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ABSTRACT

Currently, cybersecurity threats such as data breaches and phishing have been on the rise due to the many different
attack strategies of cyber attackers, significantly increasing risks to individuals and organizations. Traditional
security technologies such as intrusion detection have been developed to respond to these cyber threats. Recently,
advanced integrated cybersecurity that incorporates Artificial Intelligence has been the focus. In this paper, we
propose a response strategy using a reinforcement-learning-based cyber-attack-defense simulation tool to address
continuously evolving cyber threats. Additionally, we have implemented an effective reinforcement-learning-based
cyber-attack scenario using Cyber Battle Simulation, which is a cyber-attack-defense simulator. This scenario
involves important security components such as node value, cost, firewalls, and services. Furthermore, we applied
a new vulnerability assessment method based on the Common Vulnerability Scoring System. This approach can
design an optimal attack strategy by considering the importance of attack goals, which helps in developing more
effective response strategies. These attack strategies are evaluated by comparing their performance using a variety of
Reinforcement Learning methods. The experimental results show that RL models demonstrate improved learning
performance with the proposed attack strategy compared to the original strategies. In particular, the success rate
of the Advantage Actor-Critic-based attack strategy improved by 5.04 percentage points, reaching 10.17%, which
represents an impressive 98.24% increase over the original scenario. Consequently, the proposed method can
enhance security and risk management capabilities in cyber environments, improving the efficiency of security
management and significantly contributing to the development of security systems.
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1 Introduction

The advancement of Artificial Intelligence (AI) has involved innovation and convenience in our
lives and diverse industrial sectors, but it also created new challenges in cybersecurity [1,2]. With AI
being employed for processing and managing sensitive data in cyberspace, the risk of encountering
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diverse security challenges such as data leakage, privacy breaches, and identity theft is increasing
[3,4]. These problems lead to unauthorized access and leakage of personal and corporate information,
posing a serious threat to organizations and creating new opportunities for cyber attackers [5,6].

In this evolving threat environment, traditional cybersecurity has revealed its constraints [7,8].
Attack detection approaches based on fixed data and supervised learning have been constrained in
effectively addressing the complexity of continuously evolving attack types [9,10]. In this paper, we use
Reinforcement Learning (RL) to develop adaptive attack strategies capable of responding dynamically
to evolving threats. These strategies are simulated and evaluated using RL-based cyber-attack-
defense simulation tools like Cyber Battle Simulation (CyberBattleSim), developed by Microsoft’s
Defender team [11,12]. CyberBattleSim is a useful and testable cyber-attack-defense simulation tool
that accurately simulates real-world situations. It can also serve as a robust training platform that
facilitates the red and blue team dynamics and enables continuous interaction with the environment.
Integration of these dynamics is important for applying RL, as it effectively simulates real-world
cybersecurity training scenarios, enabling the optimization of strategies that can adapt to evolving
threats. This environment not only enhances the development and evaluation of RL-based strategies
but also facilitates the training of behavioral strategies of attacker agents. It is also offering methods
to effectively counter unknown threats and new types of attacks [13]. These strategies are essential for
devising adaptive responses within a complex cyber threat environment [14].

In the rapidly evolving cyber threats, RL-based cyber-attack-defense simulation techniques are
being investigated as a new approach to overcome the limitations of traditional security methods
[15,16]. As a result, with the expansion of cyberspace and the increasing complexity of attacker’s
Tactics, Techniques, and Procedures (TTPs), attack-defense simulations are becoming essential tools
for responding to diverse cyber-attacks [17]. The attack-defense simulations aim to mimic the TTPs
of cyber attackers. By simulating cyber-attack scenarios resembling real-world situations, they can
professionally assist security in developing strategies to effectively counter cyber-attacks [18]. However,
such advanced training demands the expertise of cybersecurity professionals and entails considerable
time and cost [19]. Additionally, the complexity of cybersecurity training is further increased due to
the constraints and risks of real-world training environments [20].

The purpose of the paper is to develop and evaluate RL-based cyber-attack strategies using
CyberBattleSim to effectively respond to cyber in the real world. CyberBattleSim provides a dynamic
simulation environment for testing attack scenarios, allowing for a comprehensive evaluation of the
generated strategies. In this process, we applied a new vulnerability assessment method based on the
Common Vulnerability Scoring System (CVSS) to optimize attack strategies. This method enables
tailored cost allocations for vulnerabilities, enhancing risk management and the prioritization of
security measures. In this paper, we develop the ‘ToyCTF (Capture the Flag) Alpha’ scenario, which
is an extension of the original ‘ToyCTF’ scenario provided by CyberBattleSim, to improve learning
performance by analyzing vulnerabilities and scenario information of specific nodes. In addition, RL-
based off-policy algorithms such as Q-Learning [21], Deep Q-Network (DQN) [22], and Dueling
Deep Q-Network (DDQN) [23] and on-policy algorithms such as Advantage Actor-Critic (A2C)
[24], Proximal Policy Optimization (PPO) [25], and REINFORCE [26] were selected to evaluate their
effectiveness in predicting attack strategies within the CyberBattleSim environment.
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2 Background and Related Work
2.1 Cybersecurity Challenges and Machine Learning

The field of cybersecurity is faced with complex and diverse challenges due to the rapid evolution
of technology [27]. However, traditional rule-based security methods that depend on fixed data and
predefined scenarios have shown limitations in adapting to the changing threat environment [28,29]. In
particular, methods such as intrusion detection systems and antivirus tools using static file scanning are
effective against known threats but struggle to counter new or modified attack patterns [30,31]. With
advancements in digital technology, cyber-attack methods such as custom malware, social engineering
attacks, and Distributed Denial of Service (DDoS) have become more sophisticated, capable of
bypassing traditional security systems [32,33]. In particular, the advent of cloud computing and IoT
devices has expanded the scope of security attacks, exposing organizations to new threats [34]. This
necessitates the enhancement of cybersecurity strategies and the development of more dynamic and
adaptive security solutions [35].

