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ABSTRACT

There are several advantages to the MIG (Metal Inert Gas) process, which explains its increased use in various
welding sectors, such as automotive, marine, and construction. A variant of the MIG process, where the same
equipment is employed except for the deposition of a thin layer of flux before the welding operation, is the AMIG
(Activated Metal Inert Gas) technique. This study focuses on investigating the impact of physical properties of
individual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can help
determine a relationship among weld depth penetration, the aspect ratio, and the input physical properties of
the oxides. Five types of oxides, TiO2, SiO2, Fe2O3, Cr2O3, and Mn2O3, are tested on butt joint design without
preparation of the edges. A robust algorithm based on the particle swarm optimization (PSO) technique is applied
to optimally tune the models’ parameters, such as the quadratic error between the actual outputs (depth and aspect
ratio), and the error estimated by the models’ outputs is minimized. The results showed that the proposed PSO
model is first and foremost robust against uncertainties in measurement devices and modeling errors, and second,
that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratio
to the oxides’ thermal properties.
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1 Introduction

Welding is the primary spread fabrication method to join parts. Fusion welding is used in several
emerging applications, such as power generation and the chemical, petrochemical, nuclear, aerospace,
and transportation industries. In addition, a modern and environment-friendly solid-state joining
process is employed to join a relatively lighter family of materials [1,2]. Material selection and the
development of joining techniques are continuously progressing to provide solutions to industries.

Metal inert gas welding (MIG) is a process in which a consumable wire electrode is fed into a
weld pool at an adjustable rate while a continuous protective inert gas flows out around the wire and
shields the weld from contamination by the atmosphere. The main advantages of MIG welding can be
summarized as the continuous wire feed, eliminating the need to change electrodes and the fast travel
speed at which MIG welding can be done. There is a smaller heat-affected zone where MIG welding
joints can be performed faster.

Nowadays, stainless steel is widespread in many industry fields. More than 10% of chromium
steel becomes stainless steel. The main alloying elements of this class are 0.015%–0.25% C, 16%–26%
Cr, 6%–25% Ni, 0%–4% Mo, and 2% Mn. Austenitic stainless steels (2xx and 3xx series) constitute
most of the stainless steel usage. Adding nickel, a strong austenite stabilizer, overcomes the ferrite-
stabilizing effect of chromium, and all of these steels have the FCC structure [3]. The structure contains
a few percent ferrites; hence, good resistance to intergranular corrosion for low carbon embrittlement
can occur after long exposures between 550°C and 900°C due to the decomposition of the ferrite to
sigma phase [4]. Different applications cover several areas, such as food and kitchen uses, catering,
and hospital equipment. They are also used for chemical industries and household items, especially
kitchen appliances and fixtures.

Metal Inert Gas weld process modeling is often formulated as an optimization problem. However,
this problem can present many irregularities, such as the non-trivial analytic solutions and the
high probability of local solutions, causing the risk of missing global solutions due to non-convex
objective functions to be minimized. To overcome the above problems, researchers and welders have
resorted to many methods that can be optimized to obtain optimal parameters to achieve the target
outcomes. Many works have been dedicated to optimizing the welding parameters to improve the weld
morphology [5–7]. In addition, other studies have been conducted to predict the mechanical properties
as output parameters for given input parameters such as gas rate, current, and speed in the MIG
welding process [8–10]. Shah et al. [11] developed an Artificial Neural Network (ANN) model, which
was reported to provide accurate results. The comparison between predicted mechanical properties and
actual values showed minor variations in results. The work presented the effect of welding parameters
such as welding current, welding voltage, gas flow rate, wire feed rate, and others on weld strength,
ultimate tensile strength, and hardness of weld joint using the design of experiments method. For this
purpose, a prediction model was also developed using ANN. Based on the experimental results, the
ANN model was established to predict the ultimate tensile strength and hardness of welding. The
particle swarm optimization (PSO) method was also employed to minimize the angular distortion in
202-grade stainless steel gas tungsten arc-welded plates [12]. The optimal process parameters achieve
a value of 0.0305° for angular distortion, demonstrating the relevance of the PSO model developed.
Other studies were dedicated to improving the hardness of welds using the Taguchi Method [13].

