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ABSTRACT

Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external

magnetic �eld are essential materials for modern technological applications. �erefore, the understanding and

potential for controlling the hysteresis phenomenon in these materials, especially concerning the disorder-induced

critical behavior on the hysteresis loop, have attracted signi�cant experimental, theoretical, and numerical research

e�orts. We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop

critical behavior in disordered ferromagnetic systems related to the non-equilibrium stochastic dynamics of domain

walls driven by external �elds. Speci�cally, using the extended Random Field Ising Model, we present di�erent

simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes

and the collective nature of the magnetization �uctuations associated with the criticality of the hysteresis loop

for di�erent sample shapes and varied parameters of disorder and rate of change of the external �eld, as well

as the in�uence of thermal �uctuations and demagnetizing �elds. �e studied examples demonstrate how these

numerical approaches reveal new physical insights, providing quantitativemeasures of pertinent variables extracted

from the systems’ simulated or experimentally measured Barkhausen noise signals. �e described computational

techniques using inherent scale-invariance can be applied to the analysis of various complex systems, both quantum

and classical, exhibiting non-equilibrium dynamical critical point or self-organized criticality.
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d Dimensionality

R Disorder

Rc Critical disorder

Reff
c

The effective critical disorder

r Reduced disorder, r = (R− Rc)/R

H External magnetic field

Hc Critical magnetic field

Heff
c

The effective critical magnetic field

h Reduced magnetic field

hi Random magnetic field

ρ(hi) Distribution of random magnetic field

heff
i

Local effective magnetic field

si Spin at a lattice site i

znn Lattice coordination number

H Hamiltonian

2 Temperature

c Fraction of thermally flippable spins

� Driving rate

Jij, J Exchange coupling constant

Jdipole Dipole-dipole interaction constant

JD Demagnetizing coefficient

t Time

V(t) Response signal

Vth Threshold imposed on V(t)

M Magnetization

Mc Critical magnetization

Meff
c

Effective critical magnetization

χ Susceptibility

X = S, T , E, A X = size S, duration T , energy E, amplitude A

D(int)

X (X) Integrated distribution of avalanche parameter X

D(w)

X (X) Windowed distribution of avalanche parameter X

τ ,α, ε,µ, ν, η, ζ RFIM critical exponents

σ ,β, γx/y, δ, θ , z,φ RFIM critical exponents (cont.)

Tw Waiting time

P(f ) Power spectrum density at frequency f

GR(x) Correlation function at inter-spin distance x

ξ Correlation length

Df Fractal dimension

Hq Generalized Hurst exponent

Fq Fluctuation function

erfc The complementary error function erfc(x) = (2/
√

π)
∫ ∞
x
e−t2dt

Acronyms

RFIM Random Field Ising Model

NEQ Nonequilibrium

EQ Equilibrium
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ZT Zero-temperature

BHN Barkhausen noise

HL Hysteresis loop

HLC Central part of the hysteresis loop

RFC Random field configuration

AE Activity event

FDR Finite-driving rate

MFR Multifractality

AAS Average avalanche shape

UWN Uniform white noise

GWN Gaussian white noise

1 Introduction

Disordered ferromagnetic materials are the subject of intense theoretical and experimental

research due to their physical characteristics associated with the domain structure [1–3]. Recent

research surveys [4–7] elucidate that these materials, especially low dimensional samples and

ferromagnetic-antiferromagnetic heterostructures, are considered promising materials for modern

technology applications. Disordered ferromagnets possess intricate domain structure leading to the

hysteresis behavior [8,9] in the external magnetic field; see also recent review [10] and references

therein. Hysteresis behavior is vital for various applications of magnetic materials [11]. Therefore

more attention is devoted to predicting and optimizing hysteresis properties using different numerical

tools [12]. During the reversal processes by slow ramping of the external field over the hysteresis

loop, the moving domain walls interact with the structural and magnetic disorder [13], leading to

stochastic changes of the magnetization. The magnetization fluctuations are experimentally measured

as Barkhausen noise (BHN), for example, in bulk materials [14–17] and thin films [18–21], as well as in

samples with varied thickness [22,23]. Considering the Ising model, one of central pillars of statistical

physics [24], theoretical investigations focusing to the dynamic phenomena on hysteresis use the field-

driven spin models with random bond [25] or random field disorder [26–28]. These investigations

revealed that the collective nature of the magnetization changes with avalanche-like behavior on the

hysteresis are associated with a disorder-induced critical point [29–32].

This out-of-equilibrium critical dynamics is characterized by long-range temporal correlations

and multifractal features of the BHN [33]. Among different types of models of disordered systems, the

Ising model with random fields [34–37] appeared as the most attractive for theoretical investigations

of the in- and out-of-equilibrium criticality. It was also recognized as an appropriate model for weakly

disordered antiferromagnetic materials in an external field, where structural disorder induces local

random fields [38–40]. For more details regarding recent studies on antiferromagnetic systems, see

[41–44]. It should be noted that the 100 years of the Ising model, celebrated this year, have shown its

relevance to many different phenomena in complex systems [45]. However, certain limitations of the

model in describing the magnetism of solid materials are evident, for example, taking into account

more complex domain walls in domain structures that are associated with hysteresis phenomena,

distinguishing hysteresis properties along different easy axes and the influence of other types of

disorder that do not break the local rotational symmetry. In addition to the theoretical interpretation of

the behavior of disordered ferromagnetic systems, using the random-field Ising model in interpreting

experimental Barkhausen noise proved crucial for some systems [17,46]. In a more general context,

statistical physics and random field theory were recently applied for spatial data modelling, as

described in the book [47].
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Themodel treats a system of Ising spins located at lattice sites and quenched impurities interpreted

by randomly distributed magnetic fields. Among the nearest neighboring spins the ferromagnetic

interaction occurs, in addition to the interaction with the external magnetic and a quenched random

field. The zero-temperature variant of the model proposed in [48] captures the essential features

of avalanching dynamics while neglecting thermal effects. Triggered by the external magnetic field

changes, the system relaxes in spin-flipping avalanches, reflected by the magnetization jumps. The

stochastic process of magnetization reversal occurs along the hysteresis loop, characterizing the

collective response of the system. The occurrence of the out-of-equilibrium critical dynamics on

the hysteresis loop together with its dependence on pertinent physical parameters, system’s spatial

dimensionality and shape, represent essential challenges for controlling and predicting the reversal

processes in these materials.

Recently, it has been recognized that besides hysteresis-loop criticality in disordered ferromagnets,

numerous other complex systems exhibit a similar avalanche-like response to the external driving

forces. Further examples of such systems span from earthquakes [49–53] and propagation of interfaces

in various kinds of randommedia [54–58] to brain networks and neuronal activity [59–62], dislocations

in crystal structures [63–66], invading imbibition fronts in porous media [67,68], response of the

mechanically pressured wooden materials [69] to financial booms [70] and epidemics [71], all having in

common that the underlying systems evolve through the metastable states due to an avalanche type of

relaxation. Despite being different at a microscopic level, these systems have some universal features

of their critical states in common. This universality implies the possibility of extending the findings

and methodologies developed on the systems that are tractable for experimental realizations, such as

disordered ferromagnets, to characterize such phenomena in systems that are elusive to controlled

experiments.

Here, we provide a comprehensive review of numerical approaches to model the criticality of

the hysteresis loop in disordered ferromagnets based on extended nonequilibrium (NEQ) Random

Field Ising Model (RFIM) with different physical parameters and driving regimes inspired by

experimentally achievable conditions. The presented overview of the results shows how these modeling

approaches, supported by advanced computational techniques using the inherent scale invariance

of the dynamics, adequately describe the experimentally observed hysteresis behavior and provide

new physical insights into the dynamic critical phenomena of disordered ferromagnetic systems. The

developed computational techniques can be adjusted to analyze nonequilibrium critical dynamics of

ferromagnetic/antiferromagnetic bilayers [72,73] and various quantum [74–76] and classical complex

systems, in particular, nanonetworks [77] and higher-order self-assembled nanostructures [78–82] that

are increasingly interesting to modern technology.

Challenges in Numerical Modeling of Disordered Ferromagnets Hysteresis Behaviour

Occurrence of extreme events such as infinite or system-spanning avalanches underpins the system

criticality, characterized by the scale invariance of the created events whose features are power-law

distributed and diverging correlation length [34]. Over time, several models were developed to describe

this complex phenomenon and answer whether the model under study exhibits a critical behavior [83].

Unraveling this is not an easy task due to the multitude of mutually intertwined factors to which the

underlying systems are sensitive, such as the degree of disorder or the type and rate of driving, presence

of the demagnetizing fields and thermal effects, sample geometry, which is of particular relevance for

applications, and other. In the following, we briefly describe these factors that represent challenges for

computational modeling of the hysteresis-loop critical phenomena.
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As the extensive studies [28] have shown, the critical behavior of the zero-temperature (ZT) RFIM

depends on the dimension d of the studied system [31,84]. In the range of dimensions 2 ≤ d < 6, ZT

NEQ RFIM displays a nontrivial critical behavior [31], while for d ≥ 6, the behavior of the system

is described by mean-field approximation [35,84,85]. In the nonequilibrium field-driven version, the

system evolves through metastable states that represent local, and not global energy minima, in

contrast to the equilibrium critical behaviour studied by the RFIM [86–88].

Criticality of the equilibrium and nonequilibrium version of themodel for systemswith dimension

d ≥ 3, displayed in the matching of many avalanche properties, lead to the presumption that they

share the same universality class [37,87,88]. However, that is not the case for the 2D model since the

ferromagnetic phase, whose existence is demonstrated in the case of nonequilibrium model [89,90],

is not possible in the thermodynamic limit of the equilibrium version [91]. In an attempt to describe

this nontrivial critical behavior, both perturbative [92–94] and nonperturbative renormalization group

approaches [95,96] were used.Recently some advances have beenmade on understanding the principles

of universality [36,97], dimensional reduction [98] and supersymmetry [99] in the equilibrium version

of the model. On the other hand, dimension and geometry influence of underlying lattice are shown

to have different impact on the nonequilibrium critical behavior [100–103].

Particular attention in the recent studies of nonequilibrium systems is devoted to the extreme,

catastrophic events in which most of the system’s constituents change their state [104,105]. Under-

standing the particular conditions under which these events occur would reveal essential details

regarding the mechanism of some natural phenomena such as earthquakes, snow avalanches, cracks

in materials, etc. [27,106–108], that are of immense importance due to the possible significant

consequences they might cause.

In recent years, due to the increased interest in the practical applications of thin ferromagnetic

materials, studies of nonequilateral systems with different geometry aspects [109] and thin systems

[110–114] emerged, with some aspects in resemblance to the criticality of spin systems situated on a

complex network topology [115–118]. Disordered ferromagnetics aremainly used asmemorymaterials

in the form of thin films [119–122] and nanowires [123–126], putting forward the experimental

investigations of critical dynamics of BHN [127–129]. The ZT NEQ version of the RFIM was very

suitable for interpreting actual experiments since the thermal fluctuations are negligible in most of

them, and the underlying dynamics is closer to the one in externally driven ferromagnets. Driving

these systems by the external magnetic field at finite rates [130] provides a more realistic framework

for the numerical interpretation of experimental measurements conducted on ferromagnetic strips and

ribbons [21,131,132] and has been of increasing interest in recent experimental studies [17,22,114,133].

Besides dimensionality, one may ask to which extent the model describes the influence of a

variation of the geometry of the underlying lattice [109], including the reconsideration of the univer-

sality classes within the RFIM [100,134]. Recently, a competitive conjecture was put forward that the

universality classes in the NEQ model are determined by the topology of the lattice emphasizing the

role of its coordination number in addition to its spatial dimensionality [102,134–136]. This conjecture

was to some extent confirmed by contrasting the criticality of the model on triangular [100], quadratic

[89] and hexagonal (i.e., honeycomb) [103] 2D lattices. The absence of critical behavior for the latter

lattice introduced doubt in the presumed existance of a single universality class for all periodic 2D

lattices in the case of ZT NEQ RFIM.

Another significant aspect, particularly for experimental studies, is the presence of unwanted

external noise in the recorded data requiring the inevitable procedure of using the discrimination

threshold. In the experimentally obtained signals, avalanches are identified as signal parts outside
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the imposed threshold region (i.e., the region between lower and upper threshold levels). Recent

experimental [137] and theoretical [138–141] studies delivered some relevant results regarding the con-

sequences of the implementation of the finite detection threshold when analyzing the original signal,

which leads to correlated bursts of activity by separating the avalanche events into subavalanches.

Effects of thresholding have also been considered in some other types of signals, e.g., in the context of

fracture [142–144], and argued to be of importance in seismicity [145,146].

Driving mode represents one of the essential factors influencing the avalanche-like response.

Theoretically, the three types of driving are recognized: adiabatic, in which the external magnetic

field is increased for the exact amount needed to trigger the least stable spin and kept unchanged

until the avalanche stops; quasistatic, in which the incrementing of the external magnetic field is

performed in fixed steps until the conditions for the initiation of the avalanche are met, from which

moment is kept constant as long as the avalanche propagates; and a finite rate driving during which,

throughout the whole simulation time, the external magnetic field is increased at a constant rate.

According to the value of the driving rate, the regimes of slow, intermediate and fast driving are

identified [130]. The underlying dynamics in the finite driving regime is profoundly influenced by

the interplay of the system’s disorder and the driving rate at which the magnetic field is incremented.

In this type of driving, multiple avalanches may simultaneously propagate, making the analysis and

interpretation of the obtained data of the avalanching dynamics far more complex.

The different ways of driving have a significant impact on the system’s behavior, with one of the

most noticeable effects being the time/space profile of avalanche evolution. Adiabatic driving, during

which only one avalanche is active at a time, is conducted under precisely defined conditions realizable

in the numerical simulations but not in the actual experiments. A little bit closer to realistic is the

quasistatic driving type, in which the regimes with small (adiabatic-like) and large field increments

can be identified, promoting the temporal and occasionally spatial merging of avalanches [147]. This

amalgamation of avalanches is expressed the most at the fast regime of finite rate driving protocol,

comprising an overall system-spreading activity [148] without the possibility of distinguishing the

contribution of individual avalanches [130,147–149]. This type of driving is even more realistic and

comparable to the experimental situations. In one of the previous studies [150], it has been shown

that due to the merging of avalanches (swelling) the overall duration of avalanches can be extended;

at the same time, the merged avalanche will appear in the distribution while the merging avalanches

vanish (merging absorption). Similarly, for the avalanches overlapped in time (and spatially separated),

the overlapped avalanche appears, whereas the overlapping avalanches disappear from the distribution

(temporal absorption). Until now, many experiments have been conducted on disordered ferromagnetic

materials using the finite driving rate protocol for example, in [14–16,133]. Works in [26,150–153]

attempt to describe theoretically the observed critical dynamics phenomena with the finite driving

rate and its impact on the hysteresis loop and coercive field was considered in [18,19,154–156].

The study of the effects that the type of driving inflicts on the system is further augmented by

employing the newly proposed stochastic driving, realized by stochastic increments of the external

magnetic field in each time step of the system’s evolution, regardless of the current state of the ongoing

system’s activity. This type of driving opens the possibility to extend the findings and perform the

more realistic interpretation of seismic activity [50], owing to its importance due to the unwanted

ramifications. In some recently conducted experiments on the propagation of a crack line in a random

environment [57,142,157,158], a seismic-like behavior has been demonstrated, also found in the studies

of compressional fracture [159]. Stochastic driving represents so far the most realistic scenario,

allowing much closer benchmarking with the results of the experimental studies and the possibility
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to extend to the numerous models developed in an attempt to explain and interpret this complex

avalanche dynamics [143,160–163].

Another aspect concerns the thermal effects and the presence of the demagnetization fields in

the system. These physical factors bring challenges, especially in understanding the intricate interplay

of various parameters, interpreting and implementing the solution numerically, and comparing the

numerical results with experiments. As shown in [164], the extended form of RFIM can be an excellent

alternative for the micromagnetic modeling, which is particularly relevant for applications. The

stochastic nature of the thermally triggered spin flips tends to impede accurate avalanche detection by

contaminating the signal, producing an excess of minor activity events, and limiting the spread of large

avalanches. Nonetheless, the demagnetizing field limits the amount of underlying spin activity events,

and the maximum length of magnetization jumps by counteracting the external field and introducing

non-local interactions. In a recent study [164], an appropriate algorithm to study these combined

effects was developed. Notably, it demonstrates that the non-zero temperature modifies the remanent

magnetization and coercive field, leading to the shrinkage of the hysteresis loop and the amplification

ofminor activity events. By introducing extended linear segments, the higher demagnetizing coefficient

modifies the loop shape and changes the multifractal nature of the magnetization fluctuations. Similar

to the analogous ZT dynamics, the statistics of well-identified intermediate-range activity events are

controlled by the same scaling exponents.

In the next section, we describe the most general version of the NEQ RFIM to study the

critical behavior on the hysteresis loop of disordered ferromagnetic systems, assuming different driving

conditions and the aforementioned physical factors, followed by the section presenting the appropriate

computational techniques. The rest of the review is structured so that each section presents the

results obtained in numerical studies of particular hysteresis phenomena, emphasizing the influence

of specific physical factors.

2 Random Field Ising Model (RFIM): Definition, Parameters and Simulation Approaches

The Random Field Ising Model describes systems of Ns mutually interacting classical Ising spins

si = ±1 exposed to external magnetic field H and a quenched local random magnetic field hi. The

spins are situated at the sites i of some underlying finite lattice with space dimensionality d, shape and

size specified in each model realization. Mostly employed are the two-dimensional (2D), and three-

dimensional (3D) lattices, however lattices of other dimensions are also used (for d > 3, see, e.g.,

[31]). Frequently utilized are finite lattices cut out of a corresponding infinite lattice with translation

symmetry like the quadratic lattice of size (Lx,Ly) in 2D, cubic lattice of size (Lx,Ly,Lz) in 3D, and

analogously hypercubic lattice for d > 3. In all three of the foregoing lattice examples the number znn of

nearest neighbors for each site equals 2d, however, this number can be different for other types of lattice

elementary cell, like znn = 6 for the triangular [100], and znn = 3 for the honeycomb [103] 2D lattices.

Finally, the model can be situated on a lattice without translation symmetry, such as Bethe lattice,

and/or translation symmetry may be absent due to the presence of irregularly distributed vacancies

(lattice sites not ‘occupied’ by a spin), and/or irregular interfaces consisting of spins with fixed value.

In general, the interaction of each spin Esi with the external magnetic field is accomplished through

the coupling −µ0 Emi · EHi(t) between the magnetic dipole moment Emi = γ (s)
i
h̄Esi associated with Esi, and

the external magnetic field EHi(t) at the spin’s site i at the current moment (of time) t; here, γ (s)
i

is the

gyromagnetic ratio for the spin Esi, usually taken to be the same for all spins in the model, γ (s)
i

= γ (s).

Because the RFIM is not a vector spin model, one can assume here that some (arbitrary) direction

is chosen in space such that for all spins the projection Esi · Eu0 of Esi onto the unit vector Eu0 of this
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direction equals si enabling in the RFIM the incorporation of the coupling between spins and the

external magnetic field as −Hi(t)si; here,Hi(t) = EHi(t) · Eu0 is the projection of EH onto Eu0, and the units

are appropriately rescaled for simplicity (which is allowed in models).

Analogous form −hisi is taken for the coupling between the spin si and the random field hi at the

spin’s site i. This local random field {hi}Nsi=1 is postulated as quenched (meaning that its values are fixed

in time), and could be considered to originate from various types of real systems’ imperfections not

specified in the RFIM. Besides, this field is random, meaning that its values hi at different lattice sites

are chosen out of some type of zero-mean random distribution ρ(h) with finite standard deviation R

measuring disorder in the RFIM systems, which could be site-dependent. Here, the common approach

is to use Gaussian distribution, ρ(h) = 1

R
√
2π
exp (−h2/2R2), with the same disorder R for all sites.

The RFIM studies, performed with another choice of the random filed distribution ρ(h), exist but are

relatively rare-see, e.g., the case of parabolic and uniform distributions in [87], Laplace and double

Gaussian distribution in [97], and the case of Gaussian distribution with Rmodulated by the presence

of crystal grains [165].

Independent on the choice of the distribution ρ(h) is the questionwhether there is some correlation

between the values of random field at different lattice sites. When the values are uncorrelated, then

〈hihj〉 = R2
i
δij, where δij is the Kronecker delta function and Ri is the value of disorder at the site i.

This is the case in majority of past RFIM studies although the model itself doesn’t exclude possible

correlations.

Besides the interaction of spinswithmagnetic fields (external and random), the spins alsomutually

interact. The strongest type of interaction between the spins is the (electrostatic in nature) exchange

interaction between pairs of spins, giving the contribution−Jijsisj from each pair si and sj, to the overall

system Hamiltonian through the coupling constant Jij. When Jij > 0 the coupling is ferromagnetic,

for Jij < 0 the coupling is antiferromagnetic, while for Jij = 0 the spins si and sj are exchange

decoupled. The exchange interaction is typically considered as short-ranged, meaning that it is the

most prominent for the nearest neighbor spins and significantly weaker for further neighbors (e.g.,

exponentially decaying with the inter-site distance). On this ground, frequently used is the nearest-

neighbor approximation inwhich all pairs of spins except nearest neighbors are considered as exchange

decoupled.

Another type of spin-spin interaction is the dipole-dipole interaction between the magnetic dipole

moments Emi and Emj associated with pair of spins Esi and Esj. In general, the dipole-dipole interaction is

of the form

− µ0(γ
(s))2h̄

2

4πr5
ij

[3(Esi · Erij)(Esj · Erij) − Esi · Esjr2ij],

where Erij = Eri−Erj is the position vector of site i relative to site j. In theRFIM this expression is simplified

to

− Jdipole

3cos2θij − 1

r3
ij

sisj,

where Jdipole = µ0(γ
(s))2h̄

2
/4π , and θij is the angle between Erij and Eu0. Being inversely proportional to the

cube of inter-site distance rij, the dipole-dipole interaction is not (like the exchange interaction) limited

to near spins, but instead, it affects all pairs of spins, i.e., it is long-ranged. Yet, it is typically weaker

than the exchange interaction, and therefore often omitted in the model analysis.
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Besides, the spins located at the boundaries of finite lattices generate inside the sample a long-

range (effective) demagnetizing magnetic field which acts against the external field. In the RFIM, this

field is taken as a homogeneous field −JDM and its coupling with individual spins as JDMsi, where

M = (
∑

i
si)/N is the actual magnetization of the system and JD ≥ 0 is the demagnetization coefficient

(factor). The adopted form of demagnetizing field is by all means approximate, so in simulations and

analyses it is most appropriate to assign such values to JD that conform to the values theoretically

found for the homogeneously magnetized samples (e.g., JD = 1/3 for cubic and spheroidal samples).