For that reason, advanced technologies such as machine learning (ML) have begun to be inte-
grated into cybersecurity approaches, providing new effective approaches in an ever-changing threat
environment [36]. Supervised ML has been used to train models to distinguish between malicious and
normal behavior using labeled data, outperforming traditional methods in detecting unknown attacks
and variants of attack patterns [37–39]. However, supervised ML still struggles to adapt quickly to new
and evolving threats and there are limitations in its application to dynamic environments.

Recently, RL approaches garnered significant interest in overcoming these limitations [40,41]. RL
is trained through continuous interaction with dynamic environments, developing strategies that adapt
to unknown threats and changing attack patterns [42]. RL is an adaptive method to evaluate strategies
in a realistic environment, and it can develop better response strategies for dynamic environments such
as the effectiveness of cybersecurity systems. However, RL relies largely on underlying decision-making
models based on the traditional Markov Decision Process (MDP), which has limitations in reflecting
the uncertainty and complexity of real-world security environments [43]. Therefore, extending MDP
methods to better capture various aspects of cybersecurity is essential. This will enable RL to respond
more effectively to dynamic cybersecurity threats.

2.2 Cybersecurity Simulation Environment Based on Reinforcement Learning
Recently, cyber-simulation environments rely primarily on hand-crafted scenarios by experts,

limiting the scalability and adaptability of training modules to different expertise levels and objectives
[44]. These environments cannot dynamically and autonomously generate scenarios that accurately
reflect the diverse requirements of real-world operations. Thus, there is a demand for useful and
testable simulation environments that can automatically generate and adapt cyberattack scenarios
to the evolving characteristics of cybersecurity threats [45]. These improvements reduce reliance on
manual scenario creation and increase the authenticity and variability of the training environment.

In response to these challenges, RL-based methods are increasingly being used in the field of
cybersecurity, particularly within simulation environments designed to model complex cyber-attack-
defense scenarios [46]. RL-based cyber simulators, such as Network Attack Simulation (NASim) and
CyberBattleSim, play an important role in simulating real-time network attacks and defense scenarios
in complex network environments. Specifically, NASim allows users to configure and manipulate
virtual computer networks to simulate various network attack scenarios but focuses primarily on
attack strategies, lacking comprehensive defensive tactics [47–49]. Conversely, CyberBattleSim can
simulate both attack and defense strategies in complex network environments using RL [50]. This tool
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enables the observation of the network’s real-time response and the optimization of strategies through
continuous learning, but it requires significant computational resources and expert knowledge to set
up and maintain [51].

Integrating intelligent simulation environments such as NASim and CyberBattleSim can provide
a more realistic and comprehensive educational experience. These are not only capable of modeling
complex scenarios but also support the iterative testing and refinement of cyber defense tactics,
providing important tools in the development of robust defense mechanisms against existing and
emerging cyber threats [52].

3 Cyber Range Simulation Environment

CyberBattleSim is a simulation framework based on Open AI Gym that designs network environ-
ments and vulnerabilities, providing an essential tool for cybersecurity training [11]. This framework
provides realistic cyber-attack/defense scenarios with a simulated environment that allows attacker
and defender agents to strategize within a real-world network. The RL agent can be trained using
the default scenarios or constructing new ones. In this section, we proposed an extended cyber-attack
simulating scenario using CyberBattleSim in a newly developed cyber-attack scenario to provide a
more effective RL-based cyber threat environment.

3.1 Scenario of ToyCTF Alpha
‘ToyCTF’ scenario provided by CyberBattleSim is based on the concept of Capture The Flag

(CTF) and is designed to engage security professionals in strategic planning while owning and defend-
ing a range of nodes in a competitive environment [11]. This is simulated in security vulnerabilities and
types of attacks through diverse network interactions including Know, Remote Exploit, and Lateral
Movement reflecting a realistic security environment. However, the ‘ToyCTF’ has several limitations
such as firewall settings on some nodes allowing excessive access and assigning the same cost to all
vulnerabilities.

In this paper, we propose a new scenario, ‘ToyCTF Alpha’ which extends the original ‘ToyCTF’
scenario by incorporating CyberBattleSim to overcome its limitations. CyberBattleSim generally
enables the simulation of attack strategies, which allows for a comprehensive evaluation of the RL
agent’s learning performance and adaptability. The ‘ToyCTF Alpha’ can provide an enhanced network
environment compared to the original ‘ToyCTF’ scenario. As shown in Fig. 1, the network structure of
the scenario with network topology is presented. While some node components remain the same across
both scenarios, significant differences are found in enhancing the scenarios’ realism and improving the
RL agent’s learning performance. The proposed scenario can overcome the limitations of the ‘ToyCTF’
by more comprehensively reflecting a range of vulnerabilities and types of attacks expected in a realistic
security environment, while still incorporating the basic concept of ‘ToyCTF’ and providing advanced
security strategies.

