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ABSTRACT

Machine learning (ML) is increasingly applied for medical image processing with appropriate learning paradigms.
These applications include analyzing images of various organs, such as the brain, lung, eye, etc., to identify specific
flaws/diseases for diagnosis. The primary concern of ML applications is the precise selection of flexible image
features for pattern detection and region classification. Most of the extracted image features are irrelevant and
lead to an increase in computation time. Therefore, this article uses an analytical learning paradigm to design a
Congruent Feature Selection Method to select the most relevant image features. This process trains the learning
paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.
The similarity between the pixels over the various distribution patterns with high indexes is recommended for
disease diagnosis. Later, the correlation based on intensity and distribution is analyzed to improve the feature
selection congruency. Therefore, the more congruent pixels are sorted in the descending order of the selection,
which identifies better regions than the distribution. Now, the learning paradigm is trained using intensity and
region-based similarity to maximize the chances of selection. Therefore, the probability of feature selection,
regardless of the textures and medical image patterns, is improved. This process enhances the performance of ML
applications for different medical image processing. The proposed method improves the accuracy, precision, and
training rate by 13.19%, 10.69%, and 11.06%, respectively, compared to other models for the selected dataset. The
mean error and selection time is also reduced by 12.56% and 13.56%, respectively, compared to the same models
and dataset.
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1 Introduction

Machine learning (ML) is a subset of artificial intelligence that enables machines to learn from
data without being explicitly programmed, making decisions based on prior learning. Computer vision
(CV) is a specific domain of ML that teaches machines to interpret and understand visual data from
the world around them. It involves using algorithms and mathematical models to analyze and interpret
images or videos and then make decisions or take actions based on that analysis [1]. CV aims to enable
computers to see and interpret the visual world as humans do and to use that understanding to perform
a wide range of tasks, from object recognition and tracking to autonomous navigation and decision-
making. In medical imaging, ML algorithms extract relevant features and characteristics from images
to support medical diagnosis and treatment processes [2,3]. These algorithms help reduce errors in
medical image processing, thereby improving the accuracy of the diagnosis [4,5].

Medical images are complex and challenging to interpret, and even experienced radiologists can
make errors or overlook important details. ML algorithms are used to automate various tasks in
medical image processing, such as image segmentation and feature extraction, helping to reduce human
error and improve analysis accuracy [6]. These algorithms are trained to recognize and segment-
specific structures or patterns within medical images, such as tumours, blood vessels, or regions of
inflammation. They then analyze these structures to extract quantitative features—such as size, shape,
texture, and intensity used to support medical diagnosis and treatment planning [7,8]. Medical images
are typically captured using specialized imaging modalities such as X-rays, computed tomography
(CT), magnetic resonance imaging, ultrasound, and positron emission tomography, which produce
detailed images of specific organs or structures within the body [9]. Applying ML algorithms reduces
the time and effort required for image analysis [10]. These algorithms enhance accuracy, efficiency,
objectivity, speed, and treatment planning [11].

Feature extraction is a process in ML that involves identifying and extracting important features
or patterns from an image relevant to a specific task, application, or object [12]. These features may
include colour, texture, shape, or other visual characteristics of the image. During feature extraction,
a region of interest (ROI) is typically identified and isolated from the rest of the image [13]. This
ROI contains the specific object or pattern of interest, such as a tumour or blood vessel in a medical
image [14]. Once the ROI is identified, feature extraction algorithms analyze its visual characteristics
to extract relevant features or patterns [15]. Feature extraction techniques can be applied to high-
resolution and low-resolution images, but their effectiveness depends on the image’s quality and
complexity [16]. Generative algorithms are also used for image super-resolution, where low-resolution
medical images are upscaled to higher resolution using a generative model. These algorithms have been
used to generate synthetic medical images for training deep learning (DL) models, augmenting small
datasets and improving model performance. In generative algorithms, feature extraction techniques are
applied to extract relevant and informative features from images, which are then used to generate new
data. Feature extraction reduces latency in classification, segmentation, and identification processes,
enhancing detection accuracy and efficiency [17].

Feature selection is a pre-processing technique that involves selecting a subset of features from a
larger set of available features in an image or dataset [18]. Feature selection aims to identify the most
important and informative features related to specific tasks, such as image classification or object
detection. This process helps reduce the data’s dimensionality, improving the analysis’s efficiency and
accuracy [19]. Several feature selection methods exist, including statistical tests, correlation analysis,
and ML algorithms [20]. These methods evaluate the importance of different features based on their
relevance to the task at hand, their correlation with other features, and their ability to enhance
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the performance of an ML model [21]. Therefore, feature selection is an important technique in
medical image processing, as it reduces the number of input variables and enhances the effectiveness
and performance of the systems [22]. This process demonstrates that precise feature selection in CV
applications is a critical task that directly impacts pattern detection and region classification. There is
now a need for a more accurate and flexible feature selection method that can identify relevant patterns
across different medical image datasets. Therefore, a Congruent Feature Selection Method (CFSM)
using an analytical learning paradigm is proposed to enhance feature selection for CV applications.
The CFSM algorithm employs a learning paradigm that computes correlation and similarity-related
features to identify pixel distributions and intensities. These distribution patterns are then used to
detect diseases with maximum recognition accuracy.

The following objectives are established for the implementation of the proposed method’s contri-
bution and novelty:

1. Designing the Congruent Feature Selection Method (CFSM) for maximizing the accuracy of
processing medical images, regardless of intensity and pixel distributions.

2. Developing a pattern distribution and classification process for congruency verification,
enhancing feature selection precision.

3. Validating the performance of the proposed method through experimental analysis using
various medical images and regions.

The research paper is structured into six main sections. Section 1 provides a brief overview of
the research problem and sets the stage for the rest of the paper. Section 2 reviews existing literature
and research related to the problem. Section 3 presents the proposed CFSM to address these issues.
Section 4 outlines the experimental analysis conducted to evaluate the proposed method, while
Section 5 compares the study’s findings with those of other state-of-the-art models. Finally, Section 6
summarizes the conclusions of the study.

