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ABSTRACT

Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty, evaluating
educational institutions can be difficult. The concept of a possibility Pythagorean fuzzy hypersoft set (pPyFHSS) is
more flexible in this regard than other theoretical fuzzy set-like models, even though some attempts have been made
in the literature to address such uncertainties. This study investigates the elementary notions of pPyFHSS including
its set-theoretic operations union, intersection, complement, OR- and AND-operations. Some results related to
these operations are also modified for pPyFHSS. Additionally, the similarity measures between pPyFHSSs are
formulated with the assistance of numerical examples and results. Lastly, an intelligent decision-assisted mechanism
is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute
decision-making (MADM) problems. A case study that helps the decision-makers assess the best educational
institution is discussed to validate the suggested system. The algorithmic results are compared with the most
pertinent model to evaluate the adaptability of pPyFHSS, as it generalizes the classical possibility fuzzy set-like
theoretical models. Similarly, while considering significant evaluating factors, the flexibility of pPyFHSS is observed
through structural comparison.
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1 Introduction

Educational institutions are essential in molding people and society. To cultivate the information,
abilities, and values necessary for critical thinking, self-improvement, and well-informed decision-
making, they offer an organized atmosphere. In addition to promoting academic excellence, they
also help people develop their moral and intellectual capacities by promoting ethical behavior, social
engagement, and cultural awareness. Educational institutions also stimulate research, innovation, and
societal advancement, preparing the next generation for the difficulties of a world that is changing
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quickly [1,2]. The process of selecting an educational institution can be challenging because there are
many different, interconnected factors involved. The relative significance of such features varies widely
throughout individuals, making prioritization challenging. Furthermore, the decision-making process
becomes more complex due to inherent uncertainties, which include future job prospects, the quality
of education evolving, and individual adaptability to the institution’s environment. This results in a
MADM problem with individualistic and improbable results [3,4]. Although numerous commendable
attempts have been made to manage such uncertainties by developing theoretical frameworks, the
Pythagorean fuzzy set (PyFS) [5] is unique in this sense. For membership function refinement, the
fuzzy set (FS) [6] and intuitionistic fuzzy set (IFS) [7] are extended to develop the PyFS. The FS paved
the way for more nuanced representations of vague and imprecise information by allowing elements
to have partial memberships in sets. The IFS was projected to allow elements possessing dependent
partial memberships and non-memberships to satisfy the condition that the sum must be within
[0, 1]. The PyFS integrates the square sum of the membership and non-membership values within
[0, 1], which offers more flexibility. Because PyFS now has more flexibility, it can better represent
scenarios in which decision-makers are unsure or reluctant, which enhances modeling and decision-
making accuracy in contexts marked by ambiguity and insufficient information. Garg [8] discussed
decision-making applications based on geometric aggregation operators of generalized Pythagorean
fuzzy set embedded with Einstein t-norm and t-conorm. Numerous scholars have investigated the
representation and measurement of innate uncertainties in diverse fields, such as Qu et al. [9] presented
intelligent and enhanced maximum expert consensus modeling embedded with dynamic feedback
mechanisms to model inherent uncertainties. Sun et al. [10] previewed target signals using sliding
mode control of discrete-time interval type-2 fuzzy Markov jump systems. Ge et al. [11] used a fuzzy
neural network to model inherent uncertainties based on adaptive inventory control. Zhang et al. [12]
developed observer-centered sliding mode control for fuzzy stochastic switching systems embedded
with deception attacks. Xia et al. [13] discussed more results on fuzzy sampled-data stabilization
of chaotic nonlinear systems. Gao et al. [14] investigated the representation and measurement of
innate uncertainties in sliding mode control. These fields frequently deal with dynamic, complex
environments where uncertainty results from various factors.