‘ToyCTF Alpha’ incorporates several improvements for effective learning over traditional sim-
ulation environments. First, we addressed the issue of excessive access permissions observed in the
original ‘ToyCTF’ scenario by readjusting the firewall settings across all nodes, thus strictly limiting
access to essential services such as Hypertext Transfer Protocol Secure (HTTPS), Secure Shell (SSH),
and Global Information Tracker (GIT). These firewall settings create constraints that allow agents
to strategically navigate and exploit the environment for the learning process. Second, we applied
vulnerability assessment methods based on the CVSS [53,54] for more effective cost allocation
within the ‘ToyCTF Alpha’ scenario, aiming to improve the RL-based learning process. This method
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distinguishes between the severity of vulnerabilities and the complexity of the attack on each node,
allowing us to assign a tailored cost to each vulnerability based on its CVSS score. This adjustment
addresses a problem in ‘ToyCTF’ scenarios, where all vulnerabilities were treated with the same level
of risk, disregarding their severity or complexity, due to the same cost setting for all vulnerabilities.
The cost represents the resources an agent spends to take an action, while the value represents the
rewards gained from successfully attacking and gaining control of a node. These metrics are essential
for the agent to learn optimal policies that prevent unnecessary actions and improve the overall
effectiveness of the cyber-attack strategy. Finally, we implement dynamic simulations similar to real-
world environments by assigning different values to each node based on their strategic importance.
Node values influence the agent’s prioritization process, guiding it towards more critical nodes. Action
costs motivate the agent to optimize its resource usage and avoid high-cost actions. Services running
on the nodes determine potential attack vectors and the complexity of compromising each node in
the simulation. RL models can simulate a more precise and effective cyber-attack strategy, reflecting
cybersecurity challenges and responses. In Table 1, the detailed node information and vulnerability
assessment results are presented. The cost and value metrics for reward represent the assessment of
nodes based on their CVSS scores. This is vital for RL agents to navigate and strategize effectively in
a constrained environment.

Figure 1: Network topology in ToyCTF Alpha

Table 1: Node components in ToyCTF Alpha

Component
Node Service Property Firewall Cost Value

Client None None None 1.5 0

(Continued)
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Table 1 (continued)

Component
Node Service Property Firewall Cost Value

Website HTTPS
SSH

MySql
Ubuntu
nginx/1.10.3

Incoming: SSH
(ALLOW), HTTPS
(ALLOW)

1.5 135

Outgoing: default allow
rules

WebsiteDirectory HTTPS
GIT

GitHub
SasUrlInCommit

Incoming: GIT
(ALLOW)

2.0 160

Outgoing: default allow
rules

Website [user=monitor] HTTPS Sharepoint-
LeakingPassword

Incoming: HTTPS
(ALLOW)

2.0 130

Outgoing: default allow
rules

GitHubProject HTTPS
SSH

Ubuntu
nginx/1.10.3
CTFLAG: Readme.txt

Incoming: HTTPS
(ALLOW)

2.0 150

Outgoing: default allow
rules

AzureStorage HTTPS MySql
Ubuntu
nginx/1.10.3

Incoming: HTTPS
(ALLOW)

2.0 140

Outgoing: default allow
rules

Sharepoint HTTPS
SSH

CTFFLAG:
LeakedCustomerData2

Incoming: HTTPS
(ALLOW)

1.5 155

Outgoing: default allow
rules

AzureResourceManager HTTPS SensitiveAzureOp-
erations

Incoming: HTTPS
(ALLOW)

2.0 140

Outgoing: default allow
rules

AzureResoureManager
[user=monitor]

HTTPS CTFFLAG:
VMPRIVATEINFO

Incoming: HTTPS
(ALLOW)

1.5 145

Outgoing: default allow
rules

AzureVM SSH CTFFLAG:
LeakedCustomer-Data

Incoming: SSH
(BLOCK)

2.0 140

Outgoing: default allow
rules
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As a consequence, the attacker agent’s penetration process was designed in more detail by simu-
lating the attacker’s diverse strategies and behaviors from initial access to ultimate information theft.
The penetration strategy of the attacker is depicted in Fig. 2, which presents a flowchart outlining the
progression from phishing attack to sensitive data exfiltration. Algorithm 1 provides the corresponding
pseudo-code, detailing each step of the process. In the initial stage, the attacker gains entry through
a phishing attack to acquire user credentials. After gaining access, an attacker can use it to explore
and exploit system vulnerabilities, starting with the ‘Website’ node to gather information within
the system and expanding to the ‘Website.Directory’ node, ‘GitHubProject’ node, and ‘Sharepoint’
node. Afterward, in the advanced penetration phase, the attacker targets the ‘AzureResourceManager’
and ‘AzureStorage’ nodes to exfiltrate sensitive data [11]. In this process, the attacker exploits the
‘DirectoryTraversal’ vulnerability in the ‘AzureResourceManager’ node to gain vital credentials, which
enable access to a broader range of Azure resources. Meanwhile, the ‘AzureStorage’ node is targeted
through the ‘InsecureBlobStorage’ vulnerability, which enables attackers to expose sensitive stored
data. Then, the attacker combines the data with sensitive information stored on the ‘AzureVM’ node
to execute the exfiltration. In the end, the attacker secures privileged access to the ‘AzureVM’ nodes by
exploiting the ‘UnpatchedSSHService’ vulnerability. This allows the attacker to access virtual machine
instances within the cloud service and leak sensitive information.

