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ABSTRACT

Ransomware attacks pose a significant threat to critical infrastructures, demanding robust detection mechanisms.
This study introduces a hybrid model that combines vision transformer (ViT) and one-dimensional convolutional
neural network (1DCNN) architectures to enhance ransomware detection capabilities. Addressing common
challenges in ransomware detection, particularly dataset class imbalance, the synthetic minority oversampling
technique (SMOTE) is employed to generate synthetic samples for minority class, thereby improving detection
accuracy. The integration of ViT and 1DCNN through feature fusion enables the model to capture both global
contextual and local sequential features, resulting in comprehensive ransomware classification. Tested on the
UNSW-NB15 dataset, the proposed ViT-1DCNN model achieved 98% detection accuracy with precision, recall,
and F1-score metrics surpassing conventional methods. This approach not only reduces false positives and negatives
but also offers scalability and robustness for real-world cybersecurity applications. The results demonstrate the
model’s potential as an effective tool for proactive ransomware detection, especially in environments where evolving
threats require adaptable and high-accuracy solutions.
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1 Introduction

In the last few years, ransomware attacks have become a growing concern and one of the most
dangerous cyber threats to organizations and industries including power utilities, financial services,
and healthcare. These attacks affect business processes by locking important files, and then demanding
ransom payments to unscramble the highly costly information. Thus, current ransomware types are

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.056850
https://www.techscience.com/doi/10.32604/cmes.2024.056850
mailto:zohaib.mushtaq@uos.edu.pk


1668 CMES, 2025, vol.142, no.2

more complex and challenging to detect since most of the existing methods are based on signature
detection which lacks flexibility to adapt to the new threat models. Due to the increased occurrence
and sophistication of ransomware attacks, better detection methods have been introduced to identify
new patterns in real-time. Substantial work has been done in machine learning (ML) and deep learning
(DL) to obtain advanced features in identifying anomalies and likely malicious programs from the
data traffic model. However, many of these models are affected by issues like degraded performance
on imbalanced datasets, higher computational cost, and unreliability in distinct network environments
[1–4], etc. Ransomware is malware that encrypts data files and demands ransom money in exchange
for decryption keys, which is a big risk to cybersecurity [5–7]. Numerous studies have addressed the
development of effective ransomware detection techniques [8–12]. Due to the higher frequency of these
attacks, various methods such as ML, DL, feature engineering, etc. have been employed by researchers
to achieve better threat classification results [13–15]. Recent studies indicate that advanced detection
measures are indeed critical in the protection of digital systems and data as ransomware threats have
been on the rise in the recent past. So, a precise investigation of these studies is required to understand
the development of detection approaches and relevant challenges [16–18].

As concluded from the published research review, the existing ransomware detection techniques
incur some inherent limitations and face many challenges for their wide applicability to different
datasets and varying conditions. A major issue in existing methods is the reliance on a single detection
approach, e.g., ML-based models. They have proved to be efficient in detecting known threat signatures
but lack adaptability to new and polymorphic attacks. Another significant shortcoming is the class
imbalance in typical ransomware datasets which affects the detection accuracy. This aspect is partially
addressed by the researchers using oversampling techniques, but a broader investigation is still needed
in this area. In pursuit of designing a fast and adaptable approach, this study builds upon the
early work by proposing a well-generalized hybrid model incorporating feature fusion, oversampling,
and integration of vision transformer (ViT) with one-dimensional convolutional neural network
(1DCNN). The key contributions of this research work are as follows:

• Dataset class imbalance incurs data sampling bias during model training resulting in biased
classification results. To overcome this issue, the synthetic minority oversampling technique
(SMOTE) is introduced in this study. It creates artificial samples to balance the classes and thus
helps the model to identify ransomware attacks more effectively. The oversampling process
is incorporated into the data preparation stage which optimizes model learning from the
balanced data.

• This model uses a state-of-the-art feature fusion and low-rank approximation method for
dimensionality reduction. ViT and 1DCNN layer features are combined to extract the inherent
properties of network traffic data. Dimensionality reduction is incorporated to reduce compu-
tational cost and to identify important features that improve the model performance.

• This novel multimodal framework takes advantage of ViT’s capacity for contextual learning
while 1DCNN captures the temporal data patterns making it suitable for adaptable classifica-
tion. Therefore, it improves ransomware detection performance over existing threats as well as
for new attack patterns.

Extensive experimentation is carried out to evaluate the performance of the proposed hybrid
model by testing it on various datasets, different types of ransomware attacks, and under varying
network traffic conditions. The achieved results demonstrate the model’s capability by showing higher
accuracy, precision, recall, and F1-score metrics confirming its robustness and generalizability for
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real-world scenarios. By addressing these key aspects, this study significantly advances the field of
ransomware detection, offering a highly effective and scalable solution for cybersecurity applications.

The remaining sections are distributed as follows. Section 2 presents a detailed literature review
performed for this study. Numerous studies regarding ransomware detection are reviewed and
strengths and limitations of the existing methods are highlighted. The detailed methodology of the
proposed hybrid model, feature fusion, oversampling strategy, and dimensionality reduction are
presented in Section 3. Section 4 presents achieved results and a discussion about the findings of this
work. The research summary, effectiveness of the proposed approach, and future research directions
are concluded in Section 5.

2 Literature Review

Over recent years, researchers have made substantial contributions to ransomware detection
through various approaches including ML, behavior analysis, and feature engineering. Alvee et al. [1]
explored artificial intelligence-based techniques that prevent ransomware attacks on critical infras-
tructures, underscoring the importance of timely threat detection. However, their approach faced
limitations with class imbalances affecting detection accuracy. Lee et al. [2] proposed systematic
methods for identifying ransomware using ML but observed difficulty in adapting to novel and
polymorphic threats, highlighting the need for well-generalized models. Manavi et al. [4] introduced a
long short-term memory (LSTM) network to focus on temporal features. Despite the effectiveness
of LSTM in specific scenarios, this approach is non-generalized and limited in diverse network
environments. Jayanthi et al. [6] advanced the detection capability by proposing both identification
and decryption mechanisms. However, their methodology lacked adaptability to complex encryption
patterns, which limits its application against evolving ransomware.