As the criteria or factors that direct the process, parameters are essential to decision-making.
By offering a framework for comparison, these factors aid in the evaluation of various options
and guarantee that choices are made under predetermined objectives or limitations. Parameters are
important because they help make complex circumstances simpler by organizing and quantifying
essential aspects. This makes it possible to make decisions that are more objective, consistent, and
well-informed. Appropriately selected parameters can greatly improve the efficacy of decision-making
by concentrating attention on the most important elements of the given problem. Molodtsov [15]
introduced the idea of the soft set (SS) to equip FS, IFS, and PyFS with parameterization mode.
Muthukumar et al. [16] discussed the problem of clinical diagnosis based on similarity measures of
an intuitionistic fuzzy soft set (IFSS). Peng et al. [17] introduced Pythagorean fuzzy soft set (PyFSS)
by integrating the theories of PyFS and SS. Kirişci et al. [18] discussed the clinical assessment-based
algorithmic decisive method of PyFSS. Zulqarnain et al. [19] investigated supplier selection decisive
issue based on aggregation operators of PyFSS. Using only generic parameters while making decisions
can result in biased or incomplete results in several cases. Sub-parametric values are essential for an
exhaustive examination since they offer more precise and in-depth insights into each parameter. By
capturing the subtleties and complexity of the issue, these finer details make sure that all pertinent
factors are taken into account. Decisions may be exaggerated or distorted as a result of essential
elements being missed or misinterpreted when sub-parametric values are ignored. Consequently, it
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is crucial to incorporate both parameters and their sub-parametric values into the decision-making
process to prevent dubious or biased results. To address this issue, Smarandache [20] introduced
hypersoft set (HSS) by transforming the approximate mapping of SS to multi-argument approximate
mapping, that considers the Cartesian product of sub-parametric valued based disjoint sets as domain
and maps it to the collection of objects being evaluated. Researchers have recently shown a great deal
of interest in the HSS because of its exceptional adaptability and versatility in handling scenarios
involving sophisticated decision-making. Because of its versatility, HSS is especially useful in domains
where a hierarchy of criteria influences decisions or where complicated, interconnected elements must
be taken into account. The HSS is, therefore, emerging as a potent tool for handling a variety of issues
in decision-making and related fields. Smarandache [21] introduced some new types of SS and HSS
based on the indeterminate nature of parameters or sub-parametric values. Debnath [22] presented
the notions of the fuzzy hypersoft set (FHSS) and its weightage operators. Musa et al. [23] discussed
the evaluation of houses by proposing three algorithms based on aggregations of the N-hypersoft set
(NHSS). Al-Quran et al. [24] discussed the evaluation of cars by proposing an algorithm based on
the aggregations of bipolar fuzzy hypersoft set (BFHSS). Asaad et al. [25] discussed the recruitment
of software engineers for a company by proposing a decisive framework based on aggregations of
BFHSS. Sajid et al. [26] investigated the evaluation of solar panels based on the set-theoretic operations
of the cubic intuitionistic fuzzy hypersoft set (CIFHSS). Hamid et al. [27] discussed mobile phone
evaluation by proposing a decisive framework based on the integrated context of machine learning
and FHSS. Saeed et al. [28] explored the similarity and entropy measures for FHSS and employed
them for the evaluation of renewable energy resources. Rahman et al. [29] investigated operational
risks based on supplier chain management based on set-theoretic operations of HSS mappings.
Smarandache et al. [30] introduced the integrated context of HSS and game theory for decision-making
systems. Siddique et al. [31] investigated the aggregation operators of a Pythagorean fuzzy hypersoft
set (PyFHSS) for decision-making situations.

It is advisable to involve an impartial convener who can objectively evaluate the extent of partial
acceptance of the approximations made by decision-makers to ensure neutrality and minimize bias in
the decision-making process. By reducing the possible impact of individual preferences or prejudices
that could distort the review process, this method promotes more impartial and equitable results.
The convener increases the decision-making process’s legitimacy and dependability by offering an
objective, outside viewpoint. Alkhazaleh et al. [32] introduced the possibility fuzzy soft set (pFSS) and
they investigated the relevant operations and similarity measures of pFSS. They proposed a decisive
framework for the diagnosis of dengue fever based on similarity measures of pFSS. Al-Sharqi et al. [33]
explored the features of pFSS with interval-valued settings and investigated its operations and
similarity measures. They proposed a decisive framework for the diagnosis of respiratory disease
based on similarity measures of pFSS. Ponnalagu et al. [34] discussed cars evaluation problems using
pFSS and expert set environments collectively. Ali [35] formulated similarity measures of bipolar
pFSS by considering approximations of fuzzy parameters and applied the concepts in agricultural
land selection scenarios. Bashir et al. [36] introduced the possibility of the intuitionistic fuzzy soft
set (pIFSS) and investigated its set-theoretic operations, e.g., union, AND, intersection, and OR-
operations. They designed a decision-assisted system for the evaluation of educational institutions.
Selvachandran et al. [37] investigated its set-theoretic operations, e.g., union, AND, intersection, and
OR-operations of pIFSS. They designed a decision-making framework for the recruitment process in
the company. Garg et al. [38] investigated aggregation operators, information measures, and modified
complex proportional assessment (COPRAS) under a pIFSS environment. Jia-Hua et al. [39] proposed
the notions of possibility Pythagorean fuzzy soft set (pPyFSS) and investigated its operations like
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union, OR, intersection, and AND. They also proposed similarity measures for pPyFSS to apply in
decision-making scenarios. Palanikumar et al. [40,41] discussed the notions of bipolar pPyFSS and
pPyFSS with interval-valued settings. Rahman et al. [42] introduced the notions of several hybrids of
HSS with possibility settings. They [43] employed the similarity measures of possibility fuzzy hypersoft
set (pFHSS) in agri-automobile evaluation and HRM pattern recognition. Further, they [44] discussed
decision-making scenarios based on the similarity measures of possibility intuitionistic fuzzy hypersoft
set (pIFHSS). Sahoo et al. [45] and Bhatia et al. [46] applied different decision-making techniques to
discuss the evaluation of educational institutions.

After careful analysis of the above-discussed literature, it is clear that the following important
features are ignored:

1. Ignoring the biased tendency of the decision maker in decision-making is tantamount to
questioning the validity of the decision. Therefore, the observations and opinions of the
decision-makers must be evaluated with the help of an impartial expert.

2. Short-term decisions strengthen the credibility of decision-making, while long-term decisions
undermine its credibility. Approximation of alternatives by decision-makers considering each
attribute individually is not only a time-consuming but difficult process. However, if the same
process is repeated with multiple arguments in mind, it will be completed in less time and more
reliably.

3. Optimal membership and non-membership functions play a key role in controlling uncertainty
based on incomplete and ambiguous information.