Figure 2: Flowchart of the penetration process in ToyCTF Alpha



8 CMES, 2024

Algorithm 1: Penetration process for ToyCTF Alpha
1 Input: Initialize the network nodes, vulnerabilities
2 Output: Define Attack outcomes report
3 Set nodes to predefined vulnerabilities
4 privileged_access ← false
5 data_exfiltration ← false
6 for i ← 1 to 200,000 or success do
7 Attempt phishing attack on ‘Website’
8 if success then
9 privileged_access ← true
10 /∗ Initial Access
11 if privileged_access then
12 if explore ‘Website’ then
13 Scan Node
14 GU ← GitHub URL
15 DP ← Directory Paths
16 SCE ← SSH Credentials Exploitation
17 Node.info ← [GU, DP, SCE]
18 /∗ Information Gathering
19 while data_exfiltration = false do
20 if access each node in [‘Website.Directory’, ‘GitHubProject’, ‘Sharepoint’] then
21 Retrieve data from .git directories or other sensitive sources
22 Use SCE to bypass authentication
23 Exploit directory traversal vulnerabilities for file access
24 if ‘DirectoryTraversal’ is successful at ‘GitHubProject’ then
25 Exploit ‘AzureResourceManager’:
26 Use ‘DirectoryTraversal’ to obtain ‘ResourceManagerAccess’
27 Manipulate Azure resources and acquire ‘BlobStorageToken’
28 /∗ Critical Resource Access
29 if ‘BlobStorageToken’ is acquired then
30 Exploit ‘AzureStorage’ to initiate data leaks
31 Exploit SSH vulnerabilities in ‘AzureVM’ to access sensitive data
32 if secure access to ‘AzureVM’ then
33 Exploit unpatched SSH for sensitive data exfiltration
34 data_exfiltration ← true
35 /∗ Data Exfiltration
36 Apply strong authentication if required
37 /∗ Access Control
38 while exploring nodes do
39 Check misconfigured permissions and exposed credentials
40 if finding misconfigurations then
41 Escalate privileges
42 Gain administrative access, particularly through ‘Sharepoint’

(Continued)
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Algorithm 1 (continued)
43 end
44 /∗ Privilege Escalation
45 end

3.2 Defining Cost Value Based on CVSS for Enhanced Learning Performance
This paper aims to assess the cybersecurity risk of the scenario more realistically by utilizing

CVSS for vulnerability assessment [55]. CVSS refers to a standardized system for quantifying the
severity of vulnerabilities. It is used to assess the characteristics of security vulnerabilities such as
confidentiality, integrity, and availability, as well as exploitability and attack complexity. In this
paper, the Base Score Metrics from CVSS V2.0 to accurately assess the impact of vulnerabilities is
used. In the ‘ToyCTF’, the cost was set to 1.0 for all vulnerabilities, regardless of severity or attack
complexity, resulting in different vulnerabilities being assessed at the same level [11]. This revealed the
limitations of risk management and security prioritization in real-world organizations. To overcome
this limitation, in the ‘ToyCTF Alpha’, we divided the Base Score Metrics into Exploitability Metrics
and Impact Metrics, then the severity score was calculated by the vulnerability by utilizing Attack
Vector, Attack Complexity, Authentication, Confidentiality, Integrity Impact, and Availability Impact
[56]. In addition, we assigned costs of 1.0, 1.5, and 2.0 for vulnerabilities rated as Low, Medium,
and High respectively to help organizations better prioritize security measures. The approaches can
make more precise adjustments in assessing the impact of vulnerabilities by distinguishing between
different vulnerabilities, thereby enhancing realism. In this regard, the status of severity changes in
CVSS V2.0 and the CVSS score of each vulnerability applied to the ‘ToyCTF Alpha’, along with their
corresponding severity are presented in Tables 2 and 3, respectively.

Table 2: Severity level in CVSS V2.0

CVSS V2.0 score

Severity Score range

Low 0.0–3.9
Medium 4.0–6.9
High 7.0–10.0

Table 3: Node vulnerability assessment CVSS score and severity in ToyCTF Alpha

Vulnerability CVSS score Severity

ScanPageContent 5.0 Medium
ScanPageSource 5.0 Medium
StrongAuthRequirement 4.9 Medium
ExposedGitHistory 9.4 High
DirectoryTraversal 9.4 High
MisconfiguredPermissions 6.2 Medium

(Continued)
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Table 3 (continued)

Vulnerability CVSS score Severity

MisconfiguredAccessControl 9.4 High
InsecureAPIEndpoint 9.4 High
PrivilegedOperationsExposure 6.0 Medium
InsecureBlobStorage 7.8 High
UnpatchedSSHService 10.0 High
PhishingVulnerability 6.3 Medium

3.3 Reassessing Node Value in ToyCTF Alpha
In this paper, we propose redefining the calculation of cost values for nodes by utilizing a range of

components to redefine the value of a node, as detailed in Section 3.2. The existing ‘ToyCTF’ scenario
cannot guarantee learning stability due to the lack of specific standards for node value. In contrast,
reassessing node value can offer improved learning stability compared to the existing environment.

For one of the nodes in the ‘ToyCTF’, ‘AzureVM’ is assigned similar or lower values compared
to less important nodes, despite being a critical infrastructure component [11]. This means that the
value settings of some nodes do not fully reflect the actual importance of those nodes. To reflect the
importance of nodes, we applied the value of each node to the ‘ToyCTF Alpha’, which comprehensively
considers a range of components including the service importance of the node, firewall configuration,
attribute importance, and identification of security vulnerabilities to enhance realism.