Almomani et al. [7] introduced an Android-based ransomware detection method that targets
potential breach points in mobile operating systems. Although significant performance was achieved
the need for creating cross-platform models is desirable across different environments. Ashraf et al. [8]
provided an elaborative framework for categorizing the approaches towards ransomware detection
but it lacks testing on a variety of datasets. Wang et al. [12] proposed a behavior-based detection
technique named RanPAS which underscores the significance of distinguishing ransomware features
characteristics. This approach helps enhance detection performance, though it would be more effective
with the incorporation of feature fusion. Zhang et al. [14] presented dual generative adversarial
networks (GAN) to identify unknown encryption ransomware attacks. This model is useful in
detecting new and random nature threats; however, it has a limitation of direct application to the
network traffic for real-time detection. Numerous studies have been published that employed several
methods including ML and DL to address the challenges of ransomware detection [19–23]. Table 1
presents an overview of a few previous studies in terms of their key findings and limitations.

Table 1: Overview of studies presenting ransomware detection approaches

Ref. Technique Dataset type Accuracy (%) Key findings Limitations

[3] Multiple
supervised ML
models

Ransomware
behavior dataset

99.18 Detects
ransomware by
analyzing
malicious API
calls.

Relies heavily on API call
patterns for detection.

(Continued)
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Table 1 (continued)

Ref. Technique Dataset type Accuracy (%) Key findings Limitations

[4] LSTM network
with executable file
headers

Ransomware
samples

93.25 Effective use of
LSTM for
ransomware
detection from file
headers.

Focuses on portable
executable file headers and
may miss other indicators.

[5] Multiple
supervised ML
models

Imbalanced
ransomware
dataset

94.7 Improved
detection through
balanced datasets.

Less effective with highly
imbalanced datasets.

[6] Detection and
decryption of
ransomware

Ransomware
samples

96 Detects and
mitigates
ransomware
impact.

May not be suitable for
real-time detection.

[7] Multiple
supervised ML
models

Android
ransomware
samples

98.3 Effective for
detecting
ransomware on
Android v.11.

Focusing on Android
platforms only, not
applicable for general
ransomware detection.

[9] Content-based
ransomware
detection

Ransomware
samples

90 Focuses content of
ransomware for
detection.

May not be effective for
encryption-aware
ransomware.

[13] Analysis and
detection of bait
file characteristics
changes

Android
ransomware
samples

98.24 Detects
Android-encrypted
ransomware
characteristics.

Limited to Android-based
ransomware detection.

[14] Deep
convolutional
GAN

Mixed dataset
from multiple
ransomware
datasets

98 Performed well for
unencrypted
ransomware attack
detection in
comparison to
other DL methods.

Requires extensive
computing resources for
GAN.

[17] File entropy
analysis using
SVM

Encrypted
ransomware files

92 Improves
ransomware
detection through
file entropy
analysis.

May not address
behavior-based detection.

[19] Ransomware
clustering and
classification using
the Jaccard
similarity index

Ransomware
samples

88 Helps categorize
ransomware
variants based on
similarity index.

Limited to offline
classification only, and no
real-time detection.

[20] ML and DL-based
methods

Smaller
ransomware
dataset

96 File
behavior-based
malware and
ransomware
detection.

Generic approach used
without details of specific
methods.

[21] Fast selective
hashing techniques

Limited
ransomware
samples

86 Behavioral
ransomware
detection with
reduced detection
time.

Limited explanation of
selective hashing
techniques.

(Continued)
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Table 1 (continued)

Ref. Technique Dataset type Accuracy (%) Key findings Limitations

[22] LR with feature
selection and data
preprocessing

Dataset of
executable binaries

93.86 Ransomware
detection improved
using feature
selection and data
preprocessing.

Information on specific
features and model
parameters is not given.

Note: API, application programming interface; LR, logistic regression; SVM, support vector machines.

In the review of recent research works, many studies focused on ransomware detection from cloud-
encrypted data using advanced variants of DL and transfer learning. Singh et al. [24] presented the
RANSOMNET+ model which hybridized CNN with pre-trained transformers and obtained 99.1%
detection accuracy with a unique feature set comprising hierarchical features and local patterns. A
study [25] implemented an ensemble of multilayer perceptron (MLP) which outperformed the perfor-
mance of individual MLP models with an accuracy of 98.79% in real-time detection of RaaS attacks
in cloud-encrypted data. Urooj et al. [26] introduced a weighted GAN model to address behavioral
drift in ransomware detection. By focusing on early detection, the weighted GAN architecture showed
robust results in dynamic threat environments. However, the model’s complexity raises concerns
about deployment in resource-constrained scenarios. Ispahany et al. [27] provided a comprehensive
review of ML-based ransomware detection detailing current limitations and suggesting future research
directions. Despite insightful findings, this study lacks practical guidelines for implementing proposed
strategies in real-world systems which limits its direct utility for practitioners.

Ferdous et al. [28] developed a systematic framework for artificial intelligence-based ransomware
detection with data collection, preprocessing, feature extraction, model training, and evaluation. This
structured approach enhances detection consistency and robustness. However, the framework may
benefit from additional considerations regarding dataset diversity which may improve generalizability
across different ransomware types. Hernandez-Jaimes et al. [29] presented an ML model based
on Nilsimsa fingerprinting which is specifically designed for ransomware detection on the internet
of medical things (IoMT). As its application is specific to IoMT, it limits broader applicability
to non-IoMT settings despite its effectiveness in generating unique fingerprints for ransomware.
Marcinkowski et al. [30] developed a technique named method for interpretable ransomware attack
detection (MIRAD) which prioritizes interpretability by using a simplified additive model for ran-
somware detection. Interpretability is crucial in high-risk environments but reliance on simplified mod-
els may compromise detection accuracy, particularly for novel or highly sophisticated ransomware.
Hill et al. [31] explored ransomware classification through hardware performance counters on non-
virtualized systems and achieved over 95% accuracy with limited hardware event features. This
approach is innovative but may not transform well to virtualized or cloud-based environments which
limits its scalability.