The proposed theoretical framework, the possibility Pythagorean fuzzy hypersoft set (pPyFHSS),
collectively incorporates all of the above features. The idea of possibility degree is meant to deal
with the first feature, the hypersoft setting is aimed at providing a multi-argument domain for the
approximation of alternatives; the Pythagorean fuzzy setting provides the optimal and generalized
membership and non-membership functions for controlling uncertainty. The pPyFHSS extends the
notions of IFS, IFSS, FHSS, pFHSS, and pIFHSS. The extended range of pPyFHSS allows for a
finer distinction in the degree of uncertainty. This is particularly useful in decision-making problems,
where experts may need to express a more nuanced confidence or hesitation. In certain scenarios, the
sum constraint of IFS, IFSS, and pIFHSS can be overly restrictive.

The salient contributions of the study are enlisted as:

1. By integrating the ideas of possibility degree, hypersoft set, and Pythagorean fuzzy set, a novel
theoretical framework called pPyFHSS, is introduced that considers the possibility degree
within [0, 1] to evaluate the acceptance level of approximations made by decision-makers. It
helps reduce the prejudice of the decision makers or minimize their inclined impact on the
decisions.

2. For the sake of the applicability of pPyFHSS in different fields of study, several fundamentals
including axiomatic properties, aggregation operations, and types of pPyFHSS are investi-
gated. Additionally, proofs of several essential theorems are also provided.

3. The formulation for similarity measures between two pPyFHSSs is developed and the related
theorems are investigated. Additionally, the proposed formulation is explained with an illus-
tration.

4. Based on the proposed similarity measures, a robust algorithm is proposed which is then
validated by the prototype case study of educational institution evaluation.
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The structure of this article is organized as in Section 2, and some fundamental definitions are
discussed. The concept of pPyFHSS is introduced in Section 3, along with some of its intriguing
properties. To address decision difficulties, a similarity measure for comparing two pPyFHSSs is
proposed. Additionally, an algorithm for evaluating the optimum educational institution is provided
in Section 4. At the end of this section, discussion is made on the comparison of the proposed model.
Finally, Section 5 concludes with recommendations for future research.

2 Preliminaries

Some basic definitions are provided here, which will be useful in the remaining portion of the work.
Definition 1. Reference [17] A pair (F̆ , Ë) is called a SS over Ü and Ü be an initial universal set,

where F̆ is a mapping F̆ : Ë → P
Ü. For Ë (parameters set), set of elements in the SS (F̆ , Ë) that

approximate η can be represented as F̆(η) and P
Ü indicates the power set of Ü.

Definition 2. Reference [20] Let ẍ1, ẍ2, ..., ẍn for n � 1, be n distinct attributes, whose correspond-
ing sub attribute values are contained in the sets �̈1, �̈2, �̈3, ..., �̈n respectively, with �̈i ∩ �̈j �= ∅, for
i �= j ∈ {1, 2, 3, ..., n} such that �̈ = �̈1 × �̈2 × �̈3 × ...× �̈n. Then the pair (F̆ , �̈), where: F̆ : �̈ → P

Ü,
is called HSS over Ü.

Definition 3. Reference [22] A HSS (�, �̈) is referred to as a FHSS over Ü, where � : �̈ −→ F
Ü,

if �(ρ̈) = {〈ρ̈, �(ρ̈)(�̈)〉 : �̈ ∈ Ü ∧ ρ̈ ∈ �̈ = �̈1 × �̈2 × ... × �̈n}, where, FÜ is the collection of all the
fuzzy subsets on Ü.

The following definition is the modified form of the definition presented in [31].
Definition 4. Let ẍ1, ẍ2, ẍ3, ..., ẍn be the n distinct attributes whose corresponding sub-attributes

are contained in disjoint sets �̈1, �̈2, �̈3, ..., �̈n. A set pair (�, �̈) is referred to as a PyFHSS
over Ü, if � : �̈ −→ PFÜ, where (�, �̈) = {〈ρ̈, �(ρ̈)〉 : ∀ρ̈ ∈ �̈ =∏n

i=1 �̈i

}
, and �(ρ̈) ={

�̈i
�(ρ̈)(�̈i)

: �̈i ∈ Ü ∧ ∀ρ̈ ∈ �̈ =∏n

i=1 �̈i

}
,�(ρ̈)(�̈i) = 〈

ε�(ρ̈)(�̈i), τ�(ρ̈)(�̈i)
〉 ⊆ PFÜ (collection of all the

Pythagorean fuzzy subset on Ü), such that ε�(ρ̈)(�̈i), τ�(ρ̈)(�̈i) ∈ [0, 1], and 0 ≤ ε2
�
(ρ̈)(�̈i)+τ 2

�
(ρ̈)(�̈i) ≤

1. �(ρ̈)(�̈i) is the Pythagorean value of �̈i ∈ Ü in �(ρ̈).
Example 1. Let Ü = {�̈1, �̈2} be the universe of discourse and suppose that ẍ1 =

Teaching methodology, ẍ2 = Subjects and ẍ3 = Classes be the attributes and their corresponding
non-overlapping attributes values are Teaching methodology = �̈1 = {ẍ11 = project base, ẍ12 =
class discussion}, Subjects = �̈2 = {ẍ21 = Mathematics, ẍ22 = Computer Science, ẍ23 =
Statistics} and Classes = �̈3 = {ẍ21 = Master, ẍ22 = Bachelor}. If � : �̈1 × �̈2 × �̈3 −→ PFÜ

and the Cartesian product is �̈ = �̈1 × �̈2 × �̈3 = {ρ̈1, ρ̈2, ρ̈3, ρ̈4, ρ̈5, ρ̈6, ρ̈7, ρ̈8, ρ̈9, ρ̈10, ρ̈11, ρ̈12} then
Pythagorean fuzzy hypersoft set over Ü is given as follows:

�(ρ̈1) =
{

�̈1

(0.6, 0.3)
,

�̈2

(0.5, 0.7)

}
, �(ρ̈2) =

{
�̈1

(0.6, 0.7)
,

�̈2

(0.7, 0.5)

}
, �(ρ̈3) =

{
�̈1

(0.4, 0.8)
,

�̈2

(0.3, 0.7)

}
,

�(ρ̈4) =
{

�̈1

(0.6, 0.5)
,

�̈2

(0.5, 0.6)

}
, �(ρ̈5) =

{
�̈1

(0.7, 0.3)
,

�̈2

(0.4, 0.8)

}
, �(ρ̈6) =

{
�̈1

(0.5, 0.4)
,

�̈2

(0.6, 0.5)

}
,

�(ρ̈7) =
{

�̈1

(0.5, 0.6)
,

�̈2

(0.4, 0.5)

}
, �(ρ̈8) =

{
�̈1

(0.2, 0.5)
,

�̈2

(0.3, 0.9)

}
, �(ρ̈9) =

{
�̈1

(0.4, 0.6)
,

�̈2

(0.8, 0.5)

}
,

�( ¨ρ10) =
{

�̈1

(0.7, 0.4)
,

�̈2

(0.7, 0.2)

}
, �( ¨ρ11) =

{
�̈1

(0.4, 0.5)
,

�̈2

(0.5, 0.3)

}
, �( ¨ρ12) =

{
�̈1

(0.5, 0.7)
,

�̈2

(0.4, 0.7)

}
,
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and its parameterized family is:

(�, �̈) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρ̈1,
{〈

�̈1

(0.6, 0.3)

〉
,
〈

�̈2

(0.5, 0.7)

〉})
,
(

ρ̈2,
{〈

�̈1

(0.6, 0.7)

〉
,
〈

�̈2

0.7, 0.5)

〉})
,(

ρ̈3,
{〈

�̈1

(0.4, 0.8)

〉
,
〈

�̈2

(0.3, 0.7)

〉})
,
(

ρ̈4,
{〈

�̈1

(0.6, 0.5)

〉
,
〈

�̈2

(0.5, 0.6)

〉})
,(

ρ̈5,
{〈

�̈1

(0.7, 0.3)

〉
,
〈

�̈2

(0.4, 0.8)

〉})
,
(

ρ̈6,
{〈

�̈1

(0.5, 0.4)

〉
,
〈

�̈2

(0.6, 0.5)

〉})
,(

ρ̈7,
{〈

�̈1

(0.5, 0.6)

〉
,
〈

�̈2

(0.4, 0.5)

〉})
,
(

ρ̈8,
{〈

�̈1

(0.2, 0.5)

〉
,
〈

�̈2

(0.3, 0.9)

〉})
,(

ρ̈9,
{〈

�̈1

(0.4, 0.6)

〉
,
〈

�̈2

(0.8, 0.5)

〉})
,
(

¨ρ10,
{〈

�̈1

(0.7, 0.4)

〉
,
〈

�̈2

(0.7, 0.2)

〉})
,(

¨ρ11,
{〈

�̈1

(0.4, 0.5)

〉
,
〈

�̈2

(0.5, 0.3)

〉})
,
(

¨ρ12,
{〈

�̈1

(0.5, 0.7)

〉
,
〈

�̈2

(0.4, 0.7)

〉})
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 5. Reference [42] If Ü be the universe of discourse and ẍ1, ẍ2, ẍ3, ..., ẍn be n dis-
tinct attributes whose corresponding n distinct sub-attributes values are contained in disjoint sets
�̈1, �̈2, ..., �̈n. Then (Ü, �̈ = �̈1 × �̈2 × ...�̈n) will be a hypersoft universe. Let � : �̈ −→ F

Ü and
μ be the fuzzy subset of �̈, i.e., μ : �̈ −→ F

Ü. Let �μ : �̈ −→ F
Ü × F

Ü be the function defined
as �μ(ρ̈) = {〈�(ρ̈)(�̈i), μ(ρ̈)(�̈i)

〉
: ∀�̈i ∈ Ü ∧ ρ̈ ∈ �̈ =∏n

i=1 �̈i

}
, where; �(ρ̈)(�̈), μ(ρ̈)(�̈) ⊆ F

Ü. Then
�μ is referred to as a pFHSS over the hypersoft universe (Ü, �̈).

3 The Notions of pPyFHSSs

In this section, we introduce the concept of pPyFHSS as an extension of the pFHSS model. The
fundamental characteristics of the pPyFHSS are intended to control the ambiguity and uncertainty
that are frequently encountered in MADM situations, like assessing educational institutions. When
handling ambiguous data, the possibility degree-based option offers a layer of flexibility by assisting
in evaluating the likelihood of different outcomes. Through the depiction of multi-argument qualities,
the hypersoft setting extends conventional fuzzy models and captures intricate interdependencies in
the decision-making process. Finally, decision-makers can more precisely indicate hesitation through
membership and non-membership values in the Pythagorean fuzzy setting, which offers a more
sophisticated treatment of uncertainty. Together, these characteristics improve the model’s capacity
to manage complexity and ambiguity.

