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ABSTRACT

Accurate medical diagnosis, which involves identifying diseases based on patient symptoms, is often hindered
by uncertainties in data interpretation and retrieval. Advanced fuzzy set theories have emerged as effective tools
to address these challenges. In this paper, new mathematical approaches for handling uncertainty in medical
diagnosis are introduced using q-rung orthopair fuzzy sets (q-ROFS) and interval-valued q-rung orthopair fuzzy
sets (IVq-ROFS). Three aggregation operators are proposed in our methodologies: the q-ROF weighted averaging
(q-ROFWA), the q-ROF weighted geometric (q-ROFWG), and the q-ROF weighted neutrality averaging (q-
ROFWNA), which enhance decision-making under uncertainty. These operators are paired with ranking methods
such as the similarity measure, score function, and inverse score function to improve the accuracy of disease
identification. Additionally, the impact of varying q-rung values is explored through a sensitivity analysis, extending
the analysis beyond the typical maximum value of 3. The Basic Uncertain Information (BUI) method is employed
to simulate expert opinions, and aggregation operators are used to combine these opinions in a group decision-
making context. Our results provide a comprehensive comparison of methodologies, highlighting their strengths
and limitations in diagnosing diseases based on uncertain patient data.
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1 Introduction

Medical diagnosis, the process of identifying diseases from patient symptoms, grapples with
inherent uncertainties in medical data retrieval and interpretation. The intricate interplay between
symptoms and diseases introduces further uncertainty, complicating the diagnostic process. In address-
ing these challenges, Zadeh’s fuzzy sets [1] have emerged as a versatile tool in medical applications,
offering a framework to navigate imprecision, both in our understanding of the nature of the
underlying problems and from incomplete data [2]. Fuzzy logic, with its broad applicability in the
decision-making process, holds promise for achieving expert-like diagnostic outcomes, particularly in
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early disease detection [3]. However, Zadeh’s fuzzy set theory, primarily reliant on membership degrees,
encounters limitations in capturing the full spectrum of the uncertainty [4].

This limitation prompted the development of advanced fuzzy sets which encompass a broader
range of the uncertainty spectrum. Atanassov [5] presented another fuzzy set type for fuzzy sets
generalization and a more consistent study of ambiguities in the information. These sets are called
intuitionistic fuzzy sets (IFSs) [6,7]. However, it can be said that IFSs are limited to a very narrow
information system. Hence, the IFSs have been Pythagorean fuzzy sets (PFSs) [4,7]. In paper [8],
Pythagorean fuzzy sets have been used to help doctors identify the most likely type of cancer in children
at an early stage by considering the symptoms of different kinds of cancer and in paper [9], they have
been applied in a numerical case study related to determining the optimal agricultural field. Recently
in papers [10,11], Intuitionistic Fuzzy Sets, Pythagorean Fuzzy Sets, and Fermatean Fuzzy Sets [12]
have been applied to digital mammogram images to enhance image quality and improve the accuracy
of mass segmentation, aiding in better detection and diagnosis of breast cancer. In paper [13], T-
spherical fuzzy sets (T-SFSs), a novel extension of fuzzy sets that can fully convey ambiguous and
complicated information, have been used in a multiple attribute group decision-making (MAGDM)
problem about the selection of a supplier for emergency medical supplies during disasters. These
fuzzy set extensions handle the inherent uncertainty and imprecision in mammographic images more
effectively than traditional methods, leading to clearer visualization and more precise identification
of potential abnormalities. These methods can be generalized even further with newer types of fuzzy
sets. These extensions, including q-rung orthopair fuzzy sets (q-ROFS) [14,15] and the interval-valued
q-rung orthopair fuzzy sets (IVq-ROFS), provide more nuanced tools for grappling with imprecision
and vagueness in medical data. To enhance the representation of uncertainty Yager pioneered the
concept of q-ROFS which incorporates the degree of non-membership alongside the membership
degree [14]. In addition, they also utilize the concept of hesitation degree (π), that is, the degree of
uncertainty or hesitation [16]. The most appealing feature of q-ROFSs is that they provide a wider
range of reasonable membership grades and offer decision-makers (DMs) more leeway in expressing
their legitimate perceptions. The q-rung orthopair fuzzy numbers (q-ROFNs) play a vital role in
computational intelligence, machine learning, neural network, and artificial intelligence. While this
marks progress, it remains an incomplete solution. Addressing these limitations, Joshi et al. [17]
introduced interval-valued q-rung orthopair fuzzy sets (IVq-ROFSs) in 2018. IVq-ROFSs delineate
the membership degree μ and the non-membership degree ν within the subset of [0, 1], providing
decision-makers with a more adaptable means of expressing their opinions. Despite some exploration
of operational principles, significant advancements are still needed to meet practical demands [18].

It is important to clarify that the type of uncertainty addressed in our work is primarily fuzziness
uncertainty, which arises from imprecise or vague information. This is consistent with the application
of fuzzy set theory, commonly used in medical data representation studies, where fuzzy classifiers
are employed to manage uncertainty in patient data. For example, the first referenced study [19]
introduces a new classification method that processes multiple types of medical data simultaneously
using a fuzzy decision tree, improving diagnostic accuracy by effectively addressing data uncertainty
and outperforming traditional crisp classifiers. This second study [20] focuses on determining the
most influential attributes in classification outcomes through a sensitivity analysis based on structural
importance. By leveraging fuzzy classifiers, this method accounts for uncertainty in the input data,
resulting in more reliable classification results. Both studies underscore the critical role of fuzzy logic
in managing uncertainty in medical decision-making processes.
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Our knowledge base could be transformed to broaden the spectrum of uncertainty contained in
the data by converting a q-ROFS into an IVq-ROFS. This process is called Basic Uncertain Infor-
mation [21]. BUI is a newly introduced uncertain concept that can quantify the uncertainty/certainty
involved in a piece of given data information by using a real number in the unit interval [0, 1] [21,22].
The basic uncertain information can measure the quality of the datum by using the degree of certainty.
BUI [21,23] provides an effective and simple way to describe assessments or observations with a
certainty degree, thereby measuring the quality of the data. This certainty degree provides insight into
the level of confidence a decision-maker holds regarding a particular value, indicating the precision
or accuracy with which the value is measured or collected. For example, a large certainty degree may
indicate that decision maker has large confidence over the obtained value a. In different decisional
scenarios, the certainty degree can hold varying interpretations, reflecting the extent of confidence or
precision attributed to the data.

1.1 Multi-Attribute Group Decision-Making
The challenge of medical diagnosis can be framed as a multiple attribute group decision-making

problem, wherein the goal is to identify the most suitable solution from a range of alternatives,
guided by evaluation data supplied by multiple experts across various assessment attributes [24]. In
this context, the alternatives correspond to potential diseases, while the attributes encapsulate the
symptoms associated with or indicative of these diseases. By integrating collective expertise and input
from multiple experts, decision-makers can navigate the complex web of symptoms and diseases more
effectively, leveraging diverse perspectives to arrive at a comprehensive and accurate diagnosis. This
approach not only enhances the diagnostic process by considering a multitude of factors but also
promotes collaborative decision-making, harnessing the collective wisdom and insights of multiple
stakeholders to optimize patient care and outcomes. Artificial intelligence has emerged as a promising
approach to solving complex multi-criteria group decision-making problems and deep learning stands
as one of the most advanced AI frameworks. While machine learning can achieve outstanding
performance, its lack of transparency in how conclusions are reached may render it unsuitable for
many applications, particularly in the medical domain. This paper [25] explores different AI models
and frameworks within the medical field, examining their strengths and limitations. Fuzzy logic theory
has been previously used for the problem of medical diagnosis in a plethora of articles [26–30] and
particularly in addressing challenges related to Multi-Criteria Group Decision-Making [8,31,32]. The
MCGDM process when incorporating uncertainty and fuzzy logic theory, can be explained in two
steps [24].

The initial phase of the medical decision-making process involves the articulation and handling of
decision-related information. Fuzzy sets have emerged as a valuable tool in addressing numerous med-
ical applications, offering versatile solutions to complex problems. In the realm of medical diagnosis,
one prominent application involves determining the disease most likely affecting a patient based on
fuzzy relations. This entails representing the relationships between symptoms and diseases, as well as
between patients and symptoms, within a fuzzy medical knowledge base. These relationships are often
depicted as fuzzy sets, and in the context of this article, as advanced fuzzy sets, specifically q-ROFS or
IVq-ROFS. Such representations enable a nuanced understanding of the interconnectedness between
symptoms and diseases, facilitating more accurate and insightful medical decision-making processes.
By leveraging fuzzy sets, decision-makers can navigate the inherent uncertainty and ambiguity in
medical data, thereby enhancing diagnostic accuracy and patient care.

In the group decision-making process, gathering the opinions of all decision-makers is essential,
followed by employing an appropriate method to aggregate these opinions [18]. Aggregation operators
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serve as indispensable tools in this regard, allowing the combination of multiple fuzzy sets into a
single fuzzy set [3,33]. Specifically, in the context of medical diagnosis, these operators are utilized
to aggregate the q-ROFSs associated with each criterion or symptom for every disease or patient
outlined in the medical knowledge and patient symptom matrices. Scholars have extensively explored
various aggregation operators, including fuzzy aggregation operators. IF aggregation operators, PF
aggregation operators, and q-ROF aggregation operators [18]. With the continuous advancement of
IVq-ROFSs, the aggregation of IVq-ROF information gains increasing significance.

Recent studies by Wang et al. [34] have delved into four forms of IVq-ROF aggregation opera-
tors, investigating their applications in multiple-attribute group decision-making scenarios. Similarly,
Ju et al. [35] have explored IVq-ROF weighted averaging aggregation operators [35]. Another type
of aggregation operator is the Heronian mean and its generalized form, which considers the interde-
pendent phenomena among the aggregated arguments [36–38]. However, while averaging aggregation
operators exert a notable influence on overall data, they may lack the ability to effectively characterize
individual data points [18]. On the other hand, geometric aggregation operators are more discernible
in their impact on specific data points. Nonetheless, due to their operational constraints, geometric
aggregation operators may introduce significant distortion to the evaluation information. Thus,
selecting an appropriate aggregation operator necessitates a careful consideration of the specific
context and objectives of the decision-making process to ensure accurate and meaningful results.

A critical precursor to the aggregation process in medical diagnosis is the determination of
symptom weights, which holds paramount importance in ensuring an accurate and comprehensive
diagnostic assessment. Employing the entropy method provides a structured and objective approach
to assigning these weights, thereby guaranteeing a fair and balanced consideration of each symptom’s
relevance [39]. Through the entropy method, decision-makers analyze the variability and uncertainty
inherent in each symptom, enabling the identification of key factors pivotal to the diagnostic process.
This systematic approach not only aids in prioritizing symptoms based on their informational
contributions but also enhances the transparency and objectivity of the decision-making process
[39]. Ultimately, by leveraging the entropy method to calculate weights, professionals can optimize
diagnostic accuracy, leading to more precise and effective patient care and outcomes.

In the second stage of the decision-making process, the challenge lies in effectively ranking
decision schemes amidst the inherent fuzziness of human cognition and the complexity of the
decision-making environment [24]. Given the difficulty in completely and accurately describing
decision-making information, the form of information expression directly influences the precision of
evaluation. Moreover, the weight of experts cannot be disregarded during the processing of evaluation
information, encompassing both the significance of the experts themselves and the rationalization of
their evaluation results.

Fuzzy logic augments its diagnostic capabilities by employing similarity measures to aid in disease
detection [40]. These measures, integral across various disciplines, quantify the similarity or distance
between objects, facilitating comparisons based on their attributes. Developed using fuzzy sets and
extended fuzzy sets like q-ROFS, similarity measures typically utilize distances and are expressed as
numerical values [41]. As the similarity between data samples increases, the numerical value of the
measure rises, ranging between zero and one, where zero signifies low similarity and one denotes high
similarity. For example, [16], Chen [42] proposed a similarity function F to measure the degree of
similarity between fuzzy sets. Wang [43] proposed new fuzzy similarity measures on fuzzy sets and
elements. Later from the continuation of research of fuzzy sets Atanasov [44] presented intuitionistic
fuzzy sets. That step promoted the development of similarity measures that utilize advanced fuzzy sets.
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Wei et al. [45,46] proposed similarity measures based on a cosine function using advanced fuzzy sets
for making a medical decision. Muthukumar et al. [47] used weighted similarity measures in medical
diagnosis, while Iancu [48] used similarity measures based on the Frank t-norms family.

Scores and accuracy offer an additional avenue for deriving results, incorporating degrees of
membership and non-membership. Scores are particularly useful for comparing two q-ROFS, with
the highest score indicating a patient’s affliction with a particular disease. In cases of equal scores,
accuracy serves as the deciding factor. This article introduces a novel approach to this method termed
the inverse score [49], where the lowest score designates the patient’s disease. Again, in instances of tied
scores, accuracy determines the ultimate outcome, providing a comprehensive framework for decision-
making in medical diagnosis.

1.2 Contribution
In this work, three aggregation operators are proposed: q-ROFWA, q-ROFWG, and the q-

ROFWNA paired with three ranking methods: the similarity measure, the score function, and the
inverse score function. These methodologies were applied with various q-rung values, performing a
sensitivity analysis to understand how the methodologies behave as q changes. While recent literature
typically employs a maximum q value of 3, our analysis is extended to larger q-rung values, allowing
for a broader spectrum of uncertain possibilities and providing a clearer picture of each methodology’s
behavior. Additionally, a multiple criteria group decision-making analysis is conducted using the BUI
granule technique. This approach generated new medical data tables with different uncertainty values,
effectively simulating the diverse opinions of various experts.

Previous articles have studied the aggregation operators that are applied in our methodologies,
but all of them focused on group decision-making using pre-existing decision matrices. In contrast,
the BUI methodology is used to create these matrices. Another novel aspect of our approach was the
use of the inverse score function, which helped overcome the unique limitations associated with the
standard score function.

1.3 Organization
The organization of this paper is as follows:

In Section 2, the foundational knowledge necessary to understand the methods applied later is
analyzed. The operation of q-Rung Orthopair Fuzzy Sets is explained, along with how they differ from
Interval-Valued q-Rung Orthopair Fuzzy Sets. The application of the BUI rule is discussed, depending
on the data form used. Additionally, the three ranking methods employed in the sensitivity analysis
are examined. The specific data utilized in this paper are then described, followed by an introduction
to the multiple criteria decision-making process. This section also includes an analysis of the three
criteria aggregation operators and the entropy method used to calculate the criteria weights required
for the MAGDM process.

In Section 3, the results produced by each methodology discussed earlier are presented. Firstly,
ranking tables for the similarity measure and score function are provided using all the aggregation
operators, and bar diagrams are included to graphically illustrate ranking differences. Secondly, the
BUI method is applied to the medical data tables, creating various tables with different certainty values.
The decision-makers are evaluated, and the optimal q-rung value is determined using the similarity
measure and score function ranking methods. Lastly, a sensitivity analysis is conducted with different
q-rung values across all aggregation operators and decision-making methods, ranking the diseases
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for each patient. To better explain the results of the sensitivity analysis, they are presented using a
spider plot.