2 Related Works
2.1 Feature Selection in Medical Image Classification

Sun et al. [23] developed an Adaptive Feature Selection-guided Deep Forest model to detect and
classify COVID-19 infections. The model extracted location-specific features from CT images and
employed a deep forest approach to determine a high-level representation. The proposed feature
selection method reduced feature redundancy, which was adaptively integrated into the model.
However, this method consumed significant computation time when analyzing large real-time datasets.
Similarly, in [24], authors proposed an IoT-based optimization-driven deep belief networks model
that leverages the Mayfly optimization algorithm for feature selection, aiming to achieve precise and
reliable classifications that assist clinicians in early disease detection and reduce diagnostic errors. This
propsed model incorporates advanced feature extraction and selection methods to refine classification
outcomes. A novel approach for Multi-Objective Feature Selection using a Genetic Algorithm and a
3-Dimensional Compass was introduced for binary medical classification [25]. The proposed method
outperformed other competitive Multi-Objective Feature Selection methods. These methods must
identify the essential medical data features and patterns from the images. A genetic model was
employed to reduce latency in the classification process; however, it incurred high computational costs.
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2.2 Advances in Segmentation and Disease Detection
Yue et al. [26] designed an automated polyp segmentation method called LFSRNet to segment

polyps in colonoscopy images accurately. The proposed model architecture includes a lesion-aware
feature refinement module to perform the feature selection process. This module detects the charac-
teristics and variables essential for disease detection and prediction, decoding the data hidden within
the images. The method demonstrated better generalization than competing approaches when tested
on other datasets. A novel feature selection method utilizing a wrapper technique and binary bat
algorithm was also developed for classifying diabetic retinopathy [27]. The binary bat algorithm
selected feasible information and features extracted by the EfficientNet and DenseNet models.
An equilibrium optimizer was employed to classify the specific types of features based on certain
conditions and functions. This study demonstrated that DL techniques and wrapper methods could
provide an accurate and cost-effective approach to diagnosing diabetic retinopathy. In [28], the authors
proposed an intelligent approach to diagnosing colorectal cancer using a group teaching optimization
algorithm for feature selection and a multilayer artificial neural network to classify images. The
experiments demonstrated that the proposed method outperformed classification methods such as
3-layer convolutional neural network (CNN), Random Forest, and CNN DropBlock.

2.3 Deep Learning in Medical Image Fusion and Classification
Artificial intelligence and the Internet of Things in medical imaging for early disease detection

and patient monitoring have revealed promising solutions. Therefore, Khan et al. [29] developed a new
feature selection method for computer-aided gastrointestinal disease analysis using DL feature fusion
and selection. The proposed system utilized a VGG16 architecture to extract crucial features, fused
using an array-based technique. The best individual was selected using particle swarm optimization
with a mean value-based fitness function. While combining the radiomics framework with DL
networks in medical image classification has shown promise, it can be hindered by challenges such
as overfitting and ineffective feature selection. To address these challenges, a new approach called
Deep Semantic Segmentation Feature-based Radiomics (DSFR) has been introduced [30]. The DSFR
framework includes feature extraction and selection components that utilize a novel feature similarity
adaptation algorithm; however, the system struggles with scalability and reliability. To address these
limitations, a novel deep multi-cascade fusion method with a classifier-based feature extraction
approach for multi-modal medical images was proposed in [31]. Multi-modal images were utilized
to extract relevant features, and a Gaussian high-pass filtering technique was implemented to identify
these features and their corresponding maps from the images.

2.4 Novel Architectures for Improved Medical Image Analysis
Li et al. [32] proposed a novel framework called the dual-branch feature-enhanced network

(DFENet) for multi-modal medical image fusion. The convolutional neural network algorithm was
implemented to detect key patterns and features from the input medical images. This method was
based on a decoder-encoder network, which trained on datasets collected from low-resolution images.
The DFENet method maximized the accuracy of image classification and identification processes,
enhancing diagnostic efficiency. Additionally, a hybrid domain feature learning model for medical
image classification was suggested, combining global features in the frequency domain with local
features in the spatial domain [33]. This proposed module utilized a windowed fast Fourier convolution
pyramid. The authors integrated ResNet, FPN, and an attention mechanism to build the module and
employed a genetic algorithm for automatic optimization.
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In [34], The authors proposed three variants of an efficient Feature Selection Ensemble Learning
approach for medical image classification systems. This method accurately estimated the content
and patterns of medical images, reducing energy consumption during computation. Additionally,
spatial and temporal features were detected within the images. Peng et al. [35] proposed a new
method called MShNet for medical image segmentation, which combined multi-scale features with
an h-network architecture. The network framework included an encoder, two decoders, and an
enhanced down-sampling module integrated into the encoder. A fusion convolutional pyramid pooling
module was also designed for multi-scale feature fusion. In [36], The authors introduced a similar
segmentation model called the encoder-decoder structured 2D model (DGFAU-Net), which addresses
the challenges of variable lesion areas and complex shapes in medical images by leveraging DenseNet
and AtrousCNN networks in the encoder. The decoder comprises two modules: GFAU and PPASE.
A hybrid algorithm for multi-modal medical image fusion was also introduced to combine pixel-level
and feature-level information [37]. The proposed method utilized a Discrete Wavelet Transform for
pixel-level fusion and employed a curvelet transform combined with Principal Component Analysis
for high-frequency coefficient fusion. Feature-level fusion was achieved by extracting various features
from both coarse and detailed sub-bands.

2.5 Energy-Efficient and Scalable Medical Image Analysis Techniques
Furthermore, a pyramidal feature multi-distillation network was proposed for super-resolution

reconstruction in medical imaging systems [38]. The introduced network is commonly utilized in
intelligent healthcare systems. Combining pyramidal construction with residual blocks provides
valuable information for the classification process. This network maximizes the quality and feasibility
of the diagnostic process while enhancing the performance and robustness of various healthcare
systems. In [39], the authors presented an energy-efficient framework called ELMAGIC for medical
image analysis. This study aimed to reduce computational resource usage while maintaining high
performance by leveraging the Forward-Forward Algorithm, along with knowledge distillation and
iterative magnitude pruning. The ELMAGIC model demonstrated effective classification and image
generation, achieving an F1 score of 87% when tested on the ODIR5K medical image dataset. This
approach promotes sustainable medical data analysis with optimized, efficient neural networks.