Therefore, the most general form of Hamiltonian for the RFIM spin systems in the external

magnetic field with a time profile Hi(t) reads

H = −
∑

{ij}

(
Jij + Jdipole

3cos2θij − 1

r3
ij

)
sisj −

Ns∑

i=1

(Hi(t) + hi − JDM) si, (1)

where the summation in the first term is performed over all pairs of distinct spins, so that each spin si
is under the influence of the effective magnetic field

heff

i
(t) =

∑

j 6=i

(
Jij + Jdipole

3cos2θij − 1

r3
ij

)
sj +Hi(t) + hi − JDM, (2)

giving contribution −si(t)heff
i

(t) to Hamiltonian (1). If si(t)h
eff
i

(t) ≤ 0, the spin si(t) is field-unstable at

the moment t, and the value of Hamiltonian (1), henceforth simply the system energy, will be reduced

by flipping of si (i.e., change of si to the opposite value −si). Otherwise, if si(t)h
eff
i

(t) > 0, the spin si(t)

is field-stable, so its flipping would increase the system energy.

Although absent in Hamiltonian (1), the lattice-spin interactions are indirectly present in the

RFIM through the thermal fluctuations of spins manifested when the system temperature 2 > 0 in

which case the model is called thermal. Otherwise, when 2 = 0, the thermal fluctuations of spins are

absent and the model is athermal or zero-temperature. This 2 = 0 version of RFIM is of twofold

importance because in many real-world systems, to which the RFIM can be applied, the thermal

fluctuations are negligible in the relevant range of temperatures, and also because the athermal RFIM

version is much simpler than the thermal, both for simulations and analyses.

In the RFIM, the state {si}Nsi=1 of the spin system changes through the flipping of individual spins.

In the nonequilibrium (NEQ) model version, which is the subject of this review article, the individual

spins flip due to appropriate change of their effective magnetic field and/or thermally if 2 > 0.

Thus, in the athermal NEQ RFIM version, only the first cause applies, and this is usually done by

parallel updating of orientation of spins, meaning that all spins which are field-stable at the moment

t will remain unchanged and the field-unstable spins will be flipped at the next moment t + 1t (in

simulations, both t and its increment1t are discrete, usually with1t = 1). Due to such local dynamical

rule and parallel updating, the system evolves deterministically, traversing (almost exclusively) through

the nonequilibrium states in a tendency to reduce its energy. Other (and less used) way, employed in

the athermal model version, is to perform sequential field-stability testing and flipping of spins one by

one, in which case the system’s evolution depends on the random order in which the spins are tested.

Flipping of spins, together with a possible change of the external magnetic field, modifies the

effective magnetic field heff
i
of the system’s spins. Thus, when JD > 0, the magnetizationM is (typically)

altered due to spin flipping which causes a change in heff
i
for all spins through the term −JDM in (2).

Also, the dipole-dipole interaction term in (2) becomes different for all (especially near) spins, provided

that this type of interaction is included in the model. However, the contribution coming from the
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change in the exchange-coupling term in (2) is the most prominent, or the only one when JD = 0,

Jdipole = 0, and constant H at the next moment t+ 1t.

In thermal (i.e., 2 > 0) model, together with the preceding field-stability testing, the spins are

also checked for thermal flipping. Thus, in [166], the changes 1H of the external magnetic field are

sandwiched between a preselected number Nth of Monte-Carlo sweeps sequentially applied, so that in

each sweep a spin si is randomly chosen and flipped with the probability min(1, e−1Ei/2), where 2 > 0

is the temperature, and 1Ei is the change in energy proposed by flipping of si. By this rule, the selected

spin si is certainly flipped if it is field-unstable (1Ei < 0), however, if it is field-stable (1Ei > 0), it may

be also flipped with probability e−1Ei/2. As a consequence, the central role is played by the time-scale

of thermal flipping, set by the number Nth regardless of the system size, while the time-scale for the

field changes is introduced indirectly, relative to the thermal flipping time-scale.

To check the stability at the current moment for all (and not only selected) spins, a different

approach is proposed in [164]. There, the thermal flipping is tested on a set of spins, randomly selected

at each moment t and containing a preselected fraction c = 1Ns/Ns of spins. At the next moment

t + 1t, each spin outside this set will be flipped if it is field-unstable, while each spin si from the set

will be flipped with the (Boltzmann-type) probability of thermal flipping probability

p(th)

i
= exp (−siheff

i
/Tr)

exp (−siheff
i

/Tr) + exp (siheff
i

/Tr)
, (3)

where the parameter Tr = 2/Tc stands for the temperature relative to some temperature Tc that

is characteristic in the model for the underlying system (e.g., Tc = J for the system of purely

ferromagnetic spins with Jij = J). Hence, for sih
eff
i

< 0 (i.e., if the selected spin si is field-unstable)

it is likely (but not certain) that it will be flipped, whereas for sih
eff
i

> 0, the selected spin si has a small

nonzero chance for flipping.

As stated, the external magnetic field varies in time in the NEQ RFIM. This is realized either in

some deterministic variation pattern (e.g., adiabatic, quasistatic, finite driving rate), or by stochastic

external field increments (see, e.g., Reference [149]). In the adiabatic and quasistatic driving protocols,

employed in the athermal model versions, the external field is changed only if all spins in the system

are field-stable. In the adiabatic case the field is changed in the exact amount that destabilizes the least

stable spin (and flips it at the next moment), while in the quasistatic driving the field increment is

constant, 1H = const, possibly causing flipping of one or more spins, especially for the large systems.

Flipping of spin(s) may destabilize some spins (most often the nearest neighbors of the flipped spin);

their flipping may further destabilize other spins, and so on, leading to a time-series of flipping in

the form of an avalanche. In the case of adiabatic models with JD = 0, Jdipole = 0, and the exchange

coupling limited only to the nearest neighbors, each avalanche is nucleated by flipping of a single spin

and afterward spread over a cluster of (connected) spins. In other adiabatic cases, or when the driving is

quasistatic, multiple avalanche nucleations at spatially distant locations may happen. This leads to the

onset of avalanches that simultaneously propagate over several spin clusters initially space-separated

and later possibly merging in space. Whether due to such, or to individual avalanches, the system

response is expressed in terms of the numbers n+(t) and n−(t) of spins that flip up and down at the

moment t, giving the response signal of the system,V(t) = n+(t)−n−(t), and the corresponding change

in magnetization 1M(t) = 2V(t) during one time-step at the moment t. Each subsequence of the

V(t) sequence, consisting of consecutive terms such that the underlying n+(t) and n−(t) satisfy n+(t) +
n+(t) > 0, represents a system activity event, which is a generalization of an individual avalanche.



CMES, 2025, vol.142, no.2 1031

In addition to adiabatic and quasistatic driving (which tends to adiabatic when 1H → 0 for any

finite system), there is the finite rate driving protocol in which the external magnetic field, regardless

of the system activity, increases/decreases along the rising/falling part of the magnetization curve at

some constant driving rate � = 1H/1t (given by the field increment/decrement 1H when 1t = 1

and also tending to adiabatic when � → 0). This type of driving, enhancing spin flipping and thus

facilitating activity propagation due to perpetual modifications of spins effective magnetic field, is of

considerable importance because it is encountered in a large number of experiments performed on

magnetic systems.

Compared to athermal model, the system response is essentially different in the thermal model

regarding events duration. Thus, while all events in athermal model are of finite duration this is almost

never the case in the thermal model due to the thermal flipping of spins. For this reason, unless some

threshold is introduced, the decomposition of system response into activity events separated in time is

impossible, making the adiabatic and quasistatic driving unrealistic. So, in [164], the external magnetic

field is incremented in each step, whereas in [166] the field is incremented after Nth (elemental) time-

steps, while meanwhile the thermal flipping of spins is performed. Note that in pure ferromagnetic

case, due to thermal flipping and other factors influencing the effective magnetic field, some spins

may be back-flipped, i.e., changed from +1 to −1 on the rising part of magnetization curve (and

opposite on the falling part). Such back-flipping is possible when JD > 0 even in athermal model and

impossible when JD = 0 and Jdipole = 0.

The analysis of RFIM systems evolution is commonly performed on their response signal decom-

posed into events; the exception is the analysis of power spectra P(f ) [167] giving the variation with

frequency f of the released power frequency density which is performed without any decomposition

on the entire selected part or on the whole response signal. In the athermal version of ferromagnetic

systems each activity event gives a part of consecutive non-zero values in the response signal,V(t) > 0

along the rising part of the magnetization curve (and V(t) < 0 along the falling part). These parts

are taken as events which are the subject of further statistical analysis. In other cases, such simple

decomposition is impossible, and the decomposition of the response signal into events is accomplished

with the aid of some (suitably chosen) discrimination threshold Vth. Provided that Vth ≥ 0 is selected,

the response signal is decomposed into longest subsequences {V(ti),V(ti+1), . . . ,V(te)} consisting of

signal values |V(t)| > Vth, all positive (or all negative), and registered in consecutive moments between

the initial moment ti and ending moment te of the subsequence in question. Each such subsequence

is considered as an event, and for any moment t that is outside all events |V(t)| ≤ Vth. Each event

can be characterized by several parameters like its duration T = te − ti + 1, size S = ∑
te≤t≤ti

V(t)1t,

energy E = ∑
te≤t≤ti

V 2(t)1t, and amplitude A = max{|V(ti)|, |V(ti+1)|, . . . , |V(te)|}, and for each such

parameter X the corresponding distribution DX(X) is collected. These distributions can be either

integrated (i.e., collected from the entire signal), or windowed (i.e., collected in a selected window

(Hmin,Hmax) of the external magnetic field). Besides, the distributions can be classified according to the

event’s type (e.g., nonspanning and different types of spanning events). Among possible distribution

shapes, of particular importance are those of the type

DX(X) = X−a
DX(X), (4)

representing a power-law with cutoff specified by the power-law exponent a and the so-called cutoff

function DX(X) which (beside X ) depends on some parameters for simplicity not shown in notation.

The analytic form (4) describes a pure power-law, DX(X) ∝ X−a, only in some limits of the cutoff

function parameters leading to DX(X) → const. Outside such limits the cutoff function rapidly tends
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to zero for large X (and possibly for very small X ), while in between, a region of moderate X -values

may exist such that DX(X) ≈ const. If so, this region is called the scaling region, and it could be used

for determination of the value of the power-law exponent as a equals the gradient (i.e., slope) of the

scaling region data presented in a log-log plot; other (and preferred)method is by the collapsing of data

which can be applied when the cutoff function has universal scaling properties as will be demonstrated

in the Results sections. For the later convenience, here we quote the common RFIM exponents: τ , α,

ε, and µ for the windowed distributions of event’s size, duration, energy, and amplitude, respectively;

additional NEQ RFIM exponents will be introduced in the Results sections.

Besides, other quantifiers of response signal can be defined, like the magnetization as a function

of the external magnetic field,M = M(H), and analogously the susceptibility dM/dH, the correlation

functions, average event shape, and the distributions of various types of waiting time, like the external

waiting time Text measuring the separation in time of consecutive events.

Integral part of model is the specification of boundary conditions which are either closed or

open on each system boundary. Closed conditions mean that the spin values are periodic along the

corresponding direction, e.g., s(ix,iy ,iz) = s(ix+Lx ,iy ,iz) in the case of (Lx,Ly,Lz) 3D cubic lattice and closed

boundary condition along x− direction. Closed boundary conditions are important because they

enable faster convergence towards the infinite systems. On the other hand, they are less realistic than

the open boundary conditions for which there are no spins outside considered lattice.

When studying system evolution, initial conditions have to be specified that include the initial

state for all spins and the external magnetic field. If suitable, terminal conditions are specified as well.

Finally, let us explain the role of averaging. Averaging is performed in order to collect more

reliable statistics of system response. However, for fully deterministic variants of the model repeating

the simulation under identical conditions is useless because it gives exactly the same results. In such

cases, the so-called quenched averaging is performed in which the simulation is repeated using different

configurations of the random field corresponding to the same choice of disorder and the same values

of the remaining model parameters. Otherwise, the simulations may be repeated using the same

configuration of the random field but with randomized other thermal ingredients, e.g., the different

sets of spins tested for thermal flipping.

The theoretical analyses of the NEQ RFIM was focused so far on the possible critical behavior

of this model. Thus, for the adiabatically driven ZT model situated on the (hyper)cubic lattices, the

renormalization group (RG) analyses [28,37,84] have revealed a mean-field behavior for dimensions

d ≥ 6 and a nontrivial critical behavior for 3 ≤ d < 6, but without the final RG conclusions about the

2D case.

Having explained the main features of various versions of the NEQ RFIM, let us briefly state

the main characteristics of the equilibrium model. In this RFIM version at each external (commonly

homogeneous)magnetic field of interest is only the ground spin state (or states in the case of frustration

when more than one state have minimal energy) at 2 = 0, whereas for 2 > 0, the corresponding

thermal distribution of spin states is analyzed. Hence, the temporal evolution of the underlying spin

system remains out of the scope together with all associated features (events, power-spectrum, waiting

times, etc.). For this reason, the equilibrium version is less informative than the nonequilibrium

version, especially for the analyses of response of the real-world systems. Nevertheless, the equilibrium

version is very important in theoretical studies revealing many conclusions that are not attainable

within the nonequilibrium version.



CMES, 2025, vol.142, no.2 1033

As mentioned in the Introduction, the focus of this review is on extensive computational

techniques and simulations of the field-driven spin reversal dynamics, avalanches statistics, finite-size

scaling, correlations and multifractal analysis of Barkhausen noise signals, that are developed to study

the nonequilibrium criticality of the hysteresis loop. They are detailed throughout the results presented

in different sections. More precisely, in the following section, we give the fundamental aspects of the

simulations, which are then adapted and elaborated in each section to analyze different driving modes,

dimensionality and sample shapes, athermal and thermal fluctuations and demagnetizing effects. See

also the program flow in Section 6.1, which refers to the model with demagnetizing fields. In addition,

a systematic comparison of the analysis of simulated data and data collected in the experiment with

the nanocrystalline sample in [168] is presented; see Section 7.1. It demonstrates the advantages and

disadvantages of presented numerical experiments compared to laboratory experimental data.

3 Simulational Methods in the RFIM

Even in the simplest model version, the RFIM simulations are computationally very challenging.

Realization of the finite-size scaling analysis, and avoiding the finite-size effects, demand simulations

of very big systems (e.g., with 109 spins) which require large amounts of computer memory and long

running time even for a single run, let alone for repeated simulations with different realizations of the

random magnetic field necessary for quenched averaging. Efficient algorithms are therefore a must

regarding both memory (RAM and storage) space and execution time.

An essential breakthrough in simulations is achieved by the sorted-list algorithm and bit-per-spin

algorithm detailed in [169] for the adiabatically driven athermal NEQ RFIM (with Jij = J > 0 for

nearest neighbors and zero otherwise, Jdipole = JD = 0, and homogeneousH). In this case, the external

magnetic fieldH is to be increased only after all spins become stable and that by the amount triggering

the least stable spin. To find it, the easiest tactic is to check the values of the effective magnetic field heff
i

at all lattice sites i, find the site i0 with the least negative value of heff
i
, increase H by 1H = −heff

i0
, and

flip the spin si0 . Then, iteratively until the system becomes stable, for all spins flipped at the previous

moment, flip at the next moment their nearest neighbors that became unstable. Despite being simple,

the preceding algorithm, named the brute-force method, is extremely slow because its total running

time scales asO(N2
s
); therefore it is not used in simulations of larger systems (with, e.g., more than 105

spins) even by modern (sequential) computers.

Traversing the whole lattice in search for the least stable spin is avoided in the sorted-list algorithm.

To this end, the array {hi}Nsi=1 of the random field values, generated before the start of the simulation,

are sorted in descending order, {hπ(1) > hπ(2) > . . . > hπ(Ns)}, where π : {1, . . . ,Ns} → {1, . . . ,Ns}
is the permutation such that π(k) points to the index of the element in the original array occupying

k-th position in the sorted array h ◦ π . Also is introduced a pointer (integer) array {Pn↑}znnn↑=0 and all

its elements initially set to 1. After the system becomes stable at the current value of H, each element

Pn↑ of this (nondecreasing) array is updated (increased) so to point to the smallest index k in the

sorted array, i.e., to the largest element in the sorted array h ◦ π , such that sπ(k) would flip if it had

n↑ upward oriented nearest neighbors, and the external field for that n↑ set to Hnew(n↑) > H equal to

Hnew(n↑) = −[(2n↑ − znn)J + hπ(k)]. Thereupon, the external magnetic field is updated to the new value

Hnew = min{Hnew(n↑) : n↑ = 0, 1, . . . , znn}, and the new avalanche nucleated by flipping the least stable

spin caused by H → Hnew.

Having the total running time that scales as O(Ns logNs), the sorted-list algorithm is, so far as is

known, the fastest algorithm used for simulations of the adiabatically driven athermal NEQ RFIM.

However, the algorithm is memory-hungry because, besides the arrays used for storing the spins and
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the random magnetic field, it requires an additional integer array {πi}Nsi=1 keeping track about the

permutation used in sorting the original array {hi}Nsi=1, requiring for storage at least 64 bits of memory

per each element.

The bit-per-spin algorithm greatly reduces memory demands because it eliminates the need for the

array {hi}Nsi=1. Besides this, memory is additionally saved by storing each spin in only one bit of memory,

also possible in any other algorithm regarding the storage of Ising spins. Although the algorithm’s

historical name refers to bit-per-spin memory storage, the main aspect of its optimization is generating

the random field values on the fly, resulting in at least 96 times reduced memory demands, but at the

cost of approximately two-fold increase in the execution time. Thus, the array {hi}Nsi=1 is not generated

before the start of the simulation, nor the memory for its storage is reserved. Instead, provided that

the system is stable at the external field Hold, a new value of the external field, Hnew is found. To this

end, using the complementary error function erfc = (2/
√

π)
∫ ∞
x
exp (−t2)dt, one firstly calculates the

probabilities

P↓(n↑,H) = 1

2
erfc

(
H + (2n↑ − znn)J

R
√
2

)
, (5)

that at the valueH of the external field a spin with n↑ up neighbors is pointing down, and consequently

the probability

Pnone(Hold;Hnew) =
znn∏

n↑=0

[
P↓(n↑,Hnew)

P↓(n↑,Hold)

]Nn↑
, (6)

that no spin has flipped between Hold and Hnew. After that, the equation

rn = Pnone(Hold;Hnew), (7)

is numerically solved for a chosen random number rn (uniformly distributed between zero and one),

using in this solving the recipe from [169], for example. In the next step, the rates for spin flipping for

each n↑ at the Hnew are calculated according to

Ŵ(n↑,Hnew) = Nn↑
ρ(Hnr(n↑,Hnew))

P↓(n↑,Hnew)
, (8)

where Nn↑ is the number of spins with n↑ up neighbors (taken before H is set to Hnew), and

ρ(Hnr(n↑,Hnew)) stands for the Gaussian distribution ρ(h) = exp (−h2/2R2)/R
√
2 of the random field

at h = Hnr(n↑,Hnew), whereHnr(n↑,Hnew) = Hnew + (2n↑ − znn)J. For these rates Ŵ(n↑,Hnew), the total rate

Ŵ(Hnew) =
znn∑

n↑=0

Ŵ(n↑,Hnew) (9)

is calculated and n↑ selected using another random number uniformly distributed between zero and

Ŵ(Hnew). Finally, randomly searching the lattice, a down spin with n↑ up neighbors is found and flipped.

This way a new avalanche is nucleated and its propagation at Hnew is followed like in the brute force

method until the ongoing new avalanche dies. The whole preceding procedure (for finding Hnew and

propagating the emerged avalanche) is iteratively repeated, until all spins become stable in the up state.

The bit-per-spin algorithm enabled large-scale simulations in the last decade of the XX century

standing as a breakthrough in the numerical studies of themodel [31,170]. Together with the sorted-list

algorithm, it was later extended to be applicable for the quasistatic [147], finite-rate [130,148,171,172],
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and stochastic driving [149] along the entire hysteresis loop. Nevertheless, their extension was impossi-

ble for the RFIM versions modelling the systems at finite temperatures and/or systems having a more

complex inter-spin interaction (e.g., nonhomogenous exchange interaction, combined ferromagnetic-

antiferromagnetic layers, vacancies, interfaces, etc.). In these cases, the single run execution time is

possible to be reduced by converting the brute-forcemethod from the sequential to parallel code, which

is particularly convenient for the shared-memory systems using Message Passing Interface (MPI)–a

standard designed to function on parallel computing architectures. Note, however, that the sequential

code provides the shortest run-time per thread, and that the run-time acceleration usually rapidly

saturates with the number of involved parallel threads. This, together with the repetition of simulations

with different random field configurations requested for the quenched averaging, means that the

number of involved parallel threads has to be compromised to achieve the least overall execution

time of the whole set of simulations. An example of the flowchart of a parallel algorithm is given

in Section 6.1.

Besides sophisticated simulation algorithms, the RFIM studies also have computational chal-

lenges regarding the extraction of the relevant statistics and their subsequent analysis. As an illustrative

example, let us describe the algorithm proposed in [89] for the collapsing of the suitably scaled

distributions. These distributions are of the power-law type and are represented by their histograms

collected in the logarithmic bins which reduces the random scattering at the side of large events. Thus,

for a given set of discrete histograms, one firstly finds the union set X of all their ordinates, next for

each x inX the (weighted) mean of the interpolated curves, and then the width around this mean curve,

resulting in a merit function (i.e., width w). Various types of interpolation and weighted widths can be

used, which is important for noisy data having different uncertainties. The simplest choice is the linear

interpolation, no weights, and width w =
√
D2/Np, where D2 is the sum of squared distances from the

mean curve, andNp is the number of degrees of freedom (crudely equal to the number of points in X ).

4 Adiabatic Collective RFIM Dynamics with Spin-Flipping Avalanches

4.1 Zero-Temperature (ZT) Nonequilibrium (NEQ) RFIM on Three-Dimensional (3D) Simple

Cubic Lattice

Previous theoretical and numerical studies [28,35,84,89] have shown that the adiabatically driven

ZTNEQRFIM systems, situated at the equilateral (hyper)cubic lattices with dimension d ≥ 2, exhibit

in the thermodynamic limit (L → ∞) a dynamical critical behavior at the (d-dependent) value of

critical disorder Rc(d), discriminating two domains of disorder. This value, denoted as Rc in what

follows, separates the ferromagnetic phase that exists for low disorders R < Rc, at which the infinite

avalanche appears causing a jump in magnetization, from the paramagnetic phase occurring for high

disorders R > Rc, in which no infinite avalanche is created, so the magnetization curve is smooth.

