
Computer Modeling in
Engineering & Sciences

echT PressScience

Doi:10.32604/cmes.2025.057462

REVIEW

Deep Learning and Artificial Intelligence-Driven Advanced Methods for Acute
Lymphoblastic Leukemia Identification and Classification: A Systematic Review

Syed Ijaz Ur Rahman1 , Naveed Abbas1 , Sikandar Ali2 , Muhammad Salman1 , Ahmed Alkhayat3 ,
Jawad Khan4,*, Dildar Hussain5 and Yeong Hyeon Gu5,*

1Department of Computer Science, Islamia College, Peshawar, 25120, Pakistan
2Department of Information Technology, The University of Haripur, Haripur, 22620, Pakistan
3College of Technical Engineering, The Islamic University, Najaf, 100986, Iraq
4School of Computing, Gachon University, Seongnam, 13120, Republic of Korea
5Department of AI and Data Science, Sejong University, Seoul, 05006, Republic of Korea
*Corresponding Authors: Jawad Khan. Email: jkhanbk1@gachon.ac.kr; Yeong Hyeon Gu. Email: yhgu@sejong.ac.kr
Received: 18 August 2024; Accepted: 20 December 2024; Published: 27 January 2025

ABSTRACT: Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be
addressed in the healthcare system. Analysis of white blood cells (WBCs) in the blood or bone marrow microscopic
slide images play a crucial part in early identification to facilitate medical experts. For Acute Lymphocytic Leukemia
(ALL), the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the
whole body and the condition becomes worse. The researchers have done a lot of work in this field, to demonstrate
a comprehensive analysis few literature reviews have been published focusing on various artificial intelligence-based
techniques like machine and deep learning detection of ALL. The systematic review has been done in this article
under the PRISMA guidelines which presents the most recent advancements in this field. Different image segmentation
techniques were broadly studied and categorized from various online databases like Google Scholar, Science Direct,
and PubMed as image processing-based, traditional machine and deep learning-based, and advanced deep learning-
based models were presented. Convolutional Neural Networks (CNN) based on traditional models and then the recent
advancements in CNN used for the classification of ALL into its subtypes. A critical analysis of the existing methods
is provided to offer clarity on the current state of the field. Finally, the paper concludes with insights and suggestions
for future research, aiming to guide new researchers in the development of advanced automated systems for detecting
life-threatening diseases.

KEYWORDS: Acute lymphoblastic; bone marrow; segmentation; classification; machine learning; deep learning;
convolutional neural network

1 Introduction
Medical image processing is an eminent field in machine learning and digital image processing. Doctors

and healthcare companies face multiple problems in diagnosing cancerous cells in their very early stages [1].
If these diseases are not detected in their first stage, then it might result in the patient’s death. Leukemia
is one of these diseases which directly assaults the body’s white blood cells, severely compromising the
immune system [2]. In children, Acute Lymphocytic Leukemia (ALL) is perhaps the most frequent kind of
leukemia; in adults, it is uncommon. As stated by the American Cancer Society in 2024, 6550 new cases
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were detected only in the United States and 1330 deaths occurred due to this life-threatening disease [3].
Based on their morphology, the FAB (French, American, British) are divided into three subtypes: L1, L2,
and L3. The leukemic cells’ size, shape, and appearance under a microscope, together with their maturation
traits, constitute the basis for these subtypes. L1, L2, and L3 as given in Figs. 1 and 2. L1 blasts have compact
nucleoli with chromatin and regular nuclei, L2 has intensive basophilic structures with irregular nuclear
shape and are large, and L3 blasts are large having cytoplasm with vacuoles in it. Among them, L1 and L2 are
the common types while L3 is a rare type of ALL. To detect and classify these blasts, the researchers need
to segment the region of interest, i.e., Cytoplasm and Nucleus. To understand the morphological structure
of these cells the researcher must take assistance from medical Laboratory specialists and pathologists.
Due to the complex nature of blasts, weak edges, inhomogeneity, noise, and overlapped cells examining
these cells slides more difficult [4]. The three primary techniques used in the majority of automatic blood
cell counting and analysis systems are feature extraction, segmentation, and classification of microscopic
smear pictures. Digital processing aims to reduce human mistakes and associated costs. Different automatic
and semi-automatic techniques were proposed in various research studies [5–7] proposed deep learning
system, integrating DeepLabv3+ to segment and AlexNet for categorizing with high accuracy [8] uses k-
means algorithm [9] used morphological operations [10] proposed morphological operation with top-hat
transforms [11] suggested transfer learning with convolution neural networks (CNN) [12] uses textural,
shape and spectral features with support vector machine (SVM) [13] uses k-means with SVM [14] different
thresholding and region based algorithms [15] discussed different deep learning algorithms [16] cluster of
differentiation CD markav for leukemia detection [17,18] k-means clustering, [19] artificial intelligence-based
machine and deep learning techniques were applied [20]. Still, recent advancements in AI can help propose
state-of-the-art techniques for detecting these hematology study’s datasets due to the lack of available and
comparing the existing methods. Bone marrow and blood smear slide images are the main source for the
dataset of this study due to the lack of availability of datasets. In this study, a review of different techniques
has been done in our paper, using methods from machine learning, deep learning, and image processing.

Figure 1: Acute Lymphoblastic Leukemia and its subtypes

The four questions have been framed using the PICO (Patient, Intervention, Comparison, and Out-
come) paradigm, which serves as the foundation for several topics relevant to the main focus of the
study:

1. What methods are available for the automatic identification and categorization of acute
lymphoblastic leukemia?

2. Which technique achieves maximum accuracy in terms of ALL detection and classification?
3. What kind of datasets have been used for the required tasks?
4. What are the issues that are confronted during the detection of ALL?
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Section 2 of this paper consists of a review of the literature on current techniques; in Section 3 research
issues have been mentioned and Section 4 is the conclusion of this review study.

