, using KNN to recommend algorithms [46].

Each of the above baseline method is described in detail in the Section 2. These baseline methods
were chosen because they are well-known in the literature, allowing for a thorough comparison with our
proposed method.

4.3 Performance Evaluation Metrics

Our study evaluates the effectiveness of each method using three widely recognized metrics: classifica-
tion accuracy rate (CA), recommendation accuracy rate (RA), and normalized discounted cumulative gain
(NDCG). These metrics are commonly used in meta-learning (MtL) research for algorithm recommender
systems, as demonstrated in studies such as [42,47]. Each of these metrics provides insight into the
effectiveness of the different meta-learning frameworks for algorithm recommendation. Below, we define
each of these metrics:

1. Classification Accuracy Rate (CA): CA is frequently employed to assess the efficacy of a recommended
classification algorithm .7’ on a given problem Z. To address the issue of class imbalance commonly
encountered in classification tasks, we consider the balanced CA [47].

The average cumulative accuracy (ACA) across N datasets is defined as:

1Y g
ACA= 3 CAZ/ x100%, (18)

i=1

The notation CAZ; represents the performance of the recommended algorithm %7 on the problem %;.
The range of both CA and ACA is the interval [0, 1], and greater values of both CA and ACA are favored,
suggesting that the recommended methods are more appropriate for the dataset.

2. Recommendation Accuracy (RA): While Classification Accuracy (CA) is a key metric for algorithm
selection, it may not always differentiate well between multiple algorithms that achieve similar CA values
on a given problem. To address this limitation, Recommendation Accuracy (RA) evaluates how close a
recommended algorithm is to the optimal solution. Let CAZ{",b and CAZ{",W represent the best and worst
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CA values, respectively, among candidate algorithms for problem %;. The RA for algorithm % on % is
then defined as:

7, 7
CAY, -CA

9.
RAZ =

% 7 7
CA.;?Y,b - CA,QY,W

; (19)

This formula normalizes the CA of a given algorithm within the range of possible CA values for
that problem. RA values range from 0 to 1, with higher RA indicating that the recommended algo-
rithm is closer to the optimal one. To evaluate performance across multiple problems, the Average
Recommendation Accuracy (ARA) is calculated over N problems as:

N
ARA = % S RAZ x100%, (20)
i=1
Similar to RA, ARA values range from 0 to 1, with higher values indicating that the recommended
algorithms are consistently closer to the optimal solutions across the entire problem set.
3. Normalized Discounted Cumulative Gain (NDCG)

The Normalized Discounted Cumulative Gain (NDCG) is a metric used to assess the quality of
ranked lists, particularly in recommender systems, by evaluating how closely the predicted rankings
of items align with their ideal rankings based on true relevance. For a given dataset (query) ¥;, the
NDCG at a specific rank position p (where 0 < p < m) is defined as NDCG;’_ = DCGljji / IDCG;{. The

LN
Discounted Cumulative Gain (DCG) at position p is calculated as DCG;{ = 2]‘?:1 W, where
pred

x;, denotes the vector of predicted performance scores. The Ideal DCG (IDCG), computed similarly,
"[(X@. )il

p 27020

j=1 W. Here,

n[(-);] indicates the rank of the jth entry in the respective vector. The overall NDCG across N datasets

is calculated as:

arranges items in the optimal order based on their true scores, given by IDCG;_ =)

1 N
NDCGep = > NDCG?,. (21)
i=1

Again, NDCG@p values lie within the range (0,1], with larger values indicating better ranking
performance. The results presented in the current paper are calculated on setting the value of p = 3.

4.4 Results and Discussion

Our experimental analysis comprises two distinct phases. In the first phase, we conduct an in-depth
examination of the Meta-MSGL model, focusing on three key questions. (1) Which meta-features are essen-
tial for constructing the Meta-MSGL model? (2) Can meta-features selection help mitigate multicollinearity
in the Meta-MSGL model? (3) How does meta-feature selection influence the recommendation performance
of Meta-MSGL? In the second phase, we directly compare the performance of Meta-MSGL against four base-
line meta-learning methods. This comprehensive two-phase approach allows us to thoroughly evaluate the
strengths and weaknesses of Meta-MSGL, specifically within the context of meta-learning for classification
algorithm recommendation.