In finite systems, the role of infinite avalanches is played by the spanning avalanches [27] spreading

along at least one of the system’s spatial dimensions and, therefore, classified according to the number

of dimensions they span as 1d, 2d, and 3d spanning avalanches (further classified in [27] into critical

and subcritical 3d spanning avalanches [173]). As shown in the comprehensive work investigating the

ZT NEQ RFIM on finite equilateral 3D cubic lattices [108], the distributions of the number Ns(R;L)

of all spanning avalanches per single run in the systems of sizeL, illustrated in the main part of Fig. 1a,

scale as

Ns(R;L) = LθÑs(rL
1/ν), (10)

see in the inset of Fig. 1a, where Ñs(rL
1/ν) is the universal scaling function employing the reduced

disorder r = (R − Rc)/R, and θ is the exponent whose value is, after considering the significantly
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wider range of the employed values of L, with great accuracy refined in [108] to θ = 0. Additionally,

it was shown in [108] that the distributions Ns(R;L) are well-described by the model function

Nmod

s
(R;L) = H exp {−[(R− Reff

c
(L)]2/2W 2(L)} + 0.5erfc{[(R− Reff

c
(L)]/W(L)}, (11)

depending on parameters H, Reff
c

(L) > Rc, and W(L) which specify height, center, and width of the

Gaussian in the first addend of the Eq. (11). Besides, Reff
c

(L) andW(L) in the second addend specify

the inflection point and the width of the complementary error function taking values 0.75 and 0.25

for R = Reff
c

(L) − W(L) and R = Reff
c

(L) + W(L), and 0.5 at the inflection point R = Reff
c

(L). For

large L, the width becomes very small tending to zero asW(L) ∼ L−1/ν, while Reff
c

(L) → Rc according

to [Reff
c

(L) − Rc]/R
eff
c

(L) ∼ L−1/ν. As long as R is significantly below Reff
c

(L) − W(L) only one (3d)

spanning avalanche appears per run, so that Ns(R;L) ≈ 1. Therefrom, the number Ns(R;L) increases

when R grows and reaches its maximum at R = Reff
c

(L), followed by a rapid decrease towards zero as

W(L) is small when L is large. Owing to such behavior, Reff
c

(L) is singled out as a characteristic value

of disorder that can be considered as the effective critical disorder for the systems of size L such that (in

simplified terms) the spanning avalanches are absent forR > Reff
c

(L) or (more precisely) unlikely forR

surpassing Reff
c

(L)+W(L). As a consequence, three domains of disorder with distinct scaling exist for

finite systems with negligibleW(L), namely the domain of low (or subcritical) disorders for R < Rc,

the domain of transitional disorders for Rc < R < Reff
c

(L), and the domain of high (or supercritical)

disorders for R > Reff
c

(L), taking into account that for smaller systems the borders of the domains are

not very sharp due to finiteW(L).

(a) (b)

Figure 1: The total number of spanning avalanches per single run, Ns(R;L), and their scaling collapse

(10) are displayed by symbols in the panel (a) and its inset. The model curves (11) that best fit the

Ns(R;L) data are shown by the full lines in the main part of this panel. (b) The histograms of spanning

field Hsp for 1d, 2d and 3d spanning avalanches obtained for system with size L = 128 and disorder

R = 2.22. Presented data are averaged over 40,000 different realizations of the random field. Figure is

replotted from Reference [108], combining parts of Figs. 1 and 2

Results published in [108] are obtained in by-all-means extensive numerical simulations, averaged

across up to 200,000 distinct realizations of the random magnetic field for up to 36 various values of

disorder on the systems with lattice size up to L = 2048 containing almost 1010 spins. These results
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showcase that for disordersR > Reff
c

(L)+W(L), surpassing the effective critical disorder, the systems’

properties are almost independent on the lattice size L, practically obeying the scaling predictions that

hold in the thermodynamic limit. However, significant size-dependence is documented in the other

two disorder domains, subcritical and transitional, evident in all characteristic features of systems’

behavior.

In the subcritical and transitional domains of disorder, the single-run magnetization curves have

jump(s) that appear at the spanning field Hsp (i.e., the value of the external field at which a spanning

avalanche is triggered) whose values are determined by the chosen RFC. As the distribution of Hsp

values (due to varying employed RFCs) is not sharp but of finite width, see Fig. 1b, the positions of

magnetization jumps are smeared, cf. bottom-right inset in Fig. 2b. Therefore, the corresponding part

of the averaged magnetization curve is slanted, see top-right inset in Fig. 2b, gradually turning into

vertical whenL → ∞, cf. right inset in Fig. 2a. On the other hand, for finite systems in the supercritical

domain of disorder, both single-runmagnetization curves and their averaged counterparts, exemplified

in the right inset of Fig. 2c, are smooth functions of the external field H.

Averaged magnetizations and magnetic susceptibility curves for finite systems of lattice size L,

according to [27,108], follow the scaling forms

MR,L(H) = |r|βM̃ (ĥeff

R
/|r|βδ, 1/L|r|ν), (12)

χR,L(H) = |r|β−βδ
X̃ (ĥeff

R
/|r|βδ, 1/L|r|ν), (13)

where ĥeff
R

= H −Heff
c

(R) is the effective reduced magnetic field, measuring the shift of the data along

the H-axis by the value of the effective critical field Heff
c

(R) pinpointing the pertinent susceptibility

maxima; Meff
c

(R) = M(Heff
c

(R)) is the effective critical magnetization, M̃ and X̃ stand for the

universal scaling function, different in each of the disorder domains, and β, βδ and ν are the standard

RFIM exponents [28]. Scaling collapses of averaged magnetizations and susceptibilities in all three

domains of disorder, each having parameters L, R chosen so that the value of L|r|ν is constant and
allowing for the estimation of critical parameters and exponents as the best collapsing values (shown

in Table 1), are presented in Fig. 2.

Table 1: Values of the universal critical exponents (first two rows) and the non-universal critical

parameters (bottom row) for the adiabatically driven ZT NEQ RFIM at the equilateral cubic 3D

lattices. The data is from Table 1, Reference [108]

β βδ τ + σβδ σ θ η 1/σνz

0.04 ± 0.03 2.0 ± 0.2 2.02 ± 0.02 0.24 ± 0.02 0.000 ± 0.016 0.53 ± 0.05 1.78 ± 0.04

1/ν 1/σν d + β/ν z α + βδ/νz νz ζ

0.70 ± 0.02 2.99 ± 0.05 3.05 ± 0.01 1.70 ± 0.05 2.75 ± 0.10 2.4 ± 0.1 1.4 ± 0.1

Rc Hc Mc b bh ch cm

2.16 ± 0.02 1.435 ± 0.003 0.30 ± 0.12 0.30 ± 0.06 0.867 ± 0.006 1.255 ± 0.007 20 ± 2
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Figure 2: Main panels show the scaling collapses (12) of the averaged magnetization curves in the

domains of disorder: (a) below critical, (b) transitional, between the critical and the effective critical,

and (c) above the effective critical disorder, for a constant value of L|r|ν and the values of critical

exponents and parameters presented in Table 1. The corresponding left insets show the collapses (13)

of the averaged magnetic susceptibility curves, while the right insets show examples of the averaged

magnetization curves. Bottom-right inset of panel (b) showsmagnetization jumps in the two single-run

magnetization curves, illustrating that more than one spanning avalanche (together with the associated

Hsp-values) may appear in a single run. Presented data are replotted from Reference [108], combining

parts of Figs. 6, 8 and 9

The distributions of avalanche parameters are cutoff-ending power-laws of the distributed param-

eter which depend on the underlying values of disorder R and lattice size L. Considered as the

generalized homogeneous functions of their arguments, these distributions should follow finite-size

scaling predictions in three equivalent forms, two of which, for the integrated size distributions and

according to [27,108], read

D(int)

S
(S;R,L) = L−τ ′/σνD̃S±(S/L1/σν, 1/L|r|ν), (14)

and

D(int)

S
(S;R,L) = S−τ ′

DS±(Sσ |r|, 1/L1/ν|r|), (15)

where τ ′ is the pertinent critical exponent of the integrated distribution of avalanche size, τ ′ = τ +σβδ,

and σ is the cutoff exponent describing the scaling Smax ∝ |r|−1/σ [28]. These forms should hold in all

domains of disorder, with the domain-specific universal scaling functions D̃S± and DS±, predicting

data collapsing for any set of size distributions satisfying the condition L1/νr = const. The results of

numerical simulations [108] supported the preceding scaling conjectures in the supercritical domain

of disorder, as is illustrated in Fig. 3a by the data collapsing (14) in the left, and (15) in the right

inset. Additionally, these simulations also showed that the D(int)

S (S;R,L) distributions become almost

L-independent for R > Reff
c

(L) +W(L), see Fig. 3b, meaning that they obey the scaling

D(int)

S
(S;R) = S−τ ′

D∞(Sσ |r|), (16)

for infinite systems, following from (15) in the L → ∞ limit, and similarly for magnetization and

susceptibility

MR(H) = |r|βM̃∞(ĥeff

R
/|r|βδ), (17)

χR(H) = |r|β−βδ
X̃∞(ĥeff

R
/|r|βδ), (18)
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following from (12) and (13).

Figure 3: (a) Presented integrated size distributions are all from the supercritical domain of disorder

and correspond to the (L,R) pairs from the legend satisfying the condition Lrν = const. While the

main part of this panel shows the original distributions, the left inset shows their scaling collapse

according to (14), and right inset according to (15). (b) Integrated distributions D(int)

S (S;R,L) of

avalanche size S in the main panel are obtained for several values of L quoted in legend and the

same disorder R = 2.3 surpassing Reff(L) +W(L) for L ≥ 128, except for L = 64. Thus, being in the

supercritical domain, all L ≥ 128 distributions mutually overlap, while the case L = 64 manifests a

bump before the large-S cutoff due to the presence of spanning avalanches. Inset illustrates the same

effect for the susceptibilitity curves dM/dH. (c) Attempts to collapse the integrated size distributions

of nonspanning avalanches using (16) for the system with size L = 360 in a broad disorder range

encompassing all three domains. Collapsing is successful only in the supercritical domain, while in

the remaining two domains it is possible only for the (L,R) parameters satisfying L|r|ν = const. The

pertinent inset illustrates that theR-dependent position on theSσ |r|-scale of themaximumof the scaled

distribution Sτ ′
D(int)

ns
(S;R) attains its minimum value at R = Rc and saturates to 1 in the supercritical

domain. (d) The main panel shows the collapsing (14) of the integrated size distributions D(int)

Sall
of all

avalanches for disorders from the subcritical domain, left inset shows the collapsing (19) of D(int)

Sns
for

the nonspanning avalanches, and right insets the collapsing (20) of various types of integrated size

distributions D(int)

S1d
, D(int)

S2d
, and D(int)

S3d
for the spanning avalanches of type S1d, S2d, and S3d, respectively;

the distributions correspond to the (L,R) pairs from the legend satisfyingLrν = const, and all collapses

are obtained for τ ′ = τ + σβδ = 2.03 and fractal dimension Df = 2.98. Presented data are replotted

from Reference [108], combining parts of Figs. 3, 10, 12 and 14
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On the other hand, according to the same Reference [108], in the subcritical and transitional

domains of disorder, the L-independent scaling (16) is violated, while the L-dependent scaling

conjectures (14) and (15) remain in effect, see Fig. 3c. In the main part of Fig. 3d we illustrate the

collapsing (14) in the subcritical disorder domain of the integrated size distribution of all avalanches

D(int)

Sall
= D(int)

Sns
+ ∑3

αsp=1
D(int)

Sαsp
, where D(int)

Sns
(S;R,L) is the integrated size distribution of nonspanning

avalanches, and D
(int)

Sαsp
(S;R,L) are the integrated size distributions of 1d, 2d, and 3d types of spanning

avalanches (i.e., αsp = 1, 2, 3). These distributions follow the scaling

D(int)

Sns
(S;R,L) = L−Df τ ′

D̃
(int)

Sns
(SL−Df , |r|L1/ν), (19)

and

D
(int)

Sαsp
(S;R,L) = L−Df τ ′

D̃
(int)

Sαsp
(SL−Df , |r|L1/ν), (20)

predicting their collapsing when L1/ν|r| = const; here, Df = 2.98 is the common value of fractal

dimension providing the best distributions’ collapsing for all spanning and nonspanning avalanches

[108], predicted in [48] to be Df = 1/σν. Qualitatively similar behavior holds for the distributions of

the remaining avalanche parameters (duration, energy and amplitude).

The integrated correlation functions, measuring the probability per spin that flipping of the spin

initiating the avalanchewill cause the flipping of spins at the distance x awaywithin the same avalanche,

scale as [28,31].

G(int)

R
(x) ∼ 1

xd+β/ν
Ḡ±(x|r|ν). (21)

Here d is the system dimension, and ν stands for the correlation length exponent describing the

divergence of the correlation length ξ ∼ |r|−ν when r → 0, presented in panel (d) of Fig. 4. In the

supercritical disorder domain, correlation functions are monotonically decreasing with the inter-spin

distance x in the cutoff region, while in the remaining domains, the onset of spanning avalanches causes

the occurrence of characteristic bumps, as is displayed in the main panels (a)–(c) of Fig. 4. Scaling

collapses of integrated correlation functions, satisfying the condition |r|L1/ν = const, are shown in

pertinent insets.

Figure 4: (Continued)
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Figure 4: Integrated correlation functions G(int)

R (x) vs. inter-spin distance x shown in the main panels,

and the pertinent collapses (21) shown in the insets in all three disorder domains, subcritical in (a),

transitional in (b), and supercritical in (c). Divergence of the correlation length ξ when r → 0, that

is when R → (Rc)
+, is displayed in panel (d) on the log-log scale in the main panel part, and on the

lin-lin scale in the inset. Presented data are replotted from Reference [108], combining part of Fig. 15

and Fig. 17

4.2 Adiabatically Driven ZT NEQ RFIM on Two-Dimensional (2D) Lattices

The question of whether the adiabatically driven ZTNEQRFIMon 2D quadratic lattices exhibits

nontrivial critical behavior remained open for almost 20 years. This puzzle was initiated by the

Mermin-Wagner theorem [174] which proved the absence of coexistence of two ferromagnetically

ordered phases in isotropic Heisenberg models [175] in d ≤ 2 dimensions. After that, the exis-

tence of two phases at low temperatures in 3D RFIM has been established in [92] using an exact

renormalization-group (RG) flow down to the zero-temperature zero-field fixed point. Next, in 1989

the existence of an ordered phase at finite temperatures and weak fields for EQ RFIM in 3D was

demonstrated, while in 2D it was rigorously proved that the ferromagnetic ordering is absent in the

thermodynamic limit [91,176]. Additionally, many similarities between the EQ [86,177–179] and NEQ

ZTRFIM [27,106] were observed regarding their criticality (matching of exponents, scaling functions,

and spatial structures of avalanches), including the studies of four-dimensional systems [180] and at

and beyond the upper critical dimension [181,182], leading to the conclusion that both models are

rather likely to be in the same universality class for d ≥ 3 dimensions [87,88]. Although not obtained

for the NEQmodel, these findings suggested that infinite 2D systems in the NEQmodel may also lack

ferromagnetic ordering because the two phases, evidenced in finite 2D systems, might vanish in the

thermodynamic limit, i.e., when the system becomes big enough. The question of how large the NEQ

system should be to lose/retain two ferromagnetically ordered phases was addressed in [183] where it

was shown that the two phases ‘survive’ the thermodynamic limit provided they exist in 2D systems

with size greater than the ‘breakup length’ Lb ≈ exp (A/R2) with A = 2.1 ± 0.2 for the Gaussian

distribution of the random magnetic field having disorder R.

Complementary to the preceding theoretical issues stood the question of whether the real 2D

disordered ferromagnetic samples exhibit critical behavior until being experimentally confirmed

in studies [184,185], opening a wide venue for further fundamental experimental and theoretical

investigations of the 2D disordered ferromagnets and their applications.
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4.2.1 The Case of Quadratic Lattices

Numerical simulations reported in [89,90], performed for the system sizes up to L = 131072,

significantly exceeding the ‘breakup length’ Lb and having up to ≈ 1.7 × 1010 spins, provided a

numerical evidence for the critical behavior of the adiabatically driven ZT NEQ RFIM on the 2D

quadratic lattices. The values of the non-universal critical parameters and of the universal critical

exponents, obtained in [89,90], are quoted in Table 2 including the value of critical disorder Rc = 0.54

corroborated in Fig. 5 implying Lb ≈ 104.

Figure 5: Effective critical disorder Reff
c

(L) vs. system size L (symbols) and the power-law prediction

[Reff
c

(L) − Rc]/R
eff
c

(L) ∼ L−1/ν (continuous line) with Rc = 0.54 and ν = 5.14. Top inset shows Bray-

Moore scaling ξ ∼ exp [ã/[Reff
c

(L) − Rc]
2], Rc ∼ 0; see [186]. Bottom inset presents the windowed size

distributions for R = 0.38 to 0.55, L = 65,536, and more than 600 RFC for each R. Their shapes in

the bottom inset indicate the onset of spanning avalanches for R ≤ 0.54. This is Fig. 6 from [89]

Table 2: The values of the non-universalcritical parameters (top part) and of universal critical

exponents (bottom part) for the 2DZTNEQRFIMon quadratic lattices (presented in Table 1 in [89]).

The quoted errors are based on the (200 runs) Monte-Carlo estimation and statistical uncertainties of

the underlying data [187]

Rc Hc Mc b

0.54 ± 0.02 1.275 ± 0.020 0.00 ± 0.01 0.24 ± 0.04

β βδ τ τ + σβδ

0.15 ± 0.04 4.8 ± 0.2 1.54 ± 0.05 2.02 ± 0.06

σ ν d + β/ν η

0.10 ± 0.01 5.15 ± 0.20 2.04 ± 0.03 1.05 ± 0.06

In Fig. 6a, we presented (the rising part of) the magnetization curves M(H) obtained in [89,90]

for the system size L = 131,072 and several values of disorder, ranging from R = 0.52 (which is below

the critical disorder Rc = 0.54) up to R = 0.76 surpassing the effective critical disorder Reff
c

(L) (=
0.605 for L = 131,072). Due large value of L, one can take that theM(H) curves for disorder above
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the effective critical disorder Reff
c

(L) obey the scaling

MR,L(H) = |r|βM̃ (ĥeff

R
/|r|βδ), (22)

which follows from (12) in the L → ∞ limit, and analogously for the susceptibility curves

χR,L(H) = |r|β−βδ
X̃ (ĥeff

R
/|r|βδ), (23)

and Eq. (13). The collapsing of M(H) curves according to (22) is presented in the main panel of

Fig. 6b, and collapsing for the susceptibility curves and Eq. (23) in the inset. Besides, the distributions

of avalanche parameters also indicate criticality by manifesting the power-law shapes. Thus, in Fig. 7

we show the distributions of size and duration in panels (a) and (b), respectively. In the bottom inset of

panel (a) presented are the integrated size distributions for the five values of L and the corresponding

effective critical disorder Reff
c

(L). The collapsing for R > Reff
c

(L) size distributions according to

D(int)

S
(S;R) = S−(τ+σβδ)

D(Sσ |r|), (24)

following from Eq. (15) in the L → ∞ limit, is presented in the main part of panel (a). Although

the D(int)

S (S;R) curves collapse well for large avalanches, they show a noticeable branching for small

sizes, originating from the avalanches triggered near the end of the magnetization curve when almost

all (except trapped) spins are already flipped, so that small avalanche sizes are more probable than

Eq. (24) predicts. As the top inset shows, the branching disappears for the windowed distributions

D(w)

S
(S;R) =

∫ Heff
c −rβδh′

0

Heff
c +rβδh′

0

DS(S;R,H), (25)

collected in complementary windows (−rβδh′
0
, rβδh′

0
) covering the central parts of magnetization curves

where the scaling

DS(S;R,H) = S−τ
D(Sσ |r|, h′|r|−βδ), (26)

of the size distribution DS(S;R,H) collected at the external field H applies, and h′ = H − Hc −
br; for details, see [90]. As is illustrated in panel (b), analogous behavior is found for the duration

distribution, as well as for the (here not shown) distributions of avalanche energy and amplitude; see

[90] for the latter two and also for the joint distributions for pairs of avalanche parameters. Values of

the corresponding exponents are quoted in Table 3.
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(a) (b)

Figure 6: (a) Rising part of the magnetization curvesMR(H) for disorders R = 0.52−0.76 and system

size L = 131072 where the effective critical disorder is Reff
c

= 0.605. For R < Reff
c
, the value Hsp

of the external magnetic field at which the spanning avalanche occurs varies with the random field

configuration (RFC). Main panel shows magnetization curves for single RFC sorted in increasing

disorder R. Inset displays magnetization curves averaged over 30 RFC; while this number is small,

visible are the steps appearing due to spanning avalanches and stochastic nature ofHsp. (b) Collapsing

(22) of four magnetization curves and (23) of susceptibility curves χ(H) are shown in the main panel

and inset, respectively, for disorders R > Reff
c
from the legend. In this figure, combined are Figs. 1 and

2 from [89]

(a) (b)

Figure 7: (a) The main panel shows the collapsing of the integrated distributions of avalanche size

collected at R > Reff
c
for L = 65,536, top insets show the collapsing of the corresponding windowed

distributions, whereas the bottom inset shows the (non-scaled) size distributions collected for the

values of L quoted in the legend at the corresponding effective critical disorderReff(L). (b) Main panel

and inset like for (a), but for the duration distribution. The number ofRFCused in quenched averaging

of the data ranged between 30 for the largest and 8000 for the smallest L. In this figure, combined are

Fig. 3 from [89] and Figs. 6 and 7 from [90]
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Table 3: Universal critical exponents of distribution of avalanche duration (α), energy (ε), and

amplitude (µ); γT/S, γE/S, and γA/S are the duration/size, energy/size, and amplitude/size exponents,

respectively. The values obtained from the scaling collapses, together with their uncertainties, are

shown in the second column, and in the fourth column the values calculated using the scaling relations

from the third column. Presented data are from Table III in [90]