Rana et al. [32] focused on countermeasures against ransomware in cyber-physical systems
emphasizing web-based automated defense. This method offers a layered security approach, however,
its reliance on web defense could be bypassed by sophisticated attackers using encrypted channels.
Liu et al. [33] proposed an image-based CNN framework for multi-class malware detection which
demonstrated high accuracy through balanced sampling and data augmentation techniques. However,
the reliance on visual features may limit its applicability to text-based malware such as script-based
ransomware. Lee et al. [34] presented the CENSor model which is a graph-based method for detecting
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illicit Bitcoin operations and is significant for tracking ransomware payments. This framework is
effective in identifying illegal transactions; however, it does not directly address ransomware detection
and thus may serve as a complementary tool only rather than a primary detection mechanism. Finally,
Khanan et al. [35] conducted a systematic literature review on intrusion detection system datasets
aiming to enhance cybersecurity awareness. The review provides a comprehensive overview but could
be further strengthened by including emerging datasets for ransomware detection, thus making it
further relevant to current cybersecurity needs.

3 Methodology
3.1 Dataset Description

In this study, an open-source dataset UNSW-NB15 is employed. It includes network traffic data
for ransomware detection which contains features describing distinct aspects and patterns of network
communication. These features are important to detect potential ransomware activities because they
represent sufficient detail and context of network parameters that are required to classify attack
behavior. Selected dataset attributes and their descriptions are presented in Table 2.

Table 2: Dataset features and descriptions

Feature Description

id Unique identifier for each data point which serves as an index for
referencing and organization.

dur The duration of network traffic flow in seconds represents the active time
for a connection.

spkts Number of source packets transmitted during the network flow.
dpkts Number of destination packets transmitted during the network flow.
sbytes Number of source bytes transmitted during the network flow.
dbytes Number of destination bytes transmitted during the network flow.
rate The rate of data transmission measured in packets per second.
sttl Source time-to-live (TTL) indicates the number of hops a packet can

make before it is discarded.
dttl Destination TTL reflects remaining hops allowed for a packet at its

destination.
sload Source load represents data load from the source.
dload Destination load reflects data load at the destination.
sloss Number of source packets lost during transmission.
dloss Number of destination packets lost during transmission.
smean Mean packet size for source packets.
dmean Mean packet size for destination packets.
Ransomware A binary class label indicating the network traffic flow associated with

ransomware samples (as 1) and benign samples (as 0).

The distribution of binary class among the dataset samples is shown in Fig. 1. Fig. 2 shows the
occurrence frequency of various network services and protocols in the dataset. The extracted features
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cover both the communication aspect of ransomware attacks as well as their behavioral aspects. As this
model does not rely on traditional features only like payload, command, and control, or malicious IP
addresses, it can recognize slight changes in network traffic that might indicate ransomware activity,
such as changes in packet size, flow duration, protocol types, and file entropy, etc. These features are
most efficient in detecting phases of ransomware activity including lateral movement, data extraction,
and encryption. In addition, the inclusion of IP addresses and service types enhances the ability of
the model to identify communications with blacklisted IPs and services that are typically used by
ransomware. This combination allows the temporal and structural approach to detection as it is
necessary for the identification of ransomware.

Figure 1: Dataset class distribution (1: ransomware, 0: benign) samples

Figure 2: Categorical variable distribution in the dataset: (a) protocol distribution, (b) service distri-
bution
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3.2 Feature Fusion
Feature fusion has been incorporated in this study to enhance the representational capability of

the dataset for better classification. Some patterns and dependencies between the features could not
be surfaced when employed individually. Dataset quality is enhanced with feature fusion by modeling
the inter-dependency of individual features and hence generating new combinations that are more
representative of the data. This increase in feature space dimension leads to an enhanced model’s
discriminative ability, generalization, and detection performance. Furthermore, it can also be useful
in reducing the data dimension which is important for the model performance and its interpretability.
This fusion is crucial for achieving the best performance of ransomware identification from the
characteristics of both the ViT and 1DCNN. Thus, this study uses global contextual information as
well as localized sequential patterns of network traffic data. Those features are fused which either have
a higher correlation or are hypothesized to yield effective insights upon fusion. For example,

• Xtotal captures the total data volume by adding the number of bytes transmitted from the source
and destination (sbytes + dbytes).

• Ytotal represents the overall packet exchange within a connection and is obtained by fusing the
number of packets transmitted from the source and destination (spkts + dpkts).

• Ztotal reflects the total load within a network connection and is computed by adding the load
data from the source and destination (sload + dload).

• Wtotal indicates the overall packet loss within a connection obtained by combining the number
of packets lost during the transmission from both the source and destination (sloss + dloss).

Features like total bytes and total packets represent total activity at the source and destination of
the network connection which helps the model to capture fine details and correlations which are useful
in ransomware identification. Fig. 3 shows the occurrence frequency of features among the dataset
samples. The spread follows the Gaussian distribution over the entire range of feature values. Fig. 4
shows the two-dimensional mapping of binary feature space before and after feature fusion among
dataset samples. Related attributes are fused into composite features which reduce the complexity of
data transfer from network connection to the classification model, as it decreases the number of input
features instead of employing higher dimensional feature space resulting from feature union.