In [40], the integration of colour deconvolution, self-attention mechanisms, and fusion techniques
is analyzed to improve histopathological image recognition. DecT blends multi-modal images through
residual connections, enhancing the model’s ability to capture features and compensating for data loss
during conversion. The results achieved an accuracy of 93% and an F1 score of 93.8%, although these
metrics may vary across different datasets. However, varying datasets and staining sensitivity could
hinder generalization. The authors from [41] investigated the effectiveness of traditional ML and DL
methods for image classification. Initially, they implemented a Support Vector Machine on a small
dataset, achieving an accuracy of 93%; however, they noted limitations due to the dataset’s size. After
expanding the dataset through data augmentation, Support Vector Machine accuracy decreased to
82%. They then applied CNNs, achieving a higher accuracy of 93.57%, demonstrating CNN’s superior
capability in feature learning and classification accuracy compared to traditional methods. This study
underscores the scalability and accuracy benefits of deep learning in image classification tasks.

In [42], the authors developed an advanced artificial intelligence model called RDAG U-Net for
detecting SARS-CoV-2 pneumonia lesions in CT scans. This model extends the traditional U-Net
by integrating Residual Blocks, Dense Blocks, and Attention Gates to improve accuracy and reduce
computational time. Trained on an augmented dataset of 10,560 CT images, RDAG U-Net achieved
a lesion recognition accuracy of 93.29% and reduced computational time by 45% compared to other
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models. It outperformed Attention U-Net and Attention Res U-Net, especially in handling diverse
lesion types, and provides both 2D and 3D lesion visualizations, enhancing clinical interpretability
for COVID-19 diagnosis. Furthermore, a CNN model was employed to detect brain tumors using
magnetic resonance imaging [43]. The authors enhanced classification accuracy by optimizing CNN
architectures through hyperparameter tuning and advanced preprocessing techniques. The best-
performing model achieved 97.5% accuracy, 99.2% sensitivity, and 97.5% precision, demonstrating
robustness across varied datasets. Compared to similar studies, this model balanced high diagnostic
precision with computational efficiency, making it suitable for clinical applications. The model’s
reliable detection rates highlight its potential to support timely, accurate diagnoses and contribute
to improved outcomes in brain tumor treatment.

Kanya Kumari et al. [44] suggested the Weighted Adaptive Binary Teaching Learning Based
Optimization (WA-BTLBO) for feature selection to classify mammogram medical images in breast
cancer detection. Several classifiers train and evaluate the chosen features, including XGBoost,
K-Nearest Neighbor, Random Forest, Artificial Neural Networks, and Support Vector Machines.
The research uses medical pictures from mammograms that are accessible to the public via the
Mammographic Image Analysis Society. The findings demonstrate that WA-BTLBO with XGBoost
classifier is better than other feature selection strategies, such as Binary TLBO (BTLBO) and Particle
Swarm Optimization, to categorize MIAS mammography pictures as normal or abnormal. To extend
patients’ lives, this study aids physiologists and radiologists in detecting breast cancer in women.
Kutluer et al. [45] proposed the ResNet-50, GoogLeNet, InceptionV3, and MobilNetV2 to classify
breast tumours. The suggested feature selection deep learning approaches outperformed the majority
of the findings in the literature with classification efficiencies of 98.89% on the local binary class dataset
and 92.17% on the BACH dataset. The results on both datasets show that the suggested approaches
are quite effective in detecting and classifying the type of malignant tissue.

Jafari et al. [46] recommended the CNN-Based Approach with Feature Selection (CNN-FS) for
Breast Cancer Detection in Mammography Images. The results show that the NN-based classifier
accomplishes a remarkable 92% accuracy on the RSNA dataset. The enhanced performance is
attributable, in part, to the newly introduced dataset, which comprises two perspectives and other
variables like age. In particular, the author showed that the suggested algorithm was better in terms
of sensitivity and accuracy when compared to state-of-the-art approaches. The author reaches an
accuracy of 96% for the DDSM dataset and as high as 94.5 per cent for the MIAS dataset. The
technology outperforms previous algorithms and correctly diagnoses breast lesions, as shown by these
data. Shetty et al. [47] presented the Content-Based Medical Image Retrieval (CBMIR). Aiming to
improve CBMIR’s accuracy and efficiency, this strategy leverages deep learning and sophisticated
optimization techniques. Train and test are the two main components of the suggested model. All
pre-processing, feature extraction and best feature selection happen during training. The database
pictures undergo pre-processing employing a Gaussian filter, contrast-limited adaptive Histogram
Equalization, and Gaussian smoothing. Following this, the VGG19 and the Inception V3 CNN models
extract the deep features from the database photos. Combine the retrieved characteristics and choose
the best ones. The author uses the brand-new Coyote-Moth Optimization Algorithm to make these
choices. This model is an intellectual synthesis of the well-known Moth-flame optimization and the
coyote optimization algorithm, which eliminate lesions and outperform previous methods.

The literature analysis concludes that medical image analysis necessitates precise feature selection
to prevent errors and enhance diagnostic accuracy. Consequently, an input image with varying textures
and regions requires thorough and consistent analysis for effective disease identification and treatment
planning. The methods discussed primarily focus on single images and limited feature analyses to
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improve congruency. They analyze distribution based on pixel concentration to mitigate errors related
to disease diagnosis and intensity congruency. In contrast, the proposed method comprehensively
identifies features, pixel representations, and intensities.