Much work has been performed to keep pace with the developments and needs of modern
industry. Accordingly, numerous technological modifications and advancements have been suggested
and integrated into available welding techniques. MIG welding is one such type, which primarily falls
under the domain of arc welding. AMIG welding is a variant of the MIG welding process. The same
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equipment shall be used in the AMIG process as in the MIG process, except that a thin layer of
flux shall be deposited on the edges of the parts to be assembled during the preliminary welding.
Flux can be a single component [14], a binary component [15], a ternary component [16], and even
more than three components [17]. The advantages of AMIG welding are its low energy consumption
and low cost since 8 mm thickness can be achieved in a single pass [18,19]. The literature shows that
the primary mechanism leading to the increase in the penetration of the depth of the weld bead is
related to the inverse Marangoni effect [20]. Active fluxes have been tested to improve the form factor
of a weld bead. The effects of three different active fluxes on the form factor of the MIG welded
stainless steel 202 have been studied. Three different flux materials (ammonium ferro-sulfate, sodium
bicarbonate, and ammonium carbonate) have been applied to three plates, and the weld bead geometry
has been analyzed. The results reflected that the activated flux material significantly impacts the depth
of penetration, the bead width, and the weld quality [21,22]. Many studies highlighted the beneficial
effect of oxides in the AMIG welding technique, but to the best of the authors’ knowledge, no work
has been conducted to indicate the role of oxides’ thermal properties on the AMIG weld morphology.

Metaheuristics (as alternatives to classical techniques) were extensively used in many fields,
including welding process optimization, to find optimal solutions to modeling problems that are
usually challenging to solve using classical techniques [23–25]. The main advantage of metaheuristics
is their effectiveness and pertinence, simple coding schemes, and relatively easy implementation.
Metaheuristics is also applied to design and develop pearlitic steels for application in heavy-haul
rails. Qiao et al. [26] reported that hardness is a critical point in studying the mechanical and
tribological properties, which are theoretically related to the alloying composition of steel. With the
aid of the machine learning (ML) method, the PSO-improved generalized regression neural network
(GRNN) is utilized to model the relationship between the composition and hardness of pearlitic
steel. Metaheuristics is the multidisciplinary tool employed again to develop the PSO-SVR(Support
Vector Regression) model to optimize the hot deformation behavior of Fe2Ni2CrAl1.2 multi-principle
element alloys (MPEAs) [27].

The main aim of this study is to use a robust PSO algorithm to optimally tune the parameters of the
model, which relates the oxides’ thermal properties to the MIG weld morphology. Considering many
constraints, the achieved results can be adopted as preliminary tools for investigators and industries
to select oxides based on the type of materials to be welded. This study aims to investigate the effect of
the selected physical properties of five oxides on AMIG morphology. The developed model is tested
for its robustness against modeling uncertainties, measurement device errors, and human errors that
can occur during experimentation. The obtained model offers consistent values through a robustness
check even if the welding parameters coefficients provided by the PSO algorithm are perturbed.

2 Materials and Methods
2.1 Material

Table 1 depicts the chemical composition and the melting point of stainless steel-grade 304L.
Table 2 shows the chemical composition of filler metal ER 308L stainless steel.

2.2 Welding Procedure
The welding machine employed is the MIG from ESAB manufacturer with a motorized carriage

that allows automatic welding to be approached to ensure that the weld is performed at the constant
speed and length of arc welding, as shown in Fig. 1. The shielding gas used is argon.
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Table 1: Chemical composition (weight %) and melting point (°C) of 304L stainless steel

Elements C Mn P S Si Cr Ni N

304L SS-weight % 0.03 2 0.045 0.003 0.75 17.5 8 0.1
Melting point (°C) [28] 1440

Table 2: Chemical composition of filler metal ER 308L stainless steel (weight %)