Exponent Measured value Scaling relation Scaling relation estimate

α 1.87 ± 0.06 α = 1 + (τ − 1)/σνz 1.84

ε 1.42 ± 0.05 ε = 1 + (τ − 1)/(2 − σνz) 1.40

µ 2.55 ± 0.18 µ = 1 + (τ − 1)/(1 − σνz) 2.55

γT/S 0.645 ± 0.015 γT/S = σνz –

γE/S 1.35 ± 0.04 γE/S = 2 − σνz 1.36

γA/S 0.39 ± 0.02 γA/S = 1 − σνz 0.36

The behavior of the correlation function G(int)

R (x) and the correlation length ξ(r, h′), depending on

the reduced disorder r and reduced magnetic field h′, is presented in Fig. 8 for h′ = 0. The data from

the main part and the bottom inset of panel (a) show the divergence ξ ∼ |r|ν of the correlation length

ξ with the reduced disorder r, while the top inset shows the collapsing of the integrated correlation

function G(int)

R (x) according to the scaling prediction

G(int)

R
(x) ∼ x−(d+β/ν)

G
(int)

± (x|r|ν), (27)

where x is the distance between the spins flipped in the same avalanche. Complementary, the panel (b)

shows the collapsing of the correlation function GR,H(x), giving correlations at the external field H,

which scales as

GR,H(x) = 1

d − 2 + η
G±

(
x

ξ(r, h′)

)
, (28)

where η is the exponent named anomalous dimension [28,31] (here, η = 1).
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(a) (b)

Figure 8: (a) The main part shows power-law divergence ξ ∼ |r|ν of the correlation length ξ with

reduced disorder r for reduced magnetic field h′ = 0. In the bottom inset, the same data are shown

against the disorder R on a linear scale. Top inset: scaling collapse (27) of the correlation function

G(int)

R (x) for disorders R = 0.64 − 0.90 and system size L = 131,072. The curves are averages of 30

RFCs for each R. (b) The scaling collapse (28) of the correlation function GR,H(x) for the avalanches

at reduced field h′ = 0. The collapse is obtained for η = 1 and correlation lengths from the left

panel. Inset: the same collapse on the lin−log scale illustrates the applicability of the approximation

GR,H(x) ∼ exp(x/ξ)/xd−2+η which is used in determination of the correlation length ξ . In this figure are

combined Figs. 4 and 5 from [89]

4.2.2 Spanning Avalanches on Quadratic Lattices

Below the effective critical disorder Reff
c

(L), system response is dominated by the spanning

avalanches studied in [107] in the case of adiabatically driven ZT NEQ RFIM on 2D equilateral

quadratic lattices. The number per single run,N2(R,L), of 2d spanning avalanches (i.e., the avalanches

that span the system along both dimensions), shown in Fig. 9a against R for lattice sizes L =
1024 − 16,384, scale as

N2(R,L) = Ñ2(rL
1/ν), (29)

enabling their collapsing presented in the panel (b), and indicating that limL→∞ N2(R,L) = U(Rc −R),

where U(x) is the unit step function. On the other hand, the number per single run N1(R,L) of 1d

spanning avalanches (spanning the system along only one dimension and shown in the inset of left

panel) scales as

N1(R,L) = L−θ1Ñ1(rL
1/ν), (30)

with θ1 = 0.08±0.02, meaning that they become irrelevant in the L → ∞ limit. The number per single

run Nns(R,L) of the remaining (i.e., nonspanning) avalanches scales as

Nns(R,L) = L2Ñns(rL
1/ν), (31)

and is presented in the inset of Fig. 9b. Due to scale invariance, the clusters of spins flipped during a

spanning avalanche are fractals; their fractal dimension Df is smaller for 1d than for the 2d spanning

avalanches as is illustrated in Fig. 10.
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(a) (b)

Figure 9: (a) Main part and inset show the number of spanning avalanches per single run, N2(R,L)

for 2d and N1(R,L) for 1d spanning avalanches, respectively, against disorder R for the system sizes

L quoted in legend. (b) Collapsing (29) of 2d spanning and (31) of nonspanning avalanches shown in

the main part and inset, respectively. In this figure, combined are Figs. 2, 4, 5 and 13 from [107]

Figure 10: Plots of a 2d spanning avalanche (left) and a 1d spanning avalanche (right) for L = 4096

and R = 0.68 [107]; the time scale of spin flipping is shown by the color legend; not affected spins are

white. Fractal dimensions are: Df = 1.9828 for the 2d spanning avalanche, and Df = 1.9125 for the

1d spanning avalanche. Presented figure is replotted from Figs. 7 and 8 from Reference [107]

Spanning avalanches cause bumps in distributions and jumps in magnetization 1M realized at

some value of the external fieldHsp, called the spanning field, whose distribution is determined by the

RFC. This is shown in [107] and illustrated in Fig. 11.
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(a) (c)

(b)

(d)

(e)

Figure 11: (a) (Scaled) size distributions of all avalanches (circles), nonspanning avalanches (full line),

and spanning avalanches in the inset. (b)Magnetization jumps1M shown in inset, and their collapsing

in the main panel. (c)–(e) Distribution of spanning field Hsp for three different values of disorder R;

for details, see [107]. In this figure, combined are Figs. 14, 18 and 19 from [107]

4.2.3 The Case of Triangular and Hexagonal Lattices

Besides quadratic, the ZT NEQ RFIM can be studied on other 2D lattices with translation

symmetry, but with different topology of elementary cell, e.g., with different number of nearest

neighbors given by the coordination number znn. Two examples are the triangular and hexagonal

lattices which, compared to quadratic lattice with four nearest neighbors, have six and three nearest

neighbors for each spin, respectively; see Fig. 12.

The studies [100] on triangular and [103] on hexagonal lattices gave partial answers to the

conjecture introduced in [135] that the coordination number znn, and not solely the lattice dimension

(as believed beforehand), plays the key role in determining the universality class of the ZTNEQRFIM

critical behavior. Thus, the study [100] showed that the ZTNEQRFIM exhibit critical behavior on the

triangular lattices (where znn = 6) in accordance with the general expectation that this should be the

case for the lattices with znn ≥ 4. However, the values of some critical exponents and nonuniversal

critical parameters reported for this lattice, see in Table 4, differ outside the error bars from the
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corresponding ones reported in [89,90] for the quadratic lattices, suggesting that the universality classes

for the triangular and quadratic lattices might be different. As an illustration of the critical behavior of

the model on triangular lattice, in Fig. 13, we show the graph of Reff
c

(L) vs. L, implying that Rc = 0.86

for the triangular lattice (left panel), and the collapsing of the windowed size distributions (right panel)

obtained for the exponents from Table 4. Similar study [103] revealed the absence of critical behavior

on the hexagonal lattice having znn = 3.

Figure 12: Triangular (left) and hexagonal (right) lattices. The right panel is Fig. 1 from [103]

(a) (b)

Figure 13: (a) Effective critical disorder Reff
c

(L) for the triangular lattice vs. system size L (symbols),

and the power-law prediction [1−Rc/R
eff
c

(L)] ∼ L1/ν (straight line) forRc = 0.86 and ν = 5.26. (b) The

scaling collapse of the integrated distributions of avalanche size for triangular lattice with L = 65,536.

In this figure are combined Figs. 2 and 8 from [100]



1050 CMES, 2025, vol.142, no.2

Table 4: Critical exponents for the ZT NEQ RFIM on triangular lattice (published in Table 1 in [100];

the values obtained on 2D square lattice [89,90] are in parentheses, and are given for the sake of

comparison

β βδ τ τ + σβδ σ

0.13 ± 0.03 5.2 ± 0.2 1.64 ± 0.05 2.05 ± 0.06 0.063 ± 0.012

(0.15 ± 0.04) (4.8 ± 0.2) (1.54 ± 0.05) (2.02 ± 0.06) (0.10 ± 0.01)

ν 1/σνz α α + σβδ/σνz z

5.25 ± 0.20 1.65 ± 0.01 2.05 ± 0.06 2.70 ± 0.05 1.83 ± 0.18

(5.15 ± 0.20) (1.55 ± 0.02) (1.87 ± 0.06) (2.65 ± 0.05) (1.25 ± 0.17)

4.3 Crossover from 3D to 2D ZT NEQ RFIM Systems

The dimensional crossover from three to two spatial dimensions has been studied so far both

experimentally [22,188] and in equilibriummodels [189–192], where it has been established that the sys-

temswith constant thickness l, and two diverging spatial dimensionsL → ∞, behave in the asymptotic

limit essentially as 2D systems, showing a critical temperature Tc(l) that shifts from the critical

temperature of the planar 2D system, Tc(l = 1) = T 2D
c
, to the critical temperature of the bulk 3D

system, Tc(l → ∞) = T 3D
c
, with a first approximation for this crossover function Tc(l) − T 3D

c
∼ l−1/ν3D

for large l, where ν3D is the correlation length exponent in the 3D case.

The 3D to 2D dimensional crossover in ZT NEQ RFIM was studied in [110–112] on nonequilat-

eral 3D L × L × l cubic lattices with quadratic L × L base and thickness l in adiabatic regime with

closed boundary conditions on base, and open conditions on thickness. For each l, one can define the

critical disorderRc(l) for infinite (i.e.,L → ∞) systems as the value of disorder such that forR < Rc(l)

there is a finite jump 1M in the magnetization curve M(H) tending to zero when R tends to Rc(l).

Additionally, for R > Rc(l) the curveM(H) is smooth and has finite susceptibility χ(H) = dM/dH

for any H, while at R = Rc(l) the M(H) curve is still smooth but with infinite susceptibility at some

value Hc(l) of the external magnetic field, called the critical field for the infinite lattices of thickness

l. In finite L × L × l systems the biggest change in magnetization, and therefore the maximum value

of susceptibility, is caused by the spanning avalanches which (roughly speaking) appear at disorders

R ≤ Reff
c

(l,L), where Reff
c

(l,L) is the effective critical disorder (for given thickness l and base size L)

which tends toRc(l) in the L → ∞ limit. AtR = Reff
c

(l,L) the susceptibility attains its maximum value

at the value Heff
c

(l,L) of the external field called the effective critical field which tends to Hc(l) in the

L → ∞ limit. The analyses in [110] resulted in the analytical prediction

Rth

c
(l,L) = R3D

c

[
1 − 1

l1/ν3D
− (A− 1)l1/ν2D

L1/ν2D l1/ν3D

]−1

, (32)

for the effective critical disorder Reff
c

(l,L); here A = 0.63 ± 0.18 is an adjustable parameter, 1 = 1 −
R3D

c
/R2D

c
, while ν3D and R

3D
c
are the correlation length exponent and critical disorder in 3D model (and

analogously for ν2D and R2D
c
and 2D model), see Eq. (7) in [110]. Extension of this analysis, presented

in [112], led to

H th

c
(l,L) = H3D

c
+ 2cross

l1/ν3D
+ B− 2cross

l1/ν3D

(
l

L

)1/ν2D

(33)
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predicting the effective magnetic field Heff
c

(l,L), where B = 0.20 ± 0.07, 2cross = 0.68 ± 0.07, and H3D
c

is the critical field in 3D model. From (32) and (33) follow the expressions

Rth

c
(l) = R3D

c

[
1 − 1

l1/ν3D

]
, (34)

H th

c
(l) = H3D

c
+ 2cross

l1/ν3D
, (35)

for Rc(l) and Hc(l) in the L → ∞ limit that agree with the simulational values as is illustrated in

Fig. 14.

(a) (b)

(c) (d)

Figure 14: (a) Full line in the main left panel shows the Rc(l) vs. l prediction (34), while in its inset

the Reff
c

(l,L) vs. L−1 data are presented by the full lines for the prediction (34) and by symbols for the

simulational data; (b) panel shows the 3D plot of the surface (32) and the simulational data (symbols)

with 0.01maximum residual from the surface. (c) The same as in (a), but forHc(l),H
eff
c

(l,L), prediction

(35), and surface (33) in panel (d). Compiled from Fig. 2 in [110], and Figs. 3 and 9 from [112]

In Fig. 15, we show the integrated size distributions collapsed according to three types of scaling

D(int)

S
(S; r, 1/L, 1/L, 1/l) = l−(τ+σβδ)Df ×D(int)

S
(S/lDf ; rl1/ν, l/L, l/L, 1), (36)

D(int)

S
(S; r, 1/L, 1/L, 1/l) = L−(τ+σβδ)Df ×D(int)

S
(S/LDf ; rL1/ν, 1, 1,L/l). (37)
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D(int)

S
(S; r, 1/L, 1/L, 1/l) = S−(τ+σβδ) × D̄

(int)

± (Sσ |r|,Sσν/L,Sσν/L,Sσν/l), (38)

predicted for L× L× l systems; Df = 1/σ3Dν3D is the fractal dimension of nonspanning avalanches in

the equilateral 3D model.

(a) (c) (e)

(b) (d) (f)

Figure 15: Data collapsing of the integrated size distributions D(int)

S (S;R) predicted by (36) in (a) and

(b), by (37) in (c) and (d), and by (38) in (e) and (f). (a) l/L = 1/256. (b) l/L = 1/2. (c) l = 1,Rc = 0.54.

(d) l = 4, Rc = 1.02. (e) l = 8, L = 4096. (f) l = 32, L = 4096. This is Fig. 3 from [110]

In the case of a small aspect ratio l/L, many avalanches reach the linear size la > l and, being

squeezed between the top and the bottom system’s base, effectively behave as if they are 2D avalanches

spreading over a 2D lattice. On the other hand, avalanches of small linear size (<l) are not affected

by the lattice’s top and bottom boundaries and behave like ordinary 3D avalanches. The presence of

these two types of avalanches influences the shape of distributions like in the case of integrated size

distribution shown in Fig. 15a where one can see two distinctive parts in the shape of size distributions,

the left part resembling the distribution of small 3D avalanches and the right tail being comprised of

quasi-2D avalanches. Such distributions have two scaling regions described by two different values

of the pertinent power-law exponent, one like for 3D and the other like for 2D systems, the first

one describing the region of small avalanches, and second one describing the region of quasi-2D

avalanches. Between these two regions, the distribution bends at the maximum size Smax of the 3D-like

avalanches which scales with thickness l as Smax ∝ lDf . The distributions of other avalanche parameters

(e.g., duration and energy) exhibit similar behavior as is detailed in References [110,112]. For a similar

analysis performed on the strip-like systems, see Reference [131].

4.4 Thin 3D Systems with Open Boundaries

Among various RFIM systems, thin systems with open boundaries play a distinguished role being

the most appropriate model for real thin magnetic systems. The response of thin RFIM systems

displays a lot of peculiarities studied in [111] on the L × L × l cubic lattices with open boundaries

by the adiabatically driven ZTNEQRFIMwith Gaussian distribution of the randommagnetic fields,
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exchange coupling limited only to the nearest neighbors with Jij = 1, absent dipolar interactions and

zero demagnetizing field. The study was concentrated on the behavior of the system along the critical

line comprised of the corresponding values of the effective critical disorder Reff
c

(l,L) and the effective

critical field Heff
c

(l,L), illustrated in the left panel of Fig. 16 for L = 256 and L = 512 vs. system

thickness l. Themagnetization curves obtained atReff
c

(l,L) are shown in the right panel; see Section 7.2

for the multifractal analysis of the response signal of these systems.

(a) (b)

Figure 16: (a) Effective critical disorder Reff
c

(l,L) and the effective critical field Heff
c

(l,L) vs. sample

thickness l for the base sizesL = 256 andL = 512. (b)MagnetizationMvs. the rescaled magnetic field

H/Heff
c
for various l and L = 256; for each l the magnetization curve is obtained at the corresponding

effective critical disorder Reff
c

(l,L) shown in the legend. Inset shows the same magnetization curves vs.

the magnetic field H. Figure is compiled from the first two panels of Fig. 1 from [111]

In the left column of Fig. 17, we show the size distributions D(w)

S (S;R) collected in a narrow

external-field window on the hysteresis loop center part (HLC), and also the corresponding integrated

distributions D(int)

S (S;R) collected along the entire hysteresis loop. The distributions obtained for l

comparable to L have the form of a power-law ending with a cutoff preceded by a bump due to the

onset of large (spanning) avalanches expected at the effective critical disorder. On the other hand,

the distributions for small values of l manifest two scaling regions, the left and steeper one from the

small 3D-like avalanches, and the right region originating from the quasi-2D avalanches. To reliably

estimate the effective values of the exponents τ1 and τ2, pertaining to the left and right scaling regions,

respectively, the size distributions was fitted with the aid of the model function

D(mod)

S
(S) =

{[
1 − tanh

(
S

B

)]
A1

Sτ1
+ tanh

(
S

B

)
A2

Sτ2

}
exp

[(
S

D

)k

−
(
S

C

)σ
]
, (39)

that, besides on τ1 and τ2, depends on additional fitting parameters, namely, the amplitudes A1 and

A2, bending size B, bump avalanche size D with the associated bump exponent k, and the cutoff

avalanche size C associated with the cutoff exponent σ . The examples of such fits are plotted by

full lines presented in the insets of the left and middle columns of Fig. 17, and also in the top row

of Fig. 18. The graphs from the bottom row of Fig. 18 clearly display that τ1 indeed corresponds to the

exponent τ in the equilateral 3D model, and likewise for τ2 and the equilateral 2D model; for details,

see supplementary information of Reference [111].



1054 CMES, 2025, vol.142, no.2

(a) (b) (c)

(d) (e) (f)

Figure 17: Distributions for thicknesses l from the legend that applies to the left and middle

column panels. Left column: (a) windowed size distributions in the HLC part and (d) integrated size

distributions with the best fit of type (39) for l = 16 in the inset. Middle column: (b) HLC windowed

and (e) integrated duration distributions with the insets showing the best fit of duration distribution

adjusted type (39) for l = 1 (b) and l = 256 (e). (c) Average size 〈S〉T of avalanches having duration T ;
Insets in (c): determination of the exponents γ1 and γ2 for l = 16 (right) and their variation with l (left).

(f) Normalized average avalanche shapes 〈V(t|T)〉/〈V(t|T)〉max vs. t/T for various l and fixed duration

T = 64 (main part) and T = 2048 (inset). Fits with model function (40), shown by full lines, are

obtained with the following values of parameters: a = −0.214, γAAS = 1.51 (main part); a = −0.176,

γAAS = 1.628 (inset). This is Fig. 4 from [111]

Two scaling regions also appear in graphs showing the power-law correlation 〈S〉T ∝ T γS/T

between the avalanche duration T and the average size 〈S〉T of avalanches of duration T , collected

in a transitional range of thickness l, see Fig. 17c. The variation with thickness l of the effective values

γ1 and γ2 of exponent γS/T , determined according to the bottom inset of the panel in the left and

right scaling regions, respectively, are presented in the top inset describing two scaling regions in the

thickness range 8 ≤ l ≤ 32 (for L = 256).

The average shapes, 〈V(t|T)〉/〈V(t|T)〉max, of avalanches with duration T , illustrated in Fig. 17f,

are also considered to be described by the exponent γAAS. By fitting these shapes using the model

function [193]

〈V(t|T)〉/ ∝ T γAAS−1

[
t

T

(
1 − t

T

)]γAAS−1

×
[
1 − a

(
t

T
− 1

2

)]
, (40)

depending on an additional parameter a, the so determined effective values of exponent γAAS are found

to depend on both l and L spanning a range documented in [111] that is slightly larger than the range

of effective values of γS/T shown in Fig. 17c.
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(a) (b) (c)

(d) (e) (f)

Figure 18: In the central part of the hysteresis loop, the distribution of avalanche size D(w)

S (S;R) for

different thickness l = 8, 32, and 256 is fitted using the expression (39), top row panels (a)–(c), and

the theoretical expression predicted for interface dynamics, where 2D and 3D parts of the distribution

are fitted separately in the bottom row panels (d)–(f). Note that the quoted estimates for τ1 and τ2 are

the effective values obtained in fits of distributions’ data, known to yield values different from those

estimated by data collapsing, offering more reliable values generally acknowledged as the standard

ones. This is Fig. 5 from [111]

5 Finite Driving Rate Induced Spatio/Temporal Merging of Avalanches

5.1 Finite Driving Rate Effects on 3D Systems

In comparison with the widely utilized adiabatic driving, presented in previous sections, driving

a disordered ferromagnetic system at a constant rate provides a more realistic scenario that is

very useful for analyzing experimental data. In this type of driving, the external magnetic field is

incremented/decremented along rising/falling part of the magnetization curve by a constant amount

1H in each time-step so that the driving rate � = 1H/1t is finite and constant. Consequently, rather

than developing just one at a time, avalanches (usually) propagate in multiples, sometimes overlapping

in space and/or in time making impossible their separation into individual ones and the analysis of

such events more complicated. Provided thatR surpasses the effective critical disorder (determined for

adiabatic driving), three distinct scaling regions are distinguished based on the value of the driving rate:

slow (all avalanches are nonspanning), intermediate (all types of spanning avalanches appear), and fast

(all spanning avalanches are full-system spanning) [130]. Power-law exponents with constant values

characterize the distributions of nonspanning avalanches in the slow driving regime, being nearly

identical to those in the adiabatic driving characterized by avalanches that propagate individually, well

separated in time. An increase in driving rate is followed by the corresponding increase in exponent

values as a result of avalanche merging and overlapping, and occurs once the rate-induced spanning

avalanches emerge in the system.

As an example, three signal samples from the numerical simulations of equilateral 3D ZT NEQ

RFIM driven at finite rates in each of the related regimes are displayed in Fig. 19b, together with
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relevant avalanche size distributions depicted in Fig. 19a. Therefrom, it is evident that in the slow

driving regime, the same behavior is observed as for the cases of adiabatic and quasistatic driving,

manifested by overlapping of all avalanche distributions, regradless of the driving protocol employed.

However, when driving rate increases, a departure from this tendency is observed, being the most

noticeable in the fast driving regime.