3 Proposed Congruent Feature Selection Method

Machine learning (ML) is frequently used in medical image processing, facilitating effective
learning and analysis for diagnosing various conditions, including those related to the brain, lungs,
and eyes. A crucial aspect of successful ML implementation is accurately selecting resilient image
features for effective exemplar revelation and region categorization. This article employs an analytical
learning paradigm to design a CFSM. Feature selection reduces the number of input variables in the
image processing pipeline when developing forecasting models. This reduction helps minimize the
analytical cost of sculpting and, in some cases, enhances model performance. Texture analysis involves
characterizing regions in an image based on their texture content, aiming to quantify perceptual
qualities described by terms such as rough, smooth, silky, or bumpy as a function of spatial variations
in pixel intensities. Region detection is the process of grouping and labelling all pixels corresponding
to an object, denoting that they belong to a specific region. Pixels are assigned to regions using
evaluations that distinguish them from the rest of the image. ML is a field dedicated to understanding
and developing methods that leverage data to enhance performance on specific tasks. It is considered a
part of artificial intelligence, particularly in selecting images with high pixel distribution. The process
flow of the proposed method is illustrated in Fig. 1.

Figure 1: Proposed methods’ process flow

The CFSM process begins with input medical images, from which relevant features like intensity
and texture are extracted. These features undergo pixel distribution analysis to understand how various
image characteristics are spread out, followed by correlation analysis to identify relationships between
the features. Based on this, key features are selected, reducing data complexity while preserving essen-
tial information. These selected features are then fed into a learning model for intensity classification,
and the method’s effectiveness is assessed through performance evaluation metrics to ensure accurate
and efficient classification results.

The analysis begins with observing a medical image, leading to feature extraction and texture
analysis. These techniques identify and extract picture data features and textural qualities. After
extracting features, the learning system undergoes training using pixel resemblance and matching-
based features across textural values and pixel distributions. This training phase helps the model to
identify picture data patterns and linkages for analysis and decision-making. After learning, features
and textures are used to define the medical image’s intensity and texture-based pixel distribution.
This step delineates regions of the image and correlations by examining the spatial variation in pixel
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brightness. Correlation in the medical processing of images helps understand and analyze fresh medical
images using database information and trends. Medical images can be analyzed using the suggested
approach to extract features, which include shapes, textures, and patterns. These features are vital for
diagnosis and classification. Typically, the stored images are pre-processed or stored as an intermediate
step in the pipeline. These images may have undergone noise reduction, augmentation, or feature
extraction and are preserved for further analysis or classification. Later model phases or validations
might refer to these images for assistance.

The correlation method compares the incoming image’s pixel distribution to database pictures.
This comparison helps diagnose diseases and detect anomalies by identifying images with similar
features and pixel distributions. The medical image is first analyzed to extract its features and textures,
then used to determine pixel distribution based on intensity and texture. This procedure trains the
learning exemplar using pixel similarity and matching-based characteristics over different textural
intensities and pixel distributions. Medical images are initially examined to extract features and
textures, which determine pixel distribution depending on intensity and texture. This stage trains
the learning example utilizing pixel resemblance and matching-based characteristics across textural
intensities and pixel dispersion. The collected features and textures determine the medical image’s pixel
dispersion following intensity and texture. The spatial variation in pixel brightness is analyzed to define
the image regions. The correlations between the pixels over the various distribution exemplars with
high directories are suggested for disease examination. Later, the matching, depending on the intensity
and distribution, is analyzed to improve the congruency in feature selection. Therefore, the more
congruent pixels are sorted in the descending order of the selection, which identifies better regions than
the distribution. Now, the learning paradigm is trained using ferocity and region-based correlation to
increase the chances of selection. The feasibility of feature selection was unconcerned with the textures,
and the medical image exemplar was enhanced. Therefore, this improves the consummation of ML
applications for different medical image processing. The medical image is used to determine its features
and has the method to extract the needed characteristics and textured features from the acquired
medical images. This output will be used in the learning paradigm to estimate similar images with
high pixel distribution and the same features. The feature extraction procedure estimates the number
of pixels in the image. It is also used to show off the different methods to determine the features of
the acquired medical images. The image is used in feature extraction to find the given images’ pixel
distribution. The methodologies that can be used to examine the given image’s characteristics and
enhance the pixel dispense are forecasted in this process. The learning paradigm will use this output
for future processes to determine the high-pixel dispensed images. The foremost process involves
extracting the features from the medical image for further procedures using the learning technique.
The process of extracting the features from the acquired medical image is explained by the following
Equation given below:

Y = G(wαA + GA) (1)

where Y is denoted as the process of extracting the features, G is denoted as the acquired medical
images, w is denoted as the process of extracting the textures of an image, α is represented as the
process of denoting the method to estimate the features in an image, and A is denoted as the process
of estimating the needed features for the upcoming procedures. The symbol G, as a variable in Eq. (1),
represents the acquired medical images, and the function G() is used to denote the acquired images in
the feature extraction process.

The function G() is applied to the acquired medical images to extract features and textures
necessary for further analysis and processing in the deep analytical algorithm used for processing
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the medical images. This will be given as the input to determine the pixel distribution of the acquired
medical image. These procedures use the deep analytical learning method to estimate the high pixel
distribution images. In this process, the dispensation of the pixels in images is determined; thus, the
correlation procedure will be done with this output. The pixel in an image is a sample of the original
image, whereas more specimens typically produce a more precise impersonation of the original image.
The pixel distribution will be used in the upcoming process of detecting similarity with highly similar
images. The dispensation of the pixel in an image is used to determine the stored images that match
similar features. The pixel distribution for feature extraction is presented in Fig. 2.

Figure 2: Feature extraction and pixel distribution in medical image analysis

A number of essential components and procedures are involved in the distribution extraction
process. Starting from the beginning, the input consists of acquired medical images, which are
represented by G. The images in question are subjected to feature extraction, in which pertinent
features are discovered and extracted. At the same time, a texture analysis is carried out to extract
information on the textural characteristics of the input photos. Following that, the feature estimating
process is carried out to estimate the features present in the photos subsequently. In the ensuing
steps, the feature selection process is carried out to ascertain the features required for the subsequent
procedures. Following identifying the features, the method known as pixel distribution is implemented.
The objective of this procedure is to ascertain the order of distribution of pixels inside the medical
photos that have been harvested. During the correlation phase, the output of the pixel distribution is
used as an input. This process involves correlating the pixel distribution with previously stored images
to detect comparable features.