2 Materials and Methods
2.1 q-Rung Orthopair Fuzzy Sets

Let X be a universe of discourse. A q-ROFS A in X is given by [14,50]:

A = {〈x, μA (x) , νA (x)〉 , |x ∈ X}
where μA : X → [0, 1] denotes the degree of membership and vA : X → [0, 1] the degree of
nonmembership of the element x ∈ X to the set A with the condition that 0 ≤ μA (x)

q + νA (x)
q ≤ 1.

The degree of indeterminacy is πA (x) = (1 − μ
q
A (x) − ν

q
A (x)

)1/q
where q ≥ 1.

q-ROFS Mathematical Operations

Considering that n = (μn, vn) and ϕ = (μϕ, vϕ) are two q-ROFNs, with σ ≥ 0, q ≥ 1, the below
mathematical operations could be defined [51]:

• n ∪ ϕ = (max
(
μn, μϕ

)
, min(vn, vϕ)

)
• n ∩ ϕ = (min

(
μn, μϕ

)
, max(vn, vϕ)

)
• n ⊕ ϕ =

(
q
√

μq
n + μq

ϕ
− μq

n ∗ μq
ϕ
, vn ∗ vϕ

)
• n ⊗ ϕ =

(
μn ∗ μϕ, q

√
vq

n + vq
ϕ
− vq

n ∗ vq
ϕ

)
• σn =

(
q
√

1 − (1 − μq
n

)σ
, vσ

n

)

• nσ =
(

μσ

n , q
√

1 − (1 − vq
n

)σ)

2.2 Interval-Valued q-Rung Orthopair Fuzzy Sets
IVq-ROFSs offer a more flexible way of articulating opinions compared to q-ROFSs [17].

This occurs because, in IVq-ROFSs the membership degree μ and non-membership degree ν are
differentiated through subsets within the [0, 1] range, rather than relying solely on crisp numbers within
that interval.

Let’s consider a universe of discourse, denoted by P = {p1, p2, . . . , pn}. An IVq-ROFS, represented
by R̃ on P, takes the form:

R̃ = {〈p, μ̃R (p) , ν̃R (p)〉 , |p ∈ P}
where μ̃R (p) represents the interval of membership degree ν̃R (p) represents the interval of non-
membership degree, μR (p) C [0, 1], νR (p) C [0, 1] and 0 ≤ sup {μR (p)

q} + sup {νR (p)
q} ≤ 1.

To simplify the lower and upper bounds of μ̃R (p) and ν̃R (p), will be denoted as μ−
R (p) , μ+

R (p) ,
v−

R (p), v+
R (p). Because of that R̃ can be presented as:

R̃ = {〈p,
[
μ−

R (p) , μ+
R (p)

]
,
[
v−

R (p) , v+
R (p)

]〉
, |p ∈ P

}
with the condition that 0 ≤ μ+

R (p)
q + ν+

R (p)
q ≤ 1 and q ≥ 1.
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IVq-ROFS Mathematical Operations

Considering that n = (
[
μ−

n , μ+
n

]
, [v−

n , v+
n ]) and ϕ = (

[
μ−

ϕ
, μ+

ϕ

]
, [v−

ϕ
, v+

ϕ
]) are two IVq-ROFNs, with

σ ≥ 0, q ≥ 1, the bellow mathematical operations could be defined [18,50]:

• n = ([v−
n , v+

n

]
,
[
μ−

n , μ+
n

])
• n ⊕ ϕ =

⎛
⎝
⎡
⎣((μ−

n

)q + (μ−
ϕ

)q − (μ−
n

)q ∗ (μ−
ϕ

)q) 1
q ,((

μ+
n

)q + (μ+
ϕ

)q − (μ+
n

)q ∗ (μ+
ϕ

)q) 1
q

⎤
⎦ , [v−

n ∗ v−
ϕ
, v+

n ∗ v+
ϕ
]

⎞
⎠

• n ⊗ ϕ =
⎛
⎝[μ−

n ∗ μ−
ϕ
, μ+

n ∗ μ+
ϕ

]
,

⎡
⎣((ν−

n

)q + (ν−
ϕ

)q − (ν−
n

)q ∗ (ν−
ϕ

)q) 1
q ,((

ν+
n

)q + (ν+
ϕ

)q − (ν+
n

)q ∗ (ν+
ϕ

)q) 1
q

⎤
⎦
⎞
⎠

• σn =
⎛
⎜⎝
⎡
⎢⎣
(

1 − (1 − (μ−
n

)q)σ) 1
q

,(
1 − (1 − (μ+

n

)q)σ) 1
q

⎤
⎥⎦ , [ν−

n , ν+
n ]

⎞
⎟⎠

• nσ =
⎛
⎜⎝[μ−

n , μ+
n

]
,

⎡
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(
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n

)q)σ) 1
q

,(
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q

⎤
⎥⎦
⎞
⎟⎠

2.3 Modeling of Uncertainty with Basic Uncertain Information
BUI in the form 〈x; c〉 where x ∈ [0, 1] is an observed datum and c ∈ [0, 1] is its reliability or degree

of certainty. The pair 〈x; c〉 ∈ [0, 1] × [0, 1]. If c = 0, which represents that we are fully unsure or
uncertain about the value x we give, then actually x can be soundly expressed as the full unit interval
[0, 1]. If c = 1, which represents that we are fully sure or certain about the value x we give, then actually
x should indeed be itself, an exact real value belonging to [0, 1]. BUI is a newly introduced uncertain
concept that can quantify the uncertainty/certainty involved in a piece of given data information by
using a real number in the unit interval [0, 1]. The basic uncertain information can measure the quality
of the datum by using the degree of certainty. BUI [21] provides an effective and simple way to describe
assessments or observations with a certainty degree but not the restriction on the probability measure
of the first component. It can also be seen that the degree of certainty provides a measure on the quality
of information. Certainty degrees can have different meanings in different decisional scenarios. For
example, a large certainty degree may indicate that the decision maker has large confidence over the
obtained value a or show the extent to which the value a is precisely measured or exactly collected.
Each BUI value 〈x; c〉 can be represented as a closed interval.

Definition: A BUI granule is a pair 〈x; c〉 ∈ [0, 1]2 in which x ∈ [0, 1] is a concerned evaluation
value and c ∈ [0, 1] is the certainty degree of x and 1 − c ∈ [0, 1] is the uncertainty degree of x. Let
L ([0, 1]) = {[a, b] |0 ≤ a ≤ b ≤ 1} be the set of all closed intervals contained in the unit interval. We
have introduced the interval transformation T .

T : B → I

where B: BUI and I : Integral

T (〈x; c〉) = [a, b] = [cx, cx + 1 − c]
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which might be more suitable in different decisional scenarios where the length of an interval often
can be recognized as the amount of the involved uncertainty. It can be easily observed that the length
of 〈x; c〉 is b − a equals to the uncertainty degree, 1 − c.

2.3.1 Transformation q-ROFN to IVq-ROFN

Let q-ROFN: [μα, να]

μα

BUI→ [μ−
α
, μ+

α
] and να

BUI→ [ν−
α

, ν+
α

].

To calculate the lower bound, we apply the relation: μ−
α

= c×μα και ν−
α

= c×να and for the upper
bound: μ+

α
= c × μα + 1 − c και ν+

α
= c × να + 1 − c.

Let R a q-ROFS on P:

R = {〈p, μR (p) , νR (p)〉 , |p ∈ P}
After the BUI the μR (p) , νR (p) are turned into intervals such as [μ−

R (p) , μ+
R (p)], [v−

R (p) , v+
R (p)]

respectively, which are shown below, and R is turned into an IV-qROFS R̃ such as:

R̃ = {〈p,
[
μ−

R (p) , μ+
R (p)

]
,
[
v−

R (p) , v+
R (p)

]〉
, |p ∈ P

}
2.3.2 Unsymmetrical BUI

A granule of unsymmetrical basic uncertain information (UBUI) is expressed by the form
(x, (cL, cU)), in which x ∈ [0, 1] is the concerned evaluation value and (cL, cU) ∈ [0, 1]2 the certainty pair
of x, measuring the degree of being trusted, convincing or believable. cU is called the upper certainty
x and cL lower certainty of x [52].

The set of all UBUI granules is denoted by UB.

With any obtained UBUI granule we use the following formula to transform it into an interval
which sometime can be much easier to handle in decision making.

T : UB → I

where UB: Unsymmetrical BUI.

T (〈x; (cL, cU)〉) = [cLx, x + (1 − cU) (1 − x)]

where cL is called the lower certainty of x, cL = c1/a, cU is called the upper certainty of x cU = ca and
a ∈ [0, 1].

2.4 Score and Accuracy
The score and accuracy are a way to compare and rank two fuzzy numbers, while both concepts

include the degrees of membership and non-membership. They can be used on q-ROFNs and IVq-
ROFNs alike.

2.4.1 Score and Accuracy between q-ROFNs

The score function is a widely used ranking method in decision-making processes. By assigning a
numerical score to each alternative q-ROFN, the score function enables a straightforward comparison,
making it easier to identify the most suitable option. However, when two or more alternatives yield
the same score, the accuracy function is employed as a supplementary criterion to further differentiate



CMES, 2025, vol.142, no.1 767

between them, ensuring a more precise and reliable ranking outcome. This dual approach helps to
resolve ties and enhances the decision-making process [16].

The equation’s score and accuracy are defined as:

score = μq − vq

accuracy = μq + vq

For any two q-ROFNs α = 〈μα, να〉, β = 〈μβ , νβ

〉
the ranking criterion is defined as:

(1) If score (α) > score (β) ⇒ a > β

(2) If score (α) < score (β) ⇒ a < β

(3) If score (α) = score (β) ⇒
a. accuracy (α) > accuracy (β) ⇒ α > β

b. accuracy (α) < accuracy (β) ⇒ α < β

c. accuracy (α) = accuracy (β) ⇒ α = β

2.4.2 Score and Accuracy between IVq-ROFNs

If the decision matrix consists of IVq-ROFNs instead of q-ROFNs, the ranking process still relies
on the score function, but with necessary adjustments to accommodate the interval nature of the data.
Despite the increased complexity, the core principle remains the same: alternatives are ranked based
on their score, and when scores are identical, the accuracy function is applied to break ties [18].

Considering that n = ([
μ−

n , μ+
n

]
,
[
v−

n , v+
n

])
is an IVq-ROFN. Then the score function ψ and

accuracy function T are going to be:

ψ (n) = 1
2

((
μ−

n

)q + (μ+
n

)q − (v−
n

)q − (v+
n

)q)

T (n) = 1
2

((
μ−

n

)q + (μ+
n

)q + (v−
n

)q + (v+
n

)q)
Then the same ranking method as before can be applied to compare two IVq-ROFNs.

2.4.3 Inverse Score Function Ranking

Many authors have proposed various improved score formulas and ranking criteria for q-ROFNs.
While these advancements address specific flaws in the original methods, they often introduce new
drawbacks or complexities [53].

A new ranking method utilizes the inverse score function, offering an alternative approach to
decision-making. In this method, a lower inverse score indicates a more favorable option, making it
preferable. When two or more alternatives have the same inverse score, tie-breaking is achieved using
the degree of indeterminacy. In this context, less indeterminacy is considered better [53].

The equation of the inverse score is:

ρq (a) =
√√√√(1 − μq

α

)2 + v2q
a

2
(
2 − μq

α
− vq

a

) , q ≥ 1
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In cases where the two inverse score values are equal, the ranking algorithm employs the degree
of indeterminacy instead of accuracy:

For any two q-ROFNs α = 〈μα, να〉, β = 〈μβ , νβ

〉
the ranking criterion is defined as:

(1) If ρq (a) > ρq (β) ⇒ a < β

(2) If ρq (a) < ρq (β) ⇒ a > β

(3) If ρq (a) = ρq (β) ⇒
a. π q

α
(α) > π q

α
(β) ⇒ α < β

b. π q
α
(α) < π q

α
(β) ⇒ α > β

c. π q
α
(α) = π q

α
(β) ⇒ α = β

2.5 Similarity Measures
Another approach to decision-making involves similarity measures, a tool for comparing q-

ROFSs that may exhibit varying degrees of overlap or similarity [54–56].

q − ROFC (A, B) = 1
n

∑n

i=1

μ
q
A (xi) ∗ μ

q
B (xi) + vq

A (xi) ∗ vq
B (xi)√(

μ
q
A (xi)

)2 + (vq
A (xi)

)2 ∗
√(

μ
q
B (xi)

)2 + (vq
B (xi)

)2
where n is the total number of items for each fuzzy set, and q is the q-rung.

For n = 1 and two q-ROFNs A, B where A = 〈μA, νA〉, B = 〈μB, νB〉, the similarity measure
equation in simplified to [55]:

q − ROFC (A, B) = μ
q
A (xi) ∗ μ

q
B (xi) + vq

A (xi) ∗ vq
B (xi)√(

μ
q
A (xi)

)2 + (vq
A (xi)

)2 ∗
√(

μ
q
B (xi)

)2 + (vq
B (xi)

)2
The similarity measure of two IVq-ROFNs, a1 = 〈μa1

, νa1

〉
, a2 = 〈μa2

, νa2

〉
, is calculated with the

equation:

S (a1, a2) =
((

μ
a1

)q∧(
μ

a2

)q)
+
((

νa1

)q∧(
νa2

)q)
+ ((μa1

)q∧(
μa2

)q)+ ((νa1

)q∧(
νa2

)q)
((

μ
a1

)q∨(
μ

a2

)q)
+
((

νa1

)q∨(
νa2

)q)
+ ((μa1

)q∨(
μa2

)q)+ ((νa1

)q∨(
νa2

)q)
where:

0 ≤ S (a1, a2) ≤ 1.

2.6 q-ROFN Fuzzy Decision Matrix M
The decision matrix outlines how a decision-maker’s evaluations of various alternatives are influ-

enced by the occurrence of different, mutually exclusive states of the world, with known probabilities.
Thus, these evaluations are treated as discrete random variables. Alternatives are typically assessed
based on the expected values and variances of these evaluations, with the decision-maker aiming to
either maximize the expected evaluation or both maximize the expected evaluation and minimize the
variance [57].

In practical applications, the states of the world and the evaluations of alternatives may be
imprecisely defined. It can be challenging to precisely express these evaluations due to a lack of
sufficient information [57].
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A decision matrix with the fuzzy states of the world and the fuzzy evaluations of the alternatives
under the particular fuzzy states of the world is called a fuzzy decision matrix [58].

The following notations are used to present the q-rung orthopair decision matrix M in fuzzy
environment.

Let C = {C1, C2, . . . , Cn} be a set of n different attributes (criteria, parameters), A =
{A1, A2, . . . , Am} be a set of different alternatives that should be evaluated under the set of m attributes.