Figure 3: Histogram of individual features of the dataset
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Figure 4: Two-dimensional feature space mapping before and after the feature fusion

3.3 Oversampling
After data cleaning, the resulting dataset had a critical class imbalance with a higher number

of benign network samples which affects classification accuracy by decreasing ransomware detection
probability. This issue of decreased performance for underrepresented classes is addressed by over-
sampling the minority class in ML classification problems. In this study, the SMOTE oversampling
technique is applied to generate new samples of the minority class by synthesizing them between
actual instances of the cleaned dataset. It helps avoid bias toward the dominant class and increases
the chances of having a good sample size with a balanced class selection for model training and
testing. Among various oversampling methods, SMOTE was chosen because it provides increased
model performance by reducing overfitting, better distinction of minority class, enhancing the model’s
sensitivity to features, and balanced model training for both classes. It was applied for all the
features by maintaining the original distribution of feature space for synthetic samples. Fig. 5 shows
the distribution of cleaned dataset samples between target variables before oversampling, as well
as the resulting distribution with the application of SMOTE oversampling. The resulting dataset
is comparatively fair to prevent class imbalance-related issues and hence leads to more accurate
ransomware classification.

3.4 Feature Selection
In ML and data analysis, feature selection is used to narrow down a large feature space of

candidate features to a manageable subspace containing important attributes only. Its objective is to
reduce the model’s complexity by eliminating the least important attributes. It is an important factor
for data preparation and various approaches are available to choose the best-suited method. In this
study, correlation analysis, and random forest (RF) feature selection techniques are employed.
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Figure 5: Class distribution of cleaned dataset before and after oversampling

3.4.1 Correlation Analysis

Correlation analysis is used to find interdependent relationships between features. To find
correlated features, the Pearson correlation coefficient (r) is computed for all the binary feature pairs.
The following formula is used to measure this linear relationship between two variables.

2r =
∑

(X − X−) (Y − Y−)√(∑
(Y − Y−)

2 ∑
(X − X−)

2
) (1)

where X and Y are two feature variables under consideration, X− and Y− are their mean values,
respectively.

Fig. 6 shows the feature correlation heatmap showing the correlation between all the binary
feature pairs. The correlation coefficient ranges from −1 (perfect negative correlation) to 1 (perfect
positive correlation). Values close to 0 indicate little or no correlation at all. Highly correlated features
are identified from these results and further considered for ransomware detection.

3.4.2 Random Forest

An embedded-type feature selection approach comprising the RF method is employed in this
study. This ensemble learner uses decision trees in the RF to find the output prediction power of each
attribute. RF measures the significance of each feature for model prediction and rates them based on
their importance score. High-importance features are selected for further model evaluation while low-
importance features are discarded. Using the Gini impurity index and the total number of decision
trees in RF, significance scores for features are calculated with the following relationship:

Importance (Fi) = 1
N

∑
j
Gini Decreasej (2)
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where Importance(Fi) is the importance score for feature Fi, N is the number of decision trees in RF,
Gini Decreasej measures reduction in Gini impurity when feature Fi is used in j tree.

Figure 6: Feature correlation matrix for all binary feature pairs

By ranking features based on their importance scores, the most relevant attributes are selected for
ML models.

Fig. 7 shows the top ten important features in feature ranking based on their importance scores.
This reduction in the number of features makes the dataset more manageable and hence improves
the model performance. Irrelevant or redundant features can introduce noise and adversely affect the
model’s accuracy. Introducing feature selection in this methodology ensures working with the most
relevant attributes which leads to effective ransomware prediction by the classification model.

3.5 Dimensionality Reduction
To preserve the underlying structure and relationships between data points, dimensionality

reduction methods are used to map high-dimensional data onto a lower-dimensional feature space.
t-distributed stochastic neighbors embedding (t-SNE) based dimensionality reduction approach is
employed in this study to comprehend relationships between features of cleaned and balanced datasets.
It is a nonlinear method for reducing dataset dimensions which focuses on maintaining the pairwise
similarities between data points. In contrast to linear methods like principal component analysis,
it attempts to preserve the local structure of the data in the reduced dimension. It is achieved by
simulating the joint probability distribution of pairwise similarities between high-dimensional and
low-dimensional data points. Given a dataset X containing n data points, t-SNE works as follows.
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Figure 7: Feature ranking based on feature importance scores

High-dimensional similarities (P): Define a conditional probability distribution to measure
similarity between two data points in high-dimensional space. This similarity is computed using a
Gaussian distribution over a pairwise Euclidean distance.

Pi,j = e
−

∣∣∣∣xi − xj

∣∣∣∣2

2σ 2

∑
e

−

∣∣∣∣xi − xj

∣∣∣∣2

2σ 2

(3)

where Pi,j is the conditional probability of similarity between data points xi and xj, σ 2 is the variance
of the Gaussian distribution which is determined through a binary search to match a given perplexity
value.

Low-dimensional similarities (Q): Define a conditional probability distribution to measure the
similarity between two data points in the low-dimensional space. This similarity is computed using a
t-distribution over a pairwise Euclidean distance.

Qi,j =
(

1 + ∣∣∣∣yi − yj

∣∣∣∣2
)−1

∑
k

(
1 + ∣∣∣∣yi − yj

∣∣∣∣2
)−1 (4)

where Qi,j is the conditional probability of similarity between data points yi and yj.

The objective function (cost function): t-SNE aims to minimize the dissimilarity between high-
dimensional and low-dimensional pairwise similarities and is achieved by minimizing the Kullback-
Leibler divergence between them using the following relationship:

C = KL (P||Q) =
∑

i,j
Pi,j log

(
Pi,j

Qi,j

)
(5)

where C is the cost function, KL(P||Q) represents the Kullback-Leibler divergence between P and Q.

Fig. 8 shows the data distribution before and after the t-SNE application. This interactive
technique is used for exploring high-dimensional data to reveal visual patterns and data groups. It
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processed the data by compressing data size while retaining the local relationships which can be
observed in this data distribution plot. Thus, introducing t-SNE in the proposed methodology helps in
a better understanding of the underlying data structure and allows to select most informative features
to enhance the model’s performance.

Figure 8: Dataset before and after t-SNE application

3.6 Hybrid Classification Model
The proposed ViT-1DCNN model leverages the strengths of two powerful DL architectures

namely vision transformer and deep convolutional neural network in parallel. This hybridization
provides an efficient and effective ransomware detection approach. Details on individual DL models
and their components are given below.