4.4.1 Evaluating the Effectiveness of Metafeature Selection in Meta-MSGL

A comprehensive grid search was conducted to determine the optimal settings and assess the impact
of various meta-features on the meta-model. It involved extensive experimentation with different parameter



Comput Model Eng Sci. 2025;142(2) 1627

combinations. Here, we present the results of varying the regularization parameter A, ( 0.0, 0.3, 0.6, 0.9, 1.2,
and 1.5) while maintaining a constant value of A, at 0.1 and 0.4. During the training of our Meta-GMSR
model, the maximum number of iterations was set to 5000.

Fig. 2 illustrates these results, showing the ratio of retained measures to the total number of measures for
each A value. The feature selection process using the Group Lasso model reveals how variations in A; and A,
impact the retention of critical meta-features across different groups. For A, = 0.1, the model initially selects
all 105 meta-features when no regularization is applied (A; = 0.0). As A, increases, the number of selected
features decreases significantly. At A; = 0.3, 45 features are retained, with model-based and complexity
features showing the highest retention rates (52.94% and 68.18%, respectively), while statistical and structural
features are more selectively retained (14.29% and 16.67%, respectively). The number of selected features
decreases to 28 and 21 respectively as regularization strength increases (1; = 0.6 and A; = 0.9). Notably
information-theoretic and simple features demonstrate significant retention, particularly under moderate
regularization. At A, = 0.3 their retention rates are 25% and 47.06%, respectively.
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Figure 2: The influence of A on metafeature selection. The count of chosen meta-features is shown in parentheses on
the horizontal axis. A ratio of zero signifies the meta feature’s removal from the model

A similar pattern is observed for A, = 0.4, with greater reductions in the number of selected features as
Ay increases. At the start, all 105 features are selected at A; = 0.0. At A; = 0.3, the model retains only 29 features,
with a significant emphasis on simplicity (35.29%) and complexity (50%), as well as moderate retention of
model-based features (23.53%). As 1, increases, the same pattern continues, resulting in the model retaining
only 10 features at A; = 1.5.

Across both A, settings, complexity features consistently demonstrate high retention rates. Other groups
such as model-based, simple, and information-theoretic features also play important roles, particularly with
moderate regularization. This diverse selection of features highlights the significance of these feature groups
in enhancing the overall performance of the meta-model. Overall, the combination of these different feature
groups contributes to a more robust and comprehensive meta-learning framework that can adapt to a wide
range of tasks. The reduction in statistical and structural features under stronger regularization indicates that
these groups may have higher redundancy or contribute less to the model’s performance.

In summary, retaining complexity-based, model-based, simple, and information-theoretic features is
crucial for preserving the model’s predictive performance across varying levels of regularization. Each
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of these meta-feature groups plays a key role in improving the model’s decision-making process. For
example, complexity and model-based features provide essential insights into the structure and behavior
of datasets, while information-theoretic features capture relationships between variables that enhance algo-
rithm selection. The reduced significance of statistical and structural features suggests that they contribute
less to the meta-learning task, often introducing redundancy. This highlights the value of incorporat-
ing diverse, relevant meta-feature groups to optimize meta-learning models and improve both accuracy
and interpretability.

