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ABSTRACT

The rapid growth of digital data necessitates advanced natural language processing (NLP) models like BERT (Bidi-
rectional Encoder Representations from Transformers), known for its superior performance in text classification.
However, BERT’s size and computational demands limit its practicality, especially in resource-constrained settings.
This research compresses the BERT base model for Bengali emotion classification through knowledge distillation
(KD), pruning, and quantization techniques. Despite Bengali being the sixth most spoken language globally, NLP
research in this area is limited. Our approach addresses this gap by creating an efficient BERT-based model for
Bengali text. We have explored 20 combinations for KD, quantization, and pruning, resulting in improved speedup,
fewer parameters, and reduced memory size. Our best results demonstrate significant improvements in both speed
and efficiency. For instance, in the case of mBERT, we achieved a 3.87× speedup and 4× compression ratio with
a combination of Distil + Prune + Quant that reduced parameters from 178 to 46 M, while the memory size
decreased from 711 to 178 MB. These results offer scalable solutions for NLP tasks in various languages and
advance the field of model compression, making these models suitable for real-world applications in resource-
limited environments.
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1 Introduction

The exponential growth of digital data has driven the need for advanced natural language
processing (NLP) models to understand human language accurately. Bidirectional Encoder Repre-
sentations from Transformers (BERT) stands out for its performance across various NLP tasks,
including text classification and question answering [1]. Its bidirectional context modeling enables
a deep understanding of language. Still, the model’s immense size—110 million parameters in its base
version—creates challenges for deployment in resource-constrained environments like mobile devices
or real-time applications, where memory and processing power are limited.

These challenges are even more pronounced for Bengali, the sixth most spoken language globally,
with over 230 million native speakers. Despite its rich literary heritage, Bengali-specific NLP models
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lag behind those for more widely spoken languages, partly due to the limited availability of large-
scale text corpora and pre-trained models. Thus, there is a need for efficient, high-performing models
tailored for Bengali that can be deployed in resource-constrained environments.

This research addresses these challenges by compressing the BERT base model through knowledge
distillation (KD). Quantization, and pruning [2–4]. KD transfers knowledge from a large model
(teacher) to a smaller model (student), preserving performance while reducing size. Pruning eliminates
redundant parameters, enhancing efficiency. Quantization lowers the precision of model parameters,
cutting memory and computational demands.

The goal is to develop a compressed, efficient BERT-based model for Bengali text classification
that balances size reduction with performance. The study also explores the combined effects of
these compression techniques, contributing to model compression research and advancing NLP for
underrepresented languages like Bengali.

Unique Contributions:

1. Language-Specific Compression: This research addresses the challenges and requirements
of compressing BERT models for Bengali, a language relatively underrepresented in NLP
research compared to English and other widely spoken languages.

2. Comprehensive Evaluation: By systematically applying and evaluating three compression tech-
niques in 20 combinations, the research provides a comprehensive understanding of how these
methods interact and their effectiveness for compression in Bengali text classification.

3. Resource Efficiency: The resulting compressed models will enable practical applications of
BERT for Bengali text classification in resource-constrained environments, thereby broadening
the accessibility and usability of advanced NLP models.

The remainder of the paper is structured as follows: Section 2 highlights the key characteristics
of relevant studies on BERT models and knowledge compression techniques, additionally providing
a concise summary table. Subsequently, Section 3 outlines our proposed methodology. Section 4
presents the experimental setup and analysis of results, and Section 5 provides the discussion.
Sections 6 and 7 highlight limitations, future work, and conclusions.

2 Related Work

NLP tasks have revolutionized recently because of transformer-based LLMs (Large Language
Models) [5]. The discipline of NLP was significantly advanced by the ground-breaking model BERT,
which established a bidirectional method for pre-training. BERT’s success has led to several derivative
models, each with unique enhancements and improvements, such as Roberta, ALBERT, Longformer,
BigBird, and more [6,7]. However, BERT and its larger variants, like BERT-large, come with many
parameters (BERT-base has 110 M parameters, while BERT-large has 340 M). These large models
often require extensive computational resources, making them challenging to deploy on resource-
constrained devices such as mobile phones or edge devices. In recent years, various model compression
techniques have been developed to enhance the efficiency of LLMs, particularly for deployment on
resource-constrained devices. TinyBERT and DistilBERT are two notable examples of compressed
versions of BERT, which reduce the model size while maintaining competitive performance. These
approaches make it feasible to use transformer models in applications with limited computational
power and memory.
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TinyBERT is a compact and fast language model derived from distilling BERT-Base for natural
language understanding [8]. It is 9.4 times quicker and 7.5 times smaller than BERT-Base in inference
and performs competitively on several NLP tasks. TinyBERT is pre-trained and fine-tuned using a
novel transformer distillation method, effectively transferring knowledge from BERT-Base to Tiny-
BERT. This makes it suitable for tasks requiring efficient and accurate text understanding. DistilBERT
[9] compresses the original BERT model while keeping 97% of its language comprehension capacity
using a KD approach. DistilBERT is especially helpful for deployment in resource-constrained
contexts without a noticeable decrease in performance because of its smaller size and faster speed. A
breakthrough in transformer models designed for particular languages is BanglaBERT [10]. Because it
is a BERT-based model that has been pre-trained on a sizable corpus of Bengali literature, it performs
very well on NLP tasks that include the language. With BanglaBERT, we can get better performance
and accuracy in tasks like named entity recognition, text classification, and sentiment analysis by
taking advantage of Bengali’s distinct linguistic features. Its development underscores the importance
of creating language-specific models to enhance NLP capabilities across diverse linguistic contexts.

The swift progress in LLMs has resulted in extensive implementation across numerous fields,
such as image classification, natural language understanding, and voice recognition. Although these
models exhibit exceptional performance, implementing them on edge devices with constrained com-
putational capabilities remains a significant hurdle. To mitigate this challenge, scholars have devised
various model compression strategies, particularly KD, pruning, and quantization, to diminish LLMs’
size and computational demands while maintaining their accuracy. KD is an effective method for
model compression and transfer learning. It entails training a diminutive student model to emulate
the functionalities of a larger, pre-trained teacher model. This approach exploits the soft output
probabilities generated by the teacher model to inform the student model, thereby enhancing its
performance relative to training it independently. KD has been further adapted to include intermediate
representations and applied across diverse architectures, yielding notable model efficacy and precision
enhancements. Pruning strategies focus on removing superfluous weights or filters from a trained
model, culminating in a more compact and efficient network. Quantization methods aim to diminish
the precision of weights and activations, transitioning them from high-precision (32-bit floating-point)
to low-precision (8-bit integer) representations. This reduction in precision markedly lowers the model
size and computational demands, facilitating more efficient deployment on edge devices.

In recent times, Knowledge distillation has emerged as a formidable technique for transferring
knowledge from a large, pre-trained teacher model to a compact student model. Hinton [11] introduced
this technique, wherein the student model is conditioned to replicate the teacher model’s soft output
(softmax). This methodology has enhanced the student model’s performance compared to training
it from an initial state. Romero et al. [12] expanded upon this framework by employing intermediate
representations of the teacher model as informative clues, thus further augmenting the performance
of the student model. Li et al. [13] present an innovative approach for knowledge distillation utilizing
a minimal number of label-free samples to enhance data and training efficiency They introduce
the paradigm of a “teacher-net” and a “student-net” to facilitate network compression and aim to
eliminate superfluous weights or filters from an established model. Li et al. explore Online Knowledge
Distillation (OKD) for effective pose estimation, transferring pose knowledge from a robust teacher
model to a streamlined student model [14]. He et al. propose Few-Shot Slimming for efficient network
compression, accentuating compression using limited unlabeled data [15]. Approaches such as low-
rank decomposition for fully connected layers and various forms of weight decomposition for convo-
lutional layers have been investigated. Yim et al. applied KD to the ResNet architecture by minimizing
the L2 loss of Gramian feature matrices between the teacher and student networks [16]. Recent
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investigations in the domain of few-sample learning, encompassing one-shot and few-shot learning,
have delved into generative models and transfer learning methodologies. Meta-learning strategies,
which address problems in a learning-to-learn paradigm, have gained traction for adaptability. Even
so, studies have specifically tackled the issue of KD with limited samples.