Elements C Mn Si P S Ni Cr Mo Cu

ER 308L
SS-weight %

0.03
max

1 0.3
0.03
max

0.03
max

9 19.5
0.75
max

0.75
max– – – –

2.5 0.65 11 22

Figure 1: MIG welding machine with a motorized carriage

Experiments consist of welding a 20 cm line on a rectangular plate of 6 mm thickness. Before
welding, the plates of 100 mm × 200 mm × 6 mm were cleaned with acetone. Powders have been
heated separately in a furnace at 100°C for 1 h to eliminate humidity. Flux in powder form has been
mixed with acetone in the proportion of (1 ÷ 1) and made in the form of paste; a brush was utilized
to apply the mixture on plain edges to be joined, as shown in Fig. 2. The mean coating density of flux
was about 4–5 mg/cm2.

The selected physical properties of the deposited powders tested are listed in Table 3.

The joints were executed with a square butt weld design without edge preparation. Both plates
were clamped with a 2.4 mm gap distance. The welding parameters are listed in Table 4.
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(a) Mixing oxide powder           
Fe2O3 with acetone

(b) Paste of Cr2O3 oxide 
ready to be used

(c) Flux deposition

Figure 2: Flux preparation (a) and (b), and flux deposition before welding (c)

Table 3: Powders, melting, and evaporation temperatures [28]

Powders X1: Oxide
melting
temperature
(°C)

X2: Oxide
evaporation
temperature
(°C)

X3: |Oxide
evaporation point
–base metal
melting point (°C)

X4: |Oxide
evaporation
point-flux
melting point|
(°C)

X5: Oxide
enthalpy of
formation
�H0

298 (kJ/mol)

SiO2 1722 2950 1510 1228 −902
TiO2 1830 2972 1532 1142 −941
Fe2O3 1540 1987 547 447 −826
Cr2O3 2435 3000 1560 565 −1128
Mn2O3 681 1750 360 140 −971

Table 4: Welding conditions

Parameters Range

Current intensity 180 Amp
Voltage 24 V
Metal feed speed 5 m/min
Welding speed 24 cm/min
Feeler metal–workpiece distance 6 mm
Gap between workpieces 2.4 mm
Shielding gas: Argon 10 L/min
Shielding gas back: Argon 8 L/min
Filler metal diameter-ER 308L 1.2 mm
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After welding, the samples were cut far from the welding starting point to be sure that the arc
welding was stabilized, as shown in Fig. 3a. The weld morphology of both MIG and AMIG welding
has been analyzed. The 304L SS weld zone was etched using Glyceregia solution (15 cc HCl + 5 cc
HNO3 + 10 cc glycerol). The weld aspect was checked using Motic software integrated with an optical
microscope for welds of AMIG and conventional MIG, as depicted in Fig. 3b.

Figure 3: Specimens for morphological analysis (a) and morphology parameters of fully penetrated
weld bead (b)

2.3 Methodology
This study investigated the most important physical properties affecting the weld bead shape of

filler metal 308L SS using a complete procedure. The procedure included a correlation study and
an optimization process based on the PSO algorithm. The objective of the correlation study was
to determine which parameters were likely to affect the physical parameters of the welding process.
After selecting the explanatory variables, a PSO modeling procedure was developed for two explained
variables: the depth (D) and the ratio of depth (R). Five input variables were used in this study. It
is technically difficult to conduct experiments to model the welding processes due to time, cost, and
logistical considerations. Therefore, there are a relatively low number of input variables; see details of
the welding procedure in Section 2.2. The selected variables were respectively x1: oxide boiling point
(°C), x2: oxide surface tension (mN/m), x3: oxide melting point (°C), x4: |oxide boiling point-Melting
point of BM SS304L| (°C) and x5: oxide enthalpy energy (�H0