4.4.2 Analysis of Eigenvalues to Assess Multicollinearity Reduction

Here we evaluate the effectiveness of the Meta-MSGL model in reducing multicollinearity by analyzing
the smallest eigenvalues of the correlation matrix for selected meta-features. The results for both A, values
(0.1and 0.4) across varying levels of A; are shown in Fig. 3. Due to space limitations, we only display six of the
smallest eigenvalues. The results indicate that when A equals 0, the variables are highly correlated with many
eigenvalues approaching zero. As A increases this problem diminishes leading to a smaller proportion of
selected measures. This outcome demonstrates that the Meta-MSGL model effectively eliminates redundant
and correlated measures, thereby improving overall model performance. The consistent trends observed
for both A values in Fig. 3 further highlight the stability of the Meta-MSGL model. Additionally, when
comparing Fig. 3 with Fig. 1, it is clear that the combined meta-features show stronger correlations than
individual meta-features. This is evident from the greater number of eigenvalues near zero. This observation
implies that similar measures are present across different meta-features and that the feature selection process
effectively removes these redundancies.

A2 =0.01 A2 = 0.04
101 101

100+

%] %]
(] (0]
3 3
© © £
> z - M=0.0
g g 107y —¥— n=03
[im} [} —— M=0.6
1074}
-=- M=0.9
. - M=1.2
. —d- =15

1 2 3 4 5 6

Figure 3: Smallest six eigenvalues of the meta feature correlation matrix for the various A values. Near-zero eigenvalues
indicate high multicollinearity within the meta features

4.4.3 Impact of Meta-features Selection on Meta-MSGL Performance

Here, we illustrate how meta-feature selection impacts the performance of Meta-MSGL. The ACA,
ARA, and hit rate (HR) results are presented in Fig. 4. The impact of feature selection on the Meta-MSGL
performance is evident. When all meta-features are used with A, = 0.01, the model demonstrates how feature
selection affects the outcomes. Specifically, with A; = 1.5, the model attains an ACA of 74.8%, an ARA of
78.5%, and an NDCG of 84.5%, illustrating the performance metrics for this feature selection level. At
A1 = 0.3, the model achieves stronger performance, with an ACA of 76.11%, an ARA of 84.5%, and an HR of
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86.83%. When A, = 0.04, the model demonstrates a slight improvement over its performance at A, = 0.01.
Notably, at A; = 1.5, the model records an ACA of 75.1%, an ARA of 77.0%, and an HR of 84.5%. The best
results, however, are seen at A; = 0.3, where the ACA rises to 7718%, the ARA reaches 86.07%, and the HR
peaks at 88.83%. These outcomes suggest that increasing A, enhances the model’s overall performance.
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Figure 4: Analyzing SGLasso recommendations: how varying sparsity affects accuracy

The optimal performance is observed at 1, = 0.04 and A, = 0.3, where the model achieves its highest
values: 7718% (ACA), 86.07% (ARA), and 88.83% (NDCG). However, the performance of Meta-MSGL is
sensitive to parameter choices, as demonstrated through a grid search over various A, and A, values. Lower
values of A; result in the inclusion of more meta-features, potentially introducing noise, while higher values
reduce the number of selected meta-features, risking underfitting. Similarly, higher values of A, progressively
eliminate entire groups of meta-features, impacting overall performance. Our analysis suggests that A,
values between 0.3 and 0.6, and A, values between 0.01 and 0.04 provide robust performance, ensuring
that the model generalizes well across datasets without being overly sensitive to parameter variations. This
sensitivity analysis highlights the importance of balancing sparsity with feature selection to maximize the
model’s effectiveness.

4.5 Comparisons With MtL Baselines

In this section, we compare the performance of Meta-MSGL with several baseline meta-learning
methods, namely Meta-EML, Meta-MLKNN, Meta-DAR, and Meta-DMA, using three key metrics: ACA,
ARA, and NDCG. The results, summarized in Table 1, are averaged across all testing datasets.