Figure 2: Pictorial representation of ALL subtypes and Reactive bone marrow slide images: (a) L1; (b) L2; (c) L3; and
(d) Normal

Problem Statement
Acute lymphoblastic leukemia (ALL) is an extremely severe hematological cancer necessitating accurate

detection and classification for optimal treatment. Conventional diagnostic techniques, however effective,
may encounter constraints in precision and efficacy. Recent breakthroughs in machine learning (ML) and
deep learning (DL) technology present interesting possibilities for improving diagnostic procedures. The
incorporation, of these computational methods into clinical practice is inconsistent, exhibiting disparities
in the performance of models, quality of data, and interpretability among research. This systematic review
evaluates the landscape of machine learning and deep learning methodologies for detecting and classifying
ALL. It will assess the efficacy, resilience, and therapeutic relevance of these procedures in comparison [21,22]
and [23], to traditional methods. The review will also pinpoint current problems, including data diversity,
validating models, and the necessity for explainable AI in healthcare environments. This study aims to
emphasize the potential of machine learning and deep learning in enhancing diagnostic precision and
effectiveness in acute lymphoblastic leukemia, thereby informing future studies and clinical applications
in hematology.
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2 Literature Review
An important part of this research effort is the identification of blasts, which is made possible by the

segmentation of the cytoplasm and nucleus in the slide image. We mention the pre-existing segmentation
techniques for this work. Following segmentation, Classifying the region of interest requires a range of deep
learning and traditional machine learning techniques [24]. This systematic review is carried out by PRISMA
guidelines [25]. PRISMA, which is mostly focused on presenting evaluations that analyze the impact of
actions, is a minimal set of reporting criteria for systemic reviews and meta-analyses that are supported by
evidence [23]. From 01 October to 20 February 2024, a comprehensive search was carried out on three distinct
online databases. Google Scholar, PubMed, and Science Direct to find the pertinent documents. These are
free web indexes that provide full text or information for academic works in a variety of distributed arrange-
ments. Users of Science Direct can access Elsevier’s vast bibliographic database of scientific and healthcare
publications. During this search different keywords have been searched, i.e., (Acute Lymphoblastic Leukemia
using Deep Learning), (Bone Marrow and Blood Smear), (Traditional Machine Learning), (Detection of
ALL). As shown in Table 1, the grounds for inclusion and removal are used to identify papers. The collected
publications are screened using the Prisma flowchart shown in Fig. 3. According to the aforementioned
research, 1413 have been identified in total. 513 articles chosen for the second screening round following the
publishing of similar publications and papers before 2005 were removed in the first screening. In the second
phase, articles were reviewed and publications were removed by the criteria listed in Table 1. Based on full-
text reading, the eligibility of 93 articles was assessed. Additionally, 07 articles that examined various blood
disorders including multiple disqualified due to their lack of results in the text. Following that, a final shortlist
was created after reading the entire paper. 84 articles are included in the systematic review based on the
inclusion criteria. Just peer-reviewed research articles, incorporating clinical trials, qualitative studies, and
meta-analyses, that concentrate on the detection and classification of ALL, or acute lymphoblastic leukemia,
utilizing ML and DL methodologies were included [26]. Convention abstracts and unpublished research
were omitted to ensure rigor. Research must explicitly focus on the implementation of machine learning
or deep learning techniques within the framework of ALL. This encompasses any research that assesses
model performance criteria (e.g., precision, sensitivity, specificity) in the detection and classification of all
subtypes. When analyzing papers on ALL from multiple online databases, it is critical to consider potential
biases in literature selection that may influence the findings. Publication bias, for example, may cause an
overrepresentation of research with favorable or significant outcomes, possibly distorting views of treatment
efficacy. Language bias might further restrict the scope of studies considered, as non-English publications
may be disregarded [22]. Furthermore, separate databases may index different journals or study categories,
thus leading to an imbalance in the presentation of randomized controlled experiments vs observational
studies. Selective reporting of primarily positive outcomes, as well as time lag bias, in which newer negative
or null results are revealed later, can skew our overall picture of ALL treatments. Geographic biases, with
additional research from high-income nations dominating the literature, may limit the findings’ applicability
to different populations. To address these challenges, researchers must accept their biases, disclose the limits
of the included studies, and strive for comprehensive, comprehensive reviews that include a diverse variety
of study types and demographics [23].

Table 1: Articles included and excluded for a systematic review

S. No. Assessment Include Exclude
1 Language Articles published in the English

language are considered only
Articles published in other languages

were not considered

(Continued)
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Table 1 (continued)

S. No. Assessment Include Exclude
2 Idea

based
Research articles having basic ideas

have been included
Research articles not having the basic

idea of ALL detection and
classification were excluded

3 Time
scale

Studies since 2005 up to date have
been included

Studies before the given date have
been excluded

4 Investigation Articles having detection and
classification of ALL were included

Articles having other interests like
Acute leukemia, chronic leukemia,

and Leukocytes were excluded

2.1 Image Segmentation
The selection of effective segmentation techniques is important in distinguishing the area of inter-

est [26]. The segmented images are shown in Fig. 4 and deep learning-based segmentation framework is
shown in Fig. 5. The literature different segmentation algorithms were used to achieve the goal.

2.1.1 Segmentation Using Thresholding Method
Authors in [26] used the Hue saturation values (HSV)color model and segmentation method with Otsu

thresholding applied to the S component and considered shape feature for detection, based on thresholding
for the detection of ALL blasts. Abbas et al. [27] applied a convolution with a 2*2/6 mask on RGB and then
used the Otsu method to segment nuclei after this noise was removed and the region of interest was dilated
to achieve the best results. Another study [28] presented a method based on edge detection and the Gradient
Vector Flow (GVF) model for the segmentation of ALL blasts but using Zack thresholding to segment the
cytoplasm of the cell. Ur Rahman et al. [29] came up with a segmentation-based threshold method, The image
is processed after initially being converted to HSV color space. Only the S part by converted to binary then the
high threshold value is selected, and the low is removed after this the image is converted back to RGB. Authors
in [30] present a method for complete blood count, in their study WBCs and Red blood cells (RBCs)were
extracted with thresholding and Otsu’s method. The cell counting is based on topological structure analysis
and predicted mass region of the cells through Hough Circle Transform (HCT) with an accuracy of 100% and
92.93%, respectively. Scotti [31] proposed a framework that segments WBC using the gray-level threshold
method. Rezatofighi et al. [32] used the Gram-Schmidt technique for the segmentation of nuclei and also
applied thresholding to correctly segment cytoplasm. In another study [33], they upgraded the system using
the Gram-Schmidt method with the orthogonality principle with the desired color vector for identification
of the nucleus with an accurate threshold. Deshpande et al. [34] came up with a method that relies on the
Otsu threshold method for the detection of leukocytes using the ALL-IDB dataset. In the study, Hazlyna
et al. [35] used threshold values using the HIS color model to separate blasts from the background region.
Authors in [36] presented a segmentation method for the conversion of contrast images into binary using
the Otsu thresholding method with 80.6% accuracy. Authors in [37] used fuzzy set thresholding for effective
segmentation. In a research work by Ahasan et al. [38] segmentation algorithm for nuclei of leukocytes using
morphological operations associated with color and Otsu thresholding, filters, and watershed markers for
removing borders with 88.57% accuracy. Lina et al. [39] proposed color filtering with a threshold value for the
detection of leukocytes with an accuracy of 82.12%. Di Ruberto et al. [40] proposed a new scheme based on a
triangle threshold to segment nuclei with cytoplasm in leukocytes. Gosh et al. [41] come up with a system for
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identifying leukemia which is in light of adaptive thresholding and fuzzy deviation. Li et al. [42] proposed
a segmentation method for ALL based on a dual threshold and attained 97.85% accuracy. Abbas et al. [43]
presented a threshold-based segmentation scheme and improved the accuracy by 0.8955%.