A learning paradigm is utilized throughout these operations to improve the precision and
effectiveness of feature extraction and correlation. This deep analytical learning method helps refine
the correlation procedure by iteratively increasing the degree of matching of pixel dispersion between
the photos that have been acquired and the images that have been stored. This distribution of the
pixels in an image will be useful in upcoming processes to determine the intensity of an image (Fig. 2).
The deep analytical process is used in the pixel distribution to detect similar images with precise
intensity. The deep analytical learning paradigm is processed based on the output of the feature
extraction procedure from the acquired medical image. With the help of the learning technique, the
determined images are correlated, and then further procedures take place with its output. The process
of determining the pixel distribution of the image from the output of the feature extraction process is
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explained by the following equations given below:
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where G is denoted as the acquired medical images, G() is used to denote the acquired images in the
feature extraction process, X denotes the pixel distribution procedure, ϑ denotes the outcome of the
feature extraction procedure, Z is the outcome of the texture analysis process of an image, Q represents
the process of determining the number of pixels in an image, V shows the representation of an original
image, h is denoted as the outcome of the pixel distribution procedure, C represents the process done
by the learning paradigm to determine the pixel distribution, and ij is the precise pattern of medical
image processing.

Medical images are involved with the Gabor kernel at numerous scales and orientations to apply
the Gabor filter. This method captures image texture patterns. They are great for capturing texture
details at multiple scales and orientations. 2D Gabor filter equation:

Gabor (x, y; δ, θ , ϕ, σ , γ ) = e− x′2+γ ′2y′2
2σ2 × cos

(
2π

x′

δ
+ ϕ

)
(3b)

where x and y are the spatial coordinates, δ denotes the wavelength that can control the spatial
frequency, θ represents the orientation of the Gabor filter, ϕ defines the phase offset, and σ defines
the standard deviation that controls the spread of the gaussian envelope, and γ represents the spatial
aspect ratio that controls the ellipticity of the filter. The rotated coordinates of x′ and y′ are given by:

x′ = x cos (θ) + y sin (θ) (3c)

y′ = −x sin (θ) + y cos (θ) (3d)

Now, the correlation process is implied by the stored images. Similar images have the same features,
and the pixel distribution is figured out. Based on the intensity of an image, similar images are
identified. Local binary pattern (LBP) compares the intensity of a core pixel to its neighbours to record
local texture variations in photos. The study uses LBP to extract texture features from medical images
for analysis. The computationally efficient and noise-resistant LBP can analyze complicated medical
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images with complex textures and variations.

LBPP,Rad (xc, yc) =
p−1∑
p=0

s
(
Ip − Ic

) × 2p (4a)

where P represents the number of sampling points in the neighbourhood, Rad defines the radius of
the neighbourhood, Ip defines the intensity value of the pth neighbor. Ic defines the intensity value of
the central pixel. s (x) is the sign function, where returns 1 if x ≥ 0 and 0 otherwise.

Its simplicity and efficacy make it a popular texture feature extraction method. By using LBP
for texture-extracted features, medical image processing can improve texture analysis, feature repre-
sentation, and diagnostic image interpretation. The determined images are checked with the already
stored images, which have gone through the image processing technique with that given input. The
acquired images will be checked with the stored images to determine the correlated images with a
high pixel distribution. This process is done using the DL algorithm, which extracts the correlated
images based on the intensity of the images. The stored images have been processed through image
processing to acquire the high-featured images with precise intensity. The image, obtained from the
feature extraction process, is checked with the stored images to estimate an image’s matching features
and textures.
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)

B
(

Vi = 1
h

)
= ϑ

(
yj +

m∑
i=1

wij hj

)
∑

ij

R = (V1, V2, . . . , Vm, H1, H2, . . . , Hn)


wij = 
bi = 
yj = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4b)

where B denoted as the checking process, R is denoted as the correlation procedure with the outcome
of the pixel distribution procedure, Δ is denoted as the stored images, and y is denoted as the precise
outcome. The correlation process takes place with the outcome of the pixel distribution process to
gather similar images with matching features and textures. The similarity-checking procedure is done
depending on the intensity of the medical image. From this output, the selection of the imaging
procedure is made based on the intensity and texture of the image. Fig. 3 presents the correlation
based on different distributions.

Figure 3: Correlation-based on distributions
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The learning approach is trained using similarity and correlation-based features over different
textural intensities and pixel distributions. The similarity between the pixels over the various distri-
bution exemplars with high pixel distribution is recommended for disease recovery. After that, the
correlation based on intensity and pixel distribution is identified to enhance consistency in feature
selection (Fig. 3). The process of correlation implied by the stored images based on the results of the
pixel distribution procedure is explained by the following equations given below:

Δwij ← Δwij + γ ∗ [B
(

Hi = 1
Vj

)
× Vj − B

(
Hi = 1

V (m)

)
× Vj

(m)

ΔBj = ΔBj + γ × (Vj − Vj
(m)

)

ΔQi = ΔQi + γ ×
[

B
(

Hi = 1
V

)
− B

(
Hi = 1

V (m)

)]
w = w + γ × Δwij

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5)

D (V , h′, . . . , h′) =
(

j∏
m=0

G
(

h(m)

h(m+1)

))
G

(
h(m−1), h(B)

)
h(K)

i = 1
[(

h(m+1)
) = ϑ

(
b(m)

i + w(m+1)

i h(m+1)
)∀i

]
(
h(m), h(m+1)

)∞Q (∀i × G (h))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6)

where γ is denoted as the number of stored images, D is denoted as the similarities with the stored
images, K is denoted as the process done by the DL technique in the correlation procedure, and m is
represented as the outcome of the correlation process. Now, the congruency in the features is improved
based on the image region and pixel distribution; thus, it will be helpful in the feature selection process
based on the texture and intensity. Congruency is used to identify the significance of the determined
features based on the pixels distributed in the images. The pixel distribution process and the correlation
process implied by the stored images are done to enhance the consistency of an image without any
inaccuracy in the results. This will be helpful in the feature selection process for the acquired intensity
and the textures. The outcome of the correlation-based and region-based images helps improve the
congruency of the features.