Pruning methodologies are designed to eliminate redundant neurons or connections within a
network, thereby lessening its footprint and computational needs. Han et al. [17] introduced an
iterative pruning strategy that discards connections with nearly negligible weights, followed by a
fine-tuning process to restore the network’s accuracy. Their magnitude-based pruning techniques
have garnered acclaim for their straightforwardness and effectiveness. The authors in [18] proposed
a neuron pruning method predicated on activation analysis, which removes neurons that do not
significantly contribute to the network’s outputs. However, pruning strategies are frequently confined
to less complex network structures such as Visual Geometry Group (VGG) and AlexNet, and their
application to more intricate architectures like ResNet may result in untrainable models due to
inherent structural dependencies. The manuscript “Model Compression via Pruning, Quantization,
and Knowledge Distillation,”authored by Kim et al. [4], presents the Pruning Quantization KD (PQK)
approach, which amalgamates pruning, quantization, and KD for streamlined model compression
[19]. A pivotal innovation of PQK is using insignificant weights pruned during the initial phase to
construct a teacher network, eliminating the need for a pre-trained teacher model. This methodology
substantially enhances model performance for keyword detection and image classification tasks. This
method entails the pruning of weights based on their magnitudes and has been employed in extensive
networks to achieve notable reductions in model size with negligible accuracy degradation. Structured
Pruning strategies, such as those delineated by Anwar et al., focus on eliminating entire structures
within the network, such as neurons or channels, instead of individual weights [20]. This form of
pruning proves particularly advantageous for optimizing hardware computations. The work “To Prune
or Not to Prune” by Zhu et al. [21] provides a comprehensive comparison between pruned (sparse) and
dense models across a range of domains, ultimately concluding that pruned models frequently surpass
their dense equivalents in performance.

Quantization seeks to diminish the precision of weights and activations within neural networks,
thereby reducing the model’s size and improving computational efficiency. Initial quantization meth-
ods concentrated on uniform quantization, where all weights are consolidated to a lower bit-width
representation. Jacob et al. proposed quantization-aware training, which incorporates quantization
into the training regimen, alleviating the accuracy degradation typically linked with post-training
quantization [22]. The emergence of data-free quantization has become a pivotal area of inquiry,
given its applicability in situations where training data is not accessible. Nagel et al. introduced weight
equalization and bias correction methodologies to enable effective quantization without original
training data [23]. This strategy confronts the obstacles of quantizing pre-trained models while
preserving their performance. Quantization techniques diminish the precision of weights within a
network, transitioning them from high-precision formats (e.g., 32-bit floating-point) to low-precision
forms (e.g., 8-bit integer). Leng et al. demonstrated that weight quantization can substantially
compress CNNs without compromising accuracy [24]. Furthermore, quantization-aware training
enhances the performance of quantized models by accounting for quantization errors during the
training phase. Zhou et al. introduced Incremental Network Quantization (INQ). This technique
incrementally quantized the weights of a neural network throughout training, enabling the network
to acclimatize to the quantization process while maintaining high accuracy [25]. This methodology
has shown potential in reducing the bit-width of weights while ensuring the preservation of model
performance. Table 1 summarizes the findings and limitations of some relevant works.
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Table 1: A summary table of related works highlighting the key findings and limitations

Reference Feature Advantages Limitations

Hinton [11] Introduced KD, where
the student model
mimics the teacher
model’s soft output.

Enhances student model
performance compared to
training from scratch.

Requires careful
formulation of the
loss function;
performance depends
on teacher model
quality.

Li et al. [13] An innovative approach
for KD utilizing a
minimal number of
label-free samples to
enhance data and
training efficiency.

Reduces computational
complexity and model size.
Efficient in few-shot learning.

Limited performance
with highly complex
datasets, dependency
on teacher model
quality.

Jacob et al. [22] The proposed
quantization-aware
training integrates
quantization into the
training process to
prevent loss of accuracy.

Minimizes accuracy
degradation associated with
post-training quantization,
enabling efficient inference
using integer arithmetic.

Requires training
data, limiting its use
in scenarios where
data access is
restricted or
unavailable.

Nagel et al. [23] Introduced weight
equalization and bias
correction
methodologies for
data-free quantization.

Effective quantization of
pre-trained models without
access to the original training
data, retaining performance
while reducing precision.

It may not achieve
the same
optimization level as
original training data
methods.

Leng et al. [24] Weight quantization can
substantially compress
CNNs without
compromising accuracy.

Efficiently reduces the bit-width
of neural networks to extremely
low-bit precision with
Alternating Direction Method
of Multipliers (ADMM),
ensuring optimal compression
without accuracy drop.

Potential accuracy
degradation if the bit
precision is reduced
too aggressively or
without proper
tuning.

Zhou et al. [25] Incremental
quantization of neural
network weights during
training to enable
gradual acclimatization.

Maintains high accuracy while
reducing precision, effective for
weight quantization in CNNs.

It requires more time
for incremental
quantization, and
needs fine-tuning for
optimal performance.

3 Methodology

By addressing the specific challenges and requirements of compressing BERT models for Bengali,
a language that has been relatively underrepresented in NLP research, this research contributes to
language-specific model optimization. The comprehensive evaluation of individual and combined
compression techniques provides a detailed understanding of their interactions and effectiveness for
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Bengali text classification. The resulting compressed models will enable practical applications of BERT
in resource-constrained environments, broadening the accessibility and usability of advanced NLP
models.

In the first step (Stage 1) of Fig. 1, we finetune the BERT-based LLM models with our UBMEC
emotion dataset (more description is in 3.1). The next step (Stage 2) is to compress the BERT base
model using various techniques—knowledge distillation (KD), quantization (Q), and pruning (P). The
KD technique transfers knowledge from a large BERT model (teacher) to a smaller model (student),
providing insights into the effectiveness of knowledge distillation for Bengali text classification tasks.
Additionally, the study applies quantization techniques to reduce the precision of BERT model
parameters, aiming to decrease memory footprint and computational requirements while assessing
the impact on model accuracy and performance. Furthermore, the research explores and implements
pruning methods to remove redundant or less important parameters from the BERT model. In the last
step (Stage 3), the balance between model size reduction and performance degradation is evaluated
with different performance metrics. A key novelty of the research lies in investigating the synergistic
effects of combining knowledge distillation, quantization, and pruning and developing an optimal
compression strategy that leverages the strengths of each technique to achieve maximum compression
with minimal performance degradation.

Figure 1: Overview of experimental phases and data processing

More details of the dataset and the methodology are described below.
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3.1 Dataset
3.1.1 Dataset Information

For the current research, we utilized the Unified Bangla Multi-class Emotion Corpus (UBMEC),
a publicly available dataset specifically crafted to support emotion recognition tasks in the Bengali
language [26]. UBMEC offers a rich and diverse collection of textual data annotated with six distinct
emotion labels: anger, disgust, fear, joy, sadness, and surprise. The dataset is carefully balanced,
featuring 3290 instances of joy, 2622 of sadness, 2422 of anger, 2049 of disgust, 1348 of fear, and 1341
of surprise, ensuring comprehensive coverage of the emotional spectrum in Bengali communication.