Figure 3: Scenario of inclusion and exclusion of articles in a systematic review
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Figure 4: Segmented images of ALL

Figure 5: Framework for segmentation of the region of interest in ALL Using Deep Learning

2.1.2 Segmentation Using Watershed Transform

A research work by Jiang et al. [44] came up, with segmentation using the watershed clustering method
for the separation, of cytoplasm in WBCs. Ghane et al. [45] came up, with a new framework composed of
watershed transform, k-means clustering, and thresholding methods for the segmentation, of leukocytes
and their nucleus. Authors in research work [46] proposed a framework to segment lymphocytes by using
watershed transform and average shift clustering.

2.1.3 Segmentation with K-Means Clustering

Study [47] proposed a system for the identification, of ALL using a clustering algorithm followed
by Simulating Discernment Measure which can segment lymphoblasts and lymphocytes and then classify
them using a multi-level perceptron and Support Vector Machine (SVM). In study [48], Agaian with others
presented a framework to identify ALL by using k-means clustering to divide the blast nuclei. Sajjad et al. [48]
came up with a method that segments the WBC nucleus using k-means. In another study, the authors [49] Su
et al. gave a computerized framework for decision-making in the medical field that identifies hematological
disorders in human blood using a clustering algorithm. Reference [50] used k-means clustering to count
blasts and normal cells for Acute Myeloid Leukemia (AML). Moradiamin et al. [51] suggested a strategy for
splitting lymphoblasts using k-means clustering algorithms. Authors in [52] also used k nearest neighbor for
medical diagnostics.
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2.1.4 Segmentation Based on Region Growing Algorithm
Gómez et al. [53] presented a seeded region growing algorithm for the detection of cells giving good

results. In another study, Hazwani et al. [54] gave a framework to detect AML and ALL blasts. The S
component that has been processed of the HSI color space to retrieve threshold value using region growing to
segment the interested part. Madhloom et al. [55] presented a segmentation method in light of morphological
operation and region growth with histogram equalization for blasts, it results in an accuracy of 96% for blasts
and 94% for cytoplasm and nucleus.

2.1.5 Other Morphological Operations and Algorithms
Authors in [56] proposed a framework for the segmentation of nuclei and cytoplasm with shapes and

active contours followed by a vector flow model. Theera-Umpon et al. [57] presented a system that can
segment WBC and is based on mathematical morphology. After segmentation, Bayes’s classifier with neural
networks is used fivefold and results in 77% accuracy. In [58], Piuri et al. worked on the automatic detection
of leukocyte color images. Leukocytes were separated from other cells in blood slides with morphological
operations and used neural network for classification of WBCs into its subtypes. In paper [59], Scotti
used morphological operations that separate leukocytes from other blood components in the slide. Vogado
et al. [60] employed morphological operations to divide leukemic cells into segments using the ALL-IDB2
dataset. Bhattacharjee et al. [61] used morphological operations to separate the nucleus, k-mean clustering
ANN, and SVM. Grimwade et al. [62] came up with flow cytometry to identify acute leukemia using
morphological methods. Bhukaya et al. [63] presented a framework for separating nuclei and leukocytes
using Otsu thresholding and morphological operation to detect ALL, SVM has a 92.7% classification
accuracy rate. In another study [64], authors used a watershed algorithm followed by thresholding and
morphological operations to segment blasts for categorization in acute leukemia. The authors of this
study [65] came up with morphological methods with scale-space features for the accurate segmenting of
leukocytes. There are two stages to the suggested strategy. White blood cells (WBCs) are collected from the
microscopic blood picture during the first stage. Important information, like shape and texture features, is
extracted from the segmented cells in the second step. In the end, the segmented cells are divided into normal
and abnormal cells using Naïve Bayes and k-nearest neighbor classifier approaches applied to the retrieved
features resulting in 98.7% accuracy [66]. Authors in [67] proposed a step method for segmentation and
classification of ALL using the ALL-IDB dataset to classify normal and abnormal cells. A summary of some
of the important techniques for ALL diagnoses is listed in Table 2.

Table 2: Summary table of traditional ML techniques for ALL diagnosis

References Year Use cases Dataset Segmentation technique Remarks
[26] 2007 WBC identification for

ALL
Not mentioned Otsu’s threshold This method gives good

segmentation results but
was applied to only 10

images.
[27] 2014 Leukemia diagnosis Private dataset with 380

images
Otsu’s threshold The technique performs

well in segmenting nuclei
of the WBC but fails to
detect ALL subtypes.

[28] 2009 WBC segmentation Private dataset Zack threshold+GVF Perform well in
segmenting nucleus and
cytoplasm but applied
from only 20 images.

(Continued)
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Table 2 (continued)

References Year Use cases Dataset Segmentation technique Remarks
[29] 2021 ALL detection Private dataset with 330

images
Otsu threshold

Morphological operations
This method gives good
accuracy in detecting L1
and L2 subtypes of ALL

but gives poor
performance in L3 due to
the automatic threshold

nature.
[30] 2017 RBC and WBC counting

for Leukemia
Not mentioned Otsu’s threshold This method was only

used for the counting of
RBC and WBC, not

focused on the
morphological structure
of three subtypes of ALL.

[31] 2006 Leukemia detection ALL-IDB Morphological operations The technique is useful
only for differentiating the
leukemic and normal cells.

[38] 2016 Segment WBC nucleus for
Leukemia

Not mentioned Color thresholding
marked watershed

This technique performs
well in categorizing

normal and leukemic cells
but involves very complex

and time-consuming
digital image processing

techniques.
[45] 2017 Cell and nucleus

segmentation WBC for
leukemia

Not mentioned Thresholding, k-means,
watershed

The main focus of this
study is to segment the

nucleus, and the
cytoplasm of WBC, and
control overlapping cells
but not address the ALL.