The congruency enhancements in the features are done before the feature selection process, where
the intensity and textures of an image are used to determine similar features. Then, the feature’s
consistency will be improved to enhance the feature selection in the procedure. This process is also done
using the DL technique based on an image’s intensity and texture. Then, the blunders will be eliminated
according to the feature selection in an image processing process. The procedure of enhancing the
congruency of the feature based on the pixel distribution and the correlation process is explained by
the following equations given below:

K
(

Vi = 1
h(1)

)
= ϑ

(
b(0)

i + w(1)h(1)
)∀i

β (n1, n2) =
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n−1∑
k=0

y (m1, m2) h (n1 − k1, n2 − k2)

x(1)

n = G
( k−1∑

m

x(m−1)

m ∗ K (m)

mn + b(m)

n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)
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μi =
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i
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M × K
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⎪⎪⎪⎭

(8)
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. . .
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⎤
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⎪⎪⎪⎪⎭

(9)

where μ is denoted as the process of enhancing the congruency of the feature, β is denoted as the
procedure that is based on the correlation process and the pixel distribution process, T is denoted as the
features that are affluent in congruency, and n is denoted as the process done by the learning paradigm
in enhancing the congruency of the features. Then, based on all the process outcomes, the intensity
and the textures are determined for the acquired medical image. The deep analytical technique is used
to detect the texture and the intensity from the output of the pixel distribution, correlation-based,
and region-based processes. This will be used to identify similar features and a high pixel distribution.
That will be used for further processes such as segmentation, etc. The congruencies of the features are
also enhanced based on the intensity of an image and the textures of the images. The intensity of the
different textures is identified for the ij using the learning process presented in Fig. 4.

Figure 4: Learning for intensity classification for ij

The intensity of an image is determined by summing all of the pixels distributed in the image. This
is used to measure the intensities of the images acquired for the feature selection process. Based on
the similar features that match the stored images, the intensity and the textures are identified for the
feature selection process. From this, the congruency can also be enhanced without any blunders. This
process is used to identify images’ precise intensity and textures with the help of the deep analytical
technique in the ML procedures (Fig. 4). The features that are obtained from the medical images for
further processing are used in the procedure of identifying the pixel distribution and correlation process
and also in enhancing the congruency of the features. With the help of these processes’ outputs, an
image’s intensity and texture are determined. Then, the outcome of the identified intensity, textures,
and highly similar features are estimated, with an increased pixel distribution rate and the textures
without blurring. The process of estimating the intensity and texture of the image from the outcome
of the previous process to determine similar features is explained by the following equations given
below:
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LT = ε(wixi + wjhj + BT)

BT = ε(wgxxT + wjhT−1 + Bg

GT = ε(gt 	 iT + mT−1 	 GT)

⎫⎪⎬
⎪⎭ (12)

where ε is denoted as the process of determining the texture and the intensity of the acquired medical
images, based on the outcome of the intensity and the textures of the image, similar features are
identified in the selection process. The deep analytical process estimates highly similar features with
a high pixel distribution. Regardless of the textures, highly similar features are identified for further
procedures. Thus, the more congruent pixels are divided in the declining order of the selection process
that determines the efficacious regions collated with the pixel distribution. Now, the DL exemplar
is trained using intensity and region-based outcome similarity to enhance the circumstances of the
feature selection procedure. Accordingly, the possibility of feature selection procedures, regardless of
the textures and medical image exemplars, is enhanced. The process of selecting similar high features
with the help of deep analytical techniques based on the intensities and the pixel distribution is
explained by the following equations given below:∑

ij

GT = ϑ
(
wbx + wij

) ∗ (
wgx + wij

) ∗ (wTj + wij) (13a)
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U (B, G) = Bxij

[∑
ij

G(x)

]
+ Fxij

[∑
ij

(1 − G (T (Z)))

]
(14a)

ϕT = mT 	 QT (14b)

where U is denoted as the feature selection process, ϕ is denoted as the outcome of the intensity and
the texture analysis process. The selection process is represented in Fig. 5.
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Figure 5: Feature selection process

ε output considers D, m for the maximum m used in U(B, G) selection process. If this is high,
then intensity and Ti validations are performed. For achieving high Ti, LT , BT and GT are recurrently
analyzed such that a new hi(K) is utilized (Fig. 5). Highly similar features are selected based on the
pixel distribution outcome and the image’s intensity. The congruencies of the image are also enhanced
for the further process without any blunders. The deep analytical learning technique determines
similar images with the same features and high pixel distribution. Therefore, the performance of ML
applications is enhanced for medical image processing.

4 Experimental Analysis

The experimental analysis uses the image data in [48]; 100 TIF images of different CT scan outputs
are provided. The images are analyzed using MATLAB experiments by extracting 17 textural features
and identifying 12 regions in each image. For the proposed method’s efficiency, four varied CT images
are used for feature extraction and precise selection condition verification. The collected images are
developed using the MATLAB tool, which consists of several built-in functions that help to identify
the images effectively. This study uses the SSE2 instruction set processors, 8 GB RAM for processing
large volumes of data, 1 GB VRAM graphics card, 2.5 GB disk space, Windows operating systems,
and other additional hardware settings to implement the process. The created system uses the 10-fold
cross-validation process to evaluate the system’s efficiency. The experimental setup uses 10-fold cross-
validation for training sets. The 100 TIF images are partitioned into 10 sets, with each subset acting
as a set for validation once and a training set nine times. Each of the 10 training sets has 90 images.
This partitioning maximizes training data while evaluating the suggested method’s effectiveness across
dataset subsets. Table 1 shows the type of image and its extractable features.