(a) (b)

Figure 19: (a) Avalanche size distributions for L = 512 and R = 2.6, averaged over 100 RFC for three

different driving protocols: adiabatic, quasistatic and finite-rate driving. Main panel represents the

cases of slow, top-inset of intermediate, and bottom-inset of fast driving. (b) Samples of signals for the

cases of slow, intermediate, and fast finite rate driving regimes. This is Fig. 1 from [130]

Because the dynamics of avalanches are significantly impacted by the driving rate, it is appropriate

to analyze the driving rate effects on the systems that are large enough and have sufficiently high

disorder (e.g., L = 512 and R = 2.6) ensuring that the occurrences of spanning avalanches are solely

rate-attributed. Having parameters chosen in this way, the systems exhibit adiabatic-like behavior at

slow enough rates which is more and more abandoned as the rate increases due to the emergence of

many simultaneously propagating avalanches. Yet, the scaling of magnetization, susceptibility, and

distributions of avalanche parameters of nonspanning avalanches still exists for the systems satisfying

the finite-size scaling condition Lrν = const amended by the rate-dependent condition �rν/q̄ = const

with q̄ = 1 as is shown in [130]. For magnetizations and magnetic susceptibilities obtained in

simulations of such systems, the rate-dependent scaling read

mR,L(H) = |r|βM̃±(h′/|r|βδ, 1/L|r|ν,�|r|ν), (41)

χR,L(H) = |r|β−βδ
X̃±(h′/|r|βδ, 1/L|r|ν,�|r|ν), (42)

where m = M −Meff
c
. These scalings enable collapsing of the magnetization and susceptibility curves

like those illustrated in Fig. 20 that are achieved with the standard values of the 3D RFIM exponents

and the (adiabatic) critical value of disorder Rc = 2.16 [28].
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(a) (b)

Figure 20: Scaling collapses of susceptibilities (a) and magnetizations (b) for system with parameters

satisfying the conditions Lrν = const and �rν = const. Insets show the non-scaled curves averaged

over up to 400 different RFC realizations. Parameters of the presented set of simulations are shown in

the legends. This figure is replotted from Fig. B3 from [130]

As already mentioned, the avalanching activities are more difficult to analyze at the finite driving

rate because of the merging of separately nucleated avalanches into system activity events (in this

section for simplicity also referred to as avalanches). Such merging enlarges avalanches changing

the shape of their distributions by e.g., promoting 1d into 2d spanning avalanches causing them to

‘flow’ from the first into the second distribution (and likewise for 2d and 3d spanning avalanches).

So, in the intermediate driving regime, the distributions of 1d and 2d spanning avalanches become

bimodal, see two top panels in Fig. 21a,making their scaling (and consequently collapsing) impossible.

Due to the same reason, prominent dents appear at the cutoff start of the nonspanning avalanches’

distributions, see the bottom-right panel of Fig. 21a, arisen from the amalgamation of multiple

nonspanning avalanches that eventually approach the system boundaries, turning into the spanning

and being excluded from the distribution of nonspanning avalanches. Nevertheless, given that the

system parameters satisfy the compatibility conditions Lrν = const and �rν = const, the distributions

of nonspanning avalanches retain their scaling, however modified into

D(int)

Sns
(S;R,L) = S−τ ′

nsDns(S
σnsr, 1/Lrν,�rν), (43)

with the rate-dependent values of the effective scaling exponents τ ′
ns
and σns, whose variation with � is

presented in the main panel of Fig. 21b; the collapsing following (43) is illustrated in the inset.

Inspecting the flow of the exponents τ ′
ns
and σns with the driving rate, presented in Fig. 21b, three

distinct regions of driving rate can be recognized. In the regime of slow and fast driving rates, the

values of both exponents are saturated at different values. However, in between these two, in the range

of intermediate rates, the values of exponents are rate-dependent.

The influence of the applied driving protocol on the spatiotemporal correlations of spin-flipping

activity events with quite complex rate-induced behavior is another aspect that merits consideration.

Results show that, provided the system parameters are tuned to satisfy the finite-size and rate-

dependent scaling conditions, the spatial activity correlations follow rate-dependent scaling in all

three driving regimes [148]. Temporal activity correlations, however, turn out to be highly sensitive
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to driving, so the collapsing of waiting time distributions is only achievable at very slow driving rates,

and not possible for other rate choices. The increase in driving rate has a negative influence on various

distributions of activity waiting times as well as on the activity average shapes that significantly deviate

from slow driving and adiabatic behavior.

(a) (b)

Figure 21: (a) The integrated size distributions of various types of avalanches (1d, 2d, 3d spanning, and

nonspanning) collected at the driving rates from the legend, system size L = 512, and averaged over

100 different RFCs. (b) By open green symbols is shown the variation with � of the exponents τ ′
ns
(in

themain panel) and σns (in inset), pertaining to the scaling (43) under satisfied compatibility conditions

Lrν = const and �rν = const. Analogous variations, but for the scaling D(int)

Sns
(S;R) = S−τ ′

nsDns(S
σnsr)

which follows from (43) in the L → ∞ limit, are shown by black symbols. Left inset shows an example

of the scaling collapse achieved according to (43). This figure is replotted from Figs. 5 and 9 from [130]

All spin flipping throughout the continuous system activity emerged at sufficiently high � is

considered as a single activity event, likely realized due to multiple nucleations of avalanches and

their spatial merging. The activity event correlation functionGae(int)

R (x;R,L,�) refers to the probability

per spin that the first spin to flip after the system’s inactivity will cause the flipping of spins at

a distance x from it. A characteristic plateau that develops in the intermediate and fast driving

regimes is the reason for the consideration of the so-called triggered correlation function, defined as

G(int)

R (x;R,L,�) = L3Gae(int)

R (x;R,L,�); see Fig. 22. These functions nearly overlap for slow driving

rates, exhibiting adiabatic-like behavior permitting propagation of only one avalanche at a time, with

the exception of the largest values of spin distance x, where the onset of a post-cutoff plateau can

be observed. Insets in Fig. 22 show that as � gradually increases, the heights of these plateaus rise

proportionately to 〈T〉R1H, where 〈T〉R is the average activity duration at disorder R. The plateau

level finally overlaps with the main plateau at 1, signifying the beginning of genuine rate-induced

spanning avalanches in the system at fast enough rates, as the driving rate increases further. The

adiabatic scenario attributes this plateau exclusively to the beginning of the disorder-caused spanning

avalanches emerging at higher disorders at sufficient driving rates.

When the system parameters are chosen so that the finite-size condition Lrν = const and the

rate-dependent condition �rν = const are fulfilled, the scaling

Gae(int)

R
(x;R,L,�) ∼ 1

xd+β/ν
Ḡ

(�)

± (xrν, 1/Lrν,�rν/q̄), (44)
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is expected for the activity event correlation functions Gae(int)

R (x;R,L,�); here Ḡ (�)

± are the universal

scaling functions. The pertaining collapses, shown in Fig. 23, are obtained with the rate-independent

standard 3D RFIM scaling exponents in the slow, intermediate, and fast driving regime.

Figure 22: Triggered activity correlation functions G(int)

R (x;R,�,L) vs. inter-spin distance x. Presented

G(int)

R (x;R,�,L) data are obtained for system size L = 512, disorder R = 2.6 and a range of driving

rates � = 10−15 − 10−3 by averaging over 100 different RFC. The plateau level of the correlation

functions increases with �, reaching the saturation level (= 1) for � > 10−6, as shown in inset (1).

For small driving rates, the increase is linear with �, indicated by the red solid line. In inset (2), it is

demonstrated that the plateau level for fixed and very small � and very high values of disorder R is

linearly proportional also to the average duration 〈T〉R of the activity event at disorder R. This figure

is replotted from Fig. 1 from [148]

(a) (b) (c)

Figure 23: Triggered activity correlation functionsG(int)

R (x;R,�,L), shown in insets, and the pertaining

collapses of type (44) of the activity event correlation functions Gae(int)

R (x;R,�,L), shown in main

panels, for systemswhose parameters satisfyLrν = const and�rν = const scaling conditions for typical

rate ranges: (a) slow, (b) intermediate, and (c) fast. The collapses are obtained with ν = 1.41 ± 0.02,

d + β/ν = 3.05± 0.03, and Rc = 2.16± 0.03. The data are averaged over up to 800 RFCs. This is Fig.

3 from [148]

The time that passes between any two subsequent system activity events is known as the total

waiting time, Tw. Each instance of waiting time can be classified either as internal or external waiting

time, Tw,int and Tw,ext, corresponding to the period between two successive subactivities within the same
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or from distinct activity events, respectively. The shape of the waiting-time distribution can be used

to identify the type of temporal correlations present in the response signal. When this distribution is

exponential, the temporal correlations are random; otherwise, the distribution is of a different kind.

Given that the threshold-collapsing requirements

V
σ/(1−γT/S)

th r = const, V
σν/(1−γT/S)

th /L = const (45)

are met, together with the Lrν = const and �rν = const scaling collapses to the form

V
αint/(γS/T−1)

th D(int)

Tw
(Tw;Vth, r, 1/L) = DTw(Tw/V

1/(γS/T−1)

th ;V
σ/(1−γT/S)

th r,V
σν/(1−γT/S)

th /L), (46)

introduced in [140] can be achieved in the slow driving regime for all types of the waiting-time

distributions (see Fig. 24) with remark, however, that the increase of the driving rate causes distortions

in the waiting time distributions D(int)

Tw
, making these collapses unfeasible [148].

(a) (b) (c)

Figure 24: Distributions of (a) total, (b) internal, and (c) external waiting times, shown in the main

panels, and their collapses (shown in insets) obtained in the slow driving regime with parameters

satisfying the requirements (45) together with the Lrν = const and �rν = const; legend presented

in (a) applies to all panels. Scaling collapses are achieved with Rc = 2.16 ± 0.02, α = 2.75 ±
0.10 and with values of exponent σνz = 2.00 ± 0.05 for the collapses of total D(int)

Tw
(Tw;R) and

external D(int)

Tw,ext
(Tw,ext;R) waiting times, shown in panels (a) and (b), and σνz = 1.8 ± 0.02 for the

collapse of internal waiting times D(int)

Tw,int
(Tw,int;R), shown in panel (c). This figure is replotted from

Fig. 8 from [148]

The correlation 〈S〉T ∼ T γS/T , between the duration T and the average size 〈S〉T of activity events

with durationT , is shown inFig. 25a. The inset illustrates the change in the (specifying this correlation)

exponent γS/T with the driving rate�, declining in the range of slow driving rates, followed by the quick

decrease in the intermediate, until reaching a plateau for the fast driving rates. Fig. 25b illustrates how

the average shape of activity events changes with the driving rate, transitioning from adiabatic-like

symmetric forms at slow driving rates to flat shapes at high driving rates, as a consequence of the

spatio-temporal merging of simultaneously propagating avalanches. The driving rate’s impact on the

power spectrum is displayed in Fig. 25c. In the slow driving regime, the power-law shape is maintained

over a wide range of frequencies. Power spectra of the finite-rate driven systems display a higher degree

of rate sensitivity; as the driving rate increases, the low-frequency spectra begin to diverge from this

form, which eventually causes the scaling area to subside before the maximum rates are even achieved.
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(a) (b) (c)

Figure 25: (a) Average size 〈S〉T of activity events of duration T presented against T in the full range

of driving rates given in legend. Inset shows the change of the exponent γS/T with the driving rate �.

(b) Normalized average shape of activity events, 〈V(t/T)〉/〈V(t/T)〉max, in the full range of driving

rates from legend and fixed duration T = 128. Data is for L = 512, R = 2.6, and averaged over 100

RFCs. (c) Power spectra P(f ) in a driving rates range from legend. Replotted from Fig. 9 [148], and

Fig. 11 [147]

In the finite-rate driving protocol, spanning activity events occur not just in the subcritical disorder

domain, but also for higher disorders given the system is driven fast enough. This suggests that in

systems of size L, there exists an effective critical driving speed �eff
c

(R,L) for every value of disorder

R > Reff
c

(L) such that the spanning activity events are absent or present below or above it. These

values are depicted by symbols in the left panel of Fig. 26, whereas by full lines are shown the values

of critical driving rate �eff
c

(R), estimated as �c(R) = lim
L→∞

�eff
c

(R,L) for the cases of quasistatic and

finite-rate driving. Each of these two lines is the boundary between the region of slow, i.e., � < �c(R),

and fast, i.e., � > �c(R), driving for the corresponding driving regime of infinite systems, whereas

for finite systems intermediate, i.e., �c(R) < � < �eff
c

(R,L), rates separate slow from fast driving

� > �eff
c

(R,L). The values of �c(R) increase with R, and the flow for quasistatic driving qualitatively

resembles the one for finite-rate driving, but the values belong to the range of higher rates.

Besides the critical driving speed, the flow of the effective critical magnetic field Heff
c

(R,L),

estimated from the corresponding maxima of the susceptibility curves with disorder R, is shown in

Fig. 26b. Presented data are obtained for all three types of driving (adiabatic, quasistatic and finite-

rate driving), as is shown in the pertinent legend. Provided the spanning activity events are present,

the jump (more precisely-sharp increase) in magnetization occurs at this value of the external magnetic

field. One can see the overlapping of the values obtained for adiabatic and for slow quasistatic and

finite-rate driving, which is in accordance with the rest of the findings. With the increase in driving

rate, the flow is systematically shifted vertically to higher magnetic field values.
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(a) (b)

Figure 26: (a) Phase diagram showing the effective critical driving rate �eff
c

against disorder R in

quasistatic (Q) and finite-rate (F) driving protocol. Two vertical dashed lines bound the (narrow)

region of transitional disorders for L = 512. (b) Effective critical magnetic fieldHeff
c

(R,L) vs. disorder

R in adiabatic (A), quasistatic (Q), and finite-rate (F) driving protocol, the later two for the values of

driving rate � shown in legend. Symbols show the �eff
c

(R,L) and Heff
c

(R,L) data for the system size

L = 512, averaged over up to 50 different RFCs. The full lines in (a) depict the estimated values of the

critical driving speed�c(R) = lim
L→∞

�eff
c

(R,L), while in (b) they connect the symbols for better visibility.

This figure is replotted from Fig. 17 in [147]

5.2 Finite Driving Rate Effects on 2D Systems

The disorder of the system, which suppresses avalanche propagation, and the driving rate, which

promotes it, pair up to produce the relaxation dynamics in the finite-rate driving protocol. Study of the

effects of finite driving by the time-varying external magnetic field in the 2D disordered ferromagnetic

systems is important from a conceptual and practical standpoint, due to the growing interest in novel

miniature (quasi) 2D systems operating in the finite-rate driving regimes [149].

Following modified power-laws satisfying the scaling and data collapsing predictions introduced

to describe the rate-dependent behavior of the model, it is demonstrated that it exhibits a dynamical

phase transition with three distinctive regimes of driving rate identified in 2D, as in the case of 3D

systems. Within the first regime of slow driving, the behavior of the system is approximately adiabatic

from which it gradually deviates upon the increase of driving rate. At intermediate rates, owing to

the temporal overlapping and/or spatial merging of avalanches, multiple spanning activity events are

observed, whereas at fast driving rates, the system behavior is mainly influenced by the propagation

of the biggest activity event as the single one spanning the system.

The new rate-dependent scaling forms are derived and implemented and their validity confirmed

in extensive numerical simulations [149]. The system response follows a rate-dependent scaling in

all three regimes of driving rate provided that the system parameters are tuned in compliance with

the finite-size scaling condition Lrν = const (relating system size L with reduced disorder r =
(R− Rc) /R), together with the rate-dependent scaling condition �rν/q̄ = const specified by the newly

introduced rate exponent q̄ with optimal value found to be q̄ = −0.4 ± 0.05 [149].

Within the constraints of the 2D system geometry, only two types of spanning avalanches can be

realized, namely the 1d and 2d spanning avalanches [27,106], depending on whether the spanning
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spreads along only one, or both spatial dimensions; the remaining avalanches are classified as

nonspanning. The numbers per single run of these two types of spanning avalanches, N1d/Nruns and

N2d/Nruns, together with their total number Ntot/Nruns are shown in Fig. 27. What can be seen is that in

the slow driving regime there are no spanning avalanches, as expected, while in the fast regime in each

run appears one 2d full system spanning avalanche and none of the 1d spanning avalanches. In the

intermediate regime of rates, both types of spanning avalanches are present and their rate-dependent

numbers are reaching even up to 3 for the 2d spanning avalanches. This is a clear difference from the

adiabatically driven systems where this number never surpassed 1.

Figure 27: In the main panel are shown the number of spanning avalanches (1d, 2d and total) per

single run NSpAv/Nruns as a function of driving rate �. System size is L = 10,000, disorder R = 0.8

and the data are averaged over Nruns = 100 RFCs. In the insets are separately shown: the number

N1d/Nruns of 1d (top left), the number N2d/Nruns of 2d (bottom left) and the total number Ntot/Nruns (top

right) of spanning avalanches per single run for the systems with parameters (L,R) = (12,500, 0.784),

(L,R) = (10,000, 0.8), and (L,R) = (7500, 0.8228). The data are averaged over up to 500 RFCs. This

is Fig. 1 from [149]

As was previously demonstrated in the 3D example, the presence of either disorder-induced or

rate-induced spanning events in the system determines the shape of magnetization curves. Like in the

case of 3D systems driven at a finite driving rate, adiabatic-like behavior is maintained at low driving

rates, but at higher rates, a rate-induced deviation from the usual adiabatic curves is apparent.Modified

scaling forms taking into account the rate-dependence of the general form of the invariant �rν/q̄ [130]

are tested as well

m = rβ
M (h′/rβδ, 1/Lrν,�rν/q̄), (47)

χ = rβ−βδχ(h′/rβδ, 1/Lrν,�rν/q̄) (48)

and it has been numerically demonstrated that q̄ = −0.4 is the optimal choice [149], allowing the

collapses obtained using the rate-independent standard adiabatic 2D NEQ ZT RFIM values of the

involved exponents (β,βδ, ν) [89], shown in insets of Fig. 28.
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(d) (e) (f)

Figure 28: Susceptibilities are shown in the main panels of (a), (b), and (c) from the top row, while

magnetizations are shown in the main panels of (d), (e), and (f) from the bottom row. All presented

curves are acquired for the L, R pairs with both Lrν = const, and �rν/q̄ = const (q̄ = −0.4) scaling

conditions satisfied. The curves in panels (a) and (d) are obtained in the slow driving rate regime for

the L, R pairs quoted in legend from panel (a), the curves in panels (b) and (e) are obtained in the

intermediate driving rate regime for the L, R pairs quoted in legend from panel (b), and the curves in

panels (c) and (f) are obtained in the fast driving rate regime for the L, R pairs quoted in legend from

panel (c). The pertaining finite-size scaling collapses, in all driving regimes, are accomplished using

Rc = 0.54 ± 0.02, β = 0.15 ± 0.04 and βδ = 4.8 ± 0.2; replotted from Fig. 5 from [149]

Taking into account the effect of driving rate, similarly as it was done for the 3D case [130], the

three types of scaling predictions for the integrated size distributions of nonspanning activity events

(avalanches) are predicted in [149] given that the conditions Lrν = const and �rν/q̄ = const are satisfied

D(int)

S
(S;R,L,�) = S−τ ′

D̃S(S
σ r; 1/Lrν,�rν/q̄), (49)

D(int)

S
(S;R,L,�) = L−τ ′/σν

D̃L(S
σ r; 1/Lrν,�rν/q̄), (50)

and

D(int)

S
(S;R,L,�) = �−q̄τ ′/σν

D̃�(Sσ r; 1/Lrν,�rν/q̄), (51)

where D̃S, D̃L, and D̃� are the corresponding universal scaling functions. These collapses, along with

the pertinent distributions, are presented in Fig. 29.
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(a) (b) (c)

(d) (e) (f)

Figure 29: For the integrated size distributions of nonspanning activity events, shown in the top insets

of panels (a), (b), and (c), we present their scaling collapses: of type (49) in top-row panels, of type (51)

in bottom-row panels (d), (e), and (f), and of type (50) in insets of the bottom-row panels (d), (e), and

(f). The systems parameters satisfy both Lrν = const and �rν/q̄ = const scaling conditions in each of

three driving regimes: slow (panels (a) and (d) in the left column), intermediate (panels (b) and (e) in

the middle column), and fast (panels (c) and (f) in the right column). All collapses are achieved with

adiabatic valuesRc = 0.54 ± 0.02, ν = 5.15±0.20, and σ = 0.10±0.01, together with τ ′ = 2.02±0.06

in the slow regime, while in the intermediate and fast driving regime the effective exponent τ ′
eff

(L) is

used whose values flow with the system size L as is depicted in the bottom inset of panel (c) along

with the pertaining error bars. The obtained data are averaged over up to 6400 RFCs. In this figure

are combined Figs. 8 and 9 from [149]

Fig. 30 evidences that all changes with �, observed for the average size of activity events with

given duration, average avalanche shapes, and power spectra in the 3D case, hold in the 2D case as

well-cf. Fig. 25 for the analogous graphs in the 3D case. In particular, the main part of panel (a) shows

that in a wide range of driving rates � the correlations 〈S〉T ∼ T γS/T seem to remain stable due to

overlapping of graphs, while the inset illustrates barely noticeable differences between these graphs by

the variation of the exponent γS/T with the driving rate� obtained by three differentmethods described

in the caption. Panel (b) shows how the normalized average avalanche shapes 〈V(t|T)〉/〈V(t|T)〉max for

the fixed duration T , like in the 3D case shown in Fig. 25b, get more and more flat when � grows as

a consequence of increased spatio-temporal merging of individually nucleated avalanches caused by

high driving rate, while the panel (c) gives an overview of the corresponding �-variation of the graphs

showing power spectra P(f ) vs. frequency f .