Definition 6. Let ẍ1, ẍ2, ẍ3, ..., ẍn be a set of n distinct attributes and their corresponding sub-
attributes values are contained in non-overlapping sets �̈1, �̈2, ..., �̈n and �̈ = ∏n

i=1 �̈i. Suppose that
� : �̈ → PFÜ and m : �̈ −→ F

Ü, where PFÜ and F
Ü are the collection sets of all the Pythagorean

fuzzy and fuzzy subsets on Ü, respectively. If �m : �̈ → PFÜ × F
Ü is a mapping defined as:

�m(ρ̈) =
{〈

�̈

�(ρ̈)(�̈)
, m(ρ̈)(�̈)

〉
: �̈ ∈ Ü, ∀ρ̈ ∈ �̈ =

n∏
i=1

�̈i

}
,
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then �m is said to be a pPyFHSS over the hypersoft universe (Ü, �̈). For each parameter ρ̈, it can be
written as:

�m =
{(

ρ̈,
{〈

�̈

�(ρ̈)(�̈)
, m(ρ̈)(�̈)

〉
: �̈ ∈ Ü

})
, ∀ρ̈ ∈ �̈ =

n∏
i=1

�̈i

}
,

where �(ρ̈)(�̈) = 〈ε�(ρ̈)(�̈), τ�(ρ̈)(�̈)〉 ⊆ PFÜ and 0 ≤ ε2
�(ρ̈)

(�̈)+τ 2
�(ρ̈)

(�̈) ≤ 1 with ε�(ρ̈)(�̈), τ�(ρ̈)(�̈) ∈ [0, 1],
such that �(ρ̈)(�̈) is the Pythagorean fuzzy number of �̈ ∈ Ü in �m(ρ̈). Also m(ρ̈)(�̈) = μm(ρ̈)(�̈) ⊆ F

Ü

with μm(ρ̈)(�̈) ∈ [0, 1], such that m(ρ̈)(�̈) is the possibility membership grade of �̈ ∈ Ü in �m(ρ̈).

Note: For convenience, it can be expressed as:

�m(ρ̈) =
{〈(

ε�(ρ̈)(�̈), τ�(ρ̈)(�̈)
)

, μm(ρ̈)(�̈)

〉
: �̈ ∈ Ü, ∀ρ̈ ∈ �̈ =

n∏
i=1

�̈i

}
,

and collection of all pPyFHSS is symbolized by 	̂λ̂.

Note: The difference between the above proposed mathematical framework, pPyFHSS, and the
existing relevant frameworks like PyFHSS and pFHSS, is given as:

1. In PyFHSS, the possibility degree-based setting has been ignored, therefore, it is insufficient to
reduce the prejudice of the decision makers or minimize their inclined impact on the decisions.

2. In pFHSS, the generalized membership and non-membership functions are ignored, therefore,
it does not support the decision-makers to indicate hesitation more precisely through mem-
bership and non-membership values in the Pythagorean fuzzy setting, which offers a more
sophisticated treatment of uncertainty.

Example 2. Let Ü = {�̈1, �̈2} be the set of two vehicles in auto showroom and ẍ1 = luxury cars,
ẍ2 = sports cars, be the attributes and corresponding attributes values are luxury cars = �̈1 = {ẍ11 =
beautiful, ẍ12 = high safety}, sports cars = �̈2 = {ẍ21 = expensive, ẍ22 = less space}. Their Cartesian
product is �̈ =∏n

i=1 �̈i = �̈1 × �̈2 = {ρ̈1, ρ̈2, ρ̈3, ρ̈4} is �m : �̈ → PFÜ × F
Ü then the pPyFHSS can be

constructed as:

�m(ρ̈1) =
{〈

�̈1

(0.9, 0.4)
, 0.51

〉
,
〈

�̈2

(0.7, 0.4)
, 0.61

〉}
, �m(ρ̈2) =

{〈
�̈1

(0.8, 0.5)
, 0.52

〉
,
〈

�̈2

(0.6, 0.5)
, 0.62

〉}
,

�m(ρ̈3) =
{〈

�̈1

(0.7, 0.5)
, 0.53

〉
,
〈

�̈2

(0.5, 0.4)
, 0.63

〉}
, �m(ρ̈4) =

{〈
�̈1

(0.6, 0.4)
, 0.54

〉
,
〈

�̈2

(0.4, 0.3)
, 0.64

〉}
,

�m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ρ̈1,
{〈

�̈1

(0.9, 0.4)
, 0.51

〉
,
〈

�̈2

(0.7, 0.4)
, 0.61

〉})
,
(

ρ̈2,
{〈

�̈1

(0.8, 0.5)
, 0.52

〉
,
〈

�̈2

(0.6, 0.5)
, 0.62

〉})
,

(
ρ̈3,
{〈

�̈1

(0.7, 0.5)
, 0.53

〉
,
〈

�̈2

(0.5, 0.4)
, 0.63

〉})
,
(

ρ̈4,
{〈

�̈1

(0.6, 0.4)
, 0.54

〉
,
〈

�̈2

(0.4, 0.3)
, 0.64

〉})
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1)
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In the matrix notion, data can be represented as follows:

�m =

⎛
⎜⎜⎜⎜⎝

〈
(0.9, 0.4), 0.51

〉 〈
(0.7, 0.4), 0.61

〉
〈
(0.8, 0.5), 0.52

〉 〈
(0.6, 0.5), 0.62

〉
〈
(0.7, 0.5), 0.53

〉 〈
(0.5, 0.4), 0.63

〉
〈
(0.6, 0.4), 0.54

〉 〈
(0.4, 0.3), 0.64

〉

⎞
⎟⎟⎟⎟⎠ .