Table 1: Type of image and its extractable features

Image type Image Maximum
features

Maximum regions Training
error range

Brain
tumor

21 (−0.32 to
+1.7)

(Continued)
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Table 1 (continued)

Image type Image Maximum
features

Maximum regions Training
error range

Diabetic
retinopathy

16 (−0.18 to
+2.9)

L4 19 (−0.017 to
+3.72)

Chest 15 (−0.419 to
+0.63)

Chest
(Sample
image)

13 (−0.392 to
+0.58)

The above table is a representation of the features extractable and their corresponding Ti. Based on
the available regions, h determines B and R for improving selection precision. C pursued the training
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images (Δ) maximizes V as shown in Table 1 at 4th row and 4th column. The proposed method
performs correlation, represented by the maximum similarity in Table 2.

Table 2: Correlation for similarity concerning Region (R) and Maximum Features (m)

Image type V representation Region (R) Maximum features (m)

Brain tumor

Diabetic
retinopathy

L4

Chest

(Continued)
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Table 2 (continued)

Image type V representation Region (R) Maximum features (m)

Chest-sample
image

The Maximum Features (m) in Table 2 typically refers to the maximum number of features
selected or considered in a machine learning model during the feature selection process. The above
representation is presented for the extractions as per Eqs. (3a)–(3d), and (5); the high is the similarity,
and the high is the peak representation. Considering the errors in the previous patterns, the B for the
successive feature-extracting regions are analyzed to improve the congruency. Based on the available
Ti, the D verification procedures are increased in identifying the features.

Different types of images or categories are represented by the values located on the horizontal
axis (x-axis) of the graph presented in Table 2. To be more specific, the numbers 0 and 0.5 are likely
to correspond to several categories of medical imaging, such as diabetic retinopathy, brain tumours,
and other similar conditions. There is a high probability that every value on the axis that is horizontal
relates to a certain category or type of image that is being reviewed to determine its V representation.
If the values fall within the range of 0 to 8000, they may be representative of a similarity score. A
higher similarity score indicates a larger similarity between the features retrieved from various photos.
Alternatively, they could be a representation of any other metric that is associated with the degree of
correlation or the similarity of the features.

In Table 3, the horizontal axis represented in the graph describes the regions (R), and these values
correspond to the different feature-extracting regions. Likewise, the values in the vertical axis give
the mean error associated with different regions. The figures presented here represent the average
inaccuracy observed for the precision of collecting and choosing features in each given region.

The training error is the difference between the expected and actual values in the training set; it
measures how well an ML model matches the data used for training. It is usually expressed as the
misclassification rate for classification problems, where the percentage of inaccurate predictions is
relative to the total training samples. Measures that quantify the difference between anticipated and
actual values in regression tasks include mean squared and absolute errors. While reducing training
error is critical, an overfitting model, that is, doing well on the training data but failing to generalize
to new data, occurs when the training error is very low. The training and analysis for the above
representations are presented in Table 3.
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Table 3: Training and analysis

Image type Regions Training illustration

Brain tumor (1 × 1) − 2
(2 × 2) − 3
(3 × 3) − 1
(4 × 4) − 0
(5 × 5) − 2

Diabetic retinopathy (1 × 1) − 6
(2 × 2) − 0
(3 × 3) − 0
(4 × 4) − 0
(5 × 5) − 1

L4 (1 × 1) − 3
(2 × 2) − 3
(3 × 3) − 0
(4 × 4) − 0
(5 × 5) − 0

(Continued)
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Table 3 (continued)

Image type Regions Training illustration

Chest (1 × 1) − 1
(2 × 2) − 4
(3 × 3) − 4
(4 × 4) − 3
(5 × 5) − 0

The variations (causing the error) and the actual distribution are analyzed for the varying regions
using MATLAB experiments. The variation in regions is observed using multiple factors that impact
the accuracy and precision selection. The selected regions and the long-lasting features are used for
handling congruency and maximizing D. The selection that converges towards maximum accuracy is
based on the intensity and texture features.

5 Results and Discussion

In this section, the statistical analysis is discussed using a comparative study. Different from the
above section, metrics such as selection accuracy, selection precision, mean error, selection time, and
training rate are considered in this analysis. These metrics evaluate the system’s efficiency, which helps
identify how effectively the proposed approach selects the features from the images. The maximum
number of features extracted is 16, and the regions considered are 11. The existing CNN-FS [46],
WA-BTLBO [44], and CBMIR [47] methods are considered alongside the proposed CFSM. The
various methods [44,46,47] are selected for comparison because they effectively analyze the image
with minimum computation complexity and attain scalability.

5.1 Selection Accuracy
The selection accuracy is productive with the help of the deep analytical algorithm based on the

image’s intensity and texture. The features are extracted from the acquired medical images to determine
the pixel distribution and the correlation implied with the stored images. Based on the image’s texture
and intensity, similar features are identified in the selection process. The image should have a high pixel
distribution and the same features as the stored images. Then, it will be selected in the process for the
upcoming procedures, and the congruencies of the feature will also be enhanced in this procedure. The
pixel distribution process will help maximize the similar features of the acquired medical images. It
will be sent to the correlation process to estimate the matching images based on the stored images that
have already gone through the image processing. Then, from the outcomes of these processes, which
are done using the learning paradigm, the selection process will take place, and the enhancements of
the features are also done. When compared to the other approaches that were reviewed previously, like
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CNN-FS [46], WA-BTLBO [44], and CBMIR [47], the proposed method, CFSM, has a significantly
greater selection accuracy, as shown in Fig. 6. It has been stated that the accuracy of CFSM is 0.9389,
which is a significant improvement above the accuracy of the other approaches.