1066 CMES, 2025, vol.142, no.2

(a) (b) (c)

Figure 30: (a) Correlations between the average size 〈S〉T of activity events of duration T presented

against T in the full range of driving rates shown in the legend. Displayed data is obtained for the

systems with L = 10,000 and R = 0.8, and averaged over 100 different realizations of RFCs. (b)

Normalized average avalanche shape 〈V(t|T)〉/〈V(t|T)〉max for the fixed duration T = 64 in a wide

range of driving rates shown in the legend. (c) Power spectra P(f ) vs. frequency f for the same driving

rates. Inset in (a) shows the change with the driving rate � of values of the exponent γ estimated

in three ways as the fitting parameter: γ = γS/T for the 〈S〉T ∼ T γS/T correlation data, γ = γspc for

the power-law P(f ) ∼ f −γspc , and γ = γAAS for the average avalanche shapes 〈V(t|T)〉/〈V(t|T)〉max ∼
T γAAS−1

[
t

T

(
1 − t

T

)]γAAS−1

. Error bars of the γspc values are 3 times magnified for better visibility. In this

figure are combined Figs. 10, 11 and 12 from [149]

The preceding similarity trend continues for the integrated correlation functions which in the slow

driving regime display adiabatic-like behavior illustrated in Fig. 8 for the 2D case, up to the cutoff end,

after which the onset of a post-adiabatic plateau can be noticed, occurring for big inter-spin distances x

due to the rate induced spatio/temporal overlapping of avalanches nucleating simultaneously without

producing a spanning avalanche. With the increase of rate, the plateaus elongate and their level

increases, eventually saturating and overlapping with themain plateau. This main plateau, ending with

a region in which the correlation function rapidly drops to zero, occurs for fast rates and is being the

characteristics of the onset of rate-induced spanning avalanches in the system resulting from merging

of concurrently propagating avalanches, otherwise absent in the adiabatic and slow driving regime for

disorders surpassing the effective critical disorder Reff
c

(L) for the employed lattice, see [149]. Taking

into account the rate dependence, collapses of the correlation functions can be achieved following the

scaling prediction

G(int)

R
(x;R,L,�) ∼ 1

xd+β/ν
Ḡ±(xrν, 1/Lrν,�rν/q̄), (52)

as presented in Fig. 31, provided that both of the conditions Lrν = const and �rν/q̄ = const are met.
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(a) (b) (c)

Figure 31: Main panels of (a), (b), and (c) show the scaling collapses of the integrated correlation

functions G(int)

R (x;R,L,�); integrated triggered correlation functions are depicted in insets. Scaling

collapses of type (52) are all obtained with ν = 5.15 ± 0.02, d + β/ν = 2.04 ± 0.03 and Rc =
0.54 ± 0.02. Number of runs per which the data are averaged goes up to 800. This is Fig. 15 from [149]

5.3 Crossover from 3D to 2D RFIM Systems Driven at a Finite Driving Rate

The imposed driving type together with the system thickness in the nonequilateral geometry

profoundly affects its evolution, demonstrated in the magnetizations, coercive fields, distributions of

avalanche sizes, correlation functions, average avalanche shapes and distributions of average avalanche

size of a given duration [171]. While the driving rate remains in the slow regime, regardless of its

thickness, a system behaves as being rate-independent and driven adiabatically. With the increase of

the driving rate, the rate-sensitive behavior emerges, as a consequence of the initiation of multiple

simultaneously propagating avalanches gathering and assembling into a complex response of system

activity. This becomes even more intricate when the system’s thickness is in the transitional range,

due to the coexistence of different types of avalanches, displaying both 3D and 2D effects described

with pertinent effective rate-dependent exponents changing with the driving rate. Understanding this

dimensional crossover is of considerable importance for the analysis of data obtained in experimental

studies conducted on field-driven nonequilateral samples such as ferromagnetic strips, ribbons and

thin films [194,195].

The dimensional crossover from 3D to 2D systems at finite driving rates is numerically studied

in [171] so that for each system’s thickness the disorder is fixed above the critical line for adiabatic

driving to ensure that the emergent critical behavior is solely attributed to the increased driving

rates of the external field. The so-called transient thicknesses are characterized by the double-

sloped distributions of avalanche parameters (such as sizes), which show the coexistence of two

types of avalanches: purely 3D but small-sized avalanches and effectively 2D ‘squeezed’ avalanches,

whose propagation is constrained by the system limits. Fig. 32 shows the integrated avalanche size

distributions D(int)

S (S;R) across all driving regimes. The power-law is kept as long as the driving is

slow enough, with the cutoff size increasing as the driving rate increases due to the merging and

spatio/temporal overlapping of simultaneously propagating avalanches. This impact is particularly

noticeable in the fast regime causing a massive system-spanning avalanche for each system thickness

l [27,106,107]. The distributions in the insets of Fig. 32 are double-sloped, and they correspond to

a transitional thickness of l = 16, at which point small 3D avalanches coexist with base-spreading

ones that propagate as 2D avalanches. Both the exponents characterizing the scaling of large 2D-like

avalanches and small 3D avalanches grow with the driving rate, with the latter being more sensitive to

the applied rate.
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(a) (b) (c)

Figure 32: Integrated distributionsD(int)

S (S;R) of avalanche size S in the slow (a), intermediate (b), and

fast (c) regimes in the full range of system thicknesses l = 1−1024 forL = 1024.Data are averaged over

100 RFCs. Insets show distributions for thickness l = 16 with characteristic double slope, marking

two different contributions: the initial one coming from 3D-like avalanches of small size S, followed

by the part coming from large 2D-like avalanches. This is Fig. 5 from [171]

With some modifications in the transition from 3D to 2D with the systematic change of system

thickness l, integrated triggered activity event correlation functions [148,149], which measure the

correlations between pairs of spins belonging to the same activity event and being separated by

a distance x, exhibit similar rate dependency as was shown for the equilateral 3D systems [148].

The integrated correlation functions in the slow, intermediate, and fast regimes for representative

thicknesses, namely, very thin that produce 2D-like avalanches, transient that permit the coexistence

of 2D and 3D avalanches, and fully equilateral 3D systems that have no restrictions on the shape of

the avalanche, are displayed in Fig. 33.

(a) (b) (c)

Figure 33: Integrated correlation functions in the slow, intermediate, and fast regimes for the repre-

sentative thicknesses: l = 2 in (a), l = 16 in (b), and l = 1024 in (c). This is the bottom row of Fig. 7

from [171]

Fig. 34 shows average avalanche shapes on the time scale measured from the commencement of an

avalanche divided by the duration of the avalanche T . These shapes are fairly symmetric for all system

thicknesses for slow and moderate driving regimes, but flattening of their forms occurs for high rates,

as seen in panel (c), because of the superposition of simultaneously propagating avalanches (also shown

for the equilateral field-driven systems in [148]). With γeff being the effective rate-dependent value

of the exponent γS/T , the average size of avalanches with a given duration T scales as 〈S〉T ∼ T γeff .

As the system thickness increases, the γeff values transition from γ2D ∼ 1.55, peaking at l = 16, where

the distribution also breaks because of the combined effect of 2D and 3D avalanches. From there, as
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l increases within the system transit to the equilateral 3D geometry, γeff increases further, reaching the

value of γ3D ∼ 1.7. This change is less noticeable in the intermediate regime, although the exponent still

somewhat maintains the same flow. Due to the existence of a massive system-consuming avalanche,

γeff values saturate to a lower range at about γeff ∼ 1.2 in the fast driving regime.

Figure 34: Average avalanche shapes for avalanches with duration T = 64 and systems with various

thicknesses in three characteristic driving regimes, slow (a), intermediate (b), and fast (c). Insets show

the average size 〈S〉T of avalanches having duration T for various system thicknesses in the pertaining

driving regimes. This figure is replotted from Figs. 8 and 9 from [171]

5.4 Finite Driving Rate Effects on the Behavior of Thin 3D Systems

From a theoretical, experimental, and practical standpoint, thin disordered ferromagnetic systems

pose a challenge in terms of comprehending their spatio/temporal evolution. Numerical simulations

using the geometry of thin nonequilateral systems, where one dimension is much smaller than the other

two, are used to address this problem over a wide range of driving rates and disorders [172].

The results suggest that the behavior that arises is the product of a non-trivial interaction between

the three elements: the sample’s geometry, the disorder, and the employed driving protocol. Therefore,

all commonly analyzed quantities exhibit rate-sensitive behavior, which appears in the generated

signal’s shape and consequently all related behavior characteristics. In particular, this leads to changes

in the distributions of avalanche parameters, correlation functions, and average avalanche shapes,

which are characterized by the rate-dependent values of relevant exponents and coercive field values.

Regardless of the system’s disorder, an almost adiabatic response happens during the slow driving,

the deviation from which increases with the driving rate because many generated avalanches advance

simultaneously (and possibly merge in space) forming activity events in the system response by their

intricate superposition. This process is also influenced by the system’s geometry, which restricts the

propagation in the direction of the system’s thickness, forcing avalanches to expand over the base plane

and making them essentially two-dimensional.

The size distributions obtained for systems with a representative combination of thickness and

disorder are exemplified in Fig. 35. System’s behavior for disorders below the effective critical is

dominated by spanning avalanches, independent of its thickness. The occurrence of rate-induced

spanning avalanches is evident with increasing rate, manifested in the modification of the distribution

shape and the extension of the cutoff area to larger avalanche sizes. The windowed avalanche size

distributions (comprised of avalanches that occur in the narrow magnetic field window selected so to

facilitate comparison with the experimental data) are displayed in the middle panel of Fig. 35. Right

panel of Fig. 35 shows the variation of τeff with the driving rate �, falling as driving rate increases, up

to the fastest driving rate (� = 10−6), at which the exponent value abruptly increases.
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Figure 35: Integrated in (a), and windowed in (b) avalanche size distributions for the 3D systems with

base 512 × 512, thickness l = 32, and disorder R = 2.5, driven at rates presented in legend. Data

are averaged over up to 1300 RFCs. Windowed distributions are collected in the H-field windows

with 5% change in magnetization around the coercive magnetic field. (c) Effective values τeff (of the

size distribution τ -exponent) vs. driving rate � for various threshold levels Vth shown in legend. This

figure is replotted from Figs. 2, 3, and 4 from [172]

The integrated average avalanche shapes in the slow, intermediate, and fast driving regimes, as

well as for different system thicknesses, are displayed in Fig. 36. It is evident that, at sufficiently low

driving rates, the corresponding average shapes are symmetric and equal to adiabatic, irrespective of

sample thickness. As the rate increases, the shapes begin to alter, becoming progressively more wide

and flat due to temporal and/or spatial avalanche overlapping. Shape asymmetry happens at faster

rates as well, and it’s more noticeable in samples with the lowest levels of disorder.

(a) (b)

Figure 36: (a) Integrated average shapes of avalanches with fixed duration T = 64 for the driving

rates shown in the legend. The data corresponds to the systems with base 512 × 512, thicknesses l =
32, and disorder R = 2.5. All curves are obtained after averaging over 100 RFCs. (b) Windowed

average avalanche shapes, collected in the H-field window with 5% change in magnetization around

the coercive magnetic field. This figure is replotted from Figs. 5 and 7 from [172]

In addition to the integrated, average avalanche shapes are also calculated for the avalanches

formed in the magnetic-field window centered at the coercive field and having width corresponding

to the 5% range of magnetization. The system with lateral dimension l = 32 and base 512 × 512

with disorder R = 2.5 is used as a representative, with application of the zero threshold level, shown
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in Fig. 36b. The windowed average avalanche shapes are generally symmetric for slow driving and

deviate from this shape when the rate is raised, much like in the integrated case.

The triggered integrated correlation functions are displayed in Fig. 37 for a system of a chosen

thickness, driven with a set of rates spanning the entire range of driving regimes. These functions

have a characteristic spanning-induced plateau at 1. When spanning avalanches (i.e., activity events)

are present, the system’s behavior is dominated by them, and as a result, the correlation function’s

shape has a plateau at all system thicknesses. Conversely, the beginning of a post-cutoff plateau can be

observed for very large disorders and the slowest driving rates. This plateau’s level increases with the

rate until it eventually saturates and overlaps with the main plateau. Similar observations were made

previously for the equilateral 3D systems with finite driving [148].

(a) (b) (c)

Figure 37: Variation with disorder R of the triggered integrated correlation functions driven at the

rates shown in the panel (a) legend (valid for all panels) for systems with base 512 × 512 and lateral

dimension l = 8. The presented correlation functions correspond to disorders R = 1 in panel (a),

R = 1.8 in panel (b), and R = 2.5 in panel (c). Up to 100 RFCs are used to average the data. This

figure is replotted from Fig. 8 in [172]

5.5 Disordered 3D Ferromagnetic Systems with Stochastic Driving

For simulating the complex phenomena with intermittent avalanche dynamics, deterministic

external driving has typically been usedwith a well-defined protocol. In order to get as close as possible

to the realistic scenario, a new driving method was proposed in the recent study [196], in which the

external field takes stochastic increments within the framework of the ZT NEQ RFIM. This mimics

realistic occurrences and potentially enables the results to be extended to the study of some difficult-

to-achieve natural phenomena (e.g., earthquakes).

The results show that, provided the permitted range of field increments is small, the behavior is

comparable to that of a constant-rate driven system. The system reacts in a complex way when the

width of this range is expanded so that larger field increments are allowed. The scaling of the power

laws is preserved and demonstrated for the distributions of avalanche parameters, average avalanche

size of a given duration, and power spectra, whereas the deviations due to stochastic driving are found

for the magnetizations and correlation functions.

Fig. 38 shows the integrated distributions of avalanche sizes, durations and waiting times. One

can see that in the slow regime with small enough stochastic increments of the external field the

distributions are practically the same as in the case of driving with a constant and small driving

rate, while for the bigger stochastic steps, the differences start to emerge. Spanning avalanches are

also generated, shown in the distributions as isolated points occurring after the cutoff region. As a

consequence, the slope of distributions is also changed, reflected in the variation of the corresponding
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exponent values. The flows of the effective rate-dependent values of exponents are shown in pertinent

insets against the logarithmic width log(�max/�min) of the stochastic increment range.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 38: Integrated distributions of avalanche size (in (a)–(c) panels), duration (in (d)–(f) panels),

and waiting time (in (g)–(i) panels) for the slow, intermediate and fast minimum stochastic driving

rates �min collected in a wide set of ranges of the stochastic increments of the external field. System

size is L = 512, disorder R = 2.3, and the data are averaged over 100 RFCs. The values

of the pertinent effective exponent τ eff , estimated by fitting the size distributions D(int)

S (S;R), are

shown in the corresponding insets against the logarithmic width log(�max/�min) of the range of the

stochastic external field increments; fits are shown in main panels with full black lines. Presented

error bars in insets are augmented 3–5 times for better visibility. In this figure are combined Figs. 4, 5

and 8 from [196]

Additionally, in Fig. 39, preservation of the power-law dependence of average avalanche size of a

given duration for the case of stochastic driving is showcased, as well as for the power spectra showing

that this scaling holds only for narrow intervals of 1H increments in the slow and intermediate

stochastic regimes, being violated in the fast driving regime. Regarding the integrated triggered activity
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correlation function, one can see that the characteristic plateaus, indicating the presence of spanning

avalanches, are shown in the shapes of the correlation function as well. For the case of a small range of

permitted stochastic field increments we see the plateau at a level below 1, which is the same adiabatic-

like behavior previously observed for the constant rate driving in the limit of small rates.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 39: (a)–(c) Average size 〈S〉T of avalanches with duration T , against this duration. (d)–(f) Power

spectra Pf vs. frequency f for the slow, intermediate and fast stochastic driving regimes in a wide set of

ranges of the stochastic external field increments. (g)–(i) Integrated triggered activity event correlation

functions G(int)

R (x) vs. inter-spin distance x. This is Fig. 9 from [196]

Moreover, it is discovered that there is a high degree of consistency between the data from numer-

ical simulations and the experimental data from fracture experiments, which demonstrate seismic-

like behavior, and acoustic emission experiments of single crack propagation in inhomogeneous

solids. This suggests that when complex systems generate intermittent, scale-free avalanche dynamics,

there is a general underlying process that reproduces empirical rules, like Gutenberg-Richter’s law of

earthquakes. Fig. 40 presents the comparison of the integrated energy distributions obtained in the
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numerical simulations of stochastically driven RFIM with the corresponding distributions obtained

in acoustic emission experiments of a single crack propagation in inhomogeneous solid and fracture

experiments [142] for which the seismic-like behavior is demonstrated.

Figure 40: Comparison of integrated energy distributions, obtained in numerical simulations with

stochastic driving (for system with size L = 256, disorder R = 2.3, and the field increments within the

range (�min,�max) frome legend), and the data from [142], obtained in experimental measurements

of acoustic emissions during the crack propagation and fracture experiments [142], shifted in this

figure along both horizontal and vertical logarithmic axes in order to achieve the overlapping with

the simulation data. This is Fig. 11 from [196]

6 Towards More Realistic Modeling: The Impact of Thermal Fluctuations and Demagnetizing Fields

Modelling driven disordered systems in a way that closely resembles experimental settings is a

challenging endeavor due to the multitude of connected factors that impact their nonequilibrium

dynamical behaviour. In a recent study on the effects of demagnetizing fields and thermal fluctuations

of a thin ferromagnetic samples [164], the numerical simulations of the extended version of RFIMwere

conducted implementing novel algorithmic techniques. In this study, the magnetic field is cycled from

the saturated hysteresis loop through a series of nested subloops gradually reducing to zero, forming

along the demagnetization curve from the tips of all simulated subloops (see an example in the top left

panel of Fig. 41).

Using the thermal scenario (i.e., with the non-zero temperature) affects the values of the coercive

field and remanent magnetization, causing the shrinking of the hysteresis loop and amplifying minor

activity events. The temperature effects on the saturation loops and relevant demagnetization curves

of the demagnetized system are shown in the middle panels of Fig. 41. The saturation magnetization

loops exhibit a sharp rise at lower temperatures, gradually shrinking in width as temperature rises. This

dissolves the hysteresis and brings the rising and descending branches into overlap, with the coercive

field tending towards zero. In parallel, the characteristic plateau of demagnetization curve remains in

the range of lower temperatures, gradually shrinking as the temperature rises and ultimately dissolving,

smoothing the demagnetization curve.
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Figure 41: (a) Saturation hysteresis loop (full thick curve) with 10 subloops (shown out of 50 by thin full

curves) and the demagnetization (dashed) curve. (b) Shrinking of single-run saturation magnetization

curves with increasing relative temperature. (c) Single-run magnetization loops vs. simulation time t

for the range of JD values from the legend and fixed temperature Tr = 0.1. (d) Integrated distributions

D(int)

S (S;R) of size S (circles) and D(int)

T (T ;R) of duration T (triangles) of activity events, for a set of

disorder values R > Reff
c
. Presented data are averaged over 20 RFCs. Insets show pertinent scaling

collapses obtained for exponents τint = 1.95 ± 0.09, αint = 2.60 ± 0.02, σ = 0.98 ± 0.04, σγ =
1.01±0.03, andReff

c
= 1.575±0.108. System size is 256×256×4 with parameters from the legend. (e)

Demagnetization curves for the simulation parameters quoted in the legend of panel (b). (f) Response

signals V(t) vs. simulation time t for the range of JD values from panel (c) and fixed temperature

Tr = 0.1. Presented data are replotted from [164], combining Figs. 1 and 6, and parts of Figs. 2 and 3

Conversely, the demagnetizing field introduces the prolonged linear segments in the loops and

alters the multifractal nature of the magnetization fluctuations. The right panels of Fig. 41 display

the effects of varying the JD coefficient over a wide range of values alongside the corresponding time

profiles of the system’s response signal V(t) = n+(t) − n−(t), expressed in terms of the numbers n+(t)

and n−(t) of spins that flip up and down at the moment t during one time-step. As the demagnetizing

factor JD increases, the virtually rectangular saturation loops for JD = 0 start to becomemore andmore

slanted, while the coercivity and remanent magnetization stay constant. Compared to the situation

without the demagnetizing fields, the emergence of a sizable linear section lengthens the hysteresis

loop’s central part and delays the magnetization reversal process. These changes of the hysteresis shape

may result in an altered role of disorder due to these long-range effects. Theoretically, a crossover from

the disorder-induced critical point to a self-organized critical behavior [197] may occur, in analogy to

the driving-induced crossover revealed in [198]. Another example to mention in this context is the

hysteresis behavior in the infinite-range spin glasses [199].



1076 CMES, 2025, vol.142, no.2

The integrated distributionsD(int)

S (S;R) andD(int)

T (T ;R) of activity events realized during the whole

hysteresis loop are displayed in Fig. 41d. The corresponding critical exponents characterize their

power-law scaling, which comes to an end in a cutoff region. As indicated in the insets of this panel,

the D(int)

S (S;R) and D(int)

T (T ;R) distributions collapse in accordance with

D(int)

S
(S;R) = S−τintDS(S

σ r), (53)

D(int)

T
(T ;R) = T−αintDT(T

σγ r), (54)

where DS and DT are the appropriate universal scaling functions and all exponents have the values

pertinent to the 2D adiabatically driven ZT NEQ RFIM [89].

6.1 Details of the Developed Numerical Algorithm

Amore realistic modeling of the hysteresis loop phenomena in disordered ferromagnetic samples

is introduced in [164] incorporating thermal and demagnetization field effects with possible extensions

to heterostructures and thin films which are all the subject of numerous applications at the moment.

This approach, which is computationally more efficient for thermal simulations than the one proposed

in [166], selects a given fraction c of spins at random and checks if they are thermally flippable at the

current H value, while the rest of the spins are checked according to the field-flipping conditions.

These criteria are more suited to a low-temperature fixed point in the relevant field-theory models

since they give greater weight to the field-flipping than thermal-flipping, particularly for small values

of c, controlling the number of ongoing thermal spin-flipping attempts in between two consecutive

discrete changes of the external magnetic field. Even though the algorithm permits the limit c = 1

with fully developed thermal fluctuations near the temperature-dominated fixed point, it uses two

independent parameters Tr and c < 1 to enable better control over the time scale separation, keeping

the system near the low-temperature disorder-dominated fixed point where thermal fluctuations are

subject to the dynamics of avalanche spreading and driving.

In Fig. 42, we present the flowchart of a single-run algorithm used in [164], and its key points we

summarize as follows:

• The single-run simulation input parameters are the size (L,L, l) of the lattice (determining the

number of spins in the system N = L2 × l), the seed for the random number generator used

in generating the configuration {hi}Ni=1
of the quenched random field, the disorder parameter

R, the demagnetization field coefficient JD, relative temperature Tr, the fraction c of thermally

flippable spins, the value of 1H (setting the driving rate � = 1H/1t), the number Nsl of

subloops and the corresponding sequence {H (max)

k }Nslk=1 of the maximum external field values in

the subloops.

• For the supplied value of seed, the (Gaussian) random field configuration {hi}Ni=1
is formed with

the aid of the numerical procedure named RNFARR from [200] for generation of uniform

deviates in (0, 1) interval; the saturated hysteresis loop simulation is initialized by setting si =
−1 for all spins and H to the maximum negative value such that all spins are field-stable.

• In each (new) time step the external magnetic field H is changed by 1H.

• After H is changed, all spins are in parallel tested and (possibly) flipped following the steps:

– the effective magnetic field heff
i
and the thermal flipping probability peff

i
are calculated for

each spin si, see (2) and (3) in Section 2.

– random numbers r(sel)
i

and r(th)

i
are generated from the uniform distribution in the closed

interval [0, 1] for each index i.
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– for si that is:

∗ field-unstable, si is flipped

·ifr(sel)
i

> c

·or(r(sel)
i

< c and r(th)

i
< peff

i
)

∗ field-stable, si is flipped if (r(sel)
i

< c and r(th)

i
< peff

i
)

• When H < H (min)

k for the first time on the falling part of the current k-th (sub)loop, the initial

spin state {s(k+1)
i

}N
i−1

for the next (i.e., k+ 1-th) subloop is stored.

• AfterH falls below theH (min)

k for the first time on the falling part of the current (k-th) (sub)loop,

the simulation of the rising part of the next (i.e., k+ 1-th) subloop is initiated by restoring the

spins to the initial spin configuration {s(k+1)
i

}N
i−1

and H to H (min)

k+1 .