When calculating the final value (FV) of a node in this proposed method, the following equation
is used:

FV = BV + SI + FC + AI − SV − RV (1)

• BV: Node Base Value

• SI: Node Service Importance

• FC: Node Firewall configuration

• AI: Node Attribute Importance

• SV: Node Security Vulnerability

• RV: Node Remote Vulnerability

To determine the value of a node, we use the following step-by-step method. First, all nodes receive
a base value (BV) of 100 by default. Next, the value is adjusted by evaluating the service importance
(SI) of each node. To prevent each adjustment value from exceeding the importance of BV during
the adjustment phase, the adjustment values have a maximum value of 50 by half the BV. Nodes
that provide basic services such as HTTP or SSH have an SI value of +50 since they directly impact
the accessibility and security of the system. In contrast, nodes that provide specialized services or
additional functionality, such as the [monitor] tag, have an SI value of +40 due to a limited impact
on the overall network. Subsequently, the value of a node is then adjusted based on the allowed
access to the service in the node’s firewall configuration (FC). It has an FC value of +10 since the
risk to the overall system from a single service is lower than multiple services, and it is simpler to
manage. In contrast, nodes that allow access to multiple services are given an FC value of +20 due
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to the increased complexity and risk associated with security management. Attribute importance (AI)
value is calculated based on attributes related to a node’s specific functionality or the management of
important data. Attributes related to common operating systems or services such as MySQL, Ubuntu,
and Nginx have a default AI value of +30 because they are directly related to the basic operation.
On the other hand, specialized features or attributes responsible for managing sensitive data, such as
GitHub and SensitiveAzureOperations, are assigned an AI value of +20 due to their relatively lower
impact on the system compared to general operations. Additional scoring for SI, FC, and a default
value based on AI are adjusted to reflect the security impact each node has on the system. Positive
values are also added to account for factors that make it harder for attackers to target.

From a security vulnerability (SV), we set an additional score on top of the default value. The score
can provide an additional negative value to reflect on each node. If it is an additional security risk or
is high in severity, the attacker is more likely to be attacked. By analyzing SVs, the value of the node is
lowered according to the severity of each vulnerability. This adjustment further decreases the value of
the node when vulnerabilities that pose additional security risks are remotely available. A low-severity
vulnerability has an SV value of −10 since it is less likely to be attacked and the damage is limited.
Conversely, vulnerabilities with higher severity are assigned SV values of −15, −20, etc., indicating the
heightened potential for system damage by an attacker. This allows an attacker to distinguish between
vulnerable and non-exploited nodes, thus enhancing their ability to effectively respond to real-world
security threats.

Table 4 shows the criteria for value readjustment, aiming to make accurate value judgments for all
nodes in the scenario based on diverse components such as service importance, firewall configuration,
attribute importance, and security vulnerability identification. The following approach is important
for enhancing security levels and enhancing the protection of critical resources against real-world
security threats. Moreover, it can accurately reflect a realistic scenario where an attacker would target
vulnerable nodes preferentially, thus enhancing the security of the entire system.

Table 4: Calibration based on security component

Component Condition Calibration

Service importance Basic service provision +50
Specialized service provision +40

Firewall configuration Access allowed for a single service +10
Access allowed for multiple services +20

Attribute importance General operations and service support +30
Special function or data management +20

Security vulnerability Penalty for each vulnerability (CVSS severity: Low) −10
Penalty for each vulnerability (CVSS severity: Medium) −15
Penalty for each vulnerability (CVSS severity: High) −20
Remote vulnerability threat −20

4 Reinforcement-Learning-Based Cyber Attack Strategies

This paper aims to improve attack and defense strategies in complex security environments by
using CyberBattleSim based on RL. With CyberBattleSim, adversary agents learn optimal behavioral
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strategies by interacting with a dynamically changing network environment in real time. This tool is
used to simulate the behavior of adversary agents in cyberattack scenarios.

4.1 Markov Decision Process in Cyber Battle Simulation
In this paper, we select CyberBattleSim to develop effective attack and defense strategies based on

real-time dynamic network characteristics and vulnerability information. As shown in Fig. 3, Cyber-
BattleSim has a structure that connects the attacker agent’s action, state, observation, environment
information, and reward [57].

Figure 3: CyberBattleSim architecture overview

The state and action of the attacker agent are passed to the RL-based simulation environment
including observation spaces. The results of actions in the environment are returned as rewards used
to determine the attacker agent’s next action. All of the RL-based interactions are used to continuously
improve its strategy. With the environment, the attacker agent to perform a variety of behaviors,
including local and remote attacks, network connection attempts, and more.

Table 5 shows the action space of the CyberBattleSim environment. It consists of three main action
spaces to select effective actions. Table 6 shows the types of actions in the “ToyCTF Alpha”. In this
scenario, the agent distinguishes between local and remote attacks to consider strategies for specific
states and target nodes. Through strategic planning, the agent performs effective actions in a given
scenario, and the success of these actions depends on the state of the agent.

Table 5: Action space in CyberBattleSim

Action space Required information for execution

Local vulnerability Source node × local vulnerability to exploit
Remote vulnerability Source node × target node × remote vulnerability to exploit
Connect Source node × target node × credential index from cache

Table 6: Attack types in ToyCTF Alpha scenario

Attack type ToyCTF Alpha scenario

Local attack PhishingVulnerablity

(Continued)
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Table 6 (continued)

Attack type ToyCTF Alpha scenario

MisconfiguredPermission
PrivilegedOperationsExposure

Remote attack ScanPageContent
ScanPageSource
StrongAuthRequirement
ExposedGitHistory
MisconfiguredAccessControl
DirectoryTraversal
InsecureBlobStorage
InsecureAPIEndpoint
UnpatchedSSHService

As shown in Table 7, the state space consists of a combination of observation space and node
information, including information collected by the agent during an episode. According to the state
space, the agent continuously adapts its policy to select the optimal action at a particular state in the
scenario. The reward is important for the agent to determine its actions. When an agent performs a
valid action, it receives a positive reward, while performing an invalid action in a negative reward. The
rewards are determined by the CyberBattleSim environment and the CVSS score, which evaluates the
vulnerability of the node. We provide a more precise and detailed assessment of node vulnerabilities,
resulting in more effective rewards. For invalid actions, a penalty cost derived from the CVSS score is
applied, motivating the agent to avoid invalid actions. Thus, RL-based cyber-attack strategies enable
agents to effectively respond to diverse cybersecurity threats and play an important role in developing
autonomous learning abilities in realistic environments.