[68] 2015 Leukemia diagnosis ALL-IDB2 SDM-based clustering
method

This method is used to
detect lymphocytes in

blood slide images with
good results, but not

focused on ALL detection.
[47] 2014 AML detection Self acquired Housdroff dimensions This study focuses on the

detection of AML with
98% accuracy but only

focuses on AML
detection.

[51] 2015 ALL diagnosis Self acquired K-means clustering The study focuses on the
detection and

classification of ALL using
k-means clustering and

SVM, but the main
shortcoming is that it only

localizes normal and
cancerous cells.

[55] 2015 ALL detection Combination of two
datasets with 1024 images

Region growing This method was applied
only for the detection of

leukemic cells.

2.1.6 Limitations of Traditional ML Techniques
Conventional machine learning techniques exhibit numerous limitations, particularly in their inability

to effectively model complicated, non-linear relationships within data, hence impairing performance on
sophisticated tasks. They often demand comprehensive feature engineering, requiring substantial subject
knowledge and effort involvement. Moreover, these models may exhibit sensitivity to noise and outliers,
which can result in false predictions. They may not perform efficiently with extensive datasets, where
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more sophisticated algorithms thrive. Ultimately, once trained, conventional models generally exhibit little
sensitivity to new data without undergoing retraining, rendering them less efficient in dynamic contexts.

2.1.7 Segmentation Using Deep Learning Techniques
Image segmentation is one of the most important problems, particularly in the medical field, the

researchers preferred to use more advanced deep-learning models [69–71] to address this problem, as
the framework is shown in Fig. 5. Wang et al. [72] proposed a technique based on Convolutional Neural
Networks (CNN) and a single-shot multi-box detector [73] and modified YOLOv3 for the detection of WBC.
Mandal et al. [74] and Shahin et al. suggested a deep learning model, a U-Net-based semantic model, that
can find overlapping nuclei. Reference [75] proposed a transfer-learning-based approach that can segment
WBC and its subtypes, and they proposed a customized CNN model (WBCsNet) with more accurate
results [76]. Duggal, Rahul, et al. [77] used deep belief networks to segment WBC nuclei more accurately.
Reena and Ameer [78] proposed a segmentation method based on transfer learning for WBCs, for semantic
segmentation they used DeepLabV3+.

When considering an image segmentation technique for cancer cell images, it is essential to comprehend
the advantages and disadvantages of each method. Otsu thresholding is most applicable to images exhibiting
pronounced intensity peaks, providing a straightforward and efficient method, however, it has difficulties in
noisy or intricate backgrounds [30]. K-means clustering is proficient in managing diverse cell kinds and fluc-
tuating intensities, rendering it versatile however susceptible to initial conditions and the number of clusters.
Region growing is optimal for segmenting contiguous areas based on intensity, effectively accommodating
intricate shapes, however necessitating, a meticulous selection of seed sites and criteria [57]. The decision
ultimately hinges on the particular image attributes and segmentation objectives, and frequently, a synthesis
of several methodologies may produce optimal outcomes.

Efficient segmentation methods markedly improve the diagnosis of acute lymphoblastic leukemia (ALL)
by precisely delineating areas of interest in medical imaging, including bone marrow biopsies and blood
smears. This procedure enhances classification precision by diminishing background noise, accentuating
essential cellular characteristics, and standardizing diversity among patient presentations [79]. Segmentation
improves feature extraction and enables multimodal analysis by supplying cleaner, more pertinent data,
enhancing the integration of images, genomic, and clinical information. Moreover, sophisticated methods for
segmentation automate processing, enhancing efficiency and facilitating continuous evaluation of treatment
responses. Ultimately, these advantages improve diagnostic precision and refine clinical decision-making in
ALL management [80]. U-Net is a convolutional neural network (CNN) architecture specifically developed
for image segmentation tasks, aiming to categorize each pixel within an image [81]. Initially created for
biological image segmentation as shown in Fig. 5, it has been extensively utilized across other domains.
The network employs an encoder-decoder architecture. The encoder, or contracting path, systematically
reduces the input image’s dimensions using convolutional layers and pooling processes, capturing contextual
information and retrieving high-level features [82]. The decoder, or expanding path, subsequently upsamples
these feature maps, progressively rebuilding the spatial dimensions of the image while preserving detailed
information. The distinguishing characteristic of U-Net compared to other segmentation models is the
implementation of skip connections, which connect appropriate layers in the encoder and decoder, enabling
the model to integrate low-level, detailed information with high-level relevant attributes [83]. This archi-
tecture allows U-Net to generate precise and intricate segmentations, even when trained on comparatively
limited datasets. Its efficacy and performance have rendered it particularly favored in medical imaging, where
accurate segmentation is essential.
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2.2 Image Classification Using Traditional Machine Learning
Ko et al. [82] proposed a method for the classification of WBC using random forests and decision trees

with effective results. Ramoser et al. [83] came up with a technique for the identification and classification
of lymphocytes using an SVM into its subtype, [84,85]. Tai et al. [86] suggested a method that is used to
segment and classify various components in blood slide images to separate the nucleus and cytoplasm.
Geometric features with multi-class SVM are used to classify them. Mohapatra et al. [87] used features
like the Hausdroff Dimension with contour signature to detect nuclei boundaries and then classify them
using SVM. Studies [88,89], Rawat et al. outlined a system to distinguish between normal and ALL
leukocytes using Gray-level Co-occurrence matrix GLCM and shape features, SVM, and random forest for
classification respectively. It gives 86.7% accuracy for nuclei, 72.4% for cytoplasm, and overall accuracy of
89.8%. MoradiAmin et al. [90] gives a framework that can categorize leukemia into its four types using SVM.
Pan with others in [91] used the mean shift technique for the partition of the nucleus of WBCs, using the
learning-by-training method SVM. Mohapatra et al. [92] came up with a color-based clustering technique
using k-means and Fuzzy Possibilistic C-means in combination with Gustafson Kessel for the segmentation
nuclei from white blood cells to identify ALL Blasts using the SVM classifier. James et al. [93] segment WBC
to use the k-means clustering approach to find AML, normal, and cancerous cells were classified using SVM.
Asadi et al. [94] used a holographic method for the detection and categorization of leukemic cells using
Zernike moments for feature extraction and then classified the cells with k-nearest neighbor (KNN) using
minimum mean distance. Authors in [95,96] proposed a method that identifies ALL using CMYK color
format and then the Zack threshold method, classified the cells using KNN, and gives good accuracy. Di
Ruberto with others in [97] came up with a framework consisting of the combination of KNN and SVM that
can segment and classify different components of blood and their nucleus and cytoplasm, resulting in an
accuracy of 99% using the ALL-IDB data set.