Quenched averaging is performed over different RFCs using the same input parameters.

7 CollectiveMagnetization Fluctuations and Structure of Barkhausen Noise (BHN) in Experiments and

Theory

As stated in the Introduction, themagnetization reversal in disordered ferromagnets is a stochastic

process related to the motion, pinning and depinning of domain walls driven by slow ramping of the

external magnetic field. Such motion is accompanied by a ‘crackling noise’ signal [201], known as the

Barkhausen noise (BHN). It represents a time series of the magnetization changes during the reversal

processes and is measured in the experiments. Given the avalanching dynamics related to the critical

behaviour of the hysteresis-loop discussed above, the related BHN signals have a vibrant structure.

For example, the BHN signal possesses long-range temporal correlations seen in the power spectrum

and multi-scale fractality [33]; moreover, the sequence of avalanches represents another structured

set characterized by Tsallis q-Gaussian distribution of the first returns [202]. Hence, the appropriate

analysis of BHN signals can reveal valuable information about the stochasticity of the magnetization

reversal process and quantify its dependence on relevant parameters [203]. In this section, we first

demonstrate how themagnetization avalanches are extracted from the experimental BHN signal. Next,

we show that the BHN distributions, measured in a nanocrystalline sample, are adequately described

by the ZT NEQ RFIM with suitably selected parameters [168]. Furthermore, we give a more detailed

description of the multifractal analysis of the BHN signals simulated by RFIM in different conditions.

We define the appropriate quantitativemeasures and demonstrate their sensitivity to varied parameters

by considering two representative examples.
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Figure 42: A flowchart of the single-run algorithm used in numerical simulations of the RFIM

version incorporating demagnetizing field [164]. The dashed curve encloses the parallelized part of

the algorithm. This figure is replotted from Fig. 7 from [164]
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7.1 RFIM Simulations Compared with the Real Samples’ BHN Avalanches

In this subsection, we give a comparison between the BHN emitted by a real sample and the

RFIM version adjusted to give as close as possible matching with the experimental data reported

in [168]. BHN recordings were performed with the experimental setup schematically depicted in

Fig. 43 on an annealed (at 300°C) 16 cm × 1 cm × 40 µm VITROPERM 800 R (Vacuumschmelze

GmbH)metallic glass sample having very small demagnetizing factor (= 0.00053) and homogeneously

distributed magnetically coupled monodomain ferromagnetic nanocrystalline grains whose magnetic

dipole moments are possible to model with single spins. As the recordings were performed at room

temperature which is far below the Curie temperature (= 600◦C) of this material, the temperature

fluctuations can be considered absent in its modeling. For the foregoing reasons, the athermal ZT

NEQRFIMon the 3D cubic lattice (with the same aspect ratio as the real specimen) can be considered

as adequate for modeling of the BHN emitted from such a sample.

Figure 43: Scheme of the experimental setup used in BHN measurements. This is Fig. 1 in [168]

In BHN inductive recordings, the response signal is the voltage (i.e., electromotive force) induced

in a pickup coil tightly wound around the sample. This voltage is amplified approximately 2000 times

by an ultra-low noise differential amplifier, and registered and A/D converted by a Nicolet Odyssey

data acquisition system. The pickup coil with the sample was placed in themiddle of a driving solenoid

making inside it a homogeneous external magnetic field generated by the current with a triangular

time profile supplied by a power amplifier and a function generator. The sample, pickup coil, driving

solenoid, and differential amplifier were inside a four-wall magnetic shielding and an aluminum

Faraday cage with 1 cm thick solid walls. Due to such shielding and battery-operated amplifiers, the

recorded BHN was virtually free from the external electromagnetic noise and pollution penetrating

from the electric network, as well as from the external static and low-frequency environment electric

and magnetic field.

One period of the response signal, sampled 200,000 times per second at the resolution of 14 bits,

is presented in Fig. 44 for seven driving frequencies from the range 0.5–50 mHz. The corresponding

hysteresis loops are shown in the right insets, while the left insets illustrate the appearance and

distribution of the overall system noise collected near the tip of the hysteresis loop where the

contribution due to changes in magnetization caused by time-varying external magnetic field is absent.
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Figure 44:Themain panels show one example of time profiles of the voltage response signal vt recorded

during a single half-period of the external driving fieldH for each of the employed ‘slow’ (panel (a)) and

‘fast’ (panel (b)) driving frequencies � quoted in legends. Top-left inset in the left main panel presents

an excerpt of the time profile of the response signal recorded at � = 0.5 mHz near the maximum

value of the external fieldH, while the histogram, presented in the bottom-left inset of the same panel,

illustrates that these values of noise are normally distributed, which could be mainly attributed to

random fluctuations in the sample’s magnetization. In the right panel, the left insets show the same,

but for � = 50 mHz, while for the remaining frequencies, the corresponding distributions are roughly

the same with the standard deviation less than 5 mV. Hysteresis curves, displaying vs. the external

magnetic field H the sample’s magnetization M scaled by maximum magnetization M0, are given in

the right insets. This is Fig. 3 in [168]

To enable comparison with the experimental data, simulational units are scaled so as to provide

the best match for the two types of data. This is achieved by dividing the simulational timescale by

the factor ct = 2 × 105 (equal to the sampling rate used in the experiment) and the signal scale by the

factor cv = 50 (hence, the factor ctcv = 107 for the scale of avalanche size and the factor ctc
2
v
= 5× 108

for the scale of avalanche energy). Comparison between the experimental and (rescaled) simulational

data, presented in Fig. 45 for the integrated distributions of avalanche size S, duration T , energy E,

and amplitude A expressed in physical units (e.g., second for duration and volt for amplitude), reveals

a remarkable matching suggesting the adequacy of the employed RFIM version for the simulations of

the BHN emitted by the real ferromagnetic samples having a nanocrystalline grain structure.

Further matching supporting the preceding conclusion is illustrated in Fig. 46, in the case of

correlations 〈S〉T ∝ T γ and power spectra P(f ), dependence of the critical exponent γ on the choice

of the imposed thresholds in Fig. 47, and the average avalanche shapes and distributions of various

types of waiting time in Fig. 48.
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Figure 45: Comparison of integrated (unit area) distributions of avalanche parameters, size S in (a),

duration T in (b), energy E in (c), and amplitude A in (d), obtained in experiments and numerical

RFIM simulations on the 32,768× 2048× 8 striplike cubic lattice for the experimental (simulational)

driving rates quoted in the common legend. Each experimental distribution is extracted at the (same)

experimental base thresholdV
exp

th = 50 mV of 20 hysteresis cycles data and presented with full symbols

on the requisite scale using SI units for time and voltage. Starting from the distribution recorded

at the lowest driving rate, each experimental distribution obtained at the next (higher) rate is for

better visibility vertically translated by one decade upwards relative to the distribution recorded at

the previous (lower) rate. Each simulational distribution is extracted at the (same) simulational base

threshold V sim
th

= 5 of 20 RFIM simulations performed with different RFCs with disorder R = 2.3.

For comparison, the simulational distributions, presented by empty symbols, are shifted along the

horizontal axis dividing the data by a suitable factor (ct = 2 × 105 for T-axis, cv = 50 for A-axis,

ctcv = 107 for S-axis, and ctc
2
v
= 5 × 108 for E-axis). This is Fig. 8 from [168]
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Figure 46: (a) Experimental and simulational correlations between the avalanche duration T and the

average avalanche size 〈S〉T of that duration extracted at the same experimental and simulational base

thresholds, the same values of experimental and simulational driving rates, and the same ct and ctcv
factors as in Fig. 45. (b) Comparison of the experimental and simulational power spectra P(f ) for the

driving rates from the legend. Simulational frequencies are multiplied by the factor ct = 2 × 105. For

visibility, each of the next-driving-rate curves in both panels is shifted vertically upwards by one-two

decades in left-right panel relative to the previous one. The underlying sets of data are the same as in

Fig. 45. This is Fig. 9 in [168]

Figure 47: (a) Effective experimental values of the exponent γS/T against the base threshold V
exp

th . In the

inset, we show against the driving rate� the effective experimental values of γ0 (i.e., the value of γS/T at

the current driving rate � for the smallest experimental base threshold V
exp

th = 1 mV), γspc (i.e., power

spectrum exponent values), and γpl (i.e., plateau value of the exponent γS/T at the corresponding driving

rate �). (b) The same as in (a), but for the values obtained from the simulational data. Each effective

exponent value is the slope determined by the linear fit in the power-law region of the corresponding

distribution. The underlying data sets and other relevant parameters are the same as in Fig. 45. This

is Fig. 10 from [168]
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Figure 48: (a) Experimental/simulational average avalanche shapes shown in the main panel by

filled/empty symbols and the values of exponents γS/T and γAAS in inset. Experimental and simulational

distributions of waiting times, total in (b), external in (c), and internal in (d); the legend in (c) applies

to all waiting time distributions. In this figure are combined Figs. 11 and 12 from [168]

7.2 Multifractal Analysis of BHN Reveals Impact of Relevant Parameters

The multifractality of time series manifests in nontrivial scaling properties of the generalized

fluctuation function Fq(n) of time interval n, where the amplification parameter q takes a range of

real values. We use the detrended multifractal analysis for the magnetization changes {mt} at time

t, where t = 1, 2 · · · tmax, consisting a time series with N nonzero data points. According to the

procedure described in [33,204,205], the profile Y(i) = ∑i

t=1
(mt − 〈m〉) is constructed and divided

into Ns = int(N/n) non-overlapping intervals of the length n starting from the beginning of the time

series. As the interval n is often not an integer fraction ofN, the process repeats starting from the end,

resulting in total 2Ns intervals. The local trend yµ(i) is determined by a polynomial fit at each interval

µ = 1, 2 · · · 2Ns. Then, the standard deviation

F 2(µ, n) = 1

n

n∑

i=1

[Y((µ − 1)n+ i) − yµ(i)]
2 (55)
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is determined at each interval for µ = 1, 2 · · ·Ns starting from the beginning of the time series.

Similarly,

F 2(µ, n) = 1

n

n∑

i=1

[Y(N − (µ −Ns)n+ i) − yµ(i)]
2 (56)

for µ = Ns + 1 · · · 2Ns, starting from the end point. Then the q-th order fluctuation function Fq(n) for

different interval length n ∈ [2, int(N/4)] is determined as

Fq(n) =
{

1

2Ns

2Ns∑

µ=1

[
F 2(µ, n)

]q/2
}1/q

∼ nHq (57)

where the parameter q is varied over a range of positive and negative values to test its scaling properties.

The scale-invariant segments of Fq(n) for each q line is identified as a straight line in the log–log

plot, and the scaling exponent Hq is determined according to (57). The spectrum of the Hq values,

representing the generalised Hurst exponent, and the difference 1Hq between its largest and smallest

value serve as a measure of the signal’s multifractality [33,205]. Note that for a mono-fractalHq = H2

for all q values equals the standard-deviation Hurst exponent. Another multifractal measure is well-

known singularity spectrum 9(α), where α values indicate the power-law singularities observed along

the time series. The singularity spectrum is readily determined from the Hq spectrum [205] by the

Legendre transform

9(α) = qα − τq, (58)

where α = dτ/dq and τq = qHq − 1 stands for the scaling exponent known in the familiar probability

function approach [205]. In this context, 9(α) represents the fractal dimension of the subset of data

points with the singularity exponent α along the time series.

Using a couple of representative examples, we demonstrate how the multifractal features of the

BHN vary with the pertinent parameters and thus quantify their relevance to the magnetization

reversal processes. As stated above, the multifractal features of BHN are tightly related to the collective

(avalanching) magnetization fluctuations that also manifest in the long-range temporal correlations;

they are often seen in the region of high-frequencies f of the power spectra according to the scale-

invariant decay

P(f ) ∼ Bf −γ . (59)

The collective dynamic behavior in the BHN signals is not just a concept but a quantifiable reality.

We further solidify this understanding by considering the temporal sequence of distinct avalanches.

For example, the difference in the size of two consecutive avalanches 1 = Si − Si−1 (the first return)

exhibit qe-Gaussian distributions

P(1) = A

[
1 − (1 − qe)

(
1

10

)2
]1/1−qe

, (60)

that universally appear in different complex dynamical systems out of equilibrium [202], where qe is

the Tsallis non-extensivity parameter [206].
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7.2.1 Multifractality of BHN Varies with Demagnetizing Effects

As an interesting example, we analyze the structure of BHN signals simulated at low temperatures

and varied demagnetizing factors by the extended RFIM (excluding the dipolar interactions term)

in Eq. (1). For this purpose, we consider quasistatic driving, where the field increases for a given

amount after an avalanche has stopped. It allows us to identify the impact of the propagation of

individual avalanches on the magnetization fluctuations. We refer to Section 4.1 for more details

on the quasistatic driving and Section 6 for the impact of demagnetizing fields on the shape of the

hysteresis loop.

As stated above, the presence of demagnetizing fields induces long-range interactions counteract-

ing the external magnetic field; they affect the shape of the hysteresis loop, in particular, introducing

the extended linear segment in the central part of the loop, and potentially change the nature of

critical behaviour; see Fig. 41. The magnetization reversal process is prolonged compared with the

case without the demagnetizing fields (JD = 0), which also manifests in the structure of the BHN. For

example, Fig. 49 shows a segment of the prolonged reversal time series with characteristic alternation

of small and large deviations. Such fluctuations affect the multifractal properties of BHN signals,

compared to the studied cases without demagnetizing fields in 3D and thin RFIM systems [33,111].

Figs. 49 and 50 summarize some results of the BHN signal analysis for different disorder strengths and

demagnetizing factors. Specifically, in Fig. 49, the bottom panel shows the BHN signal recorded on

the ascending branch of the saturation loop and one of its subloops for a significant demagnetization

factor JD = 1 and the disorder R = 2.0 below the critical disorder R < Rc(L) for the actual lattice

size [89]. The structure of the signal, see close-up in the top right panel, shows alternating large and

small peaks, corresponding to the step-like magnetization changes (reminiscent of the presence of

antiferromagnetic layers [72]) in the weak disorder range, compatible with large domains. Such steps

disappear with the increasing disorder above R ≥ Rc(L). The time necessary for the complete reversal

is extended, and the signal exhibits smaller peaks in agreement with decreasing avalanche sizes in the

strong-disorder regime. The power spectra of BHN signals for the varied disorders are shown in the

top left panel, where we find that the power-law exponent γ varies between 1.55 for weak disorder

and 1.95 at the highest disorder strength considered; the exponent is estimated according to Eq. (59)

in the high-frequency range, which also varies with the disorder, as the figure shows. We also notice

that the signal recorded on a subloop for the same set of parameters shares these qualitative properties

of the signal on the saturation loop, apart from being shorter.

The fluctuation function Fq(n) vs. n is shown in Fig. 50 for q ∈ [−4.5, 4.5], corresponding to

the saturation-loop signal at the effective critical disorder R = 2.4 and high demagnetizing factor

JD = 1. In the inset to Fig. 50, we show the singularity spectrum 9(α) for varied demagnetizing

factor JD. As this figure shows, increasing JD from zero to one changes the spectrum’s shape and

systematically shifts the maximum towards the smaller values of α. Differences between these spectra

are significant in the region with small values of α, which are related to the large fluctuations. They are

compatible with the changed Hurst exponent from H2 > 1 in the absence of demagnetization effects

to H2 < 1 for JD = 1, suggesting changed stochasticity of the process from the original fractional

Brownian motion to fractional Gaussian noise when the demagnetizing effects are significant. In the

latter case, the spectrum is asymmetrical, with an extended right branch (large α values) describing

small magnetization fluctuations.
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Figure 49: The bottom panel shows the magnetization fluctuations mt vs. time t along an ascending

branch of the saturation loop (black) and subloop (red line) for a high demagnetizing factor JD = 1;

low temperature Tr = 0.5 and the disorder R = 2.0 below the critical Rc(L) are fixed. A close-up of

the signal is shown as a black line in the top right panel, and the total magnetizationM(t) (pink line)

appropriately multiplied to fit the same scale, showing characteristic steps and plateaus corresponding

to alternating large and small avalanches. Corresponding power spectrum P(f ) vs. the index f of these

signals are shown in the top left panel with saturation loop signals for several values of disorder R, as

indicated in the legend
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Figure 50: The fluctuation function Fq(n) vs. the time interval length n for q ∈ [−4.5, 4.5] for

the magnetization fluctuations along the ascending branch of the hysteresis loop simulated at low

temperatures for the effective critical disorder R = 2.4 and significant demagnetizing factor JD = 1.0.

The straight colored lines indicate the fitted scaling regions; the corresponding singularity spectrum is

shown by triangle symbols in the inset together with the spectra for two lower values of JD, as indicated

in the legend

Considering a more realistic scenario, as explained above in Section 6 with the finite driving

rates and thermal fluctuations, the structure of BHN was also analyzed in [164]. At very low relative

temperatures and decisive demagnetizing factor JD = 1, an asymmetric singularity spectrum was
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found, similar to the one in Fig. 50. However, the corresponding window of time intervals where

the scaling of the fluctuation function is apparent is different, and it is systematically shifting

towards larger time intervals with increasing relative temperatures. However, the fractality is absent

at intermediate and small time scales.

7.2.2 Multifractal BHN Spectra Vary with the System’s Spatial Dimension

Without demagnetizing fields, JD = 0 in ferromagnetic RFIM considered in this subsection, the

critical disorder point firmly controls the hysteresis loop behaviour, as discussed in Section 1. In this

case, the BHN’s temporal correlations differ along different segments of the hysteresis loop; see for

example Reference [111]. Consequently, they alter the multifractal properties of the magnetization

fluctuations in distinct segments of the loop, as we discuss below.

Behavior in the central part of the loop is often monitored as closely related to the hysteresis-loop

critical point [28,108]. The following example demonstrates the change of the hysteresis-loop critical

behavior with the system’s dimensionality and its crucial impact on multifractal spectra. In samples

with varied thickness, see a detailed study in [111], the critical disorder line Rc(ℓ,L) varies with the

sample thickness ℓ, interpolating between the 3D and 2D RFIM critical points; see Section 4.4 above.

Consequently, it impacts the stochasticity of the magnetization fluctuation and causes its multifractal

features to change with the thickness. Measurements in an experimental realization of samples with

varied thicknesses [22] support these general conclusions.

Considering the fluctuations Fq(n) vs. n in the central part of the hysteresis loop, in Fig. 51, we

show the differences for two samples of finite thickness, ℓ = 64 and ℓ = 128 and the same base

dimension L = 512. The inset shows the corresponding multifractal spectraHq vs. q; it also shows the

spectrum for a thicker sample with ℓ = 256 and the spectra corresponding to the limiting 2D and 3D

samples. As this figure suggests, the multifractal spectra in samples above a certain thickness virtually

coincide with the one of the 3D samples. Meanwhile, for smaller but finite thicknesses, the multifractal

features of small fluctuations (i.e., for the negative q values) closely follow the line of the 2D sample.

In contrast, the large fluctuations (captured by the positive q values) coincide with the ones of the

3D sample. As stated above, the beginning of the hysteresis loop and its shoulder are compatible with

different temporal fluctuations of BHN and possibly different multifractality.

Figure 51: The fluctuation function Fq(n) vs. time interval n of the magnetization fluctuations in the

central part of the hysteresis loop simulated in two samples of the base length L = 512 and different

thicknesses ℓ = 64 and ℓ = 128. Inset shows the multifractal spectra Hq vs. q for different thicknesses

indicated in the legend and for 2D and 3D limits; part of the Fig. 7 from [111]
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7.2.3 Other Factors That Influence the Structure of BHN at Low Temperatures

Besides the system’s dimensionality, which determines the universality class of critical behavior,

and the strength of disorder (relative to the critical disorder point), which translates to the typical size

of domains or the strength of the domain-walls pinning, the structure of BHN in disordered ferro-

magnets without demagnetizing fields exhibits characteristic variations depending on the considered

segment of the hysteresis loop, driving rates and the potential presence of nonmagnetic defects. For

demonstration, Fig. 52 shows some representative data, replotted from [33]. In the right panel, plots

of the generalized Hurst exponentsHq vs. q for different segments of the hysteresis loop and the whole

branch are displayed. As this figure shows, the initial 10% of the BHN signal is characterized by the

generalized Hurst exponents Hq < 1 for all q values, and H2 ∼ 0.5, indicating the class of fractional

Gaussian noise.Meanwhile, for the central part of the hysteresis loopH2 > 1, suggesting the fractional

Brownianmotion associated with the affected domain walls. Notably, when the BHN signal integrated

over the entire hysteresis branch (or its sizable part) is considered, the parts of the spectrum for small

(q < 0) and large (q > 0) fluctuations have distinct functional forms, leading to a discontinuity at

q = 0.

Figure 52: The left panel shows the fluctuation function Fq(n) vs. time interval n of the magnetization

fluctuations inRFIMat critical random-field disorder and the 30% fraction of nonmagnetic sites. Inset

shows the corresponding generalized Hurst exponentHq vs. the amplification parameter q determined

in the scaling area ofFq(n), indicated by thick lines. The right panel shows the spectra of the generalized

Hurst exponents Hq vs. q of the BHN in different segments of the hysteresis loop and the loop

integrated along the ascending branch, as indicated in the legend. Data replotted from [33] are for

RFIM without nonmagnetic defects at the critical random-field disorder and quasistatic driving with

a small field increment

As stated above, the structure of the BHN is also sensitive to the driving rate. In particular, the

increased driving rate leading to the spatio-temporal merging of the avalanches also results in the

increased size of magnetization fluctuations; consequently, the whole reversal process is accomplished

faster, resulting in a shorter time series overall. It manifests in the altered avalanche statistics, as

discussed in Section 5. Increasing the driving rates also changes the multifractal properties of BHN, as

shown in [33]. Specifically, the part of the spectrum corresponding to q < 0 is strongly affected by the

increased driving rate, indicating that the present amount of slight fluctuations of the magnetization

needs to be amplified with more prominent exponents Hq to become self-similar with the rest of the

signal; see Fig. 10 in [33]. Conversely, the large fluctuations weakly change with the driving rates.

However, the large fluctuations can be considerably affected, resulting in the exponents Hq < 0.5 for

q > 0, by adding nonmagnetic defects [33]. These defects further reduce the size of domains, thus
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hindering the avalanche propagation compared to the ones defined by the random fields [26]. The

fluctuation function Fq(n) vs. n in the presence of 30% fraction of nonmagnetic defects is shown in

the left panel of Fig. 52. The Hurst exponents spectrum Hq plotted against q shown in the inset is

determined in the intermediate range of time intervals, indicated by the straight lines on the main plot.