298) (kJ/mol). After many modeling
trials using rough measurements, it was noted that the studied welding process is difficult to describe
mathematically because those variables are at different scales of magnitude, and thus, a normalization
action was found to be necessary. The input variables were normalized inside the interval [0;1] by
dividing each variable by its maximum value. The normalized variables were respectively noted as
X1, X2, X3, X4, and X5. The flowchart of the proposed methodology is depicted in Fig. 4. Since
measurements were difficult to achieve, it was noted that each measurement of weld depth and width
is the average of three readings far from the ends of the weld line. Five types of oxides were adopted to
conduct the modeling procedure. In addition, based on trial and error, three models were investigated:
a linear model, a linear with quadratic components model, and a linear, quadratic, and interaction
components model. Because of the limited number of measurements and since there was no significant
improvement in the models’ accuracy when adopting complex models, only the linear models were
investigated in depth. The model considered in this study has the following form [17,29]:

Y = α1X1 + α2X2 + α3X3 + α4X4 + α5X5 (1)
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Y is the model output (D, R).

X1 = x1

(x1 Max)
; X2 = x2

(x2 Max)
; X3 = x3

(x3 Max)
; X4 = x4

(x4 Max)
; X5 = x5

(x5 Max)
(2)

X1: Oxide melting temperature (°C),

X2: Oxide evaporation temperature (°C),

X3: |Oxide evaporation point–Base metal melting point| (°C),

X4: |Oxide evaporation point– oxide melting point| (°C),

X5: Oxide enthalpy of formation �H0
298 (kJ/mol.).

x1 Max = 2435°C, x2 Max = 3000°C, x3 Max = 1560°C, x4 Max = 1228°C, x5 Max =
−1128 kJ/mol.

Figure 4: Methodology flowchart

Fig. 4 indicates that the PSO was applied to optimally determine the models’ parameters, such
as the quadratic error between the observed (measured) outputs and the predicted (estimated by the
models) outputs, which was minimized [30,31]. The procedure included a correlation study and an
optimization process based on the PSO [32]. The objective of the correlation study was to determine
to what extent the input parameters were likely to affect the physical properties of the welding process.
After studying the effect of the explanatory variables (input variables) on the physical parameters, a
modeling procedure using PSO was developed for two explained variables: the depth (D) and the ratio
of depth (R). Table 5 demonstrates that the Pearson correlation coefficients between the depth (D)
and the ratio of depth (R) and, respectively, the input parameters (X1–X5) range at different levels.
For the depth (D), the magnitude of the correlation ranged from 0.5975 (effect of X1) to −0.3959
(effect of X3). X1, X3, and X4 showed positive correlations with D. However, X2 and X5 showed
negative correlations. The ratio of depth (R) is highly correlated with X1 (0.7420) and X4 (0.7216),
respectively. However, the correlations with the remaining variables (X2, X3, and X5) were medium. D
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and R are mutually and strongly correlated (a coefficient of correlation equal to 0.9694 is calculated).
All five cited variables were considered for modeling depth and proportion of depth based on the
abovementioned correlation study results.

Table 5: Correlation analysis

X1 X2 X3 X4 X5 D R

D 0.5975 −0.3959 0.1685 0.5498 −0.3708 1.000 0.9694
R 0.7420 −0.2538 0.3314 0.7216 −0.2112 0.9694 1.000

Based on a trial-and-error technique, three types of models were investigated:

– A purely linear model

– A linear with quadratic components model

– A model includes three components: a linear component, a quadratic component, and a
component relating to the interaction between the input variables.

Only linear models were investigated in depth due to the limited number of measurements and
because model accuracy is not much improved.

PSO is a nature-inspired meta-heuristic optimization algorithm. At its first discovery, it was used
as a simulation tool. Later, researchers from various fields applied it as an optimization technique,
including flux-cored arc welding parameters optimization, tuning neural networks in a MIG welding
process, and Activated flux tungsten inert gas welded 316L austenitic stainless steel [17]. The PSO
belongs to a sub-field of artificial intelligence (AI) known as swarm intelligence. Swarm intelligence
is the term for a family of techniques that use groups of solutions, which move toward a solution to
optimization problems gradually and collectively. In the PSO paradigm, a set of candidate solutions
(αk,i) are initialized randomly inside the search space. The particles are then flown while searching for
better positions. The “goodness” of a solution is based on evaluating a criterion (the quadratic error
in this study). The movement of a particle indexed by i is used in the following equations:

Vk+1,i = IWkVk,i + C1.r1 [Pk,i − αk,i] + C2.r2 [Gk,i − αk,i] (3)

αk+1,i = αk,i + Vk+1,i (4)

αk+1,i = αk,i + Vk+1,i (5)

where k is the iteration index; Vk,i is the velocity operator; C1 and C2 are constant coefficients; r1 and
r2 are two random numbers inside the interval [0;1]; Pk,i is the best position previously visited by the ith

particle; Gk,i is the best position of the group since the swarm follows a fully connected topology where
all particles exchange information about their current positions. In order to ensure a good convergence
speed, the inertia weight is chosen to decrease from 0.9 to 0.4 during the optimization process. The
search space is deliberately chosen as [0;1] for all model coefficients. PSO has many features, including
the global search ability, which is highly required in complex optimization problems similar to the one
studied in this paper.

As a common practice in prediction, the quality of a model is measured through some perfor-
mance metrics. This study uses the mean absolute percentage error (MAPE) and the root mean squared
error (RMSE). Those two performance measures are evaluated in the following formulas [33]:
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Mean Absolute Percentage Error (MAPE (%))

MAPE = 100
5

∑5

1

∣∣∣Y (t) − Ŷ(t)
∣∣∣

Y
(6)

Root Mean Square Error (RMSE)

RMSE =
√

1
5

∑5

t=1

(
Y (t) − Ŷ (t)

)2

(7)

3 Results and Discussions
3.1 Weld Morphology

Five oxides were tested to carry out this study. The weld lines were executed using a butt-join
design with a 1 mm gap between the parts to be joined. Table 6 indicates that the highest value of depth
penetration is 10.60 mm, which was obtained for a sample welded with SiO2 flux. The penetrations are
full for all welds. AMIG weld penetrations decrease respectively from SiO2, TiO2, Fe2O3, and Cr2O3,

and have larger penetrations than the MIG weld. AMIG with Mn2O3 presents the lowest penetration.

Table 6: Weld aspects of single oxide fluxes of AMIG welds and conventional MIG welds

Welding process MIG AMIG
with SiO2

AMIG
with TiO2

AMIG
with Fe2O3

AMIG
with Cr2O3

AMIG
with Mn2O3

Weld penetration depth
(D) (mm)

6.52 10.60 8.68 8.23 7.71 7.14

Weld face width
Wf (mm)

10.46 10.70 10 10.78 10.01 10.43

Aspect ratio
((D)/Wf)

0.57 0.99 0.87 0.76 0.77 0.68

Macrographs of the weld bead transverse sections of the 304L stainless steel with a thickness
of 6 mm produced with conventional MIG and AMIG welding processes are shown in Fig. 5.
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(a) MIG weld (b) AMIG weld with SiO2

(c) AMIG weld with TiO2 (d) AMIG weld with Fe2O3

(e) AMIG weld with Cr2O3 (f) AMIG weld with Mn2O3

Figure 5: Macrographs of the weld bead transverse sections for conventional MIG (a) and AMIG with
the different oxide fluxes (b–f) welding processes

3.2 Weld Depth (D) Modelling
The original/raw explanatory variables of each flux are listed in Table 7. As depicted before,

normalized values are determined by dividing the original values by the maximum values of the same
variables. This operation is performed to ensure the rescaling of the effects of those variables since the
raw values were found to be of different scales of magnitude.
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Table 7: Raw data

Oxide flux SiO2 TiO2 Fe2O3 Cr2O3 Mn2O3

x1 2950 2972 1987 3000∗ 1080
x2 260 360 300 800∗ 310
x3 1626 1892 1540 2330∗ 940
x4 1510 1532 547 1560∗ 360

The three interaction factors model without transformation gives the best fit for the output
response D. The obtained mathematical formulation for D can be represented as follows:

Predicted depth (D) = 6.1198X1 − 5.6083X2 + 0.7711X3 − 1.6466X4 + 6.1631X5 (8)

Table 8 shows the predicted values of D. The predicted and real outputs were observed to be
relatively close. Those results can be considered good since they were obtained by a limited number of
measurements. However, performing more experiments to extract more data seems to be problematic
in the case of welding processes. Performing one experiment is time-consuming and requires much
effort.