A group decision-makers D = {D(1),D(2), . . . ,D(l)
}

, k = 1,.., l. The D decision-makers evaluate
the n alternatives. Let the associated weights of the decision-makers be γ = (γ1, γ2, . . . , γl)

T such that
γk ∈ [0, 1] and

∑l

k=1 γk = 1.

A q-ROFN is symbolized by a(k)

ij = 〈
μ

(k)

ij , ν(k)

ij

〉
denotes the priority values (membership degree

and non-membership degree) with 0 ≤ μ
(k)

ij , ν(k)

ij ≤ 1 such that 0 ≤ (
μ

q
ij

)(k) + (νq
ij

)(k) ≤ 1 for i =
1, . . . , n, j = 1, . . . , m, k = 1, . . . , l, q ≥ 1. The weight vector information corresponding to each
attribute is indicated by w = (w1, w2, . . . , wn)

T such that wi ∈ [0, 1] and
∑n

i=1 wi = 1.

Therefore, a q-ROFN fuzzy decision matrix can be taken as follows:

M = (a(k)

ij

)
m×n

C1 C2 · · · Cn

A1 a(k)

11 a(k)

12 · · · a(k)

1n

A2 a(k)

11 a(k)

11 · · · a(k)

11

...
...

...
. . .

...
Am a(k)

11 a(k)

11 · · · a(k)

11

2.7 Weighting
In the diagnostic process, assigning weights to each symptom is crucial as it reflects their respective

importance in determining the underlying condition. These weights signify the relative significance of
symptoms. Thus, the weighting scheme facilitates a more nuanced and informed diagnostic approach.

Distance is one of the most important tools used to measure the deviation between variables or
sets, and the weighted distance measure is the most widely used approach in various fields. Thus
far, many extensions of weighted distance measures have been presented [49]. These measures can
be used in the MCGDM process and the fact they utilize the concept of attribute weights allows
them to account for the relative importance of different criteria. This enables more nuanced and
accurate decision-making by appropriately emphasizing critical factors and reducing the impact of
less significant ones.

Also, for the application of the aggregation operators, as will be analyzed later, it is essential to
compute the weights vector ω. These weights will be determined using the entropy method [59], which
involves the steps analyzed below.

In general, evaluation criteria can be categorized into two types: benefit criteria and cost criteria.
Benefit criterion means that a bigger value is more valuable whereas cost criteria are just the opposite
[39]. According to [60], “The Entropy method is a generic form of Monte Carlo simulation which is
applied in complicated estimation and optimization problems for minimizing the error”.

In this article, two entropy methods are analyzed through which the weighting of criteria can be
achieved. Below, the steps of each of these methods are explained outlining their respective processes.
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• Weighting Entropy Method 1 [39]
(1) Calculation of the score values of each element of the decision matrix

1.1. If the decision matrix consists of IVq-ROFSs the below score function could be used:

S = 1
2

[2 + (Membership−)q + (Membership+)q − (Non Membership−)q
− (Non Membership+)q]

1.2. If the decision matrix consists of q-ROFSs below score function could be used:

S = 1
2

[
1 + (Membership)

q − (Non Membership)
q]

(2) The standardization process for each criterion is expressed as follows:

Pij = sij∑m

i=1 sij

, J ∈ [1, n]

(3) For every standardized criterion, the entropy values are computed as follows:

Ej = − 1
ln (m)

∑m

i=1
pij ln

(
pij

)
, i ∈ [1, m] , j ∈ [1, n]

(4) The divergence of each criterion is defined as follows:

dj = 1 − Ej, j ∈ [1, n]

A larger value of dj signifies the increased significance of the jth criterion.

(5) Calculate the weight of each criterion as follows:

wj = dj∑n

j=1 dj

, j ∈ [1, n]

where wj represents the degree of importance of criterion j. An increased weight value
indicates its entropy is lower and therefore remarks that the given criterion is more
informative.

• Weighting Entropy Method 2 [49]

Ej = 1
m

∑m

i=1

π
q
ij + 1 − ∣∣μq

ij − ν
q
ij

∣∣
π

q
ij + 1 + ∣∣μq

ij − ν
q
ij

∣∣ i ∈ [1, . . . , m] , j ∈ [1, . . . , n]

The degree of indeterminacy is defined as follows:

π q
ij = 1 − μq

ij − vq
ij

Calculate the weight of each criterion as follows:

wj = 1 − Ej

n −∑n

i=1 Ej

, j ∈ [1, . . . , n]

For both methods for the calculated weight, it should be true that 0 ≤ wi ≤ 1 and that
∑n

i=1 wi = 1.
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2.8 Decision-Making with Aggregation Operators
Generally speaking, a group decision-making process collects all decision-makers’ opinions,

introducing a suitable method to aggregate them. Aggregation operators are utilized to combine a
set of fuzzy sets into a single fuzzy set. Specifically, these operators are employed to aggregate the q-
ROFSs corresponding to each criterion/symptom for every disease or patient in the medical knowledge
and patient symptom matrices.

To develop aggregation operators for IVq-ROFNs, we must first understand the underlying
concepts of aggregation and dual aggregation operators, as outlined in previous research by
Beliakov et al. [61] and Grabisch et al. [62]. These foundational principles are crucial in ensuring
that the aggregation operators maintain their essential properties, such as boundary conditions and
monotonicity.

Definition 1: Mapping Agg [0, 1]m → [0, 1] shows an aggregation operator if :

1. Agg (0, . . . , 0) = 0 and Agg (1, . . . , 1) = 1 for boundary conditions.

Monotonicity: If ai ≥ bi(∀i), then Agg (a1, . . . , am) ≥ Agg (b1, . . . , bm).

Definition 2: Let Agg be called an aggregation operator for the unit interval, i.e., Agg [0, 1]m →
[0, 1]. Then, the dual of the aggregation operator Agg is defined as:

Agg (a1,..., am) = Neg(Agg (Neg(a1),..., Neg(am)))

where Neg is a negation (complement) operator.

Definition 3: Let Ai (i = 1, . . . , m) be a value from IVq-ROFSs with grades Ai = ([ν−
Ai

, ν+
Ai

], [μ−
Ai

, μ+
Ai

])

where
{
ν+

Ai

}q

+
{
μ+

Ai

}q

≤ 1.

We define E = Agg (A1, . . . , Am) as an IVq-ROFS with membership grades E = ([ν−
E , ν+

E ], [μ−
E , μ+

E ])
such that:

ν−
E = Agg (ν−

A1
, ν−

A2
, . . . , ν−

Am
),

ν+
E = Agg (ν+

A1
, ν+

A2
, . . . , ν+

Am
),

μ−
E = Agg (μ−

A1
, μ−

A2
, . . . , μ−

Am
),

μ+
E = Agg (μ+

A1
, μ+

A2
, . . . , μ+

Am
).

As we know, the Agg operator is closed, i.e., it maps the collection of IVq-ROFSs into an IVq-
ROFS. This can be achieved by proving the following theorem using monotonicity.

Theorem 1. If E = Aggre (A1,..., Am) with grade E = ([u−
E , u+

E ], [v−
E , v+

E ]), then
{
u+

E

}q + {v+
E

}q ≤ 1
always holds.

Aggregation operators serve as efficient and versatile tools. Because of that various aggregation
operators have been explored by researchers.

• IVq-ROFWG and q-ROFWG

The q-rung (or Interval Valued q-Rung) Orthopair Fuzzy Weighted Geometric (q-ROFWG/IVq-
ROFWG) aggregation operator is a mathematical tool used to combine multiple q-ROFNs into
a single representative value. The q-ROFWG operator works by taking a set of q-ROFNs, each
associated with a weight that reflects its importance, and then aggregating them using a geometric
mean-based formula.

It could be calculated with the equation below [18]:

q − ROFWGw (n1, n2, . . . , nn) = nw1
1 ⊗ nw2

2 ⊗ . . . ⊗ nwn
n
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where w = (w1, w2, . . . , wn)
T is the weight vector of the (n1, n2, . . . , nn) values.

(1) If ni is an IVq-ROFS with the form ni =
([

μ−
ni

, μ+
ni

]
,
[
v−

ni
, v+

ni

])
(i = 1, 2, . . . , n) then the

equation can be simplified to:

IVq − ROFWGw (n1, n2, . . . , nn) =
〈[∏nn

i=n1
(μ−

i )wi ,
∏nn

i=n1
(μ+

i )wi

]
,
(

1 −
∏nn

i=n1

(
1 − v−

i

)wi

) 1
q

,

[(
1 −
∏nn

i=n1

(
1 − v+

i

)wi

) 1
q
]〉

(2) If ni is a q-ROFS with the form, ni = (
μni, vni

)
(i = 1, 2, . . . , n) then the equation can be

simplified to:

q − ROFWGw (n1, n2, . . . , nn) =
〈∏nn

i=n1
μ

wi
i ,
(

1 −
∏nn

i=n1

(
1 − vq

i

)wi

) 1
q
〉

• q-ROFWA

The q-ROFWA Aggregation Operator is a mathematical operator used for aggregating multiple
q-ROFNs while considering their associated weights [63,64].

Suppose a = (a1, a2, . . . , an) is a collection of q-ROF or IVq-ROF numbers and w =
(w1, w2, . . . , wn) is the weight vector of ai,

It could be calculated with the following equation:

q − ROFWA (a1, a2, . . . , an) =
n∑

i=1

wiai = w1a1 ⊕ w2a2 ⊕ . . . ⊕ wnan

(1) If ai is an IVq-ROFS with the form ai = 〈
[
μ

ai
, μai

]
,
[
νai

, νai

]
〉 then the equation can be

simplified to:

q − ROFWA (a1, a2, . . . , an) =
〈[(

1 −
∏n

i=1

(
1 − μq

ai

)wi
) 1

q

,
(

1 −
∏n

i=1

(
1 − μ

q
ai

)wi
) 1

q

]
,

[∏n

i=1
νwi

αι
,
∏n

i=1
ν

wi
ai

,
]〉

(2) If ai is a q-ROFS with the form ai = 〈μai, vai 〉 then the equation can be simplified to:

q − ROFWA (a1, . . . , an) =
〈(

1 −
∏n

i=1

(
1 − μq

ai

)wi
) 1

q

,
∏n

i=1
vwi

ai

〉

• q-ROFWNA

The q-ROFWNA aggregation operator is a specialized tool designed to handle the aggregation
of q-ROFNs. This operator is an extension of traditional fuzzy aggregation methods, incorporating
normalization to improve the accuracy and effectiveness of decision-making under conditions of
uncertainty [63,64].
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Suppose a = (a1, a2, . . . , an) is a collection of q-ROF numbers with the form ai = 〈μai, vai 〉 and
w = (w1, w2, . . . , wn) is the weight vector of ai.

It could be calculated with the following equation:

q − ROFWNA (a1, . . . , an) =
〈

q

√√√√ ∑n

i=1 wiμ
q
i∑n

i=1 wi

(
μ

q
i + vq

i

) ∗
(

1 −
n∏

i=1

(
π

q
i

)wi

)
,

q

√√√√ ∑n

i=1 wiv
q
i∑n

i=1 wi

(
μ

q
i + vq

i

) ∗
(

1 −
n∏

i=1

(
π

q
i

)wi

)〉

2.9 Group Decision Making (GDM)
2.9.1 Medical Data Matrix Transformation

By employing the processes outlined below, the medical knowledge matrices could be transformed,
as discussed in Section 2.3, and generate various new ones.

a. Medial knowledge representation with IVq-ROFS (Matrix M3)

M3 : M2
each element−→ q − ROFS

BUI→ IVq − ROFS

b. Medial knowledge representation with q-ROFS (Matrix M4)

M4 : M1
each element−→ T (〈x; c〉) = [cx, x + (cx + 1 − c)] (q − ROFS)

c. Medial knowledge representation with q-ROFS (Matrix M5)

M5 : M1
each element−→ T (〈x; (cL, cU)〉) = [cLx, x + (1 − cU) (1 − x)] (q − ROFS)

2.9.2 Rating the Importance of Decision Makers

Each DM has credibility w for his opinions. This reliability is expressed in the linguistic terms of
Table 1 as discussed in Section 2.10. Each linguistic term corresponds to a q-ROFN which will be used
in the next subsection for the calculation of the weight of each decision matrix.

Table 1: Linguistic terms with corresponding q-ROFNs for rating the importance of decision makers

Linguistic terms q-ROFNs 〈μq, νq〉
Very important (VI) 〈0.95, 0.15〉
Important (I) 〈0.75, 0.35〉
Medium (M) 〈0.65, 0.45〉
Unimportant (U) 〈0.35, 0.75〉
Very unimportant (VU) 〈0.15, 0.95〉

2.9.3 Decision Matrix Weight

In a real-world group decision-making problem, DMs have different levels of knowledge, skills,
and experience, and therefore each expert’s understanding of an attribute may not be the same. Each
DM has different expertise in the field and accordingly, they get support in the group. DMs views are
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in general imprecise or fuzzy and ambiguous in nature. In many studies, this difference in knowledge
and experience (relative weight) has not been taken into account, and every DM has been assigned the
same weight. Obviously, it is irrelevant and leads to imprecise and faulty solutions.

Consider the significant degrees of DMs in the context of q-ROFNs. The formula for calculating
the weight of kth DM is outlined as follows from Ali et al. [65]:

w̃k = Score function of DM
Total score function of DMs

=
(μq)

(k) − (νq)
(k) − (π q)

(k) × log2

(
1 + (π q)

(k)
)

100∑l

k=1

(
(μq)

(k) − (νq)
(k) − (π q)

(k) × log2

(
1 + (π q)

(k)
)

100

) ,

k = 1, . . . , l

The below alternative formula can also be used if the score function is replaced by the inverse
score function [53]:

w̃k = Inverse score function of DM
Total inverse score function of DMs

=

1 −
√√√√√
(
1 − (μq)

(k)
)2 + ((νq)

(k)
)2q

2
(

2 − (μq)
(k) − (νq

ij

)(k)
)

∑l

k=1

⎛
⎝
√√√√(1 − (μq)

(k)
)2 + ((νq)

(k)
)2q

2
(
2 − (μq)

(k) − (νq)
(k)
)
⎞
⎠

,

k = 1, . . . , l

2.9.4 Overall Decision Matrix

Fuse the individual assessment information of DMs into collective assessment information to
form the overall decision matrix. To facilitate this, q-ROFWA operator is applied over assessment
information and let Mall = (a′

ij

)
m×n

a
′
ij =
〈(

1 −
l∏

k=1

(
1 − (μq

ij

)(k)
)w̃k

) 1
q

,
l∏

k=1

((
νq

ij

)(k)
)w̃k

〉

2.9.5 Optimal q-Rung Assessment

Continuing the process, the question that should be answered is what the rung q of the IVq-ROFN
of decision matrix elements can be used to appropriately represent this information. Here we can
proceed as follows:

a. For each q-ROFN determine its q-niche, qi

b. Determine the rung q such that q = max (qi)

For every IVq-ROFN the condition that should be applied is 0 ≤ μ+
R(p)q + v+

R(p)q ≤ 1.