The performance of Meta-MSGL is consistently high on the three metrics. The achieved ACA is 77.18%
ARA 1is 86.07% and the average normalized discounted cumulative gain is 88.83%. The results indicate
that Meta-MSGL is able to reliably produce recommendations and sustain good classification performance
across the datasets. The high NDCG score further confirms its efficiency in prioritizing algorithms based
on predictive performance on datasets. Meta-EML performs comparably to Meta-MSGL particularly in the
ARA and NDCG metrics achieving scores of 83.52% and 84.75%, respectively. Although it falls slightly short
of the performance of Meta-MSGL the minor difference indicates that Meta-EML is still effective in most
scenarios on ARA and NDCG metrics. In contrast, the performance of Meta-MLKNN is significantly lower
compared to Meta-MSGL and Meta-EML. It achieved an ACA of 72.25% ARA of 79.53% and NDCG of
80.15%. This suggests that Meta-MLKNN recommendations are less reliable on many datasets.
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Table 1: Comparisons on ACA, ARA, and NDCG between the proposed and baseline methods, Meta-MSGL, Meta-

EML, Meta-MLKNN, Meta-DAR, and Meta-DMA
Meta-DAR Meta-DMA

Metric Meta-MSGL Meta-EML Meta-MLKNN

ACA 7718% 75.72% 72.25% 66.48% 64.88%

ARA 86.07% 83.52% 79.53% 72.58% 70.02%
ANDCG 88.83% 84.75% 80.15% 74.90% 69.87%

Meta-DAR and Meta-DMA show consistently lower performance compared to the other methods with
ACA scores of 66.48% and 64.88%, respectively. Their ARA and NDCG scores are also significantly lower.
Meta-DAR achieves 72.58% and 74.90%, while Meta-DMA scores 70.02% and 69.87%. These results highlight
limitations in their ability to handle diverse datasets effectively. Its lower NDCG scores on NDCG@3 indicate
that Meta-DAR and Meta-DMA have a limitation in not only providing adequate recommendations for the
best predictive algorithm in each testing data set but also in the top three recommended algorithms.

4.5.1 Classification Accuracy (CA)
To further illustrate the performance differences across each testing problem, we present scatter plots

in Figs. 5-7. In these plots, the datasets are ordered in ascending order according to the performance of Meta-
MSGL. In terms of the CA metric on each testing dataset, Meta-MSGL performed better compared to the
baseline methods on most of the datasets. It should be noted that algorithm recommended by Meta-MSGL
achieves accuracy levels higher than 90% on 9 datasets and retains high accuracy on 22 datasets when a more
moderate accuracy level of 80% is taken into account. The results indicate that Meta-MSGL is not only able
to recommend algorithms that attain performance comparable to the best available candidate for a specific

dataset but also consistently achieves high classification accuracy.
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Figure 5: Comparison of CA performance across individual testing datasets among Meta-MSGL, Meta-EML, Meta-

MLKNN, Meta-DAR, and Meta-DMA
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Figure 6: Comparison of RA performance across individual testing datasets among Meta-MSGL, Meta-EML, Meta-

MLKNN, Meta-DAR, and Meta-DMA
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Figure 7: Comparison of NDGC performance across individual testing datasets among Meta-MSGL, Meta-EML,

Meta-MLKNN, Meta-DAR, and Meta-DMA

Meta-EML and Meta-MLKNN also acheived reliable performance by reaching over 90% accuracy on 6
and 5 datasets, respectively. However they display greater variability than Meta-MSGL particularly in datasets
like column3C and thoracic-surgery where their performance is less stable. When the accuracy threshold is
reduced to 80% Meta-EML remains competitive by achieving this level on 18 datasets, while Meta-MLKkNN
achieves it on 14 datasets. This indicates that although both Meta-EML and Meta-MLKNN are effective, their

sensitivity to certain dataset characteristics may affect their overall reliability in consistently maintaining

high accuracy across diverse datasets.