Table 8: Output parameters of the mathematical model

Oxide flux SiO2 TiO2 Fe2O3 Cr2O3 Mn2O3

Actual weld depth (D) (mm) 10.6000 8.6800 8.2300 7.7100 7.1400
Predicted weld depth (D) (mm) 9.9533 9.5863 8,0457 8,0729 7,2236
Residual for weld depth (mm) 0.65 −0.90 0.18 −0.36 −0.08

Table 8 also shows the calculation of residues to validate the found-out D mathematical models. It
shows that the aspect ratio mathematical equations developed for input parameters welding are fully
compatible with the actual output values.

Table 9 shows the performance metrics of the developed models. MAPE is commonly used because
it is easy to interpret. A MAPE value of 5.1556% means that the average difference between predicted
and actual values is acceptable. The coefficient of determination is 0 < R2 < 1 and expresses the linear
correlation intensity between actual weld depth and predicted weld depth. The size R2 ranging from
0.7 to 1.0 indicated a very strong correlation. Given the limited number of samples/observations used
to perform this modeling task, the obtained value of these performance metrics can be considered
strong.

Table 9: Performance metrics of the developed models

Output MAPE (%) RMSE (mm) R2 α1 α2 α3 α4 α5

Depth weld 5.1556 0.5315 0.7466 6.1198 −5.6083 0.7711 −1.64666 6.1631

Fig. 6 shows a satisfactory distribution of the actual depth against the predicted depth. In
addition, this distribution indicates the goodness of the regression model. Four simulation scenarios
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were considered by including positive (+) and negative (−) disturbances of ±1% to the models’
coefficient values to check the robustness of the previously developed model. Those disturbances are
assumed to consider the effect of modeling errors that can be caused by fluctuations in measurement
devices or errors coming from the modeling technique (the PSO). Tables 10 and 11 show clearly that
all positively and negatively disturbed models for both D remain in a good-fit range even under the
disturbances reported to the model parameters.

Figure 6: Actual vs. predicted values for weld bead depth (D)

Table 10: Actual (measured) and predicted disturbed ±1% (yielded by the PSO model) D

Oxide flux Actual (D) Predicted (D disturbed (+)) Predicted (D disturbed (−))

SiO2 10.6000 9.9632 9.8537
TiO2 8.6800 9.5958 9.4904
Fe2O3 8.2300 8.0537 7.9652
Cr2O3 7.7100 8.0809 7.9921
Mn2O3 7.1400 7.2308 7.1514

Table 11: Performance metrics of the developed models

Output MAPE (%) RMSE (mm) α1 α2 α3 α4 α5

D (disturbed +1%) 5.4654 0.5183 6.1810 −5.6644 0.7788 −1.6631 6.2247
D (disturbed −1%) 4.5341 0.4402 6.0586 −5.5522 0.7634 −1.6301 6.1015

The accuracy of the obtained results can be confirmed by the values of the performance metrics
(Table 11).

MAPE for depth (D) is 4.5341% for a negative disturbance of 1% and 5.4654% for a positive
disturbance of 1%. These performance indicators can be considered suitable for welding process
modeling. In addition, the RMSE for depth (D) is 0.4402 mm for a negative disturbance of 1% and
0.5183 mm for a positive disturbance of 1%.
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3.3 Weld Aspect Ratio (R) Modeling
The three factors interaction model without transformation best fits the output response R. The

obtained mathematical formulation for R can be represented as Eq. (9).

Predict aspect ratio (R) = 0.4057X1 − 0.5552X2 + 0.1598X3 − 0.0786X4 + 0.5935X5 (9)

Table 12 lists the residue calculation for validation of the R mathematical models. It shows that
the aspect ratio mathematical equations developed in terms of input parameters for welding are fully
compatible with the actual output values.