2.10 Medical Data and Knowledge
Since the medical expert is unable to articulate his opinion regarding the significance of each

criterion (symptom) for every disease, Table 1 [66] is utilized. This table connects linguistic values with
a q-ROFN and allows us to convert linguistic terms into membership and non-membership values.
This is a much better way to evaluate our certainty in the information a decision matrix provides
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[58]. For example, instead of trying to choose a membership degree for our confidence in a table of
knowledge, it could simply be characterized as Important which corresponds to 〈0.75, 0.35〉.

• Medical Data and uncertainty

Uncertainty affects decision-making and appears in many different forms. As pointed out by
Zadeh, uncertainty is an attribute of information [67]. The concept of information is fully connected
with the concept of uncertainty. The uncertainty is generated by incomplete information when the
initial data is incomplete, fuzziness or vagueness and ambiguous, fragmentary, not fully reliable, vague,
contradictory, or deficient in some other way [20,68]. The physicians can assess data with words or
more generally with linguistic expressions. Because words mean different things to different people,
their linguistic uncertainties both to a single individual (intra-uncertainty: the variation among the
individual opinions in a group of participants) and across a group of individuals (inter-uncertainty:
the variation (or vagueness) in the opinions of individual participants—usually over time) must be
captured by an appropriate kind of fuzzy sets [69,70]. Fuzzy sets and extensions have been used to
capture the inherent uncertainty in data. For example, q-ROFS can model both interpersonal and
intrapersonal uncertainties.

In this study, the uncertainties are characterized as implicit or epistemic (aka systematic) which
includes two types of uncertainty. These two uncertainty types are: indeterminacy, which is a type of
linguistic uncertainty of information [71], that is, intra-uncertainty and inter-uncertainty; fuzziness (or
vagueness) of information, which results from imprecise boundaries of the fuzzy sets. The extension
fuzzy sets, for example, q-ROFS, can model both interpersonal and intrapersonal uncertainties.

• Medical knowledge

There are five diseases D = {viral fever, malaria fever, typhoid fever, stomach problems, and chest
problems} and five symptoms in the universe of discourse S = {temperature, headache, stomach pain,
cough, and chest pain} [16].

Using a fuzzy mathematical approach, we can represent medical knowledge in a variety of ways.
Because of that, Tables 1 and 2 are used in this article.

Table 2: Medial knowledge (R) representation with FS (Matrix M1)

Symptoms\Disease Temperature Headache Stomach pain Cough Chest pain

Viral fever 0.4 0.7 0.3 0.1 0.1
Malaria fever 0.3 0.2 0.6 0.2 0.0
Typhoid fever 0.1 0.0 0.2 0.8 0.2
Stomach problem 0.4 0.7 0.2 0.2 0.2
Chest problem 0.1 0.1 0.1 0.2 0.8

In each cell of Table 2, every number signifies the degree of membership of the symptom for the
disease. This is how Table R is constructed. Medical knowledge R associates symptoms with diseases
and this knowledge is depicted in the following Table 2.

The data for Tables 3 and 4 are gathered from [27,48,72–74].
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Table 3: Medical knowledge (R) representation with q-ROFS (Matrix M2)

Symptoms\Disease Temperature Headache Stomach pain Cough Chest pain

Viral fever 〈0.4, 0.0〉 〈0.3, 0.5〉 〈0.1, 0.7〉 〈0.4, 0.3〉 〈0.1, 0.7〉
Malaria fever 〈0.7, 0.0〉 〈0.2, 0.6〉 〈0.0, 0.9〉 〈0.7, 0.0〉 〈0.1, 0.8〉
Typhoid fever 〈0.3, 0.3〉 〈0.6, 0.1〉 〈0.2, 0.7〉 〈0.2, 0.6〉 〈0.1, 0.9〉
Stomach problem 〈0.1, 0.7〉 〈0.2, 0.4〉 〈0.8, 0.0〉 〈0.2, 0.7〉 〈0.2, 0.7〉
Chest problem 〈0.1, 0.8〉 〈0.0, 0.8〉 〈0.2, 0.8〉 〈0.2, 0.8〉 〈0.8, 0.1〉

Table 4: Patient’s symptoms

Patient\Symptoms Temperature Headache Stomach pain Cough Chest pain

p1 〈0.8 0.1〉 〈0.6 0.1〉 〈0.2 0.8〉 〈0.6 0.1〉 〈0.1 0.6〉
p2 〈0.0 0.8〉 〈0.4 0.4〉 〈0.6 0.1〉 〈0.1 0.7〉 〈0.1 0.8〉
p3 〈0.8 0.1〉 〈0.8 0.1〉 〈0.0 0.6〉 〈0.2 0.7〉 〈0.0 0.5〉
p4 〈0.6 0.1〉 〈0.5 0.4〉 〈0.3 0.4〉 〈0.7 0.2〉 〈0.3 0.4〉

In each cell of Table 3, the first number signifies the degree of membership, while the second
number indicates the degree of non-membership of the symptom of the disease. This is how Table R is
constructed. Medical knowledge R associates symptoms with diseases and this knowledge is depicted
in Table 3.

• Patient’s symptoms

Four patients, denoted as p1, p2, p3, p4, have provided medical data. The patient symptoms,
with information about the symptoms exhibited by each patient as shown in Table 4, establish the
connection between patients and symptoms. While once again, in each cell of the table, the first number
signifies the degree of membership, and the second number indicates the degree of non-membership
of the patient for the symptom [16].

3 Medical Diagnosis Model and Results

Fig. 1 illustrates a structured approach to medical diagnosis using q-Rung Orthopair Fuzzy
Numbers based on expert medical knowledge. The process begins with the identification of possible
symptoms, followed by the determination of corresponding diseases. Expert knowledge is then used
to establish relationships between symptoms and diseases, resulting in a decision matrix. This matrix,
populated with q-ROFNs, serves as the foundation for the medical diagnosis problem, integrating
fuzzy logic to manage uncertainties inherent in clinical decision-making.

Fig. 2 illustrates the structured approach used in this study to diagnose diseases based on medical
knowledge and patient data. The process begins with the DM determining whether to apply the
BUI method, which generates new tables with different levels of certainty. If the BUI method is
used, it creates new Decision Matrices (DM1, DM2, DM3) and calculates their linguistic values,
followed by determining the weights using the BUI tables. Aggregation operators like q-ROFWA, q-
ROFWG, and q-ROFWNA are then applied to combine the opinions of multiple experts. The lowest
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possible q-rung value is determined, and the maximum q-rung is selected for further analysis. This
leads to the aggregation of criteria both in the medical knowledge matrix and the patient data table.
Finally, the ranking method (similarity measure, score function, or inverse score function) is applied
to identify the most likely disease for each patient. The flowchart highlights the step-by-step process
that integrates various methodologies to achieve an accurate diagnosis. The results obtained from this
process are presented in the sections that follow.

Figure 1: Predefined construct medical knowledge q-ROFNs in relation to symptoms-diagnoses based
on expert knowledge

Figure 2: The flowchart of the decision-making process followed in this paper

3.1 Weight Calculation
In this subsection, two tables are presented, displaying the weights calculated by the entropy

method for each of the two methods analyzed in the previous section. Tables 5 and 6 present the
criteria weights determined using Methods 1 and 2, respectively. Table 5 specifically shows the weights
calculated using the first method, which has been applied to both q-ROFS (q-Rough Ordinal Fuzzy
Sets) and IV-qROFS (Interval-Valued q-Rough Ordinal Fuzzy Sets). In contrast, Table 6 focuses on the
weights derived through the second methodology, providing a comparison between the two approaches
for evaluating criteria significance.



778 CMES, 2025, vol.142, no.1

It is evident that the relative importance of each symptom derived from the two methods is
consistent. Chest pain has the highest weight, signifying its relatively higher importance in the decision-
making process. This is followed by stomach pain, cough, temperature, and headache. Since not every
symptom holds the same value in the diagnostic process, the weight table must be carefully considered.
These weights highlight the varying significance of symptoms, ensuring a more accurate and reliable
diagnostic outcome.

Method 1

Table 5: Calculated weights with the first entropy method

Criteria Temperature Headache Stomach pain Cough Chest pain

Weight q-ROFS 0.1240 0.0833 0.3336 0.1244 0.3348
Weight IVq-ROFS 0.1523 0.1014 0.3055 0.1430 0.2978

Method 2

Table 6: Calculated weights with second entropy method

Criteria Temperature Headache Stomach pain Cough Chest pain

Weight q-ROFS 0.1457 0.1264 0.2807 0.1660 0.2811

3.2 Similarity Measure
Table 7 below represents the ranking result values of the similarity measure ranking method,

utilizing the q-ROFWG aggregation operator applied to the symptoms. For the q-ROFWG, the
weights used were those calculated by the first entropy method with a q-rung value of 3.

Table 7: Similarity measure values of Table 3 data and q-ROFWG operator

Patient\Disease Viral fever Malaria fever Typhoid fever Stomach problems Chest problems

p1 0.9646 0.8819 0.8826 0.9783 0.8819
p2 0.9750 1.0000 1.0000 0.9604 1.0000
p3 0.9750 1.0000 1.0000 0.9604 1.0000
p4 0.4247 0.2129 0.2145 0.4768 0.2129

In Table 7, we can see that for Patients 2 and 3 because for multiple diseases the same similarity
measure value is calculated a clear ranking is not possible to be made.

The bar plot of Fig. 3 provides a visual representation of the similarity measure values for different
diseases across the patients. Each group of bars corresponds to a patient, and the height of each bar
indicates the similarity measure value for a specific disease. This graphical approach helps to quickly
identify trends and patterns in the diagnosis results, making it easier to observe the relative rankings
and compare the performance of different diseases for each patient. The plot complements the table
by offering an intuitive overview of the data.
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Figure 3: Bar plot of similarity measure values of Table 3 data and q-ROFWG operator

Similarly, by pairing the application of the similarity measure with each of the other two proposed
aggregation operators (q-ROFWA and q-ROFWNA), their respective ranking results are presented in
Tables A1 and A2 in the Appendix A. Additionally, in Appendix A, Figs. A1 and A2 offer a visual
representation of the similarity measure values for different diseases across various patients, providing
a clearer understanding of how these methodologies compare in practice.

In Table A1, we can see that for all of the patients because for multiple diseases the same similarity
measure value is calculated a clear ranking is not possible to be made even though chest problem
symptom is deemed the most probable disease. In Table A2, we can see that for all of the patients
because for each disease a distinct similarity measure value is calculated a clear ranking can be
performed.

3.3 Score
Table 8 represents the ranking result values of the score function ranking method, utilizing the

q-ROFWG aggregation operator applied to the symptoms. For the q-ROFWG, the weights used were
those calculated by the first entropy method with a q-rung value of 3.

Table 8: Score values of Table 3 data and q-ROFWG operator

Patient\Disease Viral fever Malaria fever Typhoid fever Stomach problems Chest problems

p1 0.1272 0.1272 0.1272 0.1272 0.1272
p2 0.1412 0.1643 0.1643 0.1349 0.1643
p3 0.1397 0.1397 0.1397 0.1349 0.1397
p4 0.0870 0.0870 0.0870 0.0870 0.0870

In Table 8, we can see that for all of the patients, because for multiple diseases the same similarity
measure value is calculated and a clear ranking is not possible to be made.

The bar plot of Fig. 4 provides a visual representation of the score values for different diseases
across the patients. Each group of bars corresponds to a patient, and the height of each bar indicates
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the score value for a specific disease. This graphical approach helps to quickly identify trends and
patterns in the diagnosis results, making it easier to observe the relative rankings and compare the
performance of different diseases for each patient. The plot complements the table by offering an
intuitive overview of the data.

Figure 4: Bar plot of score values of Table 3 data and q-ROFWG operator

Like before, by pairing the application of the score function with each of the other two proposed
aggregation operators (q-ROFWA and q-ROFWNA), their respective ranking results are presented in
Tables A3 and A4 in the Appendix A. Additionally, in Appendix A, Figs. A3 and A4 offer a visual
representation of the similarity measure values for different diseases across various patients, providing
a clearer understanding of how these methodologies compare in practice.

In Table A3, we can see that for all of the patients, because for multiple diseases the same similarity
measure value is calculated, and a clear ranking is not possible to be made.

In Table A4, we can see that for all of the patients because for multiple diseases the same similarity
measure value is calculated a clear ranking is not possible to be made.

3.4 Group Decision Making
Medical Data Matrix Transformation

In this section, the medical data matrix is manipulated using the BUI methodology. Depending
on the way the information is represented, the three different BUI techniques, analyzed in Section 2.3,
are applied. This process results in the creation of Tables M3, M4, and M5, which are illustrated and
utilized in the subsequent three subsections.

(a) Generation of Table M3 from the application of process a as shown in Section 2.9.1.

By employing process a of Section 2.9.1 on Table 3 for c = 0.5, 0.7, 0.9, we get the three tables
below:

Table 9 represents the results obtained from the process described above for a confidence level of
c = 0.9. Given that parameter c can range between 0 and 1, a value of 0.9 indicates that we have a
relatively high level of certainty regarding the quality of the information contained in the table. This
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high certainty suggests that the data is reliable and that the conclusions drawn from it are likely to be
accurate, reducing the potential impact of uncertainty on the decision-making process.

Table 9: BUI for c = 0.9

(0.36, 0.46),
(0.00, 0.10)

(0.27, 0.37),
(0.45, 0.55)

(0.09, 0.19),
(0.63, 0.73)

(0.36, 0.46),
(0.27, 0.37)

(0.09, 0.19),
(0.63, 0.73)

(0.63, 0.73),
(0.00, 0.10)

(0.18, 0.28),
(0.54, 0.64)

(0.00, 0.10),
(0.81, 0.91)

(0.63, 0.73),
(0.00, 0.10)

(0.09, 0.19),
(0.72, 0.82)

(0.27, 0.37),
(0.27, 0.37)

(0.54, 0.64),
(0.09, 0.19)

(0.18, 0.28),
(0.63, 0.73)

(0.18, 0.28),
(0.54, 0.64)

(0.09, 0.19),
(0.81, 0.91)

(0.09, 0.19),
(0.63, 0.73)

(0.18, 0.28),
(0.36, 0.46)

(0.72, 0.82),
(0.00, 0.10)

(0.18, 0.28),
(0.63, 0.73)

(0.18, 0.28),
(0.63, 0.73)

(0.09, 0.19),
(0.72, 0.82)

(0.00, 0.10),
(0.72, 0.82)

(0.18, 0.28),
(0.72, 0.82)

(0.18, 0.28),
(0.72, 0.82)

(0.72, 0.82),
(0.09, 0.19)

Table 10 presents the results derived from the aforementioned process with a confidence level of
c = 0.7. Since c can range from 0 to 1, a value of 0.7 indicates a moderate level of certainty about
the quality of the information in the table. This lower certainty suggests that there is more room for
variability or potential inaccuracies in the data, which may influence the decision-making process.
As a result, the conclusions drawn should be considered with caution, acknowledging the increased
uncertainty associated with the information.