Definition 7. If �m and �q be two pPyFHSSs defined over (Ü, �̈), then �q is considered a subset of
�m in terms of pPyFHSS if and only if q(ρ̈)(�̈) ⊆ m(ρ̈)(�̈) if μq(ρ̈)(�̈) ≤ μm(ρ̈)(�̈),�(ρ̈)(�̈) ⊆ �(ρ̈)(�̈) if
ε�(ρ̈)(�̈) ≤ ε�(ρ̈)(�̈) and τ�(ρ̈)(�̈) ≥ τ�(ρ̈)(�̈), ∀�̈ ∈ Ü and ∀ρ̈ ∈ �̈. This relationship is denoted as �q ⊆ �m.

Example 3. Consider that �m ∈ 	̂λ̂ over (Ü, �̈) given in Example 2. Let �q be another pPyFHSS
over (Ü, �̈). Suppose that �q : �̈ → PFÜ × F

Ü and defined as follows:

�q(ρ̈1) =
{〈

�̈1

(0.8, 0.6)
, 0.31

〉
,
〈

�̈2

(0.5, 0.6)
, 0.41

〉}
, �q(ρ̈2) =

{〈
�̈1

(0.7, 0.8)
, 0.32

〉
,
〈

�̈2

(0.4, 0.8)
, 0.42

〉}
,

�q(ρ̈3) =
{〈

�̈1

(0.5, 0.6)
, 0.33

〉
,
〈

�̈2

(0.3, 0.6)
, 0.43

〉}
, �q(ρ̈4) =

{〈
�̈1

(0.4, 0.8)
, 0.34

〉
,
〈

�̈2

(0.2, 0.7)
, 0.44

〉}
.

�q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ρ̈1,
{〈

�̈1

〈0.8, 0.6〉 , 0.31
〉
,
〈

�̈2

〈0.5, 0.6〉 , 0.41
〉})

,
(

ρ̈2,
{〈

�̈1

〈0.7, 0.8〉 , 0.32
〉
,
〈

�̈2

〈0.4, 0.8〉 , 0.42
〉})

,

(
ρ̈3,
{〈

�̈1〈0.5, 0.6〉 , 0.33
〉
,
〈

�̈2

〈0.3, 0.6〉 , 0.43
〉})

,
(

ρ̈4,
{〈

�̈1

〈0.4, 0.8〉 , 0.34
〉
,
〈

�̈2

〈0.2, 0.7〉 , 0.44
〉})

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2)

By comparing (1) and (2), we get �q ⊆ �m.
Definition 8. Suppose �m, �n∈ 	̂λ̂, then �m and �q are said to be equal pPyFHSS if and only if

�m ⊆ �q, and �m ⊇ �q, which can be denoted by �m = �q.
Definition 9. If Ü be the set of universe of discourse and �̈i, for i ∈ {1, 2, ..., n} be the sub attributes

values of attributes set ẍi. Let �m be the pPyFHSS over (Ü, �̈). Complement of �m can be be denoted
as �c

m and it is defined as �c
m = (

�c(ρ̈)(�̈), mc(ρ̈)(�̈)
)

, where �c(ρ̈)(�̈) = 〈
τ�(ρ̈)(�̈), ε�(ρ̈)(�̈)

〉
, and

mc(ρ̈)(�̈) = μmc(ρ̈)(�̈) = μc
m(ρ̈)

(�̈) = 1 − μm(ρ̈)(�̈).

Note: From Definition 9, we observe that (�c
m)c = �m.

Example 4. From Example 2, compliment of pPyFHSS �c
m is written as:

�c
m(ρ̈1) =

{〈
�̈1

(0.4, 0.9)
, 0.49

〉
,
〈

�̈2

(0.4, 0.7)
, 0.39

〉}
, �c

m(ρ̈2) =
{〈

�̈1

(0.5, 0.8)
, 0.48

〉
,
〈

�̈2

(0.5, 0.6)
, 0.38

〉}
,

�c
m(ρ̈3) =

{〈
�̈1

(0.5, 0.7)
, 0.47

〉
,
〈

�̈2

〈0.4, 0.5〉 , 0.37
〉}

, �c
m(ρ̈4) =

{〈
�̈1

(0.4, 0.6)
, 0.46

〉
,
〈

�̈2

(0.3, 0.4)
, 0.36

〉}
.