2.3 Classification Using Deep Learning Techniques
Sahlol et al.’s research [98] presented a framework based on CNN with a visual geometry group (VGG)

net model. They enhanced the slap swarm algorithm statistically to classify the subtypes of leukocytes.
Rehman et al. [99] segmented the ALL blasts using the threshold method and then used the CNN-based
Alexnet model which gives efficient results and gives 97.78% accuracy. Shafique et al. [100] suggested a
framework composed of CNN with an Alexnet model for identifying ALL using the ALL(IDB) database
and gave the result of 96.06% accuracy. Loey et al. [101] proposed a model for the diagnosis of ALL, CNN
with Alexnet model is used on the ALL (IDB) database and classifies images into two classes, i.e., normal
and affected giving 100% results. Mallick PK with others in [102] came up with a framework based on Deep
Neural Network (DNN) through which they classify two classes, i.e., ALL and AML, and resulted in 98.2%
accuracy. In [103], the research work develops a diagnosis and detection of ALL that enhances different blood
images with adaptive sharpening and then uses deep learning techniques [104]. A thorough overview of the
deep learning architectures in Fig. 6, including model architecture, training procedure, and hyperparameter
values, is required to comprehend and replicate the work fully. This includes a comprehensive description
of the model’s general architecture as shown in Fig. 6, including the very first step of dataset collection and
pre-processing of that data, after this the segmentation algorithms are selected and the region of interest
is segmented as shown in Fig. 5 after this step robust classification technique is selected and layout of
layers are set according to the need of the required results (e.g., convolution, recurrent, fully connected),
functions for activation, and any other relevant components. The training method is thoroughly detailed,
including information about the datasets utilized, the number of epochs, batch sizes, and the optimization
techniques (such as Adam or Stochastic gradient descent (SGD)) used to achieve the best results [105].
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Furthermore, hyperparameter settings should be properly specified, such as learning rates, dropout rates,
weight initialization methods, and regularization approaches. Providing these facts encourages transparency,
enabling others to duplicate the study and evaluate the effectiveness of the model under identical conditions,
which is critical for scientific accuracy and field advancement [103].

Figure 6: Deep learning based ALL classification framework

2.4 Convolution Neural Network Architecture
A Convolutional Neural Network (CNN) architecture can be built with many essential components and

hyperparameters that influence the model’s functionality. This article provides a summary of the standard
layers and parameters utilized in the construction of a CNN, together with their traditional values [105].

2.4.1 Input Layer
The input to a CNN typically consists of an image, with dimensions represented as (Height, Width, and

Channels). For RGB images, the input dimension is (224, 224, 3), where 224 × 224 represents the image size
and 3 denotes the total number of color components (Red, Green, Blue).

2.4.2 Convolutional Layer
Convolutional layers apply filters to the input image or the output of the preceding layer to extract

features. The quantity of convolutional filters that the next layer will acquire. Standard values vary from 16
to 512 filters in each layer. The dimensions of these filters are often (3 × 3), (5 × 5), or (7 × 7). Smaller filters,
such as 3 × 3, are prevalent in deeper designs. The filter’s step size during the input image scanning process. A
stride of one or two is typical. Finds out the need for padding the input to maintain spatial dimensions [106].

2.4.3 Activation Function
An activation function is performed post-convolution to introduce non-linearity. The Rectified Linear

Unit (ReLU) is the predominant activation function. Alternative activation functions such as Leaky ReLU or
ELU may be employed in certain architectures.

2.4.4 Pooling Layers
Pooling layers diminish the spatial features of the input, hence reducing the computational burden and

facilitating the extraction of salient information. Max Pooling: Generally, employs a (2× 2) or (3× 3) filtration
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with a stride of 2. Average pooling computes the mean of values within a pooling window; nevertheless, max
pooling has been more usually utilized [106].

2.4.5 Dense Layers
These layers are employed after the convolutional and pooling layers to provide predictions or classify

features. The number of neurons in each fully connected layer. The number of neurons in the initial
completely linked layer can fluctuate, often ranging from 512 to 1024. Activation Function: Generally, ReLU
is employed for hidden layers, whereas Softmax or Sigmoid is utilized for the output layer, depending on
whether the objective is multi-class or binary classification, respectively [103].

2.4.6 Hyperparameters
Hyperparameters: Learning Rate: Regulates the magnitude of weight adjustments during training.

A conventional initial value is 0.001, however, it is frequently adjusted throughout the training process.
Optimizers such as Adam, SGD, or RMSprop are frequently employed. Adam is generally the preferred
option because of its flexible learning rate. Batch Size: The quantity of samples handled in a single iteration
through the network. Standard values vary from 32 to 128. Epochs: The total count of full iterations over the
complete training dataset. Typical values span from 10 to 100.

2.5 Advance CNN Models
In recent years, different CNN models have been used to those results in more accurate and efficient

ways [107] as given in Table 3. Graphical representations of different machine and deep learning techniques
were given in Fig. 7. YOLOv3 [108] and YOLOv4 [109] are some of the recent faster CNN models, these
are models with high computational efficiency for localizing the region of interest and classification tasks.
Ai-Qudah et al. [110] used YOLOv2 [111] to classify ALL into normal/healthy cells efficiently. Khandekar
et al. [112] suggested a classification technique based on YOLOv4, classifying healthy and ALL-blasts
efficiently. Authors in [50] also proposed medical robotic diagnosis based on deep learning methods. Duggal
et al. [113] suggested CNN CNN-based framework for cancer detection with a deconvolution layer that can
convert the images to Optical Density. It also involves back-propagation to de-convolve the images to tissue-
specific for the next layer as input. The authors suggested a unique technique based on the examination
of the available white blood cells (WBC) to identify acute lymphoblastic leukemia (ALL) in the blood’s
peripheral circulation. In contrast to previous approaches described in the literature, this technique combines
a histopathological transfer learning process with a lightweight CNN. This is achieved by introducing a CNN
with less learnable parameters that mimic Local Binary Patterns (LBP) and learning to recognize different
types of histology tissues. It then fine-tunes this CNN on the ALL database to categorize each cell as either
normal or lymphoblast. Sulaiman et al. [114] suggested a hybrid model with an accuracy claim of an F1 score of
0.929 for the classification of ALL into healthy and infect groups, based on ResNet and SVM. Reference [115]
suggested the automated identification of healthy cells and ALL to compensate for the manual analysis
deficiencies of an expert. The model utilized is YOLOv3, which generates low loss values and elevated mAP
evaluation values through a transfer learning technique.