Table 10: BUI for c = 0.7

(0.28, 0.58),
(0.00, 0.30)

(0.21, 0.51),
(0.35, 0.65)

(0.07, 0.37),
(0.49, 0.79)

(0.28, 0.58),
(0.21, 0.51)

(0.07, 0.37),
(0.49, 0.79)

(0.49, 0.79),
(0.00, 0.30)

(0.14, 0.44),
(0.42, 0.72)

(0.00, 0.30),
(0.63, 0.93)

(0.49, 0.79),
(0.00, 0.30)

(0.07, 0.37),
(0.56, 0.86)

(0.21, 0.51),
(0.21, 0.51)

(0.42, 0.72),
(0.07, 0.37)

(0.14, 0.44),
(0.49, 0.79)

(0.14, 0.44),
(0.42, 0.72)

(0.07, 0.37),
(0.63, 0.93)

(0.07, 0.37),
(0.49, 0.79)

(0.14, 0.44),
(0.28, 0.58)

(0.56, 0.86),
(0.00, 0.30)

(0.14, 0.44),
(0.49, 0.79)

(0.14, 0.44),
(0.49, 0.79)

(0.07, 0.37),
(0.56, 0.86)

(0.00, 0.30),
(0.56, 0.86)

(0.14, 0.44),
(0.56, 0.86)

(0.14, 0.44),
(0.56, 0.86)

(0.56, 0.86),
(0.07, 0.37)

Table 11 displays the results obtained from the process with a confidence level of c = 0.5. This
midpoint suggests a significant degree of uncertainty, which may lead to a less reliable decision-making
process. Therefore, the findings should be approached with careful consideration, as the lower certainty
introduces a higher possibility of variability in the data.
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Table 11: BUI for c = 0.5

(0.20, 0.70),
(0.00, 0.50)

(0.15, 0.65),
(0.25, 0.75)

(0.05, 0.55),
(0.35, 0.85)

(0.20, 0.70),
(0.15, 0.65)

(0.05, 0.55),
(0.35, 0.85)

(0.35, 0.85),
(0.00, 0.50)

(0.10, 0.60),
(0.30, 0.80)

(0.00, 0.50),
(0.45, 0.95)

(0.35, 0.85),
(0.00, 0.50)

(0.05, 0.55),
(0.40, 0.90)

(0.15, 0.65),
(0.15, 0.65)

(0.30, 0.80),
(0.05, 0.55)

(0.10, 0.60),
(0.35, 0.85)

(0.10, 0.60),
(0.30, 0.80)

(0.05, 0.55),
(0.45, 0.95)

(0.05, 0.55),
(0.35, 0.85)

(0.10, 0.60),
(0.20, 0.70)

(0.40, 0.90),
(0.00, 0.50)

(0.10, 0.60),
(0.35, 0.85)

(0.10, 0.60),
(0.35, 0.85)

(0.05, 0.55),
(0.40, 0.90)

(0.00, 0.50),
(0.40, 0.90)

(0.10, 0.60),
(0.40, 0.90)

(0.10, 0.60),
(0.40, 0.90)

(0.40, 0.90),
(0.05, 0.55)

In reality, the knowledge base available for decision-making is often not fully reliable, reflecting
the inherent uncertainties present in complex real-world scenarios. By also using a lower c value, the
uncertainty, typical of real-world GDM problems, is more accurately simulated.

I. Rating the importance of decision makers

Because directly evaluating the above tables with a q-ROFN is challenging due to the complexity
and uncertainty involved, the Linguistic Term Table is employed. This method allows us to categorize
each matrix using a linguistic term that corresponds to a q-ROFN. By doing so, the evaluation process
is simplified, enabling us to effectively integrate the matrix into our fuzzy approach for MAGDM.

Because of the 0 ≤ μR (p)
q} + νR (p)

q ≤ 1 restriction, for every q-ROFN, there is an infinite
number of q-rung values allowed. However, as the value increases, the uncertainty allowed in the
system also increases. Due to this, the lowest possible q-rung value for each q-ROFN is calculated
and depicted in the last column of Table 12. From these values, the maximum is to be selected as the
optimal q-rung value to continue the decision-making process.

Table 12: Linguistic term evaluation of previous BUI tables

Certainty degree Linguistic terms q-ROFNs 〈μq, νq〉 Best q

c = 0.9 Very important (VI) 〈0.95, 0.15〉 2
c = 0.7 Important (I) 〈0.75, 0.35〉 2
c = 0.5 Medium (M) 〈0.65, 0.45〉 2

Following Table 1, the above tables and matrixes are valued as Very Important (VI), Important
(I) and Medium (M), respectively [66].

Optimal value: q = 2

II. Decision matrix weight

The weights of the new BUI tables can be calculated using the score and inverse score functions as
analyzed in Section 2.9.3. Each function produces different results and requires a unique application
method to calculate the Overall Decision Matrix, which combines the opinions of all experts.

• Weight calculation based on the score function.
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Table 13 presents the weight calculations for the three decision makers (DMs) based on the score
function. In this table, the certainty degree of each DM corresponds directly to its calculated weight,
reflecting the level of confidence or reliability assigned to each decision maker’s input in the overall
decision-making process.

Table 13: BUI table calculated weights by the first entropy method

Certainty degree c = 0.9 c = 0.7 c = 0.5

Weight 0.5714 0.2857 0.1429

The process continues with the combination of the previous BUI Tables into a single Table
(Table 14) that combines the opinions of all experts using the above weights.

• Overall decision matrix

Table 14: Overall decision matrix

(0.2536, 0.6441),
(0.0000, 0.0444)

(0.1898, 0.5861),
(0.0896, 0.3334)

(0.0631, 0.4729),
(0.1756, 0.5458)

(0.2536, 0.6441),
(0.0323, 0.1816)

(0.0631, 0.4729),
(0.1756, 0.6634)

(0.4492, 0.8210),
(0.0000, 0.0444)

(0.1264, 0.5289),
(0.1290, 0.4314)

(0.0000, 0.4187),
(0.2903, 0.8289)

(0.4492, 0.8210),
(0.0000, 0.0444)

(0.0631, 0.4729),
(0.2294, 0.7685)

(0.1898, 0.5861),
(0.0323, 0.1816)

(0.3830, 0.7617),
(0.0036, 0.0801)

(0.1264, 0.5289),
(0.1756, 0.5458)

(0.1264, 0.5289),
(0.1290, 0.4314)

(0.0631, 0.4729),
(0.2903, 0.8807)

(0.0631, 0.4729),
(0.1756, 0.5458)

(0.1264, 0.5289),
(0.0573, 0.2505)

(0.5174, 0.8805),
(0.0000, 0.0444)

(0.1264, 0.5289),
(0.1756, 0.5458)

(0.1264, 0.5289),
(0.1756, 0.6634)

(0.0631, 0.4729),
(0.2294, 0.6779)

(0.0000, 0.4187),
(0.2294, 0.6779)

(0.1264, 0.5289),
(0.2294, 0.6779)

(0.1264, 0.5289),
(0.2294, 0.6779)

(0.5174, 0.8805),
(0.0036, 0.1780)

• Optimal q-rung assessment

Because of the 0 ≤ sup {μR (p)
q} + sup {νR (p)

q} ≤ 1 restriction, for every IVq-ROFN, there is an
infinite number of q-rung values allowed. However, as the value increases, the uncertainty allowed
in the system also increases. Due to this, the lowest possible q-rung value for each IVq-ROFN is
calculated and depicted in Table 15. From these values, the maximum is to be selected as the optimal
q-rung value to continue the decision-making process.

Table 15: Lowest possible q-rung of every IVq-ROFN

1 2 2 1 2
1 2 2 1 2
1 1 2 2 2
2 1 1 2 2
2 2 2 2 2

• Weight calculation based on the inverse score
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Table 16 presents the weight calculations for the three decision makers (DMs) based on the inverse
score function. In this table, the certainty degree of each DM corresponds directly to its calculated
weight, reflecting the level of confidence or reliability assigned to each decision maker’s input in the
overall decision-making process.

Table 16: BUI table calculated weights by the first entropy method

Certainty degree c = 0.9 c = 0.7 c = 0.5

Weight 0.3614 0.3397 0.2990

• Overall decision matrix

The process continues with the combination of the previous BUI Tables into a single Table
(Table 17) that combines the opinions of all experts using the above weights.

Table 17: Overall decision matrix

(0.2838, 0.6039),
(0.0000, 0.0675)

(0.2124, 0.5400),
(0.1116, 0.4240)

(0.0707, 0.4172),
(0.2188, 0.6277)

(0.2838, 0.6039),
(0.0402, 0.2558)

(0.0707, 0.4172),
(0.2188, 0.6277)

(0.5030, 0.8003),
(0.0000, 0.0675)

(0.1414, 0.4775),
(0.1607, 0.5214)

(0.0000, 0.3602),
(0.3617, 0.8670)

(0.5030, 0.8003),
(0.0000, 0.0675)

(0.0707, 0.4172),
(0.2858, 0.7428)

(0.2124, 0.5400),
(0.0402, 0.2558)

(0.4287, 0.7343),
(0.0045, 0.1224)

(0.1414, 0.4775),
(0.2188, 0.6277)

(0.1414, 0.4775),
(0.1607, 0.5214)

(0.0707, 0.4172),
(0.3617, 0.8670)

(0.0707, 0.4172),
(0.2188, 0.6277)

(0.1414, 0.4775),
(0.0714, 0.3355)

(0.5795, 0.8667),
(0.0000, 0.0675)

(0.1414, 0.4775),
(0.2188, 0.6277)

(0.1414, 0.4775),
(0.2188, 0.6277)

(0.0707, 0.4172),
(0.2858, 0.7428)

(0.0000, 0.3602),
(0.2858, 0.7428)

(0.1414, 0.4775),
(0.2858, 0.7428)

(0.1414, 0.4775),
(0.2858, 0.7428)

(0.5795, 0.8667),
(0.0045, 0.1224)

• Optimal q-rung assessment

Because of the 0 ≤ sup {μR (p)
q} + sup {νR (p)

q} ≤ 1 restriction, for every IVq-ROFN, there is an
infinite number of q-rung values allowed. However, as the value increases, the uncertainty allowed
in the system also increases. Due to this, the lowest possible q-rung value for each IVq-ROFN is
calculated and depicted in Table 18. From these values, the maximum is to be selected as the optimal
q-rung value to continue the decision-making process.

Table 18: Lowest possible q-rung of every IVq-ROFN

1 1 2 1 2
1 1 2 1 2
1 1 2 1 2
2 1 1 2 2
2 2 2 2 1

(b) Generation of Table M4 from the application of process b as shown in Section 2.9.1.
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By employing process b of Section 2.9.1 on Table 3 for c = 0.5, 0.7, 0.9, we get the three tables
below:

Table 19 represents the results obtained from the process described above for a confidence level
of c = 0.9. Given that parameter c can range between 0 and 1, a value of 0.9 indicates that we have a
relatively high level of certainty regarding the quality of the information contained in the table. This
high certainty suggests that the data is reliable and that the conclusions drawn from it are likely to be
accurate, reducing the potential impact of uncertainty on the decision-making process.

Table 19: BUI for c = 0.9

(0.36, 0.46) (0.27, 0.37) (0.09, 0.19) (0.36, 0.46) (0.09, 0.19)
(0.63, 0.73) (0.18, 0.28) (0.00, 0.10) (0.63, 0.73) (0.09, 0.19)
(0.27, 0.37) (0.54, 0.64) (0.18, 0.28) (0.18, 0.28) (0.09, 0.19)
(0.09, 0.19) (0.18, 0.28) (0.72, 0.82) (0.18, 0.28) (0.18, 0.28)
(0.09, 0.19) (0.00, 0.10) (0.18, 0.28) (0.18, 0.28) (0.72, 0.82)

Table 20 presents the results derived from the aforementioned process with a confidence level of
c = 0.7. Since c can range from 0 to 1, a value of 0.7 indicates a moderate level of certainty about
the quality of the information in the table. This lower certainty suggests that there is more room for
variability or potential inaccuracies in the data, which may influence the decision-making process.
As a result, the conclusions drawn should be considered with caution, acknowledging the increased
uncertainty associated with the information.

Table 20: BUI for c = 0.7

(0.28, 0.58) (0.21, 0.51) (0.07, 0.37) (0.28, 0.58) (0.07, 0.37)
(0.49, 0.79) (0.14, 0.44) (0.00, 0.30) (0.49, 0.79) (0.07, 0.37)
(0.21, 0.51) (0.42, 0.72) (0.14, 0.44) (0.14, 0.44) (0.07, 0.37)
(0.07, 0.37) (0.14, 0.44) (0.56, 0.86) (0.14, 0.44) (0.14, 0.44)
(0.07, 0.37) (0.00, 0.30) (0.14, 0.44) (0.14, 0.44) (0.56, 0.86)

Table 21 displays the results obtained from the process with a confidence level of c = 0.5. This
midpoint suggests a significant degree of uncertainty, which may lead to a less reliable decision-making
process. Therefore, the findings should be approached with careful consideration, as the lower certainty
introduces a higher possibility of variability in the data.

Table 21: BUI for c = 0.5

(0.20, 0.70) (0.15, 0.65) (0.05, 0.55) (0.20, 0.70) (0.05, 0.55)
(0.35, 0.85) (0.10, 0.60) (0.00, 0.50) (0.35, 0.85) (0.05, 0.55)
(0.15, 0.65) (0.30, 0.80) (0.10, 0.60) (0.10, 0.60) (0.05, 0.55)
(0.05, 0.55) (0.10, 0.60) (0.40, 0.90) (0.10, 0.60) (0.10, 0.60)
(0.05, 0.55) (0.00, 0.50) (0.10, 0.60) (0.10, 0.60) (0.40, 0.90)
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In reality, the knowledge base available for decision-making is often not fully reliable, reflecting
the inherent uncertainties present in complex real-world scenarios. By also using a lower c value, the
uncertainty, typical of real-world GDM problems, is more accurately simulated.

I. Rating the importance of decision makers

Because directly evaluating the above tables with a q-ROFN is challenging due to the complexity
and uncertainty involved, the Linguistic Term Table is employed. This method allows us to categorize
each matrix using a linguistic term that corresponds to a q-ROFN. By doing so, the evaluation process
is simplified, enabling us to effectively integrate the matrix into our fuzzy approach for MAGDM.

Because of the 0 ≤ μR (p)
q}+νR (p)

q ≤ 1 restriction, for every q-ROFN, there is an infinite number
of q-rung values allowed. However, as the value increases, the uncertainty allowed in the system also
increases. Due to this, the lowest possible q-rung value for each q-ROFN is calculated and depicted in
the last column of Table 22. From these values, the maximum is to be selected as the optimal q-rung
value to continue the decision-making process.

Table 22: Linguistic term evaluation of previous BUI tables

Certainty degree Linguistic terms q-ROFNs 〈μq, νq〉 Best q

c = 0.9 Very important (VI) 〈0.95, 0.15〉 2
c = 0.7 Important (I) 〈0.75, 0.35〉 2
c = 0.5 Medium (M) 〈0.65, 0.45〉 2

Following Table 1, the above tables and matrixes are valued as Very Important (VI), Important
(I) and Medium (M), respectively [66].