This corpus is sourced from various real-world contexts, including social media posts, literary
texts, and everyday conversations, providing robust contextual relevance. Each entry is meticulously
labeled by native Bengali speakers, ensuring high accuracy and cultural context alignment. The dataset
spans 13,072 reviews with a total of 268,298 words, stored in a 1100 KB file, and organized into two
columns: text and classes. The reviews range from 6 to 218 words in length. The dataset is split into
9150 training and 3922 testing reviews for training and evaluation purposes. This comprehensive and
well-structured dataset is instrumental in developing sophisticated emotion recognition models for
Bengali text. Table 2 summarizes the dataset.

Table 2: UBMEC dataset description

Data length 268,298 words

Data class 6 (anger, disgust, fear, joy, sadness, and surprise)
Total reviews 13,072
Size on disk 1100 KB
Train-test data split 9150, 3922
Maximum words in a single review 218
Minimum words in a single review 6
Class-wise frequency:
Joy 3290
Sadness 2622
Anger 2422
Disgust 2049
Fear 1348
Surprise 1341

3.1.2 Dataset Sample

Presented below (Table 3) are some sample instances from the dataset:
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Table 3: UBMEC dataset example

Text Class

Bengali:

English: Hey mom, why did dad get so upset over the ant’s death? It’s the ant’s
relatives who should be upset!!
That was fun!

Joy

Bengali:
English: I strongly condemn this and demand justice.

Anger

Bengali:

English: Maybe our generation, won’t take the time to watch this drama. But anyone
who has watched this creation by Humayun Ahmed Sir once, will never be able to
forget it.

Surprise

Bengali:

English: In a humorous manner Humayun Ahmed candidly expressed many
uncomfortable truths. Perhaps we couldn’t fully grasp them. For instance the history
of the Liberation War.

Sadness

Bengali:

English: This is nothing but a false accusation!! Surely there is a conspiracy underway
to frame someone.

Fear

Bengali:
English: Stop blaming the child in a one-sided manner.

Disgust

3.1.3 Other Existing Corpus

In addition to UBMEC, there are several other noteworthy multi-class emotion corpora available
in the Bengali language:

• Bengali Ekman’s Dataset: This dataset, larger than UBMEC, also focuses on Ekman’s six core
emotions (joy, sadness, anger, fear, disgust, and surprise) [27]. However, its larger size makes
training models on it more time-consuming, positioning UBMEC as a more efficient option
for faster model development and experimentation.

• BEmoC (Bengali Emotion Corpus): Although BEmoC includes annotated emotion data, its
smaller size and limited range of sources make it less comprehensive than UBMEC, particularly
in its representation of diverse contexts such as social media and literature [28].
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• EmoNoba: This dataset also supports emotion recognition in Bengali. However, its imbalanced
class distribution makes it less suitable for training models that require a balanced dataset to
achieve accurate emotion predictions [29].

• Bengali & Banglish: This is the largest dataset, containing 80,098 rows of annotated data [30].
Its size and well-balanced classes make it a valuable resource for emotion recognition in both
Bengali and Banglish contexts. However, it also increases the training time and complexity
compared to smaller datasets like UBMEC.

Although these datasets are available, UBMEC distinguishes itself with its well-balanced, diverse,
and culturally accurate data, its relatively smaller size makes it more efficient for faster model devel-
opment and experimentation, making it an exceptional resource for developing emotion recognition
models and evaluating large language models (LLMs) in Bengali.

3.1.4 Imbalance Handling

Applying undersampling and making all class frequency count 1361 shows a decrease in per-
formance of about 3%–4% compared to its baseline. Oversampling with synthetic data generating
is difficult as the Bengali text is very nuanced and has a negative effect on overfitting if the smaller
classes are repeated. In addition, this dataset is mostly balanced, as depicted in Table 2. Therefore, this
research uses the original UBMEC dataset.

3.2 Teacher Selection and Training
To leverage the rich annotations and diversity of the UBMEC dataset, we employed different

pre-trained models as our teacher models: mBERT, and BanglaBERT (buetnlp).

mBERT: The multilingual BERT (mBERT) model is a transformer-based model trained in 104
languages, including Bangla. This model captures multiple languages’ syntactic and semantic nuances,
making it a strong baseline for multilingual tasks.

BanglaBERT (buetnlp): Developed by the BUET NLP Group, this variant of BanglaBERT is
also pre-trained on extensive Bangla corpora. It incorporates domain-specific knowledge and opti-
mizations tailored for Bangla, providing another perspective on the efficacy of specialized language
models.

Fine-Tuning BERT-Based LLM models: The fine-tuning process with the UBMEC emotion
dataset can be described using the following formula:

L = LBERT + λ · LUBMEC (1)

In Eq. (1), L represents the combined loss function, LBERT is the original loss of the BERT model,
LUBMEC is the loss from the UBMEC dataset, and λ is a hyperparameter that balances the two losses.
This combined loss function allows the model to integrate both general language understanding
(captured by BERT’s pre-trained weights) and task-specific nuances derived from the UBMEC dataset.

To fully harness the rich annotations and diverse textual data provided by the UBMEC dataset,
we employed a fine-tuning process for two different pre-trained models: mBERT and BanglaBERT
(buetnlp). This fine-tuning aimed to optimize these models for multi-class emotion classification in the
Bangla language. Based on the input text snippets, the models were adapted to predict one of the six
specified emotion labels—joy, disgust, anger, sadness, surprise, and fear. The fine-tuning process was
meticulously designed to enhance the models’ ability to discern and classify Bangla text’s emotional
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content accurately. This adaptation process is crucial, ensuring that the models can effectively interpret
the nuances and contextual subtleties inherent in Bangla emotional expression.

Each model was subjected to extensive training, during which the parameters were meticulously
refined to reduce the prediction error associated with accurately identifying the emotion label for each
text segment. To thoroughly assess the efficacy of these optimized models, we adopted two principal
evaluation metrics: accuracy and F1 score. Accuracy is a straightforward indicator of the ratio of
correctly identified instances to the total number of instances, providing a clear depiction of overall
model efficacy. Nonetheless, relying exclusively on accuracy may yield misleading interpretations in
contexts characterized by class imbalance, as it fails to consider the distribution of various classes. We
incorporated the F1 score to mitigate this concern, representing the harmonic mean of precision and
recall. Precision quantifies the ratio of true positive predictions relative to all positive predictions made
by the model. In contrast, recall quantifies the ratio of true positive predictions relative to all actual
positive cases. Consequently, the F1 score offers a comprehensive perspective by accounting for both
false positives and false negatives, rendering it particularly useful in multi-class classification scenarios
where class distribution may be uneven.

Combining accuracy and F1 score ensured that the models’ performance was thoroughly assessed.
We evaluated the models’ overall accuracy and ability to balance recall and precision across several
emotion categories thanks to the dual-metric technique. This fair assessment is necessary to compre-
hend the models’ actual performance in a complex and comprehensive way, ultimately producing more
trustworthy and valuable insights from the emotion categorization assignment.