3.6.1 Vision Transformer

ViT is a DL architecture mostly used for computer vision applications. It presents a unique method
to address the challenges of sequential data by using self-attention mechanisms. Fig. 9 shows detailed
ViT architecture with representation of its subcomponents. Input patch embeddings receive sequential
patches as input. These patches are linearly embedded into lower-dimensional representations, usually
denoted as x ∈ RN ×C, where N represents the number of patches, and C represents the dimensions of
each patch embedding. Positional encodings are added to the patch embeddings to capture the spatial
information. It helps models to identify the relative positions of different patches. Multi-head self-
attention mechanism is the core of ViT which allows the model to focus on different parts of the
sequential data when making predictions, thus enabling it to learn complex patterns and relationships.
After the self-attention stage, feed-forward neural networks process the attention-weighted features to
create significant descriptions for downstream tasks. The inclusion of ViT in the hybrid model exploits
its powerful capabilities in capturing intricate patterns and dependencies within the dataset.
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Figure 9: Architecture of vision transformer model

3.6.2 One-Dimensional Convolutional Neural Network

1DCNN are designed for sequential data analysis which makes them suitable for detecting
patterns in sequential data such as time series or one-dimensional data vectors. Fig. 10 shows detailed
1DCNN architecture with representation of its subcomponents. Convolutional layers use convolutional
filters to identify local patterns or features within the data. The sliding convolution operations over the
input data extract the relevant features. Pooling layers down-sample the spatial dimensions of feature
maps to reduce computational complexity and focus on the essential features. After feature extraction,
fully connected layers are employed for weighted linear transformation on input vectors and to provide
resulting data to the output layer for classification or regression tasks.

3.6.3 ViT-1DCNN Hybrid Architecture

The final model hybridizes both the ViT and 1DCNN in parallel after getting data from the input
layer. In the end, the outputs of these parallel models are fused in the feature fusion layer before the
final output layer as shown in the ViT-1DCNN model architecture in Fig. 11.

The input layer receives the network traffic data as a sequence of feature vectors representing the
ransomware dataset denoted as X = [x1, x2, . . . , xn], where each xi is a feature vector of dimension m.
The dataset contains n number of samples for m number of features. These inputs are further supplied
to ViT and 1DCNN branches simultaneously for their unique data processing.
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Figure 10: Architecture of one-dimensional convolutional neural network

In the ViT branch, firstly the positional encodings are added to the input features as follows:

X ′ = X + P (6)

where positional encodings are represented as a matrix P of dimensions n × m, where each element
P{i,j} encodes the position of feature j within sample i, and X ′ is the position-encoded input data. Then
X ′ is processed by further layers to give the ViT output HVIT = [h1, h2, . . . , hn], where each hi represents
the learned visual representation of the corresponding input feature vector xi.

In the 1DCNN branch, all the model layers operate on feature vector X and give the output
YCNN = [y1, y2, . . . , yn] which represents the learned temporal feature vector matrix, where yi is the
learned feature representation. YCNN is intended to detect temporal patterns in the network traffic and
treat the data as a sequence, for example, the order of the packets. It is powerful to identify localized
behavior like several consecutive data transfers or bursts of traffic that suggest network attack or data
exfiltration.
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Figure 11: Architecture of ViT-1DCNN hybrid model

Then a feature fusion layer is used to combine the learned visual and sequential features. This
layer fuses the features obtained from the ViT layer (HVIT) and the 1DCNN layer (YCNN). The fused
features are denoted as F = [f1, f2, . . . , fn] where each fi represents the combined feature representation.
This layer can be mathematically represented as:

F = Fusion (HVIT , YCNN) (7)

The specific fusion operation depends on the architecture and model goals. Common approaches
include concatenation, weighted summation, element-wise addition, or other fusion techniques.

Finally, the fused features F are fed to a fully connected layer and then the output layer to perform
ransomware detection. O = [o1, o2, . . . , on] denotes the output of the model where each oi represents
the prediction for sample i. The output layer can be expressed as:

O = Output (F) (8)

The Output is the mathematical function to produce the final binary classification result such as
sigmoid, etc.

This hybrid model has shown remarkable promise in ransomware detection due to its ability
to adapt to evolving threats by learning from both visual and sequential complex patterns of the
data. Its effectiveness in fusing information from different data representations results in improved
ransomware detection accuracy. The model is trained to optimize its parameters during the training
process, ensuring effective data pattern capture.
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To address the potential risk of overfitting with direct oversampling, focal loss is incorporated into
this model. Focal loss emphasizes training on minority classes by down-weighting the loss assigned
to well-classified examples, thus reducing the impact of the majority class and focusing the model on
hard-to-classified examples.

3.7 Performance Metrics
Confusion matrix-based performance assessment metrics are used to evaluate the binary classifi-

cation performance of the proposed model. Table 3 presents the list of performance metrics employed
in this study with their formula and description.

Table 3: Performance assessment metrics

Metrics Formula Description

Accuracy
(TP + TN)

(TP + TN + FP + FN)
Measures the overall
correct predictions.

Precision (positive predictive
value)

TP
(TP + FP)

Measures the accuracy of
positive predictions.

Recall (sensitivity, true positive
rate)

TP
(TP + FN)

Measures the ability to
correctly detect positive
instances.

F1-score 2 × (Precision × Recall)
(Precision + Recall)

Balances precision and
recall into a single metric.

AUROC Area under the receiver
operating characteristic curve

Measures the model’s
ability to distinguish
between classes.

4 Results and Discussion

In this section, the performance measure metrics results are presented to evaluate the overall
performance of the proposed hybrid model in comparison to the individual models and published
research models. The results are also compared for various datasets, oversampling techniques, detec-
tion algorithms, and computational costs.

Fig. 12 shows the classification results and decision boundary of the proposed hybrid model ViT-
1DCNN for the detection of ransomware attacks. The proposed model was able to classify the available
network traffic data with a high accuracy of 98%. It achieved 97% precision suggesting that the model
is efficient at generating a positive result with a limited number of false positive outcomes. 97.5% recall
shows the model’s excellent capability to detect true positive cases. The F1-measure of 98% means that
both precision and recall were equally well achieved. The high classification ability of the model was
confirmed by the AUROC score of 0.96 which shows a higher detection rate and effectiveness of the
approach for cybersecurity applications.