Table 7: State space in CyberBattleSim

No. Observation components Node info components

1 Discovered node count Tried at node
2 Owned node count Active node properties
3 Discovered not owned node count Active node age
4 Discovered ports sliding None
5 Discovered node properties sliding None

4.2 Optimizing Attack Strategies Based on CVSS
The RL in the CyberBattleSim environment is to motivate the agent to efficiently achieve a given

goal based on rewards. CyberBattleSim’s dynamic and interactive environment allows the RL agent
to continuously adapt its strategies in response to evolving threats, thus optimizing attack strategies
more effectively. In this paper, we propose the CVSS-based reward method to learn the optimal path
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in which an agent needs to maximize reward in each state. We also incorporate a more detailed
analysis of vulnerability severity and complexity, allowing the agent to prioritize and optimize attack
strategies more effectively. In particular, the optimal path can enable the attacking agent to prioritize
targeting specific vulnerable nodes in cyber-attacks to optimize the penetration process. Fig. 4 shows
the optimal paths discovered by the agent in the learning process. The agent follows the optimal policy
represented by the red path, starting from the ‘Client’ node and sequentially exploring the ‘Website’,
‘Sharepoint’, and ‘AzureResourceManager’ nodes. The decision at each step reflects a strategy that
prioritizes attacking the nodes posing the highest threat based on their CVSS scores. The value of
each node is assigned weights to optimize the agent’s performance and stabilize the learning process.

Figure 4: Optimal attack strategy in ToyCTF Alpha

In the ‘ToyCTF’, the cost has a consistent value of 1 for all local and remote attacks, and the range
of negative rewards consists of values between 0 and −50 [11]. The large range of negative rewards
accumulates over time steps, limiting the ability to learn optimal attack strategies. In the absence of a
negative reward, there is a lack of a baseline to evaluate the validity of agent actions. If the negative
rewards range from −50 to 0, it can slow down the calculation or increase the compensation variance,
potentially disrupting the learning process. To solve this problem, we create the ‘ToyCTF Alpha’, and
the scenario involves the value and cost to increase the stability of the learning process and to improve
the learning performance of the agent. In addition, the CVSS-based reward method enhances learning
accuracy for security vulnerability criticality and prioritizes attacking nodes posing the highest threat.
Therefore, the agent can discover optimal policies within the simulated environment more rapidly and
select the most appropriate action in each situation, enabling it to make decisions to achieve strategic
goals in the cyber environment.
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5 Experimental Result and Analysis

In this section, we validate the effectiveness of the above-proposed methods and present a
comparative analysis of training performance using RL-based off-policy (Q-Learning, DQN, and
DDQN) and on-policy (REINFORCE, A2C, and PPO) methods on the proposed scenarios (‘ToyCTF
Alpha’, ‘ToyCTF Alpha’ with CVSS Reward). The comparative result and analysis also include a
moving average graph of the cumulative reward, the time step at the end of the episode, and the success
rate. The success rate is a ratio of valid actions to the number of steps performed by the agent in an
episode, and it is critical to the comparative analysis since it is directly related to the accuracy of
the attack strategies configured by the RL. We also present tabulated average values of the success
rate and calculate the percentage improvement. In addition, since the performance of the RL-based
methods can vary depending on the environment, we analyzed the learning results to find algorithms
with high applicability. Through RL-based methods analysis based on policy update methods, our goal
is to further validate the proposed scenario and find a learning method that can be applied efficiently
within the cybersecurity environment.

5.1 Case of Scenario without CVSS Reward
In this section, we aim to demonstrate the effectiveness of the newly defined ‘ToyCTF Alpha’

that was proposed by incorporating the vulnerability assessment method. In Fig. 5, experimental
results present a graph of the cumulative rewards for the ‘ToyCTF’, as provided by CyberBattleSim.
REINFORCE, A2C, and DQN can maximize rewards for the optimal policy. In contrast, Q-Learning,
DDQN, and PPO produced low reward values.

Figure 5: Moving average of cumulative reward in ToyCTF

Fig. 6 shows the number of steps at the end of the episode and the success rate in ‘ToyCTF’. In
this result, REINFORCE, A2C, and DQN showed a gradual decrease in the number of steps, which
means that the RL-based model is stabilizing during the learning process. In contrast, the number of
steps Q-Learning, DDQN, and PPO in the success rate graph decreases due to the absence of penalty
rewards as explained in the previous Section 4.2. For that reason, the on-policy algorithm fails to learn
a policy to avoid erroneous actions.

As shown in Fig. 7, a graph of the cumulative reward for the ‘ToyCTF Alpha’, proposed by our
paper, shows a high reward value for the on-policy algorithms. In contrast, the off-policy algorithms
returned low reward values. In particular, the off-policy-based DQN seems to have underperformed
since the scenario of giving 0 as a penalty reward did not provide clear guidance for evaluating the
validity of actions. However, both Q-Learning and DDQN are more stable in convergence compared



16 CMES, 2024

to the previous experiments. In contrast, the on-policy algorithms maintained stable performance
through the effective current policy. In particular, the PPO in the ‘ToyCTF Alpha’ demonstrates
remarkable experimental performance when compared to the previous ‘ToyCTF’.