The evaluation’s findings show that the YOLOv3 model can distinguish between ALL and healthy
cells. In previous research [116], acute lymphoblastic leukemia has been classified using Mask R-CNN on
microscopic pictures of white blood cells, which can effectively and efficiently support the diagnosing
process. Menagadevi et al. [117] proposed a technique that can predict ALL, they applied k-means clustering
for segmentation with CNN and resulted in an accuracy of 98%, specificity of 97%, and sensitivity of 98.2%.
Some of the frameworks that perform with high accuracy are given in Figs. 8–11. Although machine learning



1212 Comput Model Eng Sci. 2025;142(2)

strategies present benefits regarding interpretability and reduced processing requirements, deep learning
methods deliver higher precision and feature extraction abilities. A thorough evaluation of these factors
like accuracy, adaptability, computational expense, and interpretability, will yield a full insight into their
respective functions in the recognition and classification of ALL. Using huge dataset information, pre-trained
deep learning algorithms can be fine-tuned for particular uses with small datasets [101]. This helps in medical
applications with minimal labeled data.

Figure 7: Graphical representation of different frameworks from 2005 to 2024

Diverse models such as CNNs, VGGNet, and YOLO demonstrate differing efficacy contingent upon
dataset size and image noise levels. Convolutional Neural Networks are versatile and can adjust to diverse
tasks, although they might require greater datasets to generalize proficiently [112]. VGGNet, recognized
for its deep design, performs exceptionally well with extensive, clean datasets owing to its capacity to
capture complex features; yet it is prone to overfitting on smaller datasets that demand significant processing
resources. YOLO, developed for real-time object recognition, excels with extensive datasets, effectively
identifying things in noisy environments; nevertheless, its accuracy may diminish if the training data is not
diverse [118]. In conclusion, although CNNs provide adaptability, VGGNet excels in meticulously organized
settings, and YOLO, achieves a compromise, between speed and efficacy in variable contexts, rendering the
selection contingent upon particular applications and data attributes. Deep learning in clinical environments
where the accuracy, of data may fluctuate due to varying processing of samples or imaging conditions.
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Figure 8: Framework proposed by [99] for classification of ALL into its subtypes (Reprinted with permission from
Rehman et al., Microscopy Research and Technique, 81(11): 8. Copyright 2018 by John Wiley and Sons)

Figure 9: Framework given by [121] to categorize normal and ALL blasts (Reprinted with permission from Das and
Meher, Expert Systems with Applications, 183(1), Copyright 2021 by Elsevier)
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Figure 10: Framework proposed by [122] to classify normal and cancerous cells

Figure 11: Framework for healthy and cancerous cells proposed by [137] (Reprinted with permission from Zakir Ullah
et al., “An Attention-Based Convolutional Neural Network for Acute Lymphoblastic Leukemia Classification,” Appl.
Sci., 202111(22):22. doi:10.3390/app112210662. Open Access by Creative Commons CC BY 4.0

This framework [99] aims to enhance the diagnosis of Acute Lymphoblastic Leukemia (ALL) with
a computer-assisted approach that integrates image processing and deep learning methodologies. The
suggested method entails categorizing ALL into its subtypes and normal reactive bone marrow utilizing
stained bone marrow images as shown in Fig. 8. The model was trained in bone marrow pictures using
robust segmentation and deep learning with a convolutional neural network (CNN) to attain precise
classification outcomes. The experimental findings demonstrated that the suggested method surpassed
conventional classifiers, including Naïve Bayes, KNN, and SVM, attaining a remarkable accuracy of 97.78%.
This method provides a significant resource for pathologists, improving the precision and efficacy of ALL
diagnoses. Reference [121] shown in Fig. 9 introduces an effective deep Convolutional Neural Network
(CNN) framework for the automated diagnosis of Acute Lymphoblastic Leukemia (ALL), tackling the
issue of necessitating extensive datasets for training. The suggested approach integrates depthwise separable
convolutions, linear bottleneck architecture, inverted residuals, and skip connections, in conjunction with
an innovative probability-based weight factor to amalgamate MobileNetV2 and ResNet18. The methodology,
corroborated on the ALLIDB1 and ALLIDB2 benchmark datasets, attains exceptional accuracy—99.39% and
97.18% for 70% training and 30% testing, and 97.92% and 96.00% for 50% training and testing. It surpasses
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contemporary transfer learning methodologies regarding sensitivity, specificity, accuracy, precision, F1 score,
and ROC. This framework [122] for the application of Multi-Attention EfficientNetV2S and EfficientNetB3
deep learning architectures, optimized using transfer learning, to differentiate between normal and blast
cells in microscopic blood smear images for the identification of acute lymphoblastic leukemia (ALL) shown
in Fig. 10. The Multi-Attention Mechanism decreases model complexity and enhances generalization by
altering the last blocks of both models and incorporating supplementary layers. The proposed models
demonstrated exceptional accuracy, with EfficientNetV2S reaching 99.73% and EfficientNetB3 achieving
99.25%. The proposed methodology surpassed previous methods, exhibiting enhanced efficiency in leukemia
identification compared to other models. Fig. 11 shows a non-invasive, CNN-based methodology for the
diagnosis of Acute Lymphoblastic Leukemia (ALL) utilizing medical imaging [137]. The model integrates an
Efficient Channel Attention (ECA) component with VGG16 to optimize feature extraction, hence enhancing
the categorization of malignant and normal cells. The method employs data augmentation to enhance
both the quality and quantity of training data, while simultaneously mitigating subject-level variability by
partitioning the dataset into seven folds. The proposed model attained an accuracy of 91.1%, indicating its
capability to aid pathologists in identifying ALL.

The ALL classification technique utilizing the MobileNetV2-SVM architecture proposed by Das
et al. [107] attains the highest accuracy (98.21%) and the optimal F1 score (0.9828). It provides commendable
performance owing to the synergistic advantages of MobileNetV2-based extraction of features and SVM-
based classification. The majority of research concentrates on identifying ALL by categorizing individuals as
either healthy or affected by ALL, whereas only a limited number of studies prioritize the further classification
of ALL into its subtypes (L1, L2, and L3). Table 4 illustrates the classification performance of AlexNet, as
proposed in [101], which categorizes white blood cells into healthy and three subtypes of acute lymphoblastic
leukemia: L1, L2, and L3. L1 is identified as the most properly defined subtype within the group. The proposed
approach attains an overall accuracy of 97.78%. The morphological resemblance in ALL and healthy images,
the imbalanced dataset, and the existence of intersubject variability may compel a system to acquire subject-
specific features instead of class-specific features [138]. Consequently, these characteristics complicate the
ALL classification.