In contrast, Meta-DAR and Meta-DMA show poor performance by reaching the 90% accuracy
threshold in only one dataset each and even not achieving 80% in most cases. Their lower classification

accuracy values highlight significant limitations in adapting to diverse datasets. As a result, these methods
may recommend algorithms that are not well-suited to the task, which leads to poorer classification accuracy

across a broader range of datasets.
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4.5.2 Recommendation Accuracy (RA)

Fig. 6 presents scatter plot to show the variations in performance among the meta-learning methods on
the RA metric for each testing problem. As can be observed Meta-MSGL performs better than the baseline
methods on the majority of the datasets. It achieves above 90% recommendation accuracy in 17 datasets
and exceeds 80% on 31 datasets, which indicates its advantage over the baselines. In comparison, Meta-
EML exhibits competitive performance closely following Meta-MSGL achieving 90% RA on 15 datasets and
exceeding 80% on 29 datasets. Although slightly less effective than Meta-MSGL Meta-EML remains a strong
contender showcasing its ability to recommend algorithms with high accuracy in a substantial number of
cases. This indicates that Meta-EMLs meta-learning approach while effective does not match the precision
of Meta-MSGL in all scenarios. Although Meta-EML performance is not as high as Meta-MSGL, it still
demonstrates its capability to accurately recommend algorithms on most of the datasets.

Meta-MLKNN shows a noticeable drop in performance reaching the 90% accuracy threshold in
only 9 datasets and exceeding 80% in 21 datasets. This suggests that Meta-MLKNN is less effective in
consistently identifying and recommending algorithms. In addition, Meta-DAR and Meta-DMA showed
considerably lower performance. Meta-DAR achieved 90% accuracy on only 5 datasets and Meta-DMA on
3. When considering the 80% accuracy threshold, Meta-DAR and Meta-DMA reached it in only 10 and 11
datasets respectively. The overall evaluation indicates that while Meta-MSGL and Meta-EML consistently
recommend algorithms effectively for most datasets, Meta-MLKNN, Meta-DAR, and Meta-DMA show
notable inconsistency and decreased efficacy.

4.5.3 Normalized Discounted Cumulative Gain (NDCG)

The Normalized Discounted Cumulative Gain (NDCG@3) metric assesses the ranking quality of the
recommendations, highlighting the importance of correctly ordering the top 3 relevant algorithms according
to their performance. Meta-MSGL consistently demonstrates superior ranking capabilities, maintaining
high NDCG scores on most datasets. As can be noted from Fig. 7, Meta-MSGL consistently demon-
strated superior ranking capabilities with high NDCG scores across diverse datasets, exceeding 90% in 19
datasets. This indicates the Meta-MSGL accurately identifies and ranks top-performing algorithms, ensuring
recommendations are both reliable and informative.

Meta-EML and Meta-MLKNN also achieve considerably high NDCG scores, but not as high as Meta-
MSGL. Meta-EML exceeds 90% in 10 datasets, while Meta-MLKNN achieves this in 4. These methods
perform generally well on NDCG metric implying that, while they may not always provide the highest-
ranked algorithm, their rankings are generally close to optimal. However, their performance variability
indicates that they do not consistently match Meta-MSGL performance on this metric. In contrast, Meta-
DAR and Meta-DMA exhibit significantly lower NDCG scores, failing to reach the 90% threshold in any
dataset. Their weaker performance in ranking algorithms effectively reflects their limitations in utilizing the
available meta-features.

Overall, the results on NDCG metric show that Meta-MSGL is the most effective method for ensuring
that recommended algorithms are both accurate and correctly prioritized. Meta-EML and Meta-MLkNN
offer reasonably good rankings but are less reliable, whereas Meta-DAR and Meta-DMA performanc is
much lower.

While Meta-MSGL demonstrates superior performance across a wide range of datasets, certain
datasets present unique challenges that affect its recommendation accuracy. Specifically, datasets with high
dimensionality, class imbalance, or substantial noise can introduce variability in the performance of the
model. For instance, datasets such as ‘thoracic-surgery’ and ‘column3C’ exhibit variability in classification
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accuracy due to significant noise and imbalance between classes, which complicates the recommendation
process. Meta-MSGLs ability to mitigate these challenges is attributed to its multivariate sparse group
Lasso framework, which effectively reduces the impact of irrelevant meta-features. However, in cases
where the meta-features are highly correlated or exhibit high variance, the method’s ability to discern
subtle differences in algorithm performance may be affected. Future work could explore more refined
noise-handling techniques or alternative meta-feature extraction methods to further enhance the model’s
robustness to such dataset-specific characteristics.