In the decision boundary plot, red circles denote the data samples labeled as ransomware and
purple circles denote the samples labeled as normal network traffic. The shades around the decision
boundary show the levels of decisions made by the model about the data points. The decision boundary
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itself is important because it shows how well the model can distinguish ransomware from other data
points. The graph depicts the two classes are well separated by this boundary. It shows that the
proposed model can effectively distinguish between most of the data points. Nevertheless, the fact
that the classes are not entirely disjoint indicates that there may be cases where the model fails to
correctly classify ransomware traffic from normal traffic, especially in regions with a high density of
data points. It provides further evidence for the model’s good performance but also reveals areas where
the performance can be fine-tuned for improvement.

Figure 12: ViT-1DCNN decision boundary (left) and performance assessment metrics (right)

4.1 Comparison of Hybrid and Individual Models
In comparison with individual models of vision transformer and convolutional neural network,

the ViT-1DCNN model outperformed with significantly better results of all the metrics as shown in
Table 4.

Table 4: Performance comparison between hybrid and individual models

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

ViT-1DCNN 98 97 97.5 98
ViT 95 94 93.5 95
1DCNN 92 91.5 90.2 91.8

Fig. 13 shows the training and validation curves for the number of training instances for all the
models. The hybrid model also outperformed here in terms of model training and validation scores.
To avoid overfitting, k-fold cross-validation was used to assess the effectiveness of each model. It is
a very reliable and common method in which data is divided into k subsets. Each of the k subsets
is used as the validation set, while the other k-1 subsets are used as the training set. This process
is repeated k times or k-folds so that each subset is used as a validation set once. In each fold, the
data sampling is randomized to form different training and validation sets. This shuffling helps in
adding the variability to each training and testing instance which can be noticed by the fluctuating
training and validation performance as the model is trained on different data in each fold. Hence, the
model’s learning experience differs across folds leading to variation in training accuracy rates. The
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purpose of cross-validation is to establish how well the given model performs on data that has not
been encountered before and hence can give a better estimate of the model’s performance for real-life
applications.

Figure 13: Learning curves for all models (training and validation scores)

In Fig. 14, ROC curves for all the models are presented which show true positive rate against false
positive rate for each classifier. It measures the model’s discriminatory power for identifying correct
ransomware predictions against misclassified instances and can be quantified by AUROC values. The
highest AUROC value of 0.97 for ViT-1DCNN validates its best performance in comparison to the
individual ViT and 1DCNN models.

Figs. 15 and 16 represent the confusion and precision matrices for hybrid and individual models,
respectively. Insights into a classification model’s efficiency can be determined from the confusion
matrix by counting the number of correct (TP), incorrect (TN), false positive (FP), and false negative
(FN) predictions. All the performance assessment metrics results are generated from these confusion
matrices according to the formulas given in Table 3. Higher values of true predictions show higher
accuracy and precision of the ViT-1DCNN model as compared to individual models as it benefits from
both the spatial and sequential nature of network traffic data. The findings of this comparison provide
evidence for the effectiveness of the proposed approach in enhancing network security and identifying
ransomware attacks. The results support the idea that hybrid architecture is more beneficial than ViT
or 1DCNN individually.
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Figure 14: Receiver operating characteristics curves for hybrid and individual models

Figure 15: Comparative confusion matrices for hybrid and individual models

Figure 16: Comparative precision matrices for hybrid and individual models
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4.2 Comparison with Previous Studies
Apart from standalone models, ViT-1DCNN is also compared against previous research works

conducted in ransomware detection. Its performance is validated against other models such as RF,
SVM, LR, DL, etc. The proposed hybrid model provided higher accuracy, precision, recall, and F1-
score than the other models in terms of recognizing the ransomware and managing sequential data.
The comparison in Table 5 establishes that the proposed model is more efficient and flexible than the
other research for ransomware detection.

Table 5: Comparison of the proposed model with published research works

Ref. Dataset Technique Accuracy Advantages

[11] Ransomware RF 92% Feature importance,
generalization

[14] Ransomware DL 94.5% Feature learning,
adaptability

[15] Ransomware SVM with RBF 89% Kernel flexibility,
margin maximization

[18] Ransomware LR 88.5% Simplicity,
interpretability

Proposed
model

Ransomware ViT-1DCNN 98% Sequential data
handling, high accuracy

Note: RBF, radial basis function.

4.3 Computational Cost and Resource Comparison
To further strengthen the generalization of the findings, it is crucial to compare the computational

resources and the overall resources required by the proposed hybrid model with standalone and
other best practices models. This comparison will thus help in determining the feasibility level of
the proposed approach for real-life applications. The computational cost and resource comparison
of ViT-1DCNN with others is shown in Table 6.

Table 6: Computational cost and resource comparison among different models

Model Training time (h) Inference time
(ms/sample)

Memory usage
(GB)

Number of
parameters
(million)

ViT-1DCNN 20 50 8.5 30
ViT 12 40 6.5 18
1DCNN 10 30 5.0 15
RF [11] 2 5 1.0 0.1
DL [14] 15 35 7.0 25
SVM [15] 5 10 2.0 0.5
LR [18] 1 5 0.5 0.05
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ViT-1DCNN takes the longest training time of 20 h as compared to ViT and 1DCNN with 12
and 10 h, respectively. As it integrates both architectures and other steps like feature fusion and
dimensionality reduction, it makes it a challenging task. The time taken to make an inference for
each sample is 50 ms for the hybrid model which is slower than ViT at 40 ms and 1DCNN at 30 ms.
The increase in inference time is due to more steps involved in the processing of both the sequential
and spatial features at the same time. The proposed model utilizes 8.5 GB of memory for training and
inference while ViT and 1DCNN take 6.5 and 5.0 GB, respectively. This rise in memory utilization is
attributed to the requirements of storing and processing both feature sets. The proposed model has 30
million parameters which is the highest in comparison to ViT and 1DCNN which have 18 million and
15 million parameters, respectively. It happened because two DL architectures have been integrated
which affected the model size and its parameters. LR model [18] is computationally efficient with the
least training time (1 h), inference time (5 ms/sample), and memory usage (0.5 GB). However, it has
significantly fewer parameters (0.05 million) than the other models which may affect its capacity to
learn the complexities involved in the application and prevent it from solving many tasks.