Figure 6: Selection accuracy comparisons

5.2 Selection Precision
The precision of the selection of the features is done efficiently with the output of the image’s

pixel count and its intensity. The textures and features will be extracted from the medical images
acquired for the procedures. It also has methods to extract the textures and features of an image. The
correlation-based and region-based images will be useful in the selection process where highly similar
features are identified. The images with precise intensity and congruency will also be selected based
on the pixel distribution. The precision of the selected features will be high, according to the outcome
of the previous procedures. The results of the pixel and correlation processes enhance the features’
congruency; thus, they will be used to determine the images’ intensity and textures. This way, precision
is achieved in the acquired medical image selection, which has a high pixel distribution and precise
intensity. Along the same lines as the accuracy, the CFSM approach exceeds the other methods that
are taken for comparison, as shown in Fig. 7, and it can reach a precision of 0.9574, which indicates a
significant improvement in the precision of feature selection compared to other methods.

Figure 7: Selection precision comparisons
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5.3 Mean Error
The errors in the process are reduced by using the learning paradigm and the congruency of the

features. The errors are reduced in this process while highly similar features are selected. The precision
of the intensity and the textures are enhanced with the deep analytical technique based on the intensity
and pixel distribution outcomes. The pixel shows the representation of an original image with the
perfect intensity and textures of an image. Thus, this will be helpful in the selection process. From
the outputs of the correlation process, the intensity and the textures are identified to make from the
errorless features. By increasing the congruency of the feature, the errors and blunders can be reduced.
Thus, in the outputs of the DL method procedures, the precise features are selected based on the
high pixel distribution and the textures of an image. The correlation process takes place based on
intensity, which will help enhance the congruency of the features. Accordingly, the same or similar
features are selected in the selection process. A result of 0.0658 indicates that the CFSM technique
has a significantly lower mean error than other methods, as in Fig. 8. In light of this, the method
provided appears superior to the other ways to reduce the number of errors that occur during the
feature selection process.

Figure 8: Mean error comparisons

5.4 Selection Time
The time taken for the selection process based on the output of the intensity and the textures is

less according to the outcome of pixel distribution—the correlation and the pixel distribution outcome
help in the selection process with precise intensity and textures. The similarity-checking procedure is
done depending on the intensity of the medical image. From this output, the selection of the imaging
procedure is made based on the intensity and texture of the image. After that, the correlation based on
intensity and pixel distribution is identified to enhance consistency in feature selection. Congruency
is used to identify the significance of the determined features based on the pixels distributed in the
images. The pixel distribution process and the correlation process implied with the stored images are
done to enhance the consistency of an image without any inaccuracy in the results. This congruency
enhancement in the feature helps find highly similar images with increased pixel distribution and
precise intensity. Through these processes, the time consumption for the selection process is reduced.
Indicating that the suggested technique is more effective in choosing features from the images, the
selection time for the CFSM technique is significantly shorter than that of the other approach observed
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from existing related works, as depicted in Fig. 9. Applications that can benefit from this include those
that require real-time processing or time-sensitive processing.

Figure 9: Selection time comparisons

5.5 Training Rate
The training for deep analytical learning is efficacious with the help of the correlation outputs and

the pixel distribution process. In this process, the dispensation of the pixels in images is determined;
thus, the correlation procedure will be done with this output. The pixel in an image is a sample of the
original image, whereas more specimens typically produce a more precise impersonation of the original
image. The pixel distribution is used to determine the number of pixels provided for the medical image
that is acquired for the process. The correlation process shows similar images with the same features
and pixel distribution. Later, the correlation based on intensity and distribution is analyzed to improve
feature selection congruency. Therefore, the more congruent pixels are sorted in the descending order
of the selection, which identifies better regions than the distribution. The DL technique is trained
based on intensity and region-based similarity to maximize the chances of feature selection. Tables 4
and 5 present the comparative analysis summary for the features and regions. The illustration in
Fig. 10 shows the training rate, including the comparisons of training rates, and demonstrates that
the suggested CFSM approach enhances the training rate by approximately 11.06% compared to the
existing methods. Based on this, it can be concluded that the CFSM technique is more efficient in
learning and adapting to the input data, which ultimately results in improved performance.

Table 4: Comparative summary of # features

Metrics WA-BTLBO CNN-FS CBMIR CFSM

Accuracy 0.635 0.613 0.785 0.9389
Precision 0.762 0.642 0.935 0.9574
Mean error 0.232 0.218 0.194 0.0658
Selection time (s) 0.748 0.473 0.388 0.0835
Training rate 0.245 0.639 0.746 0.7535
Observations: The proposed method improves the accuracy, precision, and training rate by 14.28%, 11.78%, and 12.12%,
respectively. The mean error and selection time are reduced by 13.45% and 13.67%, respectively.
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Table 5: Comparative summary of # regions

Metrics WA-BTLBO CNN-FS CBMIR CFSM

Accuracy 0.622 0.718 0.994 0.9466
Precision 0.877 0.673 0.951 0.9546
Mean error 0.356 0.212 0.048 0.0619
Selection time (s) 0.748 0.345 0.383 0.0941
Training rate 0.522 0.639 0.535 0.7601
Observations: The proposed method improves the accuracy, precision, and training rate by 13.76%, 10.03%, and 11.02%,
respectively. The mean error and selection time are reduced by 13.03% and 13.18%, respectively.

Figure 10: Training rate comparisons

6 Conclusion

This article introduces the CFSM for improving medical image analysis. The congruency of
feature analysis and similarity-based selection is encouraged in this proposed method. The different
patterns and regions based on pixel distribution and intensities are used for feature selection. The
proposed process relies on analytical learning for recurrent training and similarity for reducing errors.
Compared to the consecutive feature identification, the correlation and similarity are performed using
the stored and existing image extractions. This process verifies the maximum similarity across different
training instances to improve the descending and variational pixel distributions. The congruency in
pixel selection and distribution is utilized to maximize selection chances. The learning process is
responsible for retaining precision across different new and overlapping features and regions extracted.
However, high-dimensional medical images require substantial computational resources for both
feature selection and classification, which can lead to increased processing times. For future work,
we plan to explore the generality of our method by extending its use to 3D tasks. One particularly
exciting direction is applying our feature selection technique in 3D engineering and medical imaging
tasks, such as 3D reconstruction.
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