Analysis

The findings show that in terms of accuracy and F1 score, the BanglaBERT (buetnlp) model
performed better than the other models. This implies that BanglaBERT’s (buetnlp) domain-specific
pre-training offers a notable benefit for Bangla language emotion identification tasks. However,
mBERT is the largest model, and when it is compressed, the compression ratio is significantly larger
than that of the other models. In addition, it offers support for multilingual classification, which
BanglaBERT lacks. It is crucial to remember that all models performed fairly well, demonstrating
the suitability of transformer-based models for this kind of NLP problem.

3.3 Student Selection
After training the instructor models, we continued with the distillation process to produce more

effective student models. A smaller model (the student) is educated to imitate the actions of a larger,
more sophisticated model (the teacher) via KD. In this study, three distinct student models were
employed:

DistilBERT: Designed to dramatically reduce model size and inference time while maintaining the
majority of BERT’s accuracy, DistilBERT is a lighter, quicker, and more compact version of BERT.
Following the distillation process, the DistilBERT model yielded an F1 score of 50.02 and an accuracy
of 47.34.

Distil-mBERT: As a distilled version of mBERT, Distil-mBERT is a smaller, faster, and more effi-
cient model designed to retain most of the original model’s language understanding capabilities while
significantly reducing computational complexity. Following the distillation process, the DistilBERT
model yielded an F1 score of 49.54 and an accuracy of 46.80.

mini-Distill-mBERT: This is a smaller, faster, and lighter version of distill-mBERT, lighter than
most other models while possessing sufficient parameter count for good distillation outcome.
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TinyBERT (prajjwal1/bert-tiny): This variant of TinyBERT is designed to be extremely small and
efficient. Post-distillation, this model achieved an accuracy of 0.3594 and an F1 score of 0.2989.

TinyBERT (huawei-noah/TinyBERT): Developed by Huawei, this version of TinyBERT aims to
balance efficiency and performance. After distillation, it achieved an accuracy of 0.3791 and an F1
score of 0.3487.

Distillation Process

The distillation process involved the following steps:

Training the Teacher Model: The UBMEC dataset was used to optimize the performance of each
teacher model, including mBERT and BanglaBERT (buetnlp), for the emotion categorization task.

Distilling Knowledge: The teacher’s models’ soft labels were used to train the student models.
This encourages the student to understand not just the final labels but also the subtle distributions
of probabilities over classes that the teacher developed by utilizing the teacher model’s predictions as
a guide for the student model.

Evaluation: To ascertain the efficacy of the distillation process, the accuracy and F1 score of
the student models’ performances were assessed. The metrics were selected to assess the models’
effectiveness with various emotion categories.

These results indicate that while DistilBERT retained a substantial portion of the teacher
models’ performance, the TinyBERT variants exhibited lower accuracy and F1 scores. However, All
student models showed significant efficiency increases, underscoring the compromises between model
performance and size in the distillation process.

3.4 Knowledge Distillation
A white-box method includes accessing the teacher model’s internal parameters [31–33]. On

the other hand, black-box method depends on the teacher model’s output predictions both can be
used to transfer information from large language models (LLMs) to smaller models [34–36]. Black-
box knowledge distillation was our method of choice because of its adaptability and wide range of
applications.

Kullback-Leibler (KL) divergence and binary cross-entropy loss were integrated into our strategy
to help transfer information from the ensemble teacher model to the student model. KL divergence
has the following definition, which quantifies the difference between two probability distributions:

LKL(p||q) = −
∑N

j=1
pjlog

(
qj

pj

)
(2)

In Eq. (2), q stands for the student model’s predictions and p for the soft labels produced by
the teacher model; however, if the teacher makes extremely confident forecasts (values around 0 or
1), using KL divergence directly may cause issues and hinder the student’s ability to learn. We used
temperature scaling to remedy this, which smoothes the expected probability.

To apply temperature scaling, one must divide the logits, or softmax function inputs, by a
temperature parameter T . The expression for the scaled softmax function is:

softmaxT(zi) =
exp

( zi

T

)
∑k

j=1 exp
( zj

T

) (3)
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In Eq. (3), zi denotes the i-th logit, and K is the total number of classes. The temperature T is a
hyperparameter that determines the level of smoothing, with higher temperatures producing softer
probability distributions. When T = 1T = 1T = 1, the function reverts to the standard softmax
function.

A weighted sum of the binary cross-entropy loss and the KL divergence loss is the final loss
function for the student model:

Ldistillation = (1 − λ)Lstudent + λT 2LTS (4)

where, in Eq. (4), LTS = LKL

(
softmax

(
E(xj )

T

)
||softmax

(
S(xj )

T

))
represents the teacher-student loss, and

λ\lambdaλ is a balancing factor ranging from 0 to 1.

Model Compression Techniques—Knowledge Distillation (KD): The knowledge distillation process
can be represented by the following formula:

LKD = T(y, ŷs) + α · H(yt, ŷs) (5)

In Eq. (5), T is the loss function, y is the true label, ŷs is the student model’s prediction, α is a
hyperparameter, and H is the distillation loss function with yt as the teacher model’s prediction.

Evaluation of Model Size Reduction and Performance Degradation: The evaluation process can be
represented as:

Perfomance = f (ModelSize, Accuracy, Latency) (6)

In Eq. (6), f is a function that considers model size, accuracy, and latency to assess the overall
performance. In the context of evaluating model compression techniques, a trade-off often exists
between model size reduction and performance metrics like accuracy and latency. The goal is to
achieve a compressed model that maintains acceptable performance while benefiting from reduced
computational requirements.

3.5 Pruning
Pruning techniques may be roughly divided into two categories: unstructured and structured.

While structured pruning focuses on removing whole sets of weights and may alter the model’s general
design, unstructured pruning includes the selective removal of specific parameters. Unstructured
pruning is particularly effective in reducing the number of parameters, thereby decreasing storage
demands and enhancing computational efficiency. This approach can also introduce zero-value
multiplications within the network, which are ignored during inference, leading to faster processing
times.

On the other hand, structured pruning reorganizes the model’s structure to create a more
streamlined and efficient network. This method can be implemented at various stages of the training
process—before, during, or after—each with its trade-offs between model compression and accuracy.
Both pruning types have successfully optimized large language models (LLMs) [37]. Given the intricate
architecture of LLMs, we chose to apply unstructured pruning after training, specifically targeting the
linear layers of the student models. Through careful hyperparameter tuning, we determined that a
30% pruning ratio offered an optimal balance between performance and efficiency. This adjustment
significantly reduced approximately 2 million parameters in the DistillBERT model and around 1
million in the TinyBERT model.
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3.6 Quantization
Quantization may be executed in two distinct phases: during the training process or after training

(referred to as post-training quantization), and it applies to both weights and activations [38–41].
In this study, we employed post-training quantization for the student models. This approach is
non-complicated and practical, as it obviates the necessity for retraining or fine-tuning the model.
Nonetheless, it might result in a marginal decline in accuracy due to the reduced precision of the
parameters.

We selected static quantization, transforming all model parameters and activations from 32-bit
floating-point representations to 8-bit integer formats. Although the quantized student models main-
tain the same parameter count as their original versions, the conversion to 8-bit integers considerably
diminishes the model’s size on disk. Furthermore, 8-bit integer computations typically demonstrate
greater efficiency than 32-bit floating-point computations across most hardware platforms, leading to
expedited inference times.

We assessed the efficacy of the distilled, pruned, and quantized models across the same four tasks.
The ensuing results, encompassing performance metrics, compression ratios, parameter counts, and
speedup comparisons with the teacher model, are elaborated in the subsequent section.