Table 4: Quantitative analysis of some State-of-the-art deep learning techniques

Reference Method Sensitivity % Specificity % Accuracy % F1-score
[122] Hybrid 99.55 99.47 99.39 0.994
[112] YOLOv4 92.0 – – 0.938
[121] VGG16 80.4 89.9 85.2 0.842
[131] Inception 62.0 96.7 80.61 0.734
[128] NasNetMobile 76.5 96.6 85.15 0.842
[124] CNN+SVM 87.9 95.0 91.48 0.896
[136] ResNet50 98.0 92.8 95.15 0.948
[99] Alexnet 98.4 97.53 97.78 0.978
[78] DeepLabv3 97.4 96.5 98.9 0.982
[126] DenseNet121 98.9 97.4 98.2 0.983
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3 Performance Measures
Different mathematical representation schemes to represent comparative performance are as True

positive (TP) represents properly detected cells, True Negative (TN) detects normal cells, False Negative
(FN) detects nonaccurate healthy cells, and False positive (FP) falsely detected affected cells. The quantitative
analysis of reviewed methodologies is shown in Table 4. The comparison with existing systematic reviews is
given in Table 5.

Table 5: Comparison of our study with existing Systematic reviews

Reference Traditional
ML

techniques

Advanced
deep

learning

Performance
evaluation

ROC
analysis

Systematic
review

Benchmarking

[21] ✓ ✓ ✓ ✗ ✓ ✗

[22] ✓ ✓ ✗ ✗ ✓ ✗

[139] ✗ ✓ ✓ ✗ ✓ ✗

Our study ✓ ✓ ✓ ✓ ✓ ✓

Mathematical representation is:
True negative rate or

Specificity = TN
(TN + FP)

(1)

True positive rate

Sensitivity = TP
(TP + FN)

(2)

Precision = TP
(TP + FP)

(3)

Accuracy = (TN + TP)
(TN + TP + FN + FP)

(4)

3.1 Datasets
Table 5 demonstrates that the majority of research is predicated on transfer learning methodologies,

based on this table data, owing to their capacity to deliver favorable outcomes with limited datasets. Table 6
represents different publicly available datasets [140], in which ALLIDB1 and 2 are standard and the most
popular datasets. Images examples are given in Figs. 12 and 13 while a graphical representation of the usage
of datasets is given in Fig. 14. Results of different methods using these datasets were also shown graphically
in Fig. 15 and ROC Curve in Fig. 16. The diversity and representativeness of datasets such as ALLIDB1,
ALLIDB2, BCCD, ATLAS, and C-NMC are essential for the development of effective models for the diagnosis
of acute lymphoblastic leukemia (ALL). ALLIDB1 and ALLIDB2 [141] offer images primarily related to
leukemia; nevertheless, their representativeness may be constrained by the demographic and diagnostic
attributes of the included individuals, thus affecting the model’s adaptability to other samples. The BCCD
dataset, although useful for general blood cell evaluation, may not adequately represent the distinctive
morphological characteristics of ALL cells. ATLAS provides a comprehensive framework including various
blood illnesses, hence augmenting its diversity; yet it may still be deficient in comprehensive illustrations of
all subtypes. C-NMC emphasizes cell morphology, essential for leukemia identification, although may not
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account for the heterogeneity in staining and imaging circumstances present in actual clinical environments.
Therefore, although these datasets are valuable resources, their limitations in variety and representativeness
must be recognized to guarantee that models trained on data can be applied effectively to diverse patients.

Table 6: Publicly available all datasets

Dataset Description Link
ALLIDB1 Contains 108 images including 59 healthy,

49 ALL images
http://homes.di.unimi.it/scotti/all/ (accessed on

19 December 2024)
ALLIDB2 Contains 130 healthy, 130 affected ALL

images
http://homes.di.unimi.it/scotti/all/ (accessed on

19 December 2024)
BCCD Contains 367 images after augmentation

12444 with augmentation
http://github.com/Shenggan/BCCD_Dataset

(accessed on 19 December 2024)
ATLAS Contains 40 AML, 25 ALL, and 23 other

type images
http://www.hematologyatlas.com/principalpage.

htm (accessed on 19 December 2024)
C-

NMC
Contains 15,000+ affected images of

B-Linage
http://competitions.codalab.org/competitions/

20395 (accessed on 19 December 2024)

Figure 12: Images from the C-NMC dataset in which images A and B are normal while C and D are leukemic

http://homes.di.unimi.it/scotti/all/
http://homes.di.unimi.it/scotti/all/
http://github.com/Shenggan/BCCD_Dataset
http://www.hematologyatlas.com/principalpage.htm
http://competitions.codalab.org/competitions/20395
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Figure 13: Normal cells from (a) to (d) and ALL Blasts from (e) to (h) from the ALL-IDB dataset [141]

Figure 14: Dataset used in segmentation and classification of ALL

Figure 15: Quantitative analysis of reviewed techniques
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Figure 16: ROC curve of different best-performing reviewed frameworks

3.2 Discussion
The most current developments in the field are considered as this article briefly studies deep learning

and conventional machine learning techniques. Classification using traditional machine learning requires
additional techniques for accurately segmenting unshaped and overlapped cells by extracting features like
texture, color, and geometrical features and then normalizing these using different normalization algorithms.
While in deep learning all the phases mentioned above were included in a single algorithm. Deep learning
models, especially convolutional neural networks (CNNs), may autonomously discern pertinent features
from unprocessed data, thereby diminishing the necessity for manual feature engineering [135]. CNNs are
adaptable and essential for many imaging tasks, however noise and overfitting must be managed. VGGNet
might benefit via transfer learning and excels on large datasets but is highly computational and sensitive
to small amounts of data without fine-tuning. In real-time object detection, YOLO works well with large
datasets but may struggle with short datasets or excessive noise [108].

Although intended for real-time detection, it demands substantial resources, particularly for training on
intricate datasets; yet, its architecture facilitates expedited inference, rendering it appropriate for applications
where speed is paramount. The selection of a model must equilibrate performance, resource availability,
and the particular requirements of the application, especially in contexts with constrained computational
capability [101]. Deep learning techniques demand extensive processing resources, such as fast GPUs or
TPUs, as well as plenty of RAM and storage to handle massive datasets and complicated models. Cloud
computing platforms frequently offer scalable ways to satisfy these objectives effectively.