Figure 6: Moving average of steps and success rate in ToyCTF

Figure 7: Moving average of cumulative reward in ToyCTF Alpha

In Fig. 8, the result shows the number of steps at the end of the episode and the success rate in
‘ToyCTF Alpha’. Similar to the ‘ToyCTF’ scenario, the penalty rewards at 0 led to instability in the
learning process of off-policy algorithms such as REINFORCE and PPO. Although REINFORCE
achieved the highest reward value, it performed less than A2C in both the number of steps and the
success rate. It appears that REINFORCE owns fewer critical nodes in the process of achieving the
goal. The number of steps performed gradually increased for the PPO algorithm, accompanied by a
high success rate. As for A2C, lower step values and stable convergence contributed to an improved
success rate compared to the previous iteration.

In general, on-policy RL methods demonstrate high rewards and success rates by selecting actions
based on the current policy and receiving immediate feedback on dynamic changes in the environment.
This approach is excellent in environments characterized by frequent changes and high complexity. In
contrast, off-policy RL methods exhibit lower rewards and success rates. These separate the target
policy from the behavior policy, utilizing diverse experiential information to learn policies. However,
this approach is less efficient in environments with significant variability, leading to slower convergence
rates and difficulties in achieving the optimal policy. Therefore, ‘ToyCTF Alpha’ provides favorable
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conditions for the on-policy approach, and it can be seen that redefining node values has had a positive
impact on the agent’s policy.

Figure 8: Moving average of steps and success rate in ToyCTF Alpha

5.2 Case of Scenario with CVSS Reward
In this section, we analyze the impact of the proposed CVSS reward methods on the learning

efficiency of the RLs. Fig. 9 presents the cumulative reward for ‘ToyCTF Alpha’ based on the CVSS
reward. While on-policy RLs demonstrated quick convergence in the initial stages, they ultimately
achieved lower rewards compared to the off-policy-based DQN. This can be possibly attributed to
on-policy algorithms relying on the current policy, leading to being trapped in local optima. However,
the performance is expected to gradually improve due to the continuous upward trend. In addition,
DQN and Q-Learning can also improve performance compared to the prior results without CVSS
rewards. Q-Learning also shows a more stable learning curve although it has a lower reward value. In
particular, DQN demonstrated a pattern of converging to the highest reward value.

Figure 9: Moving average of cumulative reward in ToyCTF Alpha with CVSS reward

Fig. 10 presents a graph of the step and success rate for ‘ToyCTF Alpha’ with CVSS reward. In
this result, the off-policy RLs showed a high number of steps and gradually converged to a low value,
but A2C and PPO immediately updated the policy using the performed trajectory and converged to
a lower number of steps. However, REINFORCE showed an unstable graph to be compared with



18 CMES, 2024

the previous experiment. This instability is likely due to the increased variance in rewards after the
adoption of penalty rewards. Overall, the success rate of the RLs improved, which indicates that the
adoption of CVSS rewards contributed to the generation of efficient attack strategies by the agents.
To be compared with the prior experiments, DQN generally returned the highest cumulative reward
even though its success rate was lower than the other RLs. This is attributed to a significant portion of
penalty rewards returning zero, which means that the scaling of penalty rewards could be an important
factor in improving learning performance. In our experiments, we observed that the on-policy RLS
performed well in both scenarios, with A2C exhibiting the highest reward and success rate.

Figure 10: Moving average of steps and success rate in ToyCTF Alpha with CVSS reward

The success rate is directly linked to the accuracy of the attack techniques generated by the RLs.
Fig. 11 is a graph comparing the success rate of the A2C, which outperformed in all scenarios. It offers
an intuitive understanding of the performance improvement following the proposed methods such as
the ‘ToyCTF Alpha’ and CVSS rewards. The success rate is higher in the ‘ToyCTF Alpha’ compared
to the ToyCTF, with consistent increases. With CVSS rewards in the ‘ToyCTF Alpha’, significant
improvements in learning performance were observed. When comparing the prior value of the moving
average graph, the success rate percentage increased by 16.77%. The overall learning performance of
the RLs improved in the scenario with CVSS rewards, demonstrating that the CVSS reward method
effectively enhanced the training performance of the RLs in the cybersecurity simulation environment.