4 Result Analysis
4.1 Experimental Setup

We conducted our experiments involving KD, pruning, and quantization with a batch size of 8
and trained for 20 epochs, implementing early stopping with a patience value of 3. The experiments
were carried out on the Kaggle platform, utilizing Kaggle’s P100 GPU.

In the pruning phase, we applied unstructured pruning, reducing the model by 50% in terms of
parameters while maintaining performance.

For quantization, we implemented post-training quantization, converting the model weights to
8-bit integers to reduce memory usage and inference time.

To address the challenges of processing a large corpus, we leveraged the computational power
provided by Kaggle’s free GPU infrastructure. This approach enabled us to efficiently handle the
extensive resource requirements of training a large LLM.

4.2 Baseline
The evaluation of various models on the Unified Bangla Multi-class Emotion Corpus (UBMEC)

dataset revealed that banglaBERT (buetnlp) achieved the highest performance with an accuracy of
62.36% and a macro F1 score of 60.06%. Despite its smaller model size (420 MB) and fewer parameters
(110 million) compared to others like mBERT, banglaBERT (buetnlp) offered a balanced performance
and efficiency. This balance is crucial for practical deployment in resource-constrained environments
like mobile or embedded systems. The results underscore the value of targeted optimizations and
domain-specific pre-training in developing effective and resource-efficient emotion recognition mod-
els. Future research should focus on optimizing smaller models to enhance their practicality and
impact in real-world applications.

Table 4 evaluates the performance of various models on the Unified Bangla Multi-class Emotion
Corpus (UBMEC) dataset for emotion classification tasks. The models assessed include BERT,
mBERT, distill-mBERT, distillBERT, banglaBERT (sagor), banglaBERT (buetnlp), distill-mBERT-
mini, and huawei-noah/TinyBERT. The evaluation metrics considered are accuracy, macro F1 score,
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number of parameters, and model size. In Fig. 2, we used a pie chart to visualize the model size
comparison of all these models in relation to each other, with % area representing the model size
in MB; mBERT displays the largest size of 22.2%, compared to the 1.7% of the smallest tinyBERT
model.

Table 4: Baseline Bengali textual emotion classification accuracy and macro F1, as well as size and
parameter count of different models, on UBMEC dataset

Baseline model Accuracy Macro F1 #Params (M) Size (MB)

BERT 50.74 46.93 110 M 418 MB
mBERT 55.62 53.56 178 M 711 MB
distill-mBERT 50.97 47.88 135 M 514 MB
distillBERT 49.07 46.38 66 M 254 MB
banglaBERT (sagor) 54.35 52.24 164 M 627 MB
banglaBERT (buet) 62.36 60.06 110 M 420 MB
distill-mBERT-mini 35.94 29.89 52 M 198 MB
huawei-noah/TinyBERT 37.91 34.87 14 M 55 MB

Figure 2: Pie chart comparing baseline model size distribution in percentage

Fig. 3 shows two bar charts visualizing the baseline accuracy and F1 distribution of all the models;
banglaBERT shows the highest metrics, while distill-mBERT-mini shows the lowest,

Among the models evaluated, banglaBERT (buetnlp) demonstrated the highest performance with
an accuracy of 62.36 and a macro F1 score of 60.06. It also has a relatively smaller model size of 420 MB
and 110 million parameters, making it a balanced choice in performance and efficiency.

banglaBERT (buetnlp) stands out as an efficient model that strikes a desirable balance between
performance and resource utilization. Despite having fewer parameters (110 million) and smaller
model size (420 MB) compared to mBERT, banglaBERT (buetnlp) achieved the highest accuracy of
62.36% and a macro F1 score of 60.06% in our experiments. This demonstrates that targeted optimiza-
tions and domain-specific pre-training can yield effective and efficient models. The importance of such
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balanced models cannot be overstated, especially in real-world applications where deploying large,
resource-intensive models is not feasible. For example, in mobile applications, embedded systems, or
cloud environments with cost constraints, having a model like banglaBERT (buetnlp) that delivers
high performance without excessive resource demands is crucial. This balance ensures the models
can be used effectively in diverse settings, providing accurate emotion recognition while maintaining
operational efficiency.

Figure 3: Accuracy and macro F1 comparison of various baseline models

Our findings highlight the necessity of balancing performance with efficiency in developing
emotion recognition models. Models like banglaBERT (buetnlp) exemplify how targeted optimizations
can achieve this balance, making them suitable for practical deployment. Future research should
continue to optimize smaller models to ensure they are both effective and efficient, thereby broadening
the applicability and impact of emotion recognition technologies in various real-world scenarios.

4.3 Knowledge Distillation
Table 5 compares the performance of various student models distilled from two different teacher

models, banglaBERT and mBERT, based on Accuracy, Macro F1, Speedup, number of parameters
(#Param), model size, and Compression Ratio. The results for the two teacher models are presented
separately.

Teacher 1: banglaBERT

• banglaBERT baseline: The teacher model has 110 million parameters and a size of 420 MB. It
achieves an accuracy of 62.36% and a macro F1 score of 60.06%.

• distilBERT: Distillation from banglaBERT results in a smaller model with 66 million parame-
ters, a size of 254 MB, and a compression ratio of 1.65. However, there is a significant drop in
performance, with accuracy decreasing to 50.02% and macro F1 to 47.34%.

• distil-mBERT: This model has more parameters (135 M) than the teacher and a larger size
(514 MB), resulting in a lower compression ratio of 0.82. Performance is further reduced, with
an accuracy of 48.59% and a macro F1 of 45.37%.
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• distil-mBERT-mini: This mini variant of distil-mBERT achieves slightly better performance
(accuracy: 49.54%, macro F1: 46.80%) with fewer parameters (52 M) and a much smaller size
(198 MB), leading to a higher compression ratio of 2.12.

• tinyBERT: The smallest model with only 14 million parameters and a size of 55 MB, tinyBERT
shows the lowest performance (accuracy: 38.51%, macro F1: 36.40%) but the highest compres-
sion ratio (7.64) and speedup (7.86×).

Teacher 2: mBERT

• mBERT baseline: The teacher model has 178 million parameters and a size of 711 MB, with an
accuracy of 55.62% and a macro F1 score of 53.56%.

• distilBERT: Similar to the previous teacher, distillation reduces the model size to 66 M
parameters and 254 MB, achieving a compression ratio of 2.80. The performance decreases
significantly with an accuracy of 46.50% and a macro F1 of 40.99%.

• distil-mBERT: This model is larger (135 M parameters, 514 MB) with a lower compression ratio
of 1.38. It performs better than distilBERT with an accuracy of 45.72% and a macro F1 score
of 44.28%.

• mini-distil-mBERT: This version achieves the best trade-off among the student models, with an
accuracy of 45.55% and a macro F1 score of 44.39%. With only 52 million parameters and a
size of 198 MB, it has a compression ratio of 3.59 and a speedup of 3.42×.

• tinyBERT: TinyBERT is the smallest model with 14 M parameters and 55 MB. It has the lowest
accuracy (39.54%) and macro F1 (37.34%) but the highest speedup (12.71×) and compression
ratio (12.93).