�c
m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ρ̈1,
{〈

�̈1(
0.4, 0.9)

, 0.49
〉
,
〈

�̈2(
0.4, 0.7

) , 0.39
〉})

,
(

ρ̈2,
{〈

�̈1(
0.5, 0.8

) , 0.48
〉
,
〈

�̈2(
0.5, 0.6

) , 0.38
〉})

,

(
ρ̈3,
{〈

�̈1(
0.5, 0.7

) , 0.47
〉
,
〈

�̈2(
0.4, 0.5

) , 0.37
〉})

,
(

ρ̈4,
{〈

�̈1(
0.4, 0.6

) , 0.46
〉
,
〈

�̈2(
0.3, 0.4

) , 0.36
〉})

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
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In the matrix notion, data can be represented as:

(�c
m, �̈) =

⎛
⎜⎜⎝
〈
(0.4, 0.9), 0.49

〉 〈
(0.4, 0.7), 0.39

〉〈
(0.5, 0.8), 0.48

〉 〈
(0.5, 0.6), 0.38

〉〈
(0.5, 0.7), 0.47

〉 〈
(0.4, 0.5), 0.37

〉〈
(0.4, 0.6), 0.46

〉 〈
(0.3, 0.4), 0.36

〉
⎞
⎟⎟⎠ .

Definition 10. Suppose �m and �q be two pPyFHSSs over (Ü, �̈). Then union and intersection
operations on �m and �q are denoted as �m ∪ �q and �m ∩ �q respectively, and are defined by two
mappings �r : �̈ → PFÜ × F

Ü, and ζz : �̈ → PFÜ × F
Ü. These two mappings give the same meanings

such that{
�r(ρ̈) =

(
�(ρ̈)(�̈), r(ρ̈)(�̈)

)
: �̈ ∈ Ü, ∀ρ̈ ∈ �̈ =

n∏
i=1

�̈i

}
,

{
ζz(ρ̈) =

(
ζ(ρ̈)(�̈), z(ρ̈)(�̈)

)
: �̈ ∈ Ü, ∀ρ̈ ∈ �̈ =

n∏
i=1

�̈i

}
,

where �(ρ̈)(�̈) = �(ρ̈)(�̈) ∪ �(ρ̈)(�̈) and r(ρ̈)(�̈) = m(ρ̈)(�̈) ∪ q(ρ̈)(�̈). Also, ζ(ρ̈)(�̈) = �(ρ̈)(�̈) ∩
�(ρ̈)(�̈) and z(ρ̈)(�̈) = m(ρ̈)(�̈) ∩ q(ρ̈)(�̈).

Example 5. Lets consider that �m, �q∈ 	̂λ̂ over (Ü, �̈), where they are explained as follows:

�m(ρ̈1) =
{〈

�̈1

(0.9, 0.4)
, 0.75

〉
,
〈

�̈2

(0.7, 0.4)
, 0.95

〉}
,

�m(ρ̈2) =
{〈

�̈1

(0.8, 0.5)
, 0.77

〉
,
〈

�̈2

(0.6, 0.5)
, 0.96

〉}
,

�m(ρ̈3) =
{〈

�̈1

(0.7, 0.5)
, 0.78

〉
,
〈

�̈2

(0.5, 0.4)
, 0.98

〉}
.

and,

�q(ρ̈1) =
{〈

�̈1

〈0.8, 0.6〉 , 0.31
〉
,
〈

�̈2

(0.5, 0.6)
, 0.51

〉}
,

�q(ρ̈2) =
{〈

�̈1

(0.7, 0.3)
, 0.32

〉
,
〈

�̈2

(0.4, 0.8)
, 0.52

〉}
,

�q(ρ̈3) =
{〈

�̈1

(0.5, 0.6)
, 0.33

〉
,
〈

�̈2

(0.3, 0.0.4)
, 0.53

〉}
.

By using Definition 10, union of these two functions is:

�(ρ̈1) = �(ρ̈1) ∪ �(ρ̈1) =
{〈

�̈1

(0.9, 0.4)
, 0.75

〉
,
〈

�̈2

(0.7, 0.4)
, 0.95

〉}
,

�(ρ̈2) = �(ρ̈2) ∪ �(ρ̈2) =
{〈

�̈1

(0.8, 0.3)
, 0.77

〉
,
〈

�̈2

(0.6, 0.5)
, 0.96

〉}
,

�(ρ̈3) = �(ρ̈3) ∪ �(ρ̈3) =
{〈

�̈1

(0.7, 0.5)
, 0.78

〉
,
〈

�̈2

(0.5, 0.4)
, 0.98

〉}
,
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In the matrix notion, this can be represented as:

�m ∪ �q =
⎛
⎝
〈
(0.9, 0.4), 0.75

〉 〈
(0.7, 0.4), 0.95

〉〈
(0.8, 0.3), 0.77

〉 〈
(0.6, 0.5), 0.96

〉〈
(0.7, 0.5), 0.78

〉 〈
(0.5, 0.4), 0.98

〉
⎞
⎠

and intersection is:

ζz(ρ̈1) = �(ρ̈1) ∩ �(ρ̈1) =
{〈

�̈1

(0.8, 0.6)
, 0.31

〉
,
〈

�̈2

(0.5, 0.6)
, 0.51

〉}
,

ζz(ρ̈2) = �(ρ̈2) ∩ �(ρ̈2) =
{〈

�̈1

(0.7, 0.5)
, 0.32

〉
,
〈

�̈2

(0.5, 0.6)
, 0.52

〉}
,

ζz(ρ̈3) = �(ρ̈3) ∩ �(ρ̈3) =
{〈

�̈1

(0.5, 0.6)
, 0.33

〉
,
〈

�̈2

(0.3, 0.4)
, 0.53

〉}
,

In the matrix notion, the intersection can be represented as:

�m ∩ �q =
⎛
⎝
〈
(0.8, 0.6), 0.31

〉 〈
(0.5, 0.6), 0.51

〉〈
(0.7, 0.5), 0.32

〉 〈
(0.5, 0.6), 0.52

〉〈
(0.5, 0.6), 0.33

〉 〈
(0.3, 0.4), 0.53

〉
⎞
⎠ .