II. Decision matrix weight

The weights of the new BUI tables can be calculated using the score and inverse score functions as
analyzed in Section 2.9.3. Each function produces different results and requires a unique application
method to calculate the Overall Decision Matrix, which combines the opinions of all experts.

• Weight calculation based on the score function

Table 23 presents the weight calculations for the three decision makers (DMs) based on the score
function. In this table, the certainty degree of each DM corresponds directly to its calculated weight,
reflecting the level of confidence or reliability assigned to each decision maker’s input in the overall
decision-making process.

Table 23: BUI table calculated weights by the first entropy method

Certainty degree c = 0.9 c = 0.7 c = 0.5

Weight 0.5714 0.2857 0.1429

The process continues with the combination of the previous BUI Tables into a single Table
(Table 24) that combines the opinions of all experts using the above weights.

• Overall decision matrix
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Table 24: Overall decision matrix

(0.2536, 0.5851) (0.1898, 0.6565) (0.0631, 0.7763) (0.2536, 0.5851) (0.0631, 0.7763)
(0.4492, 0.3260) (0.1264, 0.7202) (0.0000, 0.8247) (0.4492, 0.3260) (0.0631, 0.7763)
(0.1898, 0.6565) (0.3830, 0.4199) (0.1264, 0.7202) (0.1264, 0.7202) (0.0631, 0.7763)
(0.0631, 0.7763) (0.1264, 0.7202) (0.5174, 0.2247) (0.1264, 0.7202) (0.1264, 0.7202)
(0.0631, 0.7763) (0.0000, 0.8247) (0.1264, 0.7202) (0.1264, 0.7202) (0.5174, 0.2247)

• Optimal q-rung assessment

Because of the 0 ≤ μR (p)
q}+νR (p)

q ≤ 1 restriction, for every q-ROFN, there is an infinite number
of q-rung values allowed. However, as the value increases, the uncertainty allowed in the system also
increases. Due to this, the lowest possible q-rung value for each q-ROFN is calculated and depicted
in Table 25. From these values, the maximum is to be selected as the optimal q-rung value to continue
the decision-making process.

Table 25: Lowest possible q-rung of every IVq-ROFN

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

• Weight calculation based on the inverse score function.

Table 26 presents the weight calculations for the three decision makers (DMs) based on the score
function. In this table, the certainty degree of each DM corresponds directly to its calculated weight,
reflecting the level of confidence or reliability assigned to each decision maker’s input in the overall
decision-making process.

Table 26: BUI Table calculated weights by first entropy method

Certainty degree c = 0.9 c = 0.7 c = 0.5

Weight 0.3614 0.3397 0.2990

The process continues with the combination of the previous BUI Tables into a single Table
(Table 27) that combines the opinions of all experts using the above weights.

• Overall decision matrix
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Table 27: Overall decision matrix

(0.2838, 0.6353) (0.2124, 0.7084) (0.0707, 0.8260) (0.2838, 0.6353) (0.0707, 0.8260)
(0.5030, 0.3595) (0.1414, 0.7720) (0.0000, 0.8702) (0.5030, 0.3595) (0.0707, 0.8260)
(0.2124, 0.7084) (0.4287, 0.4607) (0.1414, 0.7720) (0.1414, 0.7720) (0.0707, 0.8260)
(0.0707, 0.8260) (0.1414, 0.7720) (0.5795, 0.2489) (0.1414, 0.7720) (0.1414, 0.7720)
(0.0707, 0.8260) (0.0000, 0.8702) (0.1414, 0.7720) (0.1414, 0.7720) (0.5795, 0.2489)

• Optimal q-rung assessment

Because of the 0 ≤ μR (p)
q}+νR (p)

q ≤ 1 restriction, for every q-ROFN, there is an infinite number
of q-rung values allowed. However, as the value increases, the uncertainty allowed in the system also
increases. Due to this, the lowest possible q-rung value for each q-ROFN is calculated and depicted
in Table 28. From these values, the maximum is to be selected as the optimal q-rung value to continue
the decision-making process.

Table 28: Lowest possible q-rung of every IVq-ROFN

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

(c) Generation of Table M5 from the application of process c as shown in Section 2.9.1.

By employing process c of Section 2.9.1 on Table 3 for c = 0.5, 0.7, 0.9, we get the three tables
below:

In Table 29, we simulate a scenario where our certainty in the membership degree differs from
the non-membership degree. Specifically, the certainty in the membership degree is lower than that in
the non-membership degree. Despite this difference, both degrees are still relatively high, indicating a
generally high level of confidence in the quality of our medical knowledge data. This approach allows
us to explore how varying levels of certainty in different aspects of the data impact the decision-making
process.

Table 29: BUI for clow = 0.8 and chigh = 0.9

(0.32, 0.46) (0.24, 0.37) (0.08, 0.19) (0.32, 0.46) (0.08, 0.19)
(0.56, 0.73) (0.16, 0.28) (0.00, 0.10) (0.56, 0.73) (0.08, 0.19)
(0.24, 0.37) (0.48, 0.64) (0.16, 0.28) (0.16, 0.28) (0.08, 0.19)
(0.08, 0.19) (0.16, 0.28) (0.64, 0.82) (0.16, 0.28) (0.16, 0.28)
(0.08, 0.19) (0.00, 0.10) (0.16, 0.28) (0.16, 0.28) (0.64, 0.82)
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In the scenario of Table 30, both certainties are reduced to clow = 0.6 and chigh = 0.7, respectively.
Although the difference between the membership and non-membership certainties remains the same,
the overall confidence in the quality of our medical knowledge data is now significantly lower.

Table 30: BUI for clow = 0.6 and chigh = 0.7

(0.24, 0.58) (0.18, 0.51) (0.06, 0.37) (0.24, 0.58) (0.06, 0.37)
(0.42, 0.79) (0.12, 0.44) (0.00, 0.30) (0.42, 0.79) (0.06, 0.37)
(0.18, 0.51) (0.36, 0.72) (0.12, 0.44) (0.12, 0.44) (0.06, 0.37)
(0.06, 0.37) (0.12, 0.44) (0.48, 0.86) (0.12, 0.44) (0.12, 0.44)
(0.06, 0.37) (0.00, 0.30) (0.12, 0.44) (0.12, 0.44) (0.48, 0.86)

In this scenario of Table 31, the certainty levels have decreased further, with clow = 0.4 for the
membership degree and chigh = 0.5 for the non-membership degree. This represents an even lower
overall confidence in our medical knowledge data. Although the difference between the certainties
remains consistent, the reduced values highlight a scenario where the information we rely on is
considerably uncertain.

Table 31: BUI for clow = 0.4 and chigh = 0.5

(0.16, 0.70) (0.12, 0.65) (0.04, 0.55) (0.16, 0.70) (0.04, 0.55)
(0.28, 0.85) (0.08, 0.60) (0.00, 0.50) (0.28, 0.85) (0.04, 0.55)
(0.12, 0.65) (0.24, 0.80) (0.08, 0.60) (0.08, 0.60) (0.04, 0.55)
(0.04, 0.55) (0.08, 0.60) (0.32, 0.90) (0.08, 0.60) (0.08, 0.60)
(0.04, 0.55) (0.00, 0.50) (0.08, 0.60) (0.08, 0.60) (0.32, 0.90)

I. Rating the importance of decision makers

Because directly evaluating the above tables with a q-ROFN is challenging due to the complexity
and uncertainty involved, the Linguistic Term Table is employed. This method allows us to categorize
each matrix using a linguistic term that corresponds to a q-ROFN. By doing so, the evaluation process
is simplified, enabling us to effectively integrate the matrix into our fuzzy approach for MAGDM.

Because of the 0 ≤ μR (p)
q}+νR (p)

q ≤ 1 restriction, for every q-ROFN, there is an infinite number
of q-rung values allowed. However, as the value increases, the uncertainty allowed in the system also
increases. Due to this, the lowest possible q-rung value for each q-ROFN is calculated and depicted in
the last column of Table 32. From these values, the maximum is to be selected as the optimal q-rung
value to continue the decision-making process.

Table 32: Linguistic term evaluation of previous BUI tables

Certainty degree Linguistic terms q-ROFNs 〈μq, νq〉 Best q

c = 0.9 Very important (VI) 〈0.95, 0.15〉 2

(Continued)
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Table 32 (continued)

Certainty degree Linguistic terms q-ROFNs 〈μq, νq〉 Best q

c = 0.7 Important (I) 〈0.75, 0.35〉 2
c = 0.5 Medium (M) 〈0.65, 0.45〉 2

Following Table 1, the above tables and matrixes are valued as Very Important (VI), Important
(I) and Medium (M), respectively [66].

II. Decision matrix weight

The weights of the new BUI tables can be calculated using the score and inverse score functions as
analyzed in Section 2.9.3. Each function produces different results and requires a unique application
method to calculate the Overall Decision Matrix, which combines the opinions of all experts.

• Weight calculation based on the score function

Table 33 presents the weight calculations for the three decision makers (DMs) based on the score
function. In this table, the certainty degree of each DM corresponds directly to its calculated weight,
reflecting the level of confidence or reliability assigned to each decision maker’s input in the overall
decision-making process.

Table 33: BUI table calculated weights by the first entropy method

Certainty degree c = 0.9 c = 0.7 c = 0.5

Weight 0.5714 0.2857 0.1429

The process continues with the combination of the previous BUI tables into a single table
(Table 34) that combines the opinions of all experts using the above weights.

• Overall decision matrix

Table 34: Overall decision matrix

(0.2147, 0.5851) (0.1607, 0.6565) (0.0535, 0.7763) (0.2147, 0.5851) (0.0535, 0.7763)
(0.3799, 0.3260) (0.1070, 0.7202) (0.0000, 0.8247) (0.3799, 0.3260) (0.0535, 0.7763)
(0.1607, 0.6565) (0.3241, 0.4199) (0.1070, 0.7202) (0.1070, 0.7202) (0.0535, 0.7763)
(0.0535, 0.7763) (0.1070, 0.7202) (0.4369, 0.2247) (0.1070, 0.7202) (0.1070, 0.7202)
(0.0535, 0.7763) (0.0000, 0.8247) (0.1070, 0.7202) (0.1070, 0.7202) (0.4369, 0.2247)

• Optimal q-rung assessment

Because of the 0 ≤ μR (p)
q}+νR (p)

q ≤ 1 restriction, for every q-ROFN, there is an infinite number
of q-rung values allowed. However, as the value increases, the uncertainty allowed in the system also
increases. Due to this, the lowest possible q-rung value for each q-ROFN is calculated and depicted
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in Table 35. From these values, the maximum is to be selected as the optimal q-rung value to continue
the decision-making process.

Table 35: Lowest possible q-rung of every IVq-ROFN

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

• Weight calculation based on the inverse score function

Table 36 presents the weight calculations for the three decision makers (DMs) based on the inverse
score function. In this table, the certainty degree of each DM corresponds directly to its calculated
weight, reflecting the level of confidence or reliability assigned to each decision maker’s input in the
overall decision-making process.

Table 36: BUI table calculated weights by the first entropy method

Certainty degree c = 0.9 c = 0.7 c = 0.5

Weight 0.3614 0.3397 0.2990

The process continues with the combination of the previous BUI tables into a single table
(Table 37) that combines the opinions of all experts using the above weights.

• Overall decision matrix

Table 37: Overall decision matrix

(0.2448, 0.6353) (0.1833, 0.7084) (0.0610, 0.8260) (0.2448, 0.6353) (0.0610, 0.8260)
(0.4333, 0.3595) (0.1220, 0.7720) (0.0000, 0.8702) (0.4333, 0.3595) (0.0610, 0.8260)
(0.1833, 0.7084) (0.3696, 0.4607) (0.1220, 0.7720) (0.1220, 0.7720) (0.0610, 0.8260)
(0.0610, 0.8260) (0.1220, 0.7720) (0.4984, 0.2489) (0.1220, 0.7720) (0.1220, 0.7720)
(0.0610, 0.8260) (0.0000, 0.8702) (0.1220, 0.7720) (0.1220, 0.7720) (0.4984, 0.2489)

• Optimal q-rung assessment

Because of the 0 ≤ μR (p)
q}+νR (p)

q ≤ 1 restriction, for every q-ROFN, there is an infinite number
of q-rung values allowed. However, as the value increases, the uncertainty allowed in the system also
increases. Due to this, the lowest possible q-rung value for each q-ROFN is calculated and depicted
in Table 38. From these values, the maximum is to be selected as the optimal q-rung value to continue
the decision-making process.
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Table 38: Lowest possible q-rung of every IVq-ROFN

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

4 Sensitivity Analysis

To validate the robustness of the proposed diagnosis method a sensitivity analysis is performed.
To apply sensitivity analysis the influence of the parameter rung q and similarity measures, as the most
significant features of the proposed diagnosis method, is changed slightly and the ranking results are
investigated.

Table 39 presents the results of the sensitivity analysis conducted using the similarity measure
ranking method. It illustrates how the 5 diseases are ranked for each of the 4 patients across all
aggregation operators employed in this study, beginning with a q-rung value of 1. The analysis is then
systematically repeated with increasing q-rung values, specifically 2, 3, 4, and 10.