Table 5: Comparison of KD results on various student models, as well as the changes in accuracy and
F1 from respective student models’ baseline given in parenthesis

Student model Accuracy Macro F1 Speedup #Param (M) Size (MB) Compression
ratio

Teacher 1: banglaBERT (buetnlp)

banglaBERT baseline 62.36 60.06 1.00 110 M 420 MB 1.00
distilBERT 50.02 (↑0.95) 47.34 (↑0.41) 1.67 66 M 254 MB 1.65
distil-mBERT 48.59 (↓2.38) 45.37 (↓2.51) 0.81 135 M 514 MB 0.82
distil-mBERT-mini 49.54 (↑13.6) 46.80 (↑16.9) 0.81 52 M 198 MB 2.12
tinyBERT 38.51 (↑0.6) 36.40 (↑1.53) 7.86 14 M 55 MB 7.64

Teacher 2: mBERT

mBERT baseline 55.62 53.56 1.00 178 M 711 MB 1.00
distilBERT 46.50 (↓2.57) 40.99 (↓5.94) 2.70 66 M 254 MB 2.80
distil-mBERT 45.72 (↓5.25) 44.28 (↓3.6) 1.32 135 M 514 MB 1.38
distil-mBERT-mini 45.55 (↑9.61) 44.39 (↑14.5) 3.42 52 M 198 MB 3.59
tinyBERT 39.54 (↑1.63) 37.34 (↑2.47) 12.71 14 M 55 MB 12.93

Fig. 4 is a bar chart comparing the inference time speedup of 5 student models after distillation to
their respective teacher baseline inference times. Speedup is how many times faster the inference time
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of the distilled student is compared to the baseline teacher’s inference time. The value of both teacher
baselines is set as 1. The blue bar represents student model distilled from banglaBERT as teacher
and the red bar represents distillation from mBERT as teacher. For example, the student distilBERT
achieves a speedup of 1.67 when distilled from teacher 1—banglaBERT and achieves a speedup of 2.7
when distilled from teacher 2—mBERT.

Figure 4: Comparing the inference time speedup of student models compared to the teacher model

Fig. 5 visualizes the comparison of compression ratios provided in Table 5 in the form of a pie
chart. The % area represents the value of compression ratio, while the models in red represents student
models distilled from teacher. banglaBERT and models in blue represents student models distilled
from teacher mBERT. The larger the area in the pie chart, the more compressed the model is compared
to its original teacher model. TinyBERT distilled from mBERT achieved the highest compression.

Figure 5: Pie chart comparing the compression ratio of different models in percentage. The models in
red are distilled from banglaBERT, while those in blue are distilled from mBERT
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The results highlight the trade-offs between model size, performance, and efficiency. As expected,
smaller models generally exhibit reduced accuracy and macro F1 scores due to the loss of information
during distillation. However, the speedup and compression ratios indicate significant efficiency gains,
which can be critical in resource-constrained environments.

1. Performance Trade-offs:
o For both teacher models, the baseline performance in terms of accuracy and macro F1 is

the highest, but this comes at the cost of larger model sizes and slower inference times.

o Among the student models, mini-distil-mBERT from mBERT shows the best balance
between performance and compression. It retains much of the original accuracy and macro
F1 scores while achieving a 3.42× speedup and 3.59 compression ratio.

2. Compression and Speedup:
o The models like tinyBERT achieve extreme compression (up to 12.93×) and speedup (up

to 12.71×) but at the cost of a significant drop in performance. This may be suitable for
applications where speed and size are more critical than accuracy.

o distilBERT from both teachers offers a moderate balance with decent compression (1.65×
and 2.80×) but shows the steepest drop in performance compared to the baselines.

3. Impact of Distillation:
o Distillation to smaller models generally leads to decreased performance metrics. However,

models like mini-distil-mBERT show that careful distillation can maintain a significant
portion of the performance while drastically reducing the size and increasing the efficiency.

These results indicate that larger models like banglaBERT and mBERT are optimal for accuracy,
and smaller distilled models such as mini-distil-mBERT can offer a viable alternative with a better
trade-off for real-time or resource-constrained applications. The choice of model should depend on
the specific requirements of the application, particularly the need for accuracy vs. the need for speed
and resource efficiency.

4.4 Pruning & Quantization
Table 5 compares the performance of different student models obtained through pruning and

quantization techniques, with two baseline models—banglaBERT (buetnlp) and mBERT—serving
as the teacher models. The analysis focuses on the trade-offs between accuracy, macro F1 score,
speedup, parameter count, model size, and compression ratio. The results of our comparative study
on various student models obtained through pruning and quantization techniques reveal insightful
trends about the trade-offs between model performance and efficiency. This analysis is crucial for
deploying emotion recognition models with limited computational resources and memory in real-
world applications.

Table 6 indicates that quantized models can operate much faster, which is particularly beneficial
for applications requiring real-time processing, such as mobile and edge computing devices. Pruned
models offer a balanced trade-off between performance and efficiency. This is visualized in Fig. 6,
which shows a bar chart comparing the speedup results of after quantization or pruning compared to
their original inference time. The baseline speedup is shown as 1. On the other hand, Fig. 7 is a pie chart
representing the compression ratios of models after pruning or compression. The % area represents
the degree of compression achieved, with the larger the are the greater the compression compared to
its original baseline. Both pruned-banglaBERT and pruned-mBERT maintain high levels of accuracy
and macro F1 score while significantly reducing the number of parameters and model size:
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• Pruned-banglaBERT: 61.42% accuracy, 58.95 macro F1 score, 85 M parameters, 324 MB size.

• Pruned-mBERT: 53.71% accuracy, 52.25 macro F1 score, 137 M parameters, 548 MB size.

Table 6: Comparison of pruning and quantization results on various student models

Technique Accuracy Macro F1 Speedup #Param (M) Size (MB) Compression ratio

Teacher 1: banglaBERT (buetnlp)

Baseline 62.36 60.06 1.00 110 M 420 MB 1.00
Pruning 61.42 58.95 1.29 85 M 324 MB 1.30
Quantization 52.33 51.82 4.40 25 M 186 MB 2.26

Teacher 2: mBERT

Baseline 55.62 53.56 1.00 178 M 711 MB 1.00
Pruning 53.71 52.25 1.28 137 M 548 MB 1.29
Quantization 53.19 52.74 1.93 92 M 455 MB 1.56

Figure 6: Comparison of pruning and quantization results on various student models with quant-
banglaBERT showcasing the best compression compared to the other techniques



1656 CMES, 2025, vol.142, no.2

Figure 7: Comparison of pruning and quantization results on various student models based on the
compression ratio of pruning and quantization results

This makes pruning an attractive option for scenarios where slight performance degradation is
acceptable in exchange for reduced computational costs and smaller model sizes. Quantization pro-
vides the highest speedup and compression, albeit with a more noticeable performance degradation.
This technique best suits applications where speed and resource efficiency are prioritized over perfect
accuracy. For instance:

Quant-banglaBERT: 52.33% accuracy, 51.82 macro F1 score, 25 M parameters, 186 MB size.

Quant-mBERT: 52.19% accuracy, 52.74 macro F1 score, 92 M parameters, 455 MB size.

Quantized models are ideal for real-time emotion recognition systems on mobile devices, where
computational resources are limited and quick response times are crucial.

4.5 Combination
The results in Table 7 present a comparative analysis of different model compression techniques,

namely Pruning, Quantization, and Distillation, as well as their combinations, applied to two distinct
teacher models: banglaBERT (buetnlp) and mBERT. The student model used for distillation is distil-
mBERT-mini. The performance of these models is evaluated based on Accuracy, macro F1 score,
Speedup, Parameter Count, Model Size, and Compression Ratio.

1. Teacher 1: banglaBERT (buetnlp)

• Prune + Quant: This combination achieves the highest accuracy (51.46%) and macro F1 score
(49.39%) among all combinations for banglaBERT. The parameter count is reduced to 55 M,
and the model size is compressed to 210 MB, yielding a compression ratio of 2.00.