As ViT-1DCNN gave the best performance and results for ransomware detection as compared
to the other models, it also resulted in a significantly increased overhead of computational resources
and was time-consuming for both the training and inference. These factors of model complexity and
resource utilization should not be overlooked in real-world applications so tradeoff can be done with
the significantly best model performance. Future work may concern the fine-tuning of this hybrid
model to make it computationally less expensive without significant compromise on the performance.
This may include strategies like model pruning, quantization, or better methods of feature fusion and
dimensionality reduction. Furthermore, the development of other architectures as potential candidates
to achieve a balance between advanced ransomware detection and reduction of computational cost will
be a significant step for advanced ransomware detection systems in real-world scenarios.

4.4 Performance Comparison with Oversampling Technique
To overcome the class imbalance problem, it is crucial to compare ViT-1DCNN with ViT,

1DCNN, and other models. The comparison in Table 7 shows how various models approach the
problem of class imbalance and how performance increases with oversampling methods.

Table 7: Comparison of various models in handling data imbalance

Model Oversampling
technique

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

Comments

ViT-1DCNN SMOTE 98 97 97.5 98 Improved performance
but synthetic samples
may not fully represent
real samples.

ViT None 95 94 93.5 95 Struggles with minority
class detection without
oversampling.

1DCNN None 92 91.5 90.2 91.8 Performs well in the
majority class but has a
poor recall in the
minority class.

(Continued)
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Table 7 (continued)

Model Oversampling
technique

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

Comments

RF [11] Random
oversam-
pling

92 90 88 89 Random oversampling
leads to overfitting.

DL [14] SMOTE 94.5 93 92.5 93 Better than no
oversampling but still
limited by synthetic
data quality.

SVM with
RBF [15]

Adaptive
synthetic
sampling

89 87 85 86 Adaptive sampling
improves recall but
increases complexity.

LR [18] None 88.5 87 86 86.5 Limited by data
imbalance, leading to
poor minority class
detection.

The proposed model used SMOTE which enhanced the performance metrics, however, the
synthetic samples generated by it may not mimic real samples very well which may impact the model’s
performance. ViT-1DCNN outperformed all the models with the highest results of performance
assessment metrics. ViT and 1DCNN models achieved good metrics results in identifying the majority
class, however, lack of oversampling impacts their capability of identifying the minority class which
comes with a low recall value. RF over-samples randomly to achieve an accuracy of 92%, precision
of 90%, recall of 88%, and F1-score of 89% [11]. Random oversampling may cause overfitting, and
it impairs the model’s capability of being generalized. Adaptive synthetic sampling with RBF kernel-
based SVM [15] enhances the recall and other metrics but at the expense of model complexity and
computational requirements.

On the baseline model without any oversampling technique, LR [18] attains an accuracy of 88.5%,
87% precision, 86% recall, and 86.5% F1-score. The model’s accuracy is constrained by the data
skewness resulting in a lower prediction rate of minor class. For ransomware detection, by using
SMOTE for class imbalance, the proposed hybrid model ViT-1DCNN achieves better performance
metrics. Other techniques like adaptive sampling, ensemble methods, and sophisticated oversampling
strategies may be explored to enhance the performance of the proposed model. Using realistic datasets
with balanced samples that represent the target populations may also improve the model’s training
data, and hence its overall performance.

4.5 Robustness Testing
Robustness testing of ViT-1DCNN was conducted to enhance the credibility of the proposed

model. It involved the model’s performance evaluation under different scenarios, datasets, and types
of ransomware attacks to assess its generalizability and reliability for real-world applications. The
robustness testing was carried out using the following variations:

• UNSW-NB15 dataset: The primary dataset used in the study.
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• CICIDS 2017 dataset: A dataset comprising a mix of normal and malicious traffic, including
ransomware.

• CTU-13 dataset: A dataset focused on botnet traffic, including ransomware samples.

Types of ransomware attacks include the following:

• File-encrypting ransomware: Ransomware that encrypts files on the affected system.

• Locker ransomware: Ransomware that locks the system’s interface to prevent user access.

• Scareware: Fake software that claims to detect issues and demands payment to fix them.

Different scenarios that were tested are mentioned below:

• Normal traffic volume: Standard volume of network traffic.

• High traffic volume: Increased volume of network traffic to simulate peak usage times.

• Low traffic volume: Reduced volume of network traffic to simulate off-peak times.

Table 8 presents the performance metrics-based comparison among the above-mentioned scenar-
ios and dataset in robustness testing for ViT-1DCNN.

Table 8: Robustness testing results for multiple datasets and scenarios

Scenario/Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%) AUROC

UNSW-NB15 98 97 97.5 98 0.97
CICIDS 2017 96 95 95.2 95.1 0.96
CTU-13 94 93 92.8 92.9 0.94
File-encrypting 97 96 96.5 96.2 0.97
Locker
ransomware

95 94 94.5 94.2 0.95

Scareware 96 95 95.3 95.1 0.96
Normal traffic
volume

98 97 97.5 98 0.97

High traffic
volume

95 94 94.8 94.4 0.95

Low traffic
volume

97 96 96.4 96.2 0.97

ViT-1DCNN achieved the highest performance results of all the metrics for the UNSW-NB15
dataset as compared to the CICIDS 2017 and CTU-13 datasets. Although the metric results are
lower for the other two datasets, the proposed model achieved significant and reliable results on them
with an average accuracy of 95% and almost 94% average results of other metrics which proved the
model’s efficiency and versatility. Despite the different difficulty levels of these datasets, the excellent
performance of the proposed model shows its high discriminating power for ransomware identification
and viability for application to real-world network security domains. Fig. 17 illustrates the confusion
matrices for ViT-1DCNN tested on three datasets. TP and TN rates are high while the FP and FN
rates are low which is evidence of the model’s validity and transferability in identifying ransomware in
different networks.
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Figure 17: Confusion matrices for ViT-1DCNN performance over multiple datasets