The hysteretic response to the slow field ramping, which results in the collective magnetization

fluctuations, also manifests in the structure of avalanche sequences. As stated above, the difference

between the size of two consecutive avalanches is not a normalGaussian; it exhibits a structure which is

described by Tsallis distribution in Eq. (60). In Fig. 53, we show two examples of avalanche sequences,

demonstrating that the non-extensivity parameter qe of this distribution also varies with the driving

rate and may serve as another measure of its impact on the magnetization reversal process. In a more

general context, this feature of the Barkhausen avalanches in disordered ferromagnets indicates a

complex dynamical behaviour of driven domain walls in these systems, which belongs to a class of

non-extensive out-of-equilibrium dynamics occurring in many complex systems driven by the external

forces; see recent review in [207] and references there.

Figure 53: The bottom and top-left panels show the avalanche sequences for slow (� = 0.002) and

fast driving (� = 0.008), respectively, and fixed strong random-field disorder R = 4.0. The top-right

inset shows their first-return distributions; fitting lines according to Eq. (60) correspond to the non-

extensivity parameters qe shown in the legend. Data replotted from Fig. 2 of Reference [33]

8 Response Signal Analysis with the Aid of Threshold

Being superposed on the magnetic response, thermal fluctuations prevent the decomposition of

the response signal of the thermal RFIM systems into events that can be considered as essentially

caused by magnetic interactions and only randomized by thermal noise. This is also the case for real

(magnetic) systems where, besides thermal, some amount of noise of other origins appears (e.g., digital

noise and/or noise caused by electromagnetic interference). In such cases, the decomposition of the

response signal into (subsequently analyzed) events is accomplished with the use of threshold Vth > 0,

see in Section 2.

The threshold value is not given in advance but instead has to be suitably chosen (e.g., estimated

from the parts of the response signal in which the magnetic response could be rightly considered to be
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absent). Fortunately, in all situations with reasonably small/moderate overall noise, there is some range

of not-too-small and too-big values of threshold such that for any Vth in this range the subsequently

collected statistics are (almost) not affected by this choice.

In this section, we show how the choice of threshold influences the statistics of the adiabatically

driven ZT NEQ RFIM of homogeneous ferromagnetic spin systems (Ri = R, Jij = J = 1, and

Hi = H) without demagnetizing field which are situated at (3D) equilateral cubic lattices of size L

with Gaussian distribution of the quenched random magnetic field uncorrelated at different lattice

sites. In the analysis [140] of the noiseless case, it was shown how the choice of threshold influences

the decomposition of the response signal into events (i.e., subavalanches because in that case, due to

adiabatic driving, the events are actually individual avalanches), leading to introduction of several

types of waiting time graphically illustrated in Fig. 54 replotted from Fig. 1 of Reference [140]. Panel

(b) of this figure demonstrates that large values of threshold are needed for a significant change in

duration and size distributions. Data from panel (c) show that the power-law correlation 〈S〉T ∝ T γS/T

between the average size of subavalanches 〈S〉T of duration T is maintained with remark that the

(effective) value of the power-law exponent γS/T , estimated as the slope of log-log plot of the 〈S〉T
vs. T data, varies with the threshold value Vth as shown in panel (d).

The values of γS/T fall from the initial value γS/T ≈ 1.78 at Vth = 0, describing also the scaling of

the power spectra, to a pretty much stable plateau value γth ≈ 1.5, attained by this exponent in a rather

broad range of threshold values. This finding may be of significant importance for the analyses of

experimental data where the use of thresholds is unavoidable and the exponent values are determined

by fitting of the experimental data to some reasonably chosen analytic form because the (more reliable)

estimation of the exponents’ values through the data collapsing procedure is impossible.

Starting from the conjecture that the temporal shape of avalanches satisfies the scaling conditions

that are given byEqs. (2) and (12) fromReference [140], theRFIManalysis in question revealed that the

integrated distributions of avalanche duration,D(int)

T (T ;Vth, r, 1/L), avalanche size,D(int)

S (S;Vth, r, 1/L),

and the distributions D(int)

Tw
(Tw;Vth, r, 1/L) of each type of waiting time Tw, follow the data-collapsing

predictions

V
αint/(γS/T−1)

th D(int)

T
(T ;Vth, r, 1/L) = DT

(
T/V

1/(γS/T−1)

th ;V
σ/(1−γT/S)

th r,V
σν/(1−γT/S)

th /L
)
, (61)

V
τint/(1−γT/S)

th D(int)

S
(S;Vth, r, 1/L) = DS(S/V

1/(1−γT/S)

th ;V
σ/(1−γT/S)

th r,V
σν/(1−γT/S)

th /L), (62)

V
αint/(γS/T−1)

th D(int)

Tw
(Tw;Vth, r, 1/L) = DTw(Tw/V

1/(γS/T−1)

th ;V
σ/(1−γT/S)

th r,V
σν/(1−γT/S)

th /L), (63)

provided that the conformity conditions

V
σ/(1−γT/S)

th r = const, V
σν/(1−γT/S)

th /L = const. (64)

are satisfied. The same type of scaling is satisfied also for the windowed type of distributions, see

Fig. 55 replotted from Fig. 3 of Reference [140].

The previous results are extended in the analysis [141] of the impact of the (zero-mean) noise

added on the response signal manifesting only intrinsic thermal noise; see also [208]. The added

noise is much greater than the system’s noise so that it only affects the registered signal and not the

system dynamics. Such RFIM modification mimics the real systems influenced by the external noise

originated from detectors, amplifiers, analog-to-digital (AD) converters, ambient electromagnetic

interference (EMI), etc.
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Figure 54: (a) Decomposition into events (i.e., subavalanches) of the response signal. For a (blue)

part of a train of avalanches (shown in the bottom, and zoomed in the top part of this panel) and

the imposed threshold Vth (red line), we illustrate: the determination of size S and duration T of

a subavalanche (starting at the moment ts and ending at te = ts + T) taken out of the avalanche

i, the internal waiting time Tw,int between two subavalanches of avalanche j, and the contributions

Tw,end, Tw,mid, and Tw,ini to the external waiting time Tw,ext between avalanches i and j. (b) Windowed

distributions D(w)

T (T ;Vth, r, 1/L) of duration (main panel), and distributions D(w)

S (S;Vth, r, 1/L) of size

(inset) of subavalanches selected by thresholds from a wide range shown in legend. (c) 〈S〉T shown

against T for the thresholds in legend, where 〈S〉T is the average size of subavalanches with duration

T ; variation of exponent γS/T with Vth is shown in the inset. (d) γS/T vs. Vth data, obtained for various

disorders R (see legend), collapse onto the same curve when presented against Vthr, where the reduced

disorder r = (R−Rc)/Rmeasures a distance to the critical disorder Rc of the model. Inset shows how

γ
(0)

S/T (i.e., the exponent γS/T value taken for Vth = 0) depends on the reduced disorder r. The data from

panels (b)–(d) are obtained in 40 random field configurations for each disorder R and L = 1024. This

is Fig. 1 from [140]
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(a) (b)

(c) (d)

(e) (f)

Figure 55: Collapsing of windowed distribution of duration and waiting time for the events (i.e., parts

of the signal that are above thresholdVth) extracted in simulations with values of disorderR and lattice

size L from the legends satisfying collapsing requirements Eq. (64). All collapses are achieved after the

distributions are multiplied by V
αint/(γS/T−1)

th and presented against their arguments divided by V
1/(γS/T−1)

th ,

see Eq. (61) and Eq. (63) [140]. Panel (a) shows the scaling collapse of distributions of durations T ,

and panels (b)–(f) collapsing of distributions for the following types of waiting times: Tw,int, Tw,ext, Tw,ini,

Tw,end, and Tw,mid, respectively. Original distributions are shown in the insets. This is Fig. 3 from [140]
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In Figs. 56 and 57 we illustrate the effect of added noise for the case of uniform white noise

(UWN), i.e., the noise with standard deviation σ and probability density p(x) = 2/
√
3σ for

−
√
3σ/2 ≤ x ≤

√
3σ/2 and 0 elsewhere, and for the case of Gaussian white noise (GWN), p(x) =

exp (−x2/2σ 2/σ
√
2π) with standard deviation σ . Left panels of Fig. 56 show how the distributions

〈S〉T (of the average size of the avalanches having duration T) are influenced by the added white (top

row) and Gaussian (bottom row) noise having standard deviation σ . Additionally, in the main parts

of the right panels of Fig. 56, the flow with threshold Vth of the values of exponent γS/T (pertaining to

the power-law correlation 〈S〉T ∝ T γS/T ) illustrate the influence of the added noise for several values

of standard deviation σ quoted in legend, most importantly on the γS/T plateau values. Analogous

influence is shown in the pertaining insets as a function of σ for the thresholdsVth in the insets’ legend.

Figure 56: In this figure, combined are Figs. 2 and 4 from [141]: Left panels (a) and (c) show the average

size 〈S〉T of avalanches having duration T for the system of size 1024×1024×1024, disorderR = 2.25,

and the standard deviation σ given in legends. In the top left panel (a) presented is the UWN case for

the threshold Vth = 150, while in the bottom left panel (c) shown is the Gaussian noise case for the

Vth = 50. Right panels (b) and (d) present the flow of the values of the exponent γS/T against Vth in

the main panel parts, and against standard deviation σ in insets, both in the UWN (top) and GWN

(bottom) case and for the values of Vth and σ shown in legends
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(a) (b)

(c) (d)

Figure 57: This is Fig. 13 from [141]. Graphs in main panels show the collapsing of the distributions

of external waiting times (left column, (a) and (c) panels) and internal waiting times (right column,

(b) and (d) panels) in the UWN case (top row, (a) and (b) panels) and GWN case (bottom row, (c)

and (d) panels). These graphs correspond to the following four simulation parameters combinations

{L = 1448,R = 2.27,Vth = 75}, {L = 2046,R = 2.25,Vth = 102}, {L = 2508,R = 2.24,Vth = 126},
and {L = 3072,R = 2.231,Vth = 153}, satisfying the compatibility conditions (cf. Eq. (6) in [141])

V
σ ′2νz/(σ ′2νz−1)

th r = const, and V
σ ′2νz/(σ ′2νz−1)

th /L = const, where σ (aliased here by σ ′), ν, and z are the

standard 3D ZT NEQ RFIM exponents [28]; non-collapsed data is shown in insets. For the functions

f (σ ) and g(σ ), shifting Vth in the collapsing expressions, we route the reader to Fig. 12 from [141]

presenting their values

The impact of added noise is also noticeable in the power spectrum, average avalanche shapes,

and all distributions of avalanche parameters. Nevertheless, the impact is most pronounced in the

distributions of various types of waiting time (e.g., external and internal), as is evidenced in Fig. 57.
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9 Summary, Limitations and Future Work

Supported by the presented works, one can identify two significant computational approaches.

Specifically, we distinguish the theoretical limit of adiabatically driven systems with zero-temperature

critical dynamics on one side, and the critical dynamics under the influence of a myriad of interrelated

factors, i.e., the temperature, demagnetizing fields, and finite driving rates, resembling experimental

situations, on the other.

The simplicity of employing Ising spins as binary variables, enables efficient simulations of the

adiabatically driven systems, tailored in the sorted-list and the bit-per-spin algorithms. By these (and

related) algorithms, the efficiency of the originally proposed codes for numerical simulations has

been greatly improved, especially regarding the execution time and memory resources, which in large-

scale system studies pose a significant computational load and an actual challenge. The implemented

code enhancements made it possible to perform large-scale simulations of systems having up to more

than 1010 spins and raised the standard by allowing the extensive statistical sampling of up to 105

different realizations of randommagnetic field, considerably improving the accuracy of obtained data

and subsequently the conclusions drawn from it. Additionally, the code improvements expanded the

scope of underlying factors influencing the behavior of the systems that were considered, allowing for

different driving protocols with different time profiles of driving field, the inclusion of demagnetizing

and thermal effects, the analysis of systems with different geometry and lattice structures, down to the

characterization at the level of individual crystal grains.

Streamlining the analysis, the systems being studied are regarded as ferromagnetic insulators, with

magnetic walls indirectly defined as boundaries of cluster of spins with same orientation. The extended

version of model allows for taking into consideration variable exchange couplings and anisotropy, and

is open for inclusion of other types of magnetic interactions and external electromagnetic interference

(EMI). It also enables the simulations of single and multilayered ferro/antiferromagnetic systems,

accounting for lattice imperfections caused by vacancies and interstices, as well as simulations of

amorphous systems. One of the limitations of the existing version of the model is that it does not

consider the magneto-mechanical coupling, which leaves room for future development.

The relevance of conducted simulations is also verified quantitatively in comparison with the

experimental data obtained inmeasurements of BHN.Used in numerous applications (e.g., as memory

materials, thin films and nanowires), the disordered ferromagneticmaterials are currently the subject of

intensive ongoing research. In a complementary reciprocity, reliable and comprehensive experimental

data is necessary for the development of adequate modeling tools, while simulation results can

also serve as cornerstones and guidelines for experiments, calling for mutual advancements both in

experimental techniques and optimizations of the employed algorithms. Beyond producing simulation

results with practical applications, the future advancement might go along the lines of creating a more

sophisticated and universal design technique, possibly applicable to other complex systems that exhibit

an avalanche-like evolution, particularly those that like earthquakes could cause severe catastrophic

consequences.

This article reviewed the developments and continuous progress in numerical modeling of

the NEQ RFIM complementing the renormalization group theoretical investigations of out-of-

equilibrium critical dynamics [37]. The preceding outlines highlight some of the potential difficulties

and prospective avenues in this area of study, aiming to inspire motivation for future research and

opportunities for further development. The corresponding main messages and some open questions

are summarized below.
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• Θ = 0 critical dynamics with the adiabatic driving is a theoretically sound limit where one can

identify the individual avalanches and their propagation in this type of driving. In analogy to

self-organized criticality, this limiting case obeys the time-scale separation (between the driving

and avalanche propagation), which enables a clear definition of the systems’ activity avalanches

at the mesoscopic scale and their statistics. It further allows the use of finite-size scaling

analysis, which determines the value of the critical disorder and the critical field, related sets of

scaling exponents, and the scaling functions. Interestingly, for three-dimensional systems, the

associated critical exponents at the disorder-induced critical point are numerically close to the

ones of the equilibrium phase transition temperature-driven; however, the scrutinized numerical

analysis revealed the asymmetry of the scaling function, compatible with the non-equilibrium

critical dynamics, in agreement with the renormalization group theory. Furthermore, the

universality classes of the observed critical behavior were determined depending on the system’s

spatial dimensionality, shape, and thickness. These systems’ properties also manifest in the

multifractal spectra of the associated simulated BHN; thus, the multifractal analysis can be

used as an appropriate quantitative measure. The presented research provides valuable insights

into the universality of the out-of-equilibrium dynamics. It can be applied in various scientific

investigations, such as critical dynamics in open quantum systems, particularly when the driving

conditions satisfy the time-scale separation.

• Θ & 0 dynamics with finite driving rates and demagnetizing fields requires additional parameters

but also adapting the simulation and driving rules. Moreover, the stochasticity of the reversal

process increases, which requires extra care to separate the random noise and identify spin

avalanches, similar to the procedures carried out in the analysis of the experimental BHN

signals. At low temperatures, relative to the critical temperature 2/Tc and finite driving

rate �, guided by the zero-temperature dynamics theory, one can successfully identify the

key features of the collective dynamics and determine their dependence on these physical

parameters. The advantage is that the results can be compared to experiments, for example,

in nanocrystalline samples and on bearing steel of different hardness levels. Such comparisons

of the corresponding model simulations with experimental Barkhausen noise data emphasize

the relevance of numerical simulations for broadening the view of underlying stochastic

processes and the critical role of disorder-induced and thermal fluctuations. In particular,

in Section 7.1, remarkable agreements were demonstrated when systematically comparing the

features extracted from the experiment on nanocrystalline samples and data simulated byRFIM

on a large lattice and appropriate range of disorder and driving rates, confirming the non-

equilibrium disorder-induced criticality of these samples. A similar comparison of experimental

Barkhausen noise characteristics obtained on bearing steel of different hardness wasmade using

classical Monte Carlo simulations of the Ising model, which are known to perform well near

the thermal critical point.

Adding demagnetizing fields in the Hamiltonian induces a specific type of long-range inter-

actions that counteract the driving field; they change the shape of the hysteresis loop and the

properties of the BHN signal. These effects increase with the strength of the demagnetizing

factor JD, manifested in the multifractal features, the avalanche scaling and a potential shift

in the critical disorder. This is in contrast to the RFIM with the short-range ferromagnetic

interactions, studied above in Sections 4, 5 and the related references, where the existence of

the disorder-induced critical pointRc(L) forL → ∞ has been proved by the appropriate finite-

size scaling analysis, in agreement with the renormalization-group theory. In the presence of

demagnetizing fields, however, the system’s dynamics at a global scale have an impact on the
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driving force. Considering the thermodynamic limit, an open question is whether the nature of

the disorder-induced critical behavior of NEQ RFIM at finite demagnetizing factors is altered

and what the actual role of random field is in this case. Theoretically, the critical dynamics at

the disorder-induced critical point might change to a self-organized critical behavior, which is

not associated with any phase transition in analogy to the driving-induced crossover. Another

example to mention in this context is the hysteresis behavior in the infinite-range spin glasses.

Among other open questions that remain for future work, we mention the demagnetizing effects

in experimentally accessible antiferromagnetic-ferromagnetic bilayers, and the role of random fields in

the hysteresis loop behaviour of antiferromagnetic materials and spin glasses (where the random field

variance R appears as a field conjugate to a spin-glass order parameter). Furthermore, understanding

the impact of more complex geometries, e.g., those that appear at a nanoscale suitably represented

by nanonetworks, on spin ordering under the driving fields is a question of high interest due to the

increasing use of the magnetic properties of nanoassemblies in modern technology applications. The-

oretically, complex architectures of these assemblies support higher-order interactions; in conjunction

with antiferromagnetic interactions among Ising spins, the topology of these assemblies appears as

a decisive factor that shapes the hysteresis loop, thus altering the role of disorder as it is known in

crystalline structures.

10 Conclusions

This review focuses on the hysteresis-loop criticality as a remarkable example of the out-of-

equilibrium critical dynamics occurring during the magnetization reversal driven by the external field

in disordered ferromagnetic materials. With the use of the nonequilibrium Random Field IsingModel

as a paradigmatic model for theoretical investigations of disordered ferromagnets, we provide a com-

prehensive survey of mathematical modelling approaches to the simulations of spin-reversal processes

for a variety of physical parameters and conditions motivated by theoretical requirements as well as

the experimentally realizable situations. Concerning this matter, we present advanced computational

techniques that are not just theoretical but also practical. By the results of several recent studies, we

demonstrated the gain they led to in acquiring new physical insights into studied complex dynamical

phenomena manifesting inherent scale invariance, finitesize scaling of the avalanche distributions, and

the multifractal nature of the magnetization fluctuations in the Barkhausen nose time series near the

disorder-induced critical point subject to additional physical parameters. The presented computational

techniques utilizing the inherent scale-invariance of the hysteresis-loop criticality provide a deeper

insight into magnetization reversal processes in disordered ferromagnetic systems, complementing the

theoretical and experimental research. These powerful numerical methods can be adapted to study

out-of-equilibrium dynamics in many-body quantum systems and other complex systems exhibiting

nonequilibrium critical dynamics across the scales.
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78. Tadić B,MelnikR. Fundamental interactions in self-organised critical dynamics on higher order networks.

Eur Phys J B. 2024;97(6):68. doi:10.1140/epjb/s10051-024-00705-4.

79. Adeyeye AO, Singh N. Large area patterned magnetic nanostructures. J Phys D: Appl Phys.

2008;41(15):153001. doi:10.1088/0022-3727/41/15/153001.

80. Li J, Li G, Lu X, Wang S, Leng M, Yang S, et al. Magnetically responsive optical modulation:

from anisotropic nanostructures to emerging applications. Adv Funct Mater. 2024;34(3):2308293.

doi:10.1002/adfm.202308293.
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disordered systems with metastable dynamics. Phys A: Statist Mech Appl. 2021;572:125883.

84. Dahmen KA, Sethna JP. Hysteresis, avalanches, and disorder-induced critical scaling: a renormalization-

group approach. Phys Rev B. 1996;53:14872.
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131. Mijatović S, Branković M, Graovac S, Spasojević D. Avalanche properties in striplike ferromagnetic

systems. Phys Rev E. 2020;102(2):022124. doi:10.1103/PhysRevE.102.022124.

132. Skaugen A, Laurson L. Depinning exponents of thin film domain walls depend on disorder strength. Phys

Rev Lett. 2022;128(9):097202. doi:10.1103/PhysRevLett.128.097202.

133. Durin G, Zapperi S. Scaling exponents for barkhausen avalanches in polycrystalline and amorphous

ferromagnets. Phys Rev Lett. 2000;84(20):4705. doi:10.1103/PhysRevLett.84.4705.

134. Shukla P, Thongjaomayum D. Hysteresis in random-field Ising model on a Bethe lattice with a mixed

coordination number. J Phys A: Math Theor. 2016;49(23):235001. doi:10.1088/1751-8113/49/23/235001.

135. Thongjaomayum D, Shukla P. Non-mean-field behavior of critical wetting transition for short-range

forces. Phys Rev E. 2013;88(4):042138. doi:10.1103/PhysRevE.88.042138.

136. Thongjaomayum D, Shukla P. Critical hysteresis on dilute triangular lattice. Phys Rev E.

2019;99(6):062136. doi:10.1103/PhysRevE.99.062136.

137. de Sousa IP, dos Santos Lima GZ, Correa MA, Sommer RL, Corso G, Bohn F. Waiting-time statistics in

magnetic systems. Sci Rep. 2020;10(1):9692. doi:10.1038/s41598-020-66727-x.

138. Laurson L, Illa X, Alava MJ. The effect of thresholding on temporal avalanche statistics. J Statist Mech.

2009;2009(1):P01019. doi:10.1088/1742-5468/2009/01/P01019.

139. Font-Clos F, Pruessner G, Moloney NR, Deluca A. The perils of thresholding. New J Phys.

2015;17(4):043066. doi:10.1088/1367-2630/17/4/043066.
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143. Janićević S, Laurson L, Måløy KJ, Santucci S, Alava MJ. Interevent correlations from avalanches hiding

below the detection threshold. Phys Rev Lett. 2016;117:230601.
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