• Distill + Prune: This technique slightly reduces accuracy (48.07%) and macro F1 score (44.90%)
compared to the Prune + Quant approach. However, it offers a marginal improvement in
speedup (2.12×) and a higher compression ratio (2.12), with the model size reduced to 198 MB.

• Distill + Quant: This approach provides a balanced trade-off with a speedup of 2.39× and a
compression ratio of 2.32. The accuracy (48.12%) and macro F1 score (46.33%) are moderately
high, and the model size is further reduced to 181 MB.
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• Distill + Prune + Quant: Combining all three techniques results in the smallest model size (178
MB) and the highest compression ratio (2.36) for banglaBERT. However, this comes at the cost
of a decrease in accuracy (47.62%) and macro F1 score (44.42%).

2. Teacher 2: mBERT

• Prune + Quant: For mBERT, this combination achieves the highest accuracy (53.61%) and
macro F1 score (53.12%) among all configurations, with a speedup of 2.20× and a compression
ratio of 1.72. The parameter count is reduced to 81 M, and the model size is compressed to
413 MB.

• Distill + Prune: This approach shows a significant speedup (3.42×) and a high compression
ratio (3.60), with the model size reduced to 198 MB. However, it leads to a notable drop in
accuracy (44.77%) and macro F1 score (40.01%).

• Distill + Quant: This technique maximizes the speedup (3.87×) and achieves the highest
compression ratio (3.93), further reducing model size to 181 MB. However, the accuracy
(44.05%) and macro F1 score (42.34%) are slightly lower than the Distill + Prune approach.

• Distill + Prune + Quant: The combination of all three techniques yields the smallest model size
(178 MB) and the highest compression ratio (4.00) for mBERT, but also results in the lowest
accuracy (43.86%) and macro F1 score (40.60%).

The analysis highlights a clear trade-off between model size, compression ratio, speedup, and
performance metrics such as accuracy and macro F1 score. Combining Distillation, Pruning, and
Quantization for both teacher models generally results in the highest compression ratios and speedups,
but at the expense of accuracy and macro F1 score. Therefore, the choice of technique should be guided
by the application’s specific requirements, whether the priority is minimizing model size and inference
time or maintaining higher accuracy and macro F1 scores.

Table 7: Comparison of distillation, pruning and quantization combination results. Distillation uses
distil-mBERT-mini as student model

Model Accuracy Macro F1 Speedup #Param (M) Size (MB) Compression
ratio

Teacher 1: banglaBERT (buetnlp)

Baseline 62.36 60.06 1.00 110 M 420 MB 1.00
Prune + Quant 51.46 49.39 2.00 55 M 210 MB 2.00
Distil + Prune 48.07 44.90 2.12 52 M 198 MB 2.12
Distil + Quant 48.12 46.33 2.39 46 M 181 MB 2.32
Distil + Prune + Quant 47.62 44.42 2.39 46 M 178 MB 2.36

Teacher 2: mBERT

Baseline 55.62 53.56 1.00 178 M 711 MB 1.00
Prune + Quant 53.61 53.12 2.20 81 M 413 MB 1.72
Distil + Prune 44.77 40.01 3.42 52 M 198 MB 3.60
Distil + Quant 44.05 42.34 3.87 46 M 181 MB 3.93
Distil + Prune + Quant 43.86 40.60 3.87 46 M 178 MB 4.00
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4.6 Class-Wise Analysis
From the classification report in the Table 8, we can see the precision, recall, and F1 score for

each class. By analyzing the metrics, it is possible to determine which classes are contributing to
misclassification:

• Disgust has the lowest F1 score (0.4019) and precision (0.4074), indicating that the model
struggles significantly with this class. Both the recall and precision are low, suggesting that the
model is not accurately predicting instances of this class.

• Fear also performs poorly, with an F1 score of 0.4632 and the lowest recall (0.4330). This implies
that the model misses a lot of true instances of “fear,” leading to potential misclassification.

Focusing on improving the recognition of classes like “disgust,” “fear,” and “joy,” might help to
enhance overall classification accuracy. These classes could be contributing the most to misclassifica-
tions, and addressing this could improve model performance.

Table 8: Pre-compression classification report to identify misclassification patterns

Class Precision Recall F1 score Support

Joy 0.5772 0.4644 0.5147 491
Disgust 0.4074 0.3966 0.4019 416
Anger 0.5618 0.5782 0.5699 275
Sadness 0.6961 0.7715 0.7319 674
Surprise 0.4975 0.5564 0.5253 541
Fear 0.4980 0.4330 0.4632 291
Accuracy 0.5577 2688
Macro Avg 0.5397 0.5333 0.5345 2688
Weighted Avg 0.5546 0.5577 0.5339 2688

This classification report was generated before fine-tuning to identify which classes were causing
the most misclassification. Fine-tuning would aim to mitigate these issues and optimize the model’s
performance.

5 Discussion

This study provides essential insights into the trade-offs between performance and efficiency
in deep learning models for emotion recognition in the Bengali language, focusing on deployment
in resource-constrained environments. The Unified Bangla Multi-class Emotion Corpus (UBMEC)
dataset was used as a benchmark to evaluate several models, including BERT, mBERT, distillBERT,
distil-mBERT, and banglaBERT, as well as their pruned and quantized versions. Our findings
emphasize the performance of each model, the impact of model size, and their suitability for real-
world applications.

In our evaluation, the distil-mBERT-mini model achieved the best balance between compres-
sion ratio and speedup, with values of 2.12× and 0.81×, respectively. The model also delivered a
commendable accuracy of 49.54% and a macro F1 score of 46.80%. This combination of efficient
compression, reasonable speedup, and solid performance makes distil-mBERT-mini an excellent
candidate for deployment in settings with limited computational resources, such as embedded systems
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and mobile devices. The results highlight the importance of focused optimizations and domain-specific
pre-training, demonstrating that smaller models can still perform competitively when trained using the
right strategies.

In contrast, smaller models like tinyBERT, despite achieving an impressive compression ratio of
7.64×, experienced a notable decline in performance, with accuracy dropping to 38.51% and a macro
F1 score of 36.40%. This sharp trade-off between compression and accuracy highlights the challenges
of deploying highly compressed models in scenarios where precision is crucial. While tinyBERT may
be suitable for tasks prioritizing speed and resource efficiency, such as real-time emotion detection,
its significant performance degradation makes it less ideal for applications where accuracy is a top
priority.

Among the models distilled from banglaBERT, distil-mBERT-mini again emerged as the most
balanced in terms of performance and size, achieving an accuracy of 49.54% and a macro F1 score
of 46.80%, along with a compression ratio of 2.12×. While this represented a drop in performance
relative to the original teacher model, the gains in size reduction (198 MB) and speedup (0.81×)
were considerable, making it a feasible option in environments where rapid inference and minimal
resource consumption are essential. This trade-off between accuracy and efficiency may be acceptable
in scenarios where speed and computational cost take precedence over precision.

For models distilled from mBERT, mini-distil-mBERT provided the most favorable balance. It
retained a considerable fraction of the original model’s performance, achieving an accuracy of 52.38%
and a macro F1 score of 50.39%, with a compression ratio of 3.59× and a speedup of 3.42×. This
suggests that well-designed distillation approaches can yield efficient and effective models, rendering
them suitable for both speed and accuracy scenarios.