Figure 11: Moving average of the success rate of the A2C in both ToyCTF and ToyCTF Alpha
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Table 8 presents the average success rate for 40 episodes extracted from each scenario. When
analyzing the average values from episodes 161 to 200 for the ToyCTF and ToyCTF Alpha. In
the ‘ToyCTF Alpha’ scenario, the success rate of Q-Learning and DQN decreased by 0.23% and
1.95 percentage points, respectively, representing a decrease of 23.00% and 36.38% compared to
the ToyCTF. In contrast, DDQN, REINFORCE, and A2C increased by 0.68%, 1.67%, and 3.52
percentage points, respectively, representing to improvements of 64.76%, 40.83%, and 68.64% over
the ‘ToyCTF’. In particular, PPO, which did not learn in the ‘ToyCTF’ increased by 7.17 percentage
points, with a remarkable growth rate of 853.57% compared to the ToyCTF. These results indicate
improved training stability and performance in the ‘ToyCTF Alpha’. When comparing the ‘ToyCTF
Alpha’ with the addition of CVSS rewards to the basic ‘ToyCTF Alpha’, we examined the average
success rate from episodes 161 to 200. Overall, most algorithms exhibited an increase in success
rates. Compared to ‘ToyCTF Alpha’, Q-Learning improved by 9.91 percentage points, DQN by
3.31 percentage points, and DDQN by 1.63 percentage points. The results show increases in success
rate of 1287.01%, 97.07%, and 94.21%, respectively, over the previous scenario. The off-policy RLs,
which showed low success rates in ‘ToyCTF Alpha’, demonstrated improvement with CVSS rewards.
The REINFORCE algorithm decreased by 0.55 percentage points to 9.55%, which is relatively high
compared to the ‘ToyCTF’ scenario. The success rates of A2C and PPO increased by approximately
1.52%p and 1.28 percentage points, respectively, resulting in improvements of 15.98% and 17.53%
over the previous scenario. Finally, the scenario that incorporated all proposed methods based on
A2C increased from 5.13% to 10.17%, an increase of about 98.24% compared to ‘ToyCTF’.

Table 8: Average success rate per 40 episodes in both ToyCTF and ToyCTF Alpha

Scenario Algorithms Episodes

40 80 120 160 200

ToyCTF
without CVSS
reward

Q-Learning 1.26 1.04 1.06 1.05 1.00
DQN 3.72 5.36 5.86 5.37 5.36
DDQN 1.19 1.00 0.99 1.18 1.05
REINFORCE 3.79 3.62 4.12 4.57 4.09
A2C 4.97 5.27 5.06 5.01 5.13
PPO 1.42 0.77 0.77 0.80 0.84

ToyCTF Alpha
without CVSS
reward

Q-Learning 1.98 0.73 0.74 0.80 0.77
DQN 3.25 2.92 2.48 2.54 3.41
DDQN 2.15 1.18 1.74 1.70 1.73
REINFORCE 5.26 4.89 5.27 5.70 5.76
A2C 7.83 8.71 9.80 7.90 8.65
PPO 6.94 7.87 8.38 8.02 8.01

ToyCTF Alpha
with CVSS
reward

Q-Learning 6.57 10.34 9.19 7.17 10.68
DQN 5.28 6.12 6.12 7.12 6.72
DDQN 4.06 3.16 3.09 3.03 3.36
REINFORCE 5.54 5.02 5.80 5.50 5.21
A2C 10.18 10.38 9.65 10.12 10.17
PPO 8.64 7.88 8.36 8.14 9.29
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In conclusion, the performance of DQN and Q-Learning has significantly improved in an envi-
ronment that reflects CVSS Rewards. Off-policy methods such as DQN and Q-Learning learn optimal
policies by repeatedly training on various state-action pairs stored in a replay buffer, suggesting that
the improved reward signals have contributed to their learning process. This explicitly demonstrates
that the improved reward system via CVSS has captured the complexity of the environment, thus
enhancing learning stability. The proposed method, which is based on a scenario that defines the
information and importance of nodes can be used not only in the ‘ToyCTF Alpha’ scenario but also
can be utilized in other reinforcement learning-based cyber training environments and cyber ranges.
This provides significant results for the future selection and development of RL models and algorithms
in cybersecurity.

6 Conclusion

In this paper, we proposed a new approach to address the rapidly changing cyber threat envi-
ronment by leveraging CyberBattleSim, which is an RL-based cyber-attack-defense simulation tool.
We aimed to enhance security by developing our proposed scenario, ToyCTF Alpha’, an extension
of the original ‘ToyCTF’ based on the CyberBattleSim. Furthermore, by applying the CVSS-based
vulnerability assessment method and intricately designing the attacker’s penetration process, we have
bridged the gap with reality and enhanced realism. These enhanced assessment methods are instru-
mental in assisting organizations to more effectively prioritize actual risk assessment and vulnerability
management. We validated the effectiveness of the developed system by conducting experiments with
RL-based off-policy algorithms such as Q-Learning, DQN, and DDQN and RL-based on-policy
algorithms such as REINFORCE, PPO, and A2C, and we also compared and analyzed the results
within ToyCTF and ToyCTF Alpha environmental scenarios. The experimental results demonstrated
an overall improvement in the learning stability of the proposed methods. In particular, there was
a significant increase in both the reward and success rate for Q-Learning and PPO that exhibited
low learning effectiveness in ‘ToyCTF’. In each scenario, the A2C outperformed the other RLs.
Furthermore, the CVSS-based reward method improves the success rate of A2C on ToyCTF Alpha
improved to 10.17%, representing a 98.24% increase compared to ‘ToyCTF’. These findings suggest
that focusing on specific vulnerable nodes has contributed to the performance enhancement in the
cyber-attack scenario. The results of the performance improvement and algorithm analysis also show
that the proposed methods in this research have a positive impact on enhancing learning efficiency
and strategic planning capabilities of RL agents responding to cybersecurity challenges. Additionally,
the vulnerability assessment method and CVSS-based reward can contribute to the design of reward
systems for cyber-attack-defense simulation environments based on RL in the future.

In future work, we aim to improve the learning process of RL algorithms within CyberBattleSim
and other RL-based cyber training environments. Specifically, our objective is to refine the environ-
ment to facilitate the derivation of more effective attack strategies by the agents. Furthermore, we
plan to focus on developing multi-agent-based cyber-attack and defense scenarios aiming to develop
an intelligent cyber-attack defense system capable of handling complex and dynamic real-world cyber-
attack-defense scenarios.
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