4.5.4 Statistical Validation of Meta-MSGL Performance

To evaluate the statistical significance of the performance differences between Meta-MSGL and the
baseline methods, we conducted Wilcoxon signed-rank tests at a significance level of 0.05. The results,
presented in Table 2 provide insight into whether the observed performance advantages of Meta-MSGL are
statistically significant. The null hypothesis in each case affirms that Meta-MSGL performs either worse or
equally compared to the other baseline methods (Meta-EML, Meta-MLKNN, Meta-DAR, and Meta-DMA)
across the three key metrics: CA, RA and NDCG.

Table 2: Wilcoxon signed-rank test results comparing Meta-MSGL with other models. A p-value below 0.05 indicates
that Meta-MSGL significantly outperforms the compared model

Alternative hypothesis p-value (CA) p-value (RA) p-value (NDCG)
Meta-MSGL > Meta-EML 0.03 0.018 0.0
Meta-MSGL > Meta-MLkNN 0.0 0.0 0.0
Meta-MSGL > Meta-DAR 0.0 0.0 0.0
Meta-MSGL > Meta-DMA 0.0 0.0 0.0

The test reveal that Meta-MSGL significantly outperforms the baseline methods on the three evaluation
metrics. Meta-MSGL shows a consistent and statistically significant advantage, secifically when compared
to Meta-MLKNN, Meta-DAR, and Meta-DMA, with p-values of 0.0 across all metrics. When compared to
Meta-EML, Meta-MSGL also demonstrates significant improvements, especially in RA and NDCG, though
the competition is closer, as reflected in the slightly higher p-values. These results confirm that Meta-MSGL
superior performance is not only practical but also statistically significant, making it the most reliable choice
for algorithm selection and ranking tasks.

While the proposed Meta-MSGL model demonstrates strong performance in classification algorithm
recommendation, it is not without limitations. First, the model’s performance is sensitive to the choice of
regularization parameters A; and A,, which require careful tuning to achieve optimal results. Second, the
computational complexity of the MSGL approach can increase with the size of the meta-feature groups and
the number of candidate algorithms, leading to potentially higher training times for larger datasets.

5 Conclusion

In this paper, we have introduced a novel framework to address critical challenges in automated machine
learning (AutoML), specifically focusing on the classification algorithm recommendation problem within
the context of meta-learning. By leveraging multivariate sparse group lasso, our approach effectively manages
the high-dimensional, sparse, and structured nature of meta-feature spaces. This dual-level sparsity, enforced
both within and across groups, enhances the accuracy of feature selection and algorithm recommendations.
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This results in more precise and effective algorithm recommendations, addressing the limitations of existing
methods that treat meta-features in isolation and fail to account for the interrelatedness of these features.

The empirical validation of our approach on a diverse set of benchmark datasets has demonstrated
its superior performance compared to state-of-the-art meta-learning methods. However, our model does
present some limitations, particularly regarding its sensitivity to the regularization parameters A, and A,,
which require careful tuning to achieve optimal results. Additionally, the computational cost of training the
model can be higher for larger datasets due to the complexity of handling multiple groups of meta-features.
Another limitation is the need for retraining when new datasets or meta-features are introduced, which could
affect the model’s scalability in continuously evolving environments.

Future work can address these limitations by integrating our framework with adaptive meta-learning
techniques, such as dynamic hyperparameter tuning and incremental learning for continuous adaptation to
new data. Further, expanding the considered meta-features and datasets, as well as enhancing the method’s
scalability and efficiency, will open new opportunities for improving the performance and applicability of
the framework across various domains.
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