The pruning and quantization experiments provided further evidence of the potential for optimiz-
ing models to achieve a trade-off between performance and efficiency. Pruned models, such as pruned-
banglaBERT and pruned-mBERT, maintained high accuracy and macro F1 scores while significantly
reducing the number of parameters and overall model size. For instance, pruned-banglaBERT
achieved an accuracy of 61.42% and a macro F1 score of 58.95%, with only 85 million parameters and
a model size of 324 MB, resulting in a compression ratio 1.30×. These results indicate that pruning can
be a viable technique when a minor reduction in performance is acceptable in exchange for reduced
computational requirements.

On the other hand, quantization provided the most significant speedup and compression gains but
resulted in a more noticeable performance drop. Quantized models, such as quant-banglaBERT and
quant-mBERT, are particularly suitable for applications where speed and efficiency are prioritized over
accuracy. For example, quant-banglaBERT achieved an accuracy of 52.33% and a macro F1 score of
51.82%, with a compression ratio of 2.26× and a model size of 186 MB. Such models are ideal for real-
time emotion recognition systems on low-power devices, where quick inference and resource efficiency
are paramount.

In addition, we experimented with various combinations of pruning, quantization, and KD
techniques on both BanglaBERT and mBERT models. For the BanglaBERT teacher model, the
Prune + Quant method achieved an accuracy of 51.46% and a macro F1 score of 49.39%, with a
speedup of 2.00×, compressing the model to 46 million parameters and reducing its size to 181 MB.
The Distil + Prune model showed slightly lower performance, with an accuracy of 48.07% and a macro
F1 score of 44.90%, though it offered a slight improvement in speedup (2.12×) and a compressed size
of 198 MB. Combining all three techniques (Distil + Prune + Quant) further reduced performance,
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with an accuracy of 47.62% and a macro F1 score of 44.42%, although it achieved a better compression
ratio.

On the mBERT teacher model, the Prune + Quant method achieved higher accuracy at 53.61%,
and a macro F1 score of 53.12%, with a speedup of 2.20× and a model size, reduced to 413 MB
from the original 81 million parameters. However, the Distil + Prune method resulted in a substantial
decrease in performance, with accuracy dropping to 44.77% and a macro F1 score of 40.01%, though
the speedup improved significantly to 3.42×. The Distil + Quant method offered the best speedup
at 3.87× but recorded lower accuracy (44.05%) and macro F1 scores (42.34). Combining all three
techniques (Distil + Prune + Quant) led to the lowest accuracy at 43.86% and a macro F1 score of
40.60%, though it achieved the highest compression ratio of 4.00× and a notable speedup.

Fig. 8 shows a unique perspective in the form of a radar plot, comparing the compression
capability of the two teacher models, with models in red distilled from teacher banglaBERT and models
in blue distilled from teacher mBERT. Similarly, Fig. 9 visualizes the speedup of different student
models compared to their original teacher model. From the two radar plots, we can see a clear trend
of distillation of mBERT leading in both compression and speedup capability. In both cases, tinyBERT
displays the most significant speedup.

Figure 8: The radar plot compares the compression ratio across different student models, with red
having banglaBERT as the teacher and blue having mBERT as the teacher

Finally, Fig. 10 provides a comprehensive radar plot of the six parameters (Accuracy, Macro F1,
Speedup, #Params, Size, Compression ratio) of different models after pruning or quantization.



CMES, 2025, vol.142, no.2 1661

Figure 9: The radar plot compares speedup across different student models, with blue having
banglaBERT as teacher and red having mBERT as teacher

Figure 10: This radar plot compares the pruning and quantization techniques for both banglaBERT
and mBERT models. Each axis represents a different metric, normalized based on the mean and range
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These findings highlight that while pruning and quantization offer substantial size and speed
improvements, they come with trade-offs in terms of accuracy. Among the models, those based
on mBERT generally outperformed banglaBERT in terms of accuracy and macro F1 scores, but
banglaBERT variants offered better performance-to-size balance, particularly in resource-constrained
environments. The study underscores the importance of carefully balancing performance and compres-
sion techniques, especially for deployment in real-time applications where both speed and accuracy are
critical.

The results of this study demonstrate that combining pruning, quantization, and KD (Distil +
Prune + Quant) offers the highest speedup and compression ratios but at the cost of a significant
performance drop. This approach is particularly suited for scenarios where model efficiency pre-
cedes precision, such as real-time emotion detection on low-power devices. Future research could
explore further refinements in combining these techniques to create models that achieve both high
performance and substantial compression, offering practical solutions for real-world applications with
limited computational resources.

6 Limitations and Future Work

Despite the successful implementation and evaluation of the compression techniques, the research
had several limitations:

• Dataset Size and Diversity: The Bangla dataset used for training and evaluation might not be
comprehensive enough to capture the full linguistic diversity of the Bangla language, potentially
affecting the model’s generalizability.

• Hardware Constraints: The scope of pruning and quantization was constrained by available
computational resources, limiting the extent to which these techniques could be explored and
optimized. Additionally, KD is time-consuming, requiring significant computational resources
and multiple training epochs to achieve good performance.

• Baseline Comparison: While the research focused on comparing compression techniques, a
more thorough baseline comparison with other state-of-the-art models and methods for Bangla
language processing would provide a more robust evaluation.

Our study highlights that while large models like banglaBERT (buetnlp) and mBERT deliver high
performance, techniques such as pruning and quantization can significantly enhance model efficiency
with manageable performance trade-offs. Pruned models strike a good balance, retaining much of
the original performance while being lighter and faster. Quantized models, on the other hand, offer
the best improvements in speed and size reduction, making them suitable for resource-constrained
environments where efficiency is paramount.

The research opens several avenues for future improvements:

• Dataset Enhancement: Expanding the dataset to include a wider variety of texts and larger
samples would improve the model’s ability to generalize and perform accurately across different
Bangla language contexts.

• Advanced Compression Techniques: Exploring more advanced and recent distillation, pruning,
and quantization methods could further enhance the model’s efficiency without significant loss
in performance. We plan to use reverse knowledge distillation and other distillation techniques
to improve the accuracy further.
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• Multilingual Models and Dataset: Investigating the application of multilingual and cross-lingual
models, such as mBERT or XLM-R in multilingual datasets, could improve performance by
leveraging shared knowledge across languages.

• Real-World Applications: Deploying the compressed models in real-world applications and
gathering user feedback would provide valuable insights and help refine the models for practical
use cases.

• Automated Hyperparameter Tuning: Implementing automated hyperparameter tuning tech-
niques could optimize the performance of the models during fine-tuning, leading to better
results with less manual intervention.

7 Conclusion

In this research endeavor, we implemented KD, pruning, and quantization on a Bangla dataset to
assess and contrast the efficacy of these model compression strategies.

• Knowledge Distillation: We utilized a more compact DistilBERT model as the student and a
larger, pre-trained BERT model as the teacher. The objective was to preserve critical knowledge
while diminishing the model’s complexity and enhancing its operational efficiency.

• Pruning: This methodology entails the elimination of less significant neurons or weights
from the model, thus minimizing the overall dimensions and computational demands without
considerably compromising the model’s efficacy.

• Quantization: This technique reduces the precision of the model’s weights and activations,
typically converting from 32-bit floating-point representations to 8-bit integers. This adjustment
yields a more compact model and accelerates computation, albeit with a potential compromise
in accuracy.

The experiments illustrated the efficacy of each method in terms of model size reduction and
performance indicators, emphasizing the trade-offs between accuracy and computational efficiency.

In conclusion, this research demonstrated the potential of model compression techniques for
enhancing the efficiency of Bangla language models, paving the way for more accessible and resource-
efficient NLP applications in the Bangla language. Future work should address the identified limita-
tions and explore the suggested improvements to build more robust and effective language models.
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