This is especially advantageous with intricate datasets, such as genetic or imaging data. However, in
the deep learning approach, large-scale datasets are required to train the model efficiently and result in
classification. Managing potential biases in the utilized datasets, including class imbalances, is essential for
a thorough assessment of both conventional machine learning (ML) and deep learning techniques [86].
An imbalanced dataset can substantially impact the performance of models, as algorithms may exhibit bias
towards the dominant class, resulting in deceptive accuracy numbers [142]. For example, if a dataset has a
significant predominance of images from a certain category and a scarcity from a different one a model may
attain elevated accuracy merely by identifying the majority class, but poorly generalizing to the minority class.

Deep learning algorithms, however effective in recognizing patterns from intricate data such as images,
genomic, and flow cytometry data, face certain obstacles. A primary restriction is the necessity for extensive,
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high-quality datasets with annotations for training, which are sometimes limited, especially for rare diseases
such as ALL. The models may encounter difficulties in generalizing across various patient populations
or clinical environments, resulting in diminished accuracy in varied or underrepresented groups [140].
Moreover, deep learning models frequently operate as “black boxes,” complicating the interpretation of
the rationale behind predictions, which is crucial in medical environments where explainability is vital for
clinical decision-making. Overfitting to trained data, particularly when sample sizes are limited or unrep-
resentative of the larger population, can pose a considerable issue. Moreover, deep learning algorithms may
exhibit sensitivity to noise and abnormalities in medical imagery or data, potentially resulting in inaccurate
diagnoses [90]. A comprehensive examination of these limitations, coupled with potential solutions like data
augmentation, transfer learning, and explainable AI techniques, would enhance the understanding of the
challenges related to the application of deep learning in ALL diagnoses and inform future advancements in
this domain [135].

To conduct a more comprehensive analysis, it is essential to examine how each study addressed class
imbalance. Methods such as exceeding the minority class, reducing the majority class, or utilizing synthetic
data generation techniques (such as Synthetic Minority Oversampling Technique SMOTE) help alleviate this
problem. Moreover, employing performance criteria that account for class distribution, like precision, recall,
F1 score, or area under the receiver’s operating characteristic curve (ROC) as shown in Fig. 16, provides a
more equitable assessment of model efficacy [84]. This study will elucidate the merits and shortcomings of
classical machine learning and deep learning algorithms while offering insights into the influence of dataset
features on their performance, so facilitating a more comprehensive comparison.

To verify the research work done in processing medical images, different standard datasets are freely
available for several types of blood diseases as mentioned in Table 4. Nowadays researchers have put some
effort into analyzing data and finding new frameworks using already existing datasets and applying their
methodologies using transfer learning techniques in deep learning algorithms as shown in Table 3 and show
some good results, as they used already existing ideal data to investigate the issue. It is not easy to compare
the accuracies using one dataset and the same algorithms. Most importantly this process needs to be verified
by pathologists to save more human lives. The framework should be made with more care and use datasets
having a large number of diseases. Which is one of the most difficult tasks. ALL detection and classification
can face different challenges:

1. The presence of noise and inhomogeneity, weak edges, and overlapping cells can affect the results
of segmentation.

2. The size, shape, and texture of cytoplasm and nucleus varies in subtypes of WBCs, so the classification
task is more challenging.

3. The lack of labeled datasets prevents deep learning algorithms from performing as well as they could.
4. Very few studies have been done in terms of subclass classification of ALL to L1, L2, and L3 which is the

need of the day.
5. The Overlapped cells in the slide image reduce the accuracy of the model, scientists must focus on this

issue and address it.
6. Conventional and semantic segmentation of interested regions have been done in different studies,

instant Segmentation should be tried in this regard.

4 Conclusion and Future Guidelines
Research work done in the field of medical images reduces the life risk of human beings. The researchers

have been working in this field since 1991 till date for the diagnosis, of life-threatening diseases like leukemia
and other blood-related disorders. This systematic review’s primary goal was to gather publications using
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PRISMA guidelines and search different databases. The primary finding of this work is that, by combining
various machine learning, deep learning, and image processing using microscopic bone marrow and blood
images, it is possible to detect and classify blast cells after the nucleus and cytoplasm of white blood cells
have been separated. Studies have been conducted in a variety of contexts, including the categorization of
leukemia into four categories, the classification of ALL and its subtypes, the identification of blasts, and the
classification of leukemic and normal blood cells. Different features have been extracted like texture, color,
and contour. There aren’t many benchmark datasets with uniformly sized, well-resolution images. Therefore,
it is difficult to compare the suggested frameworks accurately using various tools, such as MATLAB, Google
CoLab, Python, and Lab View. Most significantly, improvement in this research is urgently needed to identify
the most precise and effective segmentation and classification approaches using fresh datasets for this task.
A precise semantic segmentation approach that can aid in the classification of ALL and its subtypes should
be proposed as part of future research efforts.

A practical finding is a possibility for transfer learning, wherein pre-trained models on extensive, well-
annotated datasets can be refined for specific tasks using smaller, domain-specific datasets. This method can
mitigate data shortages and enhance model performance without requiring large labeling efforts. Moreover,
researchers may investigate synthetic data generation methodologies, including Generative Adversarial
Networks (GANs) or data augmentation approaches, to produce a broader array of training examples. These
strategies can mitigate class imbalances and improve model resilience by offering variations that replicate the
real-world scenario. Moreover, engaging with domain experts for enhanced labeling methodologies, together
with utilizing community-driven data annotation systems, could augment both the quality and quantity of
datasets. By integrating these actionable findings, the study would provide pragmatic avenues for advancing
research in this domain and improving the overall efficacy of machine learning and deep learning models.
These characteristics influence their performance, facilitating a more comprehensive comparison.

Also, explainable AI is essential in detection tasks, offering knowledge about model behavior that
improves reliability, conformity, and overall efficacy. As explainable artificial intelligence (XAI) approaches
advance, they will assume a progressively significant role in the integration of AI into essential applications
across diverse fields. Real-time diagnostic tools are transforming multiple domains by delivering instanta-
neous insights and improving decision-making processes. Their incorporation of sophisticated technology,
including sensors, machine learning, and cloud computing, facilitates effective monitoring and diagnosis
in healthcare, industrial applications, and beyond. As these systems advance, they are expected to provide
enhanced advantages while tackling issues of privacy and integration.
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