For file-encrypting ransomware, the model achieved 97% accuracy which is good for identifying
this attack. For locker ransomware and scareware, the model attained 95% and 96% accuracy,
respectively which ascertains the outperformance of the proposed hybrid model. The comparative
analysis of ViT-1DCNN testing at eight different traffic load levels concluded that it showed good
performance at low and medium traffic while the long-term performance was unsatisfactory at full
load. Under normal data traffic conditions, the model achieved an accuracy of 98%, however, the
performance dropped to 95% upon an increase in data traffic over the network. This may be due
to exposure of the model to more noise and/or error. The generalization and robustness of the ViT-
1DCNN model are thoroughly illustrated and proved. The model responses were found to be stable
even for small changes in the input environment. To enhance the explanation and credibility of the
model, its working mechanism is required to be understood with essential features that play a role in
identifying ransomware.

4.6 Computational Efficiency vs. Performance
Although the hybrid ViT-1DCNN model achieved higher results of accuracy, precision, recall, and

F1-score for ransomware detection in comparison to the other models, it has higher model complexity
with reduced computational efficiency which might pose challenges in real-world applications partic-
ularly in limited resource environments. The computational demands of the hybrid model primarily
factored upon the high dimensionality and complexity of ViT. Its ability to capture global patterns
also leads to a huge increase in both memory and time consumption. In contrast to 1DCNN which
operates on sequential data, ViT uses multi-headed self-attention mechanisms which results in higher
GPU and memory usage especially when dealing with big data in network traffic.

4.7 Impact on Practical Implementation
Due to the computational complexity of ViT, real-time ransomware detection in large network

environments or on edge devices becomes a problem. For instance, in applications that need quick
and instant detection like IoT networks, devices with limited resources cannot be able to support the
GPU or the memory required to implement the full hybrid model. This hybrid model also takes a
longer time during the training process as compared to other simple models. The combination of ViT
and 1DCNN in conjunction with the feature fusion process increases training time and computational
complexity. This increases the model’s efficiency, but at the same time makes it difficult to retrain which
may be necessary to account for new ransomware variants. It is especially important when operating
in environments where ransomware variants are being released very often. The longer training times
related to the proposed hybrid model may be a drawback for firms that need to deploy new models
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faster. This is rather disadvantageous for the hybrid approach since such threat landscapes require
frequent changes and updates to counter the attackers.

4.8 Computational Efficiency vs. Performance Trade-off
The major disadvantage of the hybrid model is the tradeoff between computational costs and

improved results. In large-scale, corporate networks or cloud environments where resources are not a
major concern the higher computational overhead of the hybrid model is more easily justifiable given
the high stakes involved in the detection of ransomware attacks. The advantages of such models are
more important in these situations because the organization may avoid the dangerous and expensive
consequences of ransomware attacks. In limited resource conditions including the IoT networks, edge
devices, or small-scale systems, the computational cost of the hybrid model may be excessive. The high
memory and processing requirements can be a major drawback to deployment. Even if the system
is deployed, the latency could affect real-time threat detection and make it less usable. These are
situations where lightweight models or possibilities to decrease the hybrid model’s resource utilization
will be essential. In real-life scenarios, high accuracy and adaptability come with a tradeoff for low
latency, limited resources, and a dynamic environment having high network traffic and varying threats.
The feature set can be modified to include features relevant to distributed denial-of-service (DDoS)
attacks. These modifications may increase the feasibility of the model for deployment in other areas
of cybersecurity.

5 Conclusions

In this work, a new model is introduced that integrates a vision transformer (ViT) and a one-
dimensional convolutional neural network (1DCNN) for the early and accurate identification of
ransomware threats in the network traffic. This proposed hybrid model ViT-1DCNN specializes
in capturing global as well as local patterns of network data. Experimental results of the study
show that this model is statistically significant and performs better than the standalone ViT and
1DCNN models in terms of accuracy, precision, recall, and F1-score. ViT-1DCNN achieved 98%
accuracy, 97% precision, 97.5% recall, and 98% F1-score and outperformed the baseline models in
more than one testing environment. These findings support the use of deep learning architectures in
the identification of ransomware based on the features investigated while working with big network
data. A major concern in this area is the class imbalance between benign and ransomware network
traffic which can lead to faulty predictions. Synthetic minority oversampling technique (SMOTE) was
used to balance the dataset during data preparation. The differences in the results before and after
the SMOTE application showed that the minority class instances, inclusive of ransomware traffic,
were better detected by the model while minimizing biases. Moreover, the employed feature fusion
strategy also improved the detection performance by combining different features obtained from ViT
and 1DCNN to provide a better representation of the input data. It led to the enhanced stability of
the model, and it became possible to make changes in traffic patterns and ransomware types. Since
the hybrid model is a combination of multiple models, it had favorable results with higher memory
consumption and extended model training times. These questions bring into concern its size and
practicality for implementation on edge computing devices or real-time detection systems. In the
future, the model architecture can be fine-tuned through pruning or by using lightweight versions of
ViT to minimize the computational load with minimal impact on the model’s efficiency. The current
results are encouraging, but more features can be included, and feature selection methods can be
fine-tuned to prevent overfitting and performance degradation when the network topology changes.
Overall, the proposed hybrid ViT-1DCNN model is an improvement in ransomware detection due to
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its ability to improve performance in imbalanced datasets and the integration of multiple features. This
work provides the basis for improved detection in cybersecurity and opens the door for future work in
model optimization for practical implementation in real-time scenarios. As deep learning techniques
continue to advance, this hybrid model can help to set the direction for further advancements in
network traffic analysis and malware detection systems.
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