Table 39: Sensitivity analysis results table with q and similarity measure as ranking method

Similarity measure Patient Ranking

q = 1
S1 (ROFWA) p1 G5 > G3 > G1 = G2 = G4

p2 G5 > G3 > G1 = G2 = G4

p3 G5 > G3 > G1 = G2 = G4

p4 G5 > G3 > G1 = G2 = G4

S2 (ROFG) p1 G4 > G1 > G3 > G2 = G5

p2 G2 = G5 > G3 > G1 > G4

p3 G2 = G5 > G3 > G1 > G4

p4 G4 > G1 > G3 > G2 = G5

S3 (ROFWNA) p1 G4 > G5 > G2 > G1 > G3

p2 G5 > G2 > G1 > G3 > G4

p3 G5 > G2 > G1 > G3 > G4

p4 G4 > G5 > G2 > G1 > G3

q = 2
S1 (ROFWA) p1 G5 > G1 = G2 = G4 > G3

p2 G5 > G3 > G1 = G2 = G4

p3 G5 > G1 = G2 = G4 > G3

p4 G5 > G1 = G2 = G4 > G3

S2 (ROFG) p1 G4 > G1 > G3 > G2 = G5

p2 G2 = G5 > G3 > G1 > G4

p3 G2 = G5 > G3 > G1 > G4

(Continued)
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Table 39 (continued)

Similarity measure Patient Ranking

p4 G4 > G1 > G3 > G2 = G5

S3 (ROFWNA) p1 G5 > G4 > G2 > G1 > G3

p2 G5 > G2 > G1 > G3 > G4

p3 G5 > G4 > G2 > G1 > G3

p4 G4 > G5 > G2 > G1 > G3

q = 3
S1 (ROFWA) p1 G5 > G1 = G2 = G4 > G3

p2 G5 > G1 = G2 = G4 > G3

p3 G5 > G1 = G2 = G4 > G3

p4 G5 > G1 = G2 = G4 > G3

S2 (ROFG) p1 G4 > G1 > G3 > G2 = G5

p2 G2 = G3 = G5 > G1 > G4

p3 G2 = G3 = G5 > G1 > G4

p4 G4 > G1 > G3 > G2 = G5

S3 (ROFWNA) p1 G5 > G2 > G4 > G1 > G3

p2 G2 > G1 > G3 > G5 > G4

p3 G4 > G5 > G2 > G1 > G3

p4 G4 > G5 > G2 > G1 > G3

q = 4
S1 (ROFWA) p1 G5 > G1 = G2 = G4 > G3

p2 G5 > G1 = G2 = G4 > G3

p3 G5 > G1 = G2 = G4 > G3

p4 G5 > G1 = G2 = G4 > G3

S2 (ROFG) p1 G4 > G1 > G2 = G3 = G5

p2 G2 = G3 = G5 > G1 > G4

p3 G2 = G3 = G5 > G1 > G4

p4 G4 > G1 > G3 > G2 = G5

S3 (ROFWNA) p1 G5 > G2 > G1 > G3 > G4

p2 G2 > G1 > G3 > G5 > G4

p3 G4 > G5 > G2 > G1 > G3

p4 G4 > G5 > G2 > G1 > G3

q = 10
S1 (ROFWA) p1 G5 > G1 = G2 = G4 > G3

p2 G1 = G2 = G4 = G5 > G3

p3 G1 = G2 = G4 = G5 > G3

p4 G1 = G2 = G4 = G5 > G3

S2 (ROFG) p1 G1 > G4 > G2 = G3 = G5

p2 G2 = G3 = G5 > G1 > G4

p3 G2 = G3 = G5 > G1 > G4

p4 G4 > G1 > G2 = G3 = G5

S3 (ROFWNA) p1 G2 > G3 > G1 > G5 > G4

(Continued)
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Table 39 (continued)

Similarity measure Patient Ranking

p2 G2 > G3 > G1 > G5 > G4

p3 G4 > G5 > G2 > G3 > G1

p4 G4 > G5 > G2 > G3 > G1

Note: where G1: viral fever, G2: malaria fever, G3: typhoid fever, G4: stomach problems and G5: chest problems.

In our process of classifying the five diseases based on similarity measures, three distinct operators
were employed: q-ROFWA, q-ROWG, and q-ROWNA. For each of these operators and each table,
the criteria (symptoms) were aggregated into a single criterion. For the aggregation the weight of each
criterion was calculated using the first entropy method as it was previously analyzed. And so, the now
one-dimensional arrays of medical knowledge and patient symptom information are compared by
applying the similarity measure.

In the case of the ROFWA operator due to the mathematical equation of the aggregation, it is
evident that when in at least one of the q-ROFNs of the matrix of medical knowledge or patient
symptoms, there is a zero degree of non-membership then the final degree of non-membership of the
matrix of medical knowledge or patients’ symptoms respectively, will also be zero. Then by applying
the formula of the similarity measure, it is also evident that when two q-ROFNs A and B are compared,
with the similarity measure, and one of them has a zero degree of non-membership then the similarity
measure will depend only on q-ROFN A. For these reasons when in two positions of the aggregated
medical knowledge matrix there are q-ROFNs with zero degree of non-membership then the similarity
measure matrix will have two identical columns. Likewise with three or more columns.

Similar observations apply to the ROFG operator, albeit with a distinction: for identical columns
to emerge, the degrees of membership must be zero, rather than the degrees of non-membership.

For this reason, with the ROFWA operator, the classification of G1, G2, and G4 is always the
same whatever q is chosen. With a small q the G5 is considered a better choice, after that the G3, and
finally the G1, G2, and G4. As q increases the position of G3 starts to decline for all patients with G5
remaining the optimal choice for patient 1 and G1, G2, G3, and G4 being evaluated as equal for the
remaining patients.

With the ROFG operator, the ordering of G2 and G5 is always the same whatever q is chosen.
With a small q G4 is considered a better choice for patients 1 and 4 with G2 and G5 worse. While for
patients 2 and 3 the opposite is true. As q increases for patient 1, G1 surpasses G4, but the classification
remains the same for the other three patients.

For the ROFWNA operator due to its mathematical formula that prevents the calculation of a
zero degree of participation or non-participation, there is no problem of evaluating different diseases
alike. For a small q, G4 is the best choice for patients 1 and 4, while G5 is for patients 2 and 3. As
q increases, it appears that the value of G4 and G5 is degraded for patients 1 and 2, and G2 is the
optimal choice, while for patients 3 and 4 G4 and G5 remain the best alternatives.

Fig. 5 presents a spider plot that illustrates the comparison of the similarity measure values for
patient 1 using the three different aggregation operators previously used in this paper: ROFWA,
ROFG, and ROFWNA. The plot covers five diseases considered in this study, with a q-rung of 1.
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Figure 5: Spider plot of patient 1 results for similarity measure as ranking method with q = 1

Fig. 6 presents a spider plot that illustrates the comparison of the similarity measure values for
patient 3 using the three different aggregation operators previously used in this paper: ROFWA,
ROFG, and ROFWNA. The plot covers five diseases considered in this study, with a q-rung of 4.

Figure 6: Spider plot of patient 3 results for similarity measure as a ranking method with q = 4

Table 40 presents the results of the sensitivity analysis conducted using the score function ranking
method. It illustrates how the 5 diseases are ranked for each of the 4 patients across all aggregation
operators employed in this study, beginning with a q-rung value of 1. The analysis is then systematically
repeated with increasing q-rung values, specifically 2, 3, 4, and 10.
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Table 40: Sensitivity analysis results table with the score as a ranking method

Score Patient Ranking

q = 1
S1 (ROFWA) p1 G5 > G3 > G1 = G2 = G4

p2 G5 > G3 > G1 = G2 = G4

p3 G5 > G3 > G1 = G2 = G4

p4 G5 > G3 > G1 = G2 = G4

S2 (ROFG) p1 G1 = G2 = G3 = G4 = G5

p2 G4 > G1 > G3 > G2 > G5

p3 G4 > G1 > G3 > G2 > G5

p4 G1 = G2 = G3 = G4 = G5

S3 (ROFWNA) p1 G1 = G2 = G3 = G4 = G5

p2 G3 = G5 > G2 > G4 > G1

p3 G3 = G5 > G2 > G4 > G1

p4 G3 = G5 > G2 > G4 > G1

q = 2
S1 (ROFWA) p1 G5 > G3 > G1 = G2 = G4

p2 G5 > G3 > G1 = G2 = G4

p3 G5 > G3 > G1 = G2 = G4

p4 G5 > G3 > G1 = G2 = G4

S2 (ROFG) p1 G1 = G2 = G3 = G4 = G5

p2 G2 > G3 > G5 > G1 > G4

p3 G2 > G3 > G5 > G1 > G4

p4 G2 > G3 > G5 > G1 > G4

S3 (ROFWNA) p1 G2 > G5 > G3 > G4 > G1

p2 G2 > G5 > G3 > G4 > G1

p3 G2 > G5 > G3 > G4 > G1

p4 G2 > G5 > G3 > G4 > G1

q = 3
S1 (ROFWA) p1 G5 > G4 > G3 > G1 = G2

p2 G5 > G4 > G3 > G1 = G2

p3 G5 > G4 > G3 > G1 = G2

p4 G5 > G4 > G3 > G1 = G2

S2 (ROFG) p1 G2 > G3 > G1 = G4 = G5

p2 G2 > G3 > G5 > G1 = G4

p3 G2 > G3 > G5 > G1 > G4

p4 G2 > G3 > G5 > G1 > G4

S3 (ROFWNA) p1 G2 > G5 > G3 > G4 > G1

p2 G2 > G5 > G3 > G4 > G1

p3 G2 > G5 > G3 > G4 > G1

p4 G2 > G5 > G3 > G4 > G1

q = 4
S1 (ROFWA) p1 G5 > G4 > G3 > G1 = G2

(Continued)



CMES, 2025, vol.142, no.1 797

Table 40 (continued)

Score Patient Ranking

p2 G5 > G4 > G3 > G1 = G2

p3 G5 > G4 > G3 > G1 = G2

p4 G5 > G4 > G3 > G1 = G2

S2 (ROFG) p1 G2 > G3 > G1 = G4 = G5

p2 G2 > G3 > G5 > G1 = G4

p3 G2 > G3 > G5 > G1 > G4

p4 G2 > G3 > G5 > G1 > G4

S3 (ROFWNA) p1 G2 > G5 > G3 > G4 > G1

p2 G2 > G5 > G3 > G4 > G1

p3 G2 > G5 > G3 > G4 > G1

p4 G2 > G5 > G3 > G4 > G1

q = 10
S1 (ROFWA) p1 G4 = G5 > G3 > G1 > G2

p2 G4 = G5 > G3 > G1 > G2

p3 G4 = G5 > G3 > G1 > G2

p4 G4 = G5 > G3 > G2 > G1

S2 (ROFG) p1 G2 > G1 = G3 = G4 = G5

p2 G2 > G3 > G1 = G4 > G5

p3 G2 > G3 > G1 = G4 > G5

p4 G1 = G2 = G3 = G4 = G5

S3 (ROFWNA) p1 G2 > G3 > G5 > G4 > G1

p2 G2 > G3 > G5 > G4 > G1

p3 G2 > G3 > G5 > G4 > G1

p4 G2 > G3 > G5 > G4 > G1

Note: where G1: viral fever, G2: malaria fever, G3: typhoid fever, G4: stomach problems and G5: chest problems.

Using the Score Function as the Decision-Making Method

(1) ROFWA Aggregation Operator

With the ROFWA aggregation operator, the ranking of diseases remains consistent for each of
the four patients. For low values of q, Disease G5 is selected as the best-fitting disease, followed by
Disease G3. However, the operator exhibits a significant drawback similar to the one observed in the
similarity measure results: Diseases G1, G2, and G4 cannot be properly ranked against each other
since they share the same score value. As the value of q increases, Disease G4 becomes a better choice,
eventually surpassing Disease G5 when q is set to 10.

(2) ROFG Aggregation Operator

The ROFG aggregation operator yields the same score for each disease for patients P1 and P4,
with Disease G4 emerging as the most probable diagnosis for patients P2 and P3, followed by Disease
G1. For these two patients, each disease has a distinct rank. As the value of q rises, the ranking for
patients P1 and P4 differentiates, allowing for a clearer decision regarding the ailment of each patient.
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With higher q values, Disease G2’s score surpasses G3, making it the best option, while Disease G4
becomes the least favorable choice.

(3) ROFWNA Aggregation Operator

Using the ROFWNA aggregation operator, the ranking of each of the five diseases is the same for
patient p1. For the remaining patients, Diseases G3 and G5 are deemed the best selections, sharing the
same score value. As q increases, the ranking for patient P1 differentiates, enabling a clearer decision
regarding the patient’s ailment. Notably, as q rises, Disease G2’s score surpasses G3, positioning it as
the best option.

• Disease Selection Variability: Disease G5 is initially the most probable disease, but as q
increases, Disease G4 and G2 become more prominent choices depending on the aggregation
operator used.

• Sensitivity to q value: The score values initially fluctuate with increasing q values but eventually
reach a saturation point where the ranking stabilizes. Higher q values provide clearer and more
reliable disease separation and ranking.

• Aggregation Operator Limitations: The ROFWA and ROFG operators show limitations in
distinct ranking for lower q values. The ROFWNA operators provide better differentiation but
still face challenges in ranking diseases distinctly at certain q values.

Table 41 presents the results of the sensitivity analysis conducted using the inverse score function
ranking method. It illustrates how the 5 diseases are ranked for each of the 4 patients across all
aggregation operators employed in this study, beginning with a q-rung value of 1. The analysis is then
systematically repeated with increasing q-rung values, specifically 2, 3, 4, and 10.

Table 41: Sensitivity analysis results table with the inverse score as a ranking method

Inverse score Patient Ranking

q = 1
S1 (ROFWA) p1 G4 < G2 < G1 = G3 = G5

p2 G4 < G2 < G1 < G3 = G5

p3 G4 < G2 < G1 < G3 = G5

p4 G4 < G2 < G1 = G3 = G5

S2 (ROFG) p1 G4 < G1 = G2 = G3 = G5

p2 G4 < G1 < G2 = G3 = G5

p3 G4 < G1 < G2 = G3 = G5

p4 G1 = G2 = G3 = G4 = G5

S3 (ROFWNA) p1 G4 < G1 = G2 = G3 = G5

p2 G4 < G1 = G2 = G3 = G5

p3 G4 < G1 = G2 = G3 = G5

p4 G1 = G2 = G3 = G4 = G5

q = 2
S1 (ROFWA) p1 G4 < G5 < G1 = G2 = G3

p2 G4 < G5 < G2 < G1 = G3

p3 G4 < G5 < G1 = G2 = G3

(Continued)
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Table 41 (continued)

Inverse score Patient Ranking

p4 G4 < G5 < G1 = G2 = G3

S2 (ROFG) p1 G1 = G2 = G3 = G4 = G5

p2 G4 < G1 < G2 = G3 = G5

p3 G4 < G1 < G2 = G3 = G5

p4 G1 = G2 = G3 = G4 = G5

S3 (ROFWNA) p1 G4 < G1 = G2 = G3 = G5

p2 G4 < G5 < G1 = G2 = G3

p3 G4 < G1 = G2 = G3 = G5

p4 G1 = G2 = G3 = G4 = G5

q = 3
S1 (ROFWA) p1 G4 < G5 < G1 = G2 = G3

p2 G4 < G5 < G2 < G1 = G3

p3 G4 < G5 < G1 = G2 = G3

p4 G4 < G5 < G2 < G1 = G3

S2 (ROFG) p1 G1 = G2 = G3 = G4 = G5

p2 G4 < G1 < G2 = G3 = G5

p3 G1 = G2 = G3 = G4 = G5

p4 G1 = G2 = G3 = G4 = G5

S3 (ROFWNA) p1 G4 < G1 = G2 = G3 = G5

p2 G4 < G5 < G1 = G2 = G3

p3 G4 < G5 < G1 = G2 = G3

p4 G1 = G2 = G3 = G4 = G5

q = 4
S1 (ROFWA) p1 G4 < G5 < G1 = G2 = G3

p2 G4 < G5 < G2 < G1 = G3

p3 G1 = G2 = G3 = G4 = G5

p4 G4 < G5 < G2 < G1 = G3

S2 (ROFG) p1 G1 = G2 = G3 = G4 = G5

p2 G4 < G1 < G2 = G3 = G5

p3 G4 < G1 = G2 = G3 = G5

p4 G1 = G2 = G3 = G4 = G5

S3 (ROFWNA) p1 G4 < G5 < G1 = G2 = G3

p2 G4 < G5 < G1 = G2 = G3

p3 G4 < G1 = G2 = G3 = G5

p4 G4 < G1 = G2 = G3 = G5

q = 10
S1 (ROFWA) p1 G4 = G5 < G1 = G2 = G3

p2 G4 = G5 < G1 = G2 = G3

p3 G4 = G5 < G1 = G2 = G3

p4 G4 = G5 < G1 = G2 = G3

S2 (ROFG) p1 G1 = G2 = G3 = G4 = G5

(Continued)
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Table 41 (continued)

Inverse score Patient Ranking

p2 G4 < G1 < G2 = G3 = G5

p3 G4 < G1 < G2 = G3 = G5

p4 G1 = G2 = G3 = G4 = G5

S3 (ROFWNA) p1 G4 < G5 < G1 = G2 = G3

p2 G4 < G5 < G1 < G2 = G3

p3 G4 < G5 < G1 = G2 = G3

p4 G4 < G5 < G1 = G2 = G3

Note: where G1: viral fever, G2: malaria fever, G3: typhoid fever, G4: stomach problems and G5: chest problems.