Table 12: Actual (experimental), predicted mathematic model, and residuals % for weld aspect ratio
(R)

Oxide flux SiO2 TiO2 Fe2O3 Cr2O3 Mn2O3

Actual aspect ratio (R) 0.8897 0.8920 0.7802 0.8145 0.9327
Predicted aspect ratio (R) 0.8891 0.8854 0.8244 0.8271 0.9080
Residual for aspect ratio 0.0006 0.0073 −0.0566 −0,0154 0.0283

As R2 is 96.27% for R, this performance metric can be considered good for welding process
modeling. The small residuals of the models confirm the fit quality between the parameters estimated
by the PSO model and the measured ones.

The accuracy of the obtained results can be confirmed by the values of the performance metrics
depicted in Table 13. Thus, the MAPE was close to 2.1076% for the weld aspect ratio. This performance
metric can be considered good for welding process modeling. In addition, the obtained RMSE reminds
us that the RMSE indicates how concentrated the data is around the line of best fit; in other words,
RMSE is the standard deviation of the residuals. The RMSE of 0.0243 mm can be considered good,
considering the size of the datasets used.

Table 13: Performance metrics of the aspect ratio model

Output MAPE % RMSE (mm) R2 α1 α2 α3 α4 α5

Aspect ratio R 2.1076 0.0243 0.9627 0.4057 −0.5552 0.1598 −0.0786 0.5935

The statistical indicators specify the significance of the proposed mathematical model, as shown
in Fig. 7. It noticed that R2 is up to 96.27%, which attests to a satisfactory distribution of the actual
weld aspect ratio against the predicted weld aspect ratio. In addition, this distribution indicates the
goodness of the regression model. The effect of modeling errors that can be caused by fluctuations in
measurement devices or errors resulting from the PSO modeling technique is expected to be considered
in these disturbances. Table 14 shows clearly that all positively and negatively disturbed R models
provide acceptable accuracy of predicted values.
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Figure 7: Actual vs. predicted values for weld aspect ratio (R)

Table 14: Actual and predicted disturbed ±1% (yielded by the PSO model technique) for R

Oxide flux Actual (R) Predicted (R disturbed (+)) Predicted (R disturbed (−))

SiO2 0.9900 0.9110 0.9010
TiO2 0.8700 0.8833 0.8736
Fe2O3 0.7600 0.7328 0.7247
Cr2O3 0.7700 0.7449 0.7367
Mn2O3 0.6800 0.6773 0.6699

4 Conclusion

The study focuses on the thermophysical properties of five metallic oxides that influence the
morphology of welded joints made from 304L stainless steel plates 6 mm thick by AMIG welding.
In the AMIG process, an intelligent model based on the PSO algorithm is successfully employed to
optimize the depth weld penetration and weld aspect ratio. The main findings can be summarized as
follows:

(i) To match the desired morphology of weld beads with the thermal properties of metallic oxides, a
PSO model has been developed based on experiments. PSO models are capable of making optimization
of weld bead geometry with acceptable accuracy. The results showed that PSO models can be used as
an alternative tool based on conventional calculation methods.

(ii) To cope with the uncertainties of measurement devices, human error, and the PSO technique
modeling capabilities, the robustness of the developed models must be checked carefully. The penetra-
tion depth and aspect ratio models remain consistent and robust against the included variations by
adding perturbations to the models’ parameters. The accuracy of the weld depth penetration and weld
aspect ratio predictions were over 74% and 96%, respectively. The standard deviation of the residuals
for aspect ratio was 0.0243 and is up to 0.5315 for the depth model, which can be considered good
based on the size of the used datasets.
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As a future perspective, the results of this study can be applied to other materials. Therefore, under
the technical and computational constraints, there will be a contribution to the modeling efficiency
and the characterization of new oxides when using more observations and other techniques in the field
of AI. It is possible to target several applications with a view to the quality of the welding oxides and
maximizing profitability.
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