Using the Inverse Score Function as the Decision-Making Method

The inverse score function method determines the ranking of diseases for each patient by
calculating the inverse score, where the disease with the lowest calculated score is selected. The ranking
is established by increasing inverse score values.

(1) ROFWA Aggregation Operator

With the ROFWA aggregation operator, Disease G4 is consistently determined to be the most
probable disease, followed by Disease G2. As the q value increases, Disease G4 remains the top choice,
but Disease G5 moves up to the second rank. At q = 10, G5’s inverse score equals G4’s, resulting in
both diseases being equally ranked.

(2) ROFG Aggregation Operator

Starting with q = 1, the ROFG aggregation operator produces equal inverse scores for all diseases
in patient P4, making it impossible to differentiate between them. For the other three patients, G4 is
selected as the most probable disease due to having the lowest inverse score. As q increases to values
of 2, 3, and 4, the problem of equal inverse scores extends to patients P1 and P3, making ranking
impossible for these patients. However, for patients where scores differ sufficiently, G4 remains the
most probable disease.

(3) ROFWNA Aggregation Operator

With a q value of 1 and the ROFWNA aggregation operator, p4 faces the same problem it faced
with the ROFG aggregation operator, where all inverse scores are equal, preventing a clear assessment.
For the remaining patients, although Disease G4 has the lowest inverse score and is thus the selected
disease, an exact ranking of the other diseases is impossible due to them sharing the same inverse score.
As the q value increases, while the issue of equal scores persists in some cases, the inverse score values
become distinct enough to enable decision-making for every patient. As q increases, G4 is consistently
selected, followed by G5.

• Disease Selection Variability: Disease G4 consistently emerges as the most probable disease
across various aggregation operators and q values.

• Sensitivity to q Value: As q increases, the inverse score values initially vary but eventually
stabilize, indicating that higher q values provide clearer and more reliable rankings.
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• Aggregation Operator Limitations: Different aggregation operators exhibit specific limitations.
The ROFWA and ROFWNA operators show issues with equal scores for certain q values, while
the ROFG operator’s problem extends to more patients as q increases.

5 Discussion

A significant aspect of our article involved conducting a sensitivity analysis. In this analysis, the
methodologies were repeatedly applied, varying only the value of q each time. In recent literature, q
typically is assigned values of 1, 2, or 3. To explore the impact of higher q values, our analysis was
extended to include q = 4 and 10. Our findings indicate that as q increases, the allowed uncertainty
also increases. Interestingly, our results demonstrate that despite variations in the selected disease,
there is a point of stability where the response remains consistent, and the same disease is repeatedly
identified regardless of the specific q value. This insight underscores the importance of understanding
the implications of different q values in medical decision-making processes and highlights the need for
further exploration into the optimal q value for achieving reliable diagnostic outcomes.

In this study, we explored the impact of various aggregation operators and decision-making
methods on the sensitivity analysis for medical diagnosis using q-rung orthopair fuzzy sets (q-
ROFS). Our analysis focused on three aggregation operators: q-ROGWA, q-ROFWNA, and q-ROFG.
Additionally, we employed three different decision-making methods: the similarity measure using the
cosine function, the score function, and an innovative method—the inverse score function.

The detailed sensitivity analysis was conducted using three distinct decision-making methods, with
the results shown in different tables. The first method utilized a similarity measure with the cosine
function, allowing us to quantify the resemblance between patient symptoms and potential diseases.
The second method involved the score function, which ranks the diseases based on calculated scores.
The third method was the inverse score function, an innovative approach that inversely prioritizes
lower scores to highlight different perspectives in diagnosis.

Sensitivity and comparison analysis

The influence of the parameter q and similarity measures on the disease ranking.

(1) Similarity Measure Analysis (Table 39):

The sensitivity analysis using the similarity measure provided insightful results regarding the
impact of varying q values on disease ranking. It was evident that with lower q values, the diagnosis
was more sensitive to slight variations in patient symptoms, leading to fluctuating disease rankings.
However, as q increased, the rankings began to stabilize, indicating a more robust decision-making
process under higher uncertainty levels.

(2) Score Function Analysis (Table 40):

The application of the score function in our sensitivity analysis revealed a similar trend. With q
values of 1, 2, and 3, there was noticeable variability in the selected diseases, reflecting the method’s
sensitivity to uncertainty. When q was increased to 4 and 10, the selected diseases became more
consistent. The analysis also shows the differences among the three aggregation methods. The ROFWA
and ROFG operators demonstrate significant limitations in providing distinct rankings at lower q
values. These operators often fail to differentiate between multiple diseases, resulting in the same score
for several conditions. Conversely, the ROFWNA operator shows better differentiation capabilities
but still faces challenges in ranking diseases distinctly at certain q values. Despite performing better
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than ROFWA and ROFG, the ROFWNA operator occasionally struggles to offer a clear and decisive
ranking for all conditions.

(3) Inverse Score Function Analysis (Table 41):

The inverse score function provided a unique perspective in the sensitivity analysis. As q increases,
the inverse score values initially vary but eventually stabilize, indicating that higher q values provide
clearer and more reliable rankings. Using this decision-making method different aggregation operators
exhibit specific limitations. The ROFWA and ROFWNA operators show issues with equal scores for
certain q values, while the ROFG operator’s problem extends to more patients as q increases.

In conclusion, the sensitivity analysis demonstrated that while lower q values are more prone
to variations in diagnosis, higher q values provide a stable and consistent decision-making process.
However, because identical score values can appear when using specific aggregation operators with
particular decision-making methods at certain q values, the selection of the q value must be carefully
considered. The q value significantly influences the ranking of diseases, and an inappropriate choice
can lead to indistinguishable rankings, undermining the decision-making process. Therefore, to achieve
the optimal ranking of diseases, it is crucial to select the q value carefully, ensuring it enhances
the differentiation capability of the chosen aggregation operator and decision-making method. This
careful selection helps in producing a more accurate and reliable ranking, ultimately improving
diagnostic outcomes.

Previous studies using data from Tables 2 and 3 have shown that most results yield similar
outcomes in terms of disease ranking. Table 42 summarizes these earlier works that also utilized the
data from Tables 2 and 3.

Table 42: Results from earlier works

p1 p2 p3 p4

q-ROFSs and
Sanchez’s
method

q = 1 Malaria
fever (G2)

Stomach
problems
(G4)

Malaria
fever (G2)

Malaria
fever (G2)

[26,30,74]

q = 2 Malaria
fever (G2)

Stomach
problems
(G4)

Malaria
fever (G2)

Malaria
fever (G2)

[26,27]

q = 3 Malaria
fever (G2)

Stomach
problems
(G4)

Malaria
fever (G2)

Malaria
fever (G2)

[26]

Similarity
measure

S̃ Malaria
fever (G2)

Stomach
problems
(G4)

Typhoid
fever (G3)

Viral fever
(G1)

[48]

Ŝ Viral fever
(G1)

Stomach
problems
(G4)

Typhoid
fever (G3)

Viral fever
(G1)

[48]

Even though the methodologies used in previous work differ from those in our study, the results
are remarkably similar. Malaria fever (G2) consistently ranks as the highest disease for patients p1, p3,
and p4, while stomach problems dominate for p2. While our results varied depending on the specific
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methodology applied, these diseases regularly maintain a high ranking, demonstrating consistency
across different approaches.

6 Conclusions

The diagnostic process relies heavily on the opinions of medical professionals, each bringing
their unique perspective to the decision-making process. Given that not all professional opinions will
align, the methodologies explored in this paper provide a way to aggregate these diverse opinions
into a single mathematical representation of medical knowledge, which can then be utilized in the
MAGDM process. Our research highlights that not all aggregation methods offer the same level of
accuracy in disease detection for every patient. For instance, using the q-ROFWA and q-ROFWG
aggregation operators and the similarity measure as the decision-making method can result in multiple
diseases having the same maximum value, making it challenging to identify the most probable disease.
However, the q-ROFWNA aggregation operator addresses this issue by assigning a unique value to
each disease, thereby facilitating a clear and decisive diagnosis for each patient. In addition to exploring
aggregation operators, our study also investigates decision-making methods, including the cosine
similarity measure, the score function, and an innovative method, the inverse score function. These
methods offer distinct approaches to analyzing medical data. Of course, the aggregation operators
and the decision-making methods explored in our article are not the only ones in existence. They
represent just a subset of the available methods, and further exploration of additional ones could yield
even more robust solutions for medical diagnostics.

The proposed applications could be extended for data representation to various tasks such as
prognosis, classification, and other decision-making processes. The used methodologies are versatile
and adaptable, without any specific restrictions on the type of data, including the dimensionality,
number of attributes, or number of samples, etc. There are no data representation restrictions in our
approach because a wide variety of criteria is possible to be incorporated and, as highlighted in our
paper, the opinions of numerous experts can be leveraged. This flexibility is one of the key strengths
that enables the application of these methodologies in the initial stages of deep learning, facilitating
data manipulation and information extraction. However, the biggest challenge lies in selecting the
appropriate methodology for each specific application to ensure optimal results. Pairing the correct
technique with the relevant task is crucial for maximizing performance and accuracy.

Despite its promise, fuzzy logic, especially in its advanced forms, is still a relatively new and
evolving field that requires extensive research to fully understand and optimize its functions in medical
applications. While initial studies have demonstrated its potential to enhance diagnostic accuracy
and decision-making, numerous challenges and complexities need to be addressed. This includes
refining the methodologies for the diagnostic process, improving the integration of fuzzy logic with
other diagnostic tools, and validating its effectiveness across diverse medical conditions and patient
populations. Continued research and development are essential to overcome these hurdles, ensuring
that fuzzy logic can be reliably and effectively applied in real-world clinical settings to improve patient
outcomes.

The data utilized in this paper, while not extensive enough to develop a comprehensive decision-
making tool capable of detecting a wide range of diseases, provides a valuable foundation for studying
the methodologies analyzed above. The primary focus of this article is to explore and evaluate
various advanced fuzzy set techniques and their applications in medical diagnostics. By applying
these methodologies to the given dataset, we can filter out and identify the most effective approaches
that hold the greatest potential for real-world diagnostic scenarios. This focused analysis allows us to
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pinpoint the techniques that best handle uncertainty and improve diagnostic accuracy. In the future,
a larger knowledge base system should be created, incorporating data about many more diseases and
possible symptoms. This expanded dataset would enable us to generalize our results beyond the limited
scope of the five diseases and five symptoms currently available, ultimately paving the way for the
development of robust clinical tools that can be reliably and effectively applied in diverse medical
settings.

For future research directions, we plan to expand the current methodologies in several important
ways:

The first aim is to implement the developed aggregation operators and uncertainty-handling
techniques as a data preprocessing step for machine learning models. Integrating these methodologies
early in the machine learning pipeline will enhance data manipulation and feature extraction, allowing
models to better handle uncertainty in medical data. A second focus involves exploring uncertain
medical knowledge acquisition in greater detail. The current framework addresses uncertainty in
patient data, but further research will concentrate on acquiring and structuring medical knowledge
from diverse, uncertain sources. Delving deeper into linguistic medical knowledge is also intended,
particularly regarding the representation and aggregation of expert knowledge expressed in natural
language. This approach will incorporate qualitative information, such as patient symptoms described
in medical records, into fuzzy decision-making processes. Finally, future research will investigate
cognitive uncertainty, providing an alternative approach to capturing the uncertainty inherent in expert
knowledge.
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Appendix A

Table A1: Similarity measure values of Table 3 data and q-ROFWA operator

Patient\Disease Viral fever Malaria fever Typhoid fever Stomach problems Chest problems

p1 0.9395 0.9395 0.4747 0.9395 0.9979
p2 0.8526 0.8526 0.6401 0.8526 0.9652
p3 0.9120 0.9120 0.5375 0.9120 0.9906
p4 0.9633 0.9633 0.4048 0.9633 0.9999

https://doi.org/10.1016/j.ins.2019.11.035
https://doi.org/10.1016/S0165-0114(98)00235-8
https://doi.org/10.1016/j.eswa.2016.11.034
https://doi.org/10.1016/j.ins.2019.08.076
https://doi.org/10.1016/j.ins.2005.01.017
https://doi.org/10.1007/s10516-021-09573-4
https://doi.org/10.3390/math8010142
https://doi.org/10.11948/2016050


CMES, 2025, vol.142, no.1 809

Figure A1: Bar plot of similarity measure values of Table 3 data and q-ROFWA operator

Table A2: Similarity measure values of Table 3 data and q-ROFWNA operator

Patient\Disease Viral fever Malaria fever Typhoid fever Stomach problems Chest problems

p1 0.9388 0.9731 0.9345 0.9618 0.9990
p2 0.9818 0.9974 0.9794 0.9055 0.9788
p3 0.8667 0.9200 0.8606 0.9943 0.9922
p4 0.5168 0.6151 0.5063 0.9216 0.8079

Figure A2: Bar plot of similarity measure values of Table 3 data and q-ROFWNA operator
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Table A3: Score values of Table 3 data and q-ROFWA operator

Patient\Disease Viral fever Malaria fever Typhoid fever Stomach problems Chest problems

p1 0.1037 0.1037 0.1037 0.0861 0.0898
p2 0.1129 0.1066 0.1129 0.0861 0.0898
p3 0.1036 0.1036 0.1036 0.0861 0.0898
p4 0.1073 0.1066 0.1073 0.0861 0.0898

Figure A3: Bar plot of score values of Table 3 data and q-ROFWA operator

Table A4: Score values of Table 3 data and q-ROFWNA operator

Patient\Disease Viral fever Malaria fever Typhoid fever Stomach problems Chest problems

p1 0.1298 0.1298 0.1298 0.1114 0.1298
p2 0.1436 0.1436 0.1436 0.1114 0.1342
p3 0.1182 0.1182 0.1182 0.1114 0.1182
p4 0.1096 0.1096 0.1096 0.1096 0.1096
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Figure A4: Bar plot of score values of Table 3 data and q-ROFWNA operator
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