Definition 11. A pPyFHSS ξθ(ρ̈) = {(
ξ(ρ̈)(�̈), θ(ρ̈)(�̈)

)
: �̈ ∈ Ü, ∀ρ̈ ∈ �̈ =∏n

i=1 �̈i

}
is said

to be possibility null Pythagorean fuzzy hypersoft set (pnPFHSS) over (Ü, �̈) if ξθ : �̈ →
PFÜ × F

Ü, where ξ(ρ̈)(�̈) = (εξ (ρ̈)(�̈), τξ(ρ̈)(�̈)) = (0, 1) and θ(ρ̈)(�̈) = μθ(ρ̈)(�̈) = 0, ξθ ={(
ρ̈,

〈
�̈

(0, 1)
, 0

〉)
: �̈ ∈ Ü, ∀ρ̈ ∈ �̈ =∏1

i=1 �̈i

}
.

Example 6. From Example 2, pnPFHSS Type-I over (Ü, �̈), can be expressed as:

ξθ(ρ̈1) =
{〈

�̈1

(0, 1)
, 0
〉
,
〈

�̈2

(0, 1)
, 0
〉}

, ξθ(ρ̈2) =
{〈

�̈1

(0, 1)
, 0
〉
,
〈

�̈2

(0, 1)
, 0
〉}

,

ξθ(ρ̈3) =
{〈

�̈1

(0, 1)
, 0
〉
,
〈

�̈2

(0, 1)
, 0
〉}

, ξθ(ρ̈4) =
{〈

�̈1

(0, 1)
, 0
〉
,
〈

�̈2

(0, 1)
, 0
〉}

and in matrix notion is:

ξθ =

⎛
⎜⎜⎝
〈
(0, 1), 0

〉 〈
(0, 1), 0

〉〈
(0, 1), 0

〉 〈
(0, 1), 0

〉〈
(0, 1), 0

〉 〈
(0, 1), 0

〉〈
(0, 1), 0

〉 〈
(0, 1), 0

〉
⎞
⎟⎟⎠

then ξθ is said to be a pnPFHSS.
Definition 12. A pPyFHSS ��(ρ̈) = {(

�(ρ̈)(�̈), �(ρ̈)(�̈)
)

: �̈ ∈ Ü, ∀ρ̈ ∈ �̈ =∏n

i=1 �̈i

}
, is said to

be possibility absolute Pythagorean fuzzy hypersoft set (paPFHSS) over (Ü, �̈), if �� : �̈ → PFÜ ×F
Ü

where �(ρ̈)(�̈) = (ε�(ρ̈)(�̈), τ�(ρ̈)(�̈)) = (1, 0) and �(ρ̈)(�̈) = μ�(ρ̈)(�̈) = 1,

�� =
{(

ρ̈,
〈

�̈

(1, 0)
, 1
〉)

: �̈ ∈ Ü, ∀ρ̈ ∈ �̈ =
∏n

i=1
�̈i

}
.
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Example 7. Again from Example 2 paPFHSS over (Ü, �̈), can be expressed as:

��(ρ̈1) =
{〈

�̈1

(1, 0)
, 1
〉
,
〈

�̈2

(1, 0)
, 1
〉}

, ��(ρ̈2) =
{〈

�̈1

(1, 0)
, 1
〉
,
〈

�̈2

(1, 0)
, 1
〉}

,

��(ρ̈3) =
{〈

�̈1

(1, 0)
, 1
〉
,
〈

�̈2

(1, 0)
, 1
〉}

, ��(ρ̈4) =
{〈

�̈1

(1, 0)
, 1
〉
,
〈

�̈2

(1, 0)
, 1
〉}

,

and in matrix notion is:

�� =

⎛
⎜⎜⎝
〈
(1, 0), 1

〉 〈
(1, 0), 1

〉〈
(1, 0), 1

〉 〈
(1, 0), 1

〉〈
(1, 0), 1

〉 〈
(1, 0), 1

〉〈
(1, 0), 1

〉 〈
(1, 0), 1

〉
⎞
⎟⎟⎠ .

Then �� is said to be the paPFHSS.
Theorem 1. If �m be a pPyFHSS over (Ü, �̈) then the following properties hold:

1. (�m ∪ �m) ⊇ �m, �m ⊆ (�m ∩ �m)

2. �m = �m ∪ �m, �m = �m ∩ �m

3. �m ∪ ξθ = �m, �m ∩ ξθ = ξθ

4. �m ∪ �� = ��, �m ∩ �� = �m

Proof. By using Definitions 7 and 10, we will be able to prove these properties:

(1). For this, let �m ∪ �m = �r, where

�r(ρ̈) =
(
�(ρ̈)(�̈), r(ρ̈)(�̈)

)
, ∀ρ̈ ∈ �̈ =

n∏
i=1

�̈i, ∀�̈ ∈ Ü

=
(
�(ρ̈)(�̈) ∪ �(ρ̈)(�̈), m(ρ̈)(�̈) ∪ m(ρ̈)(�̈)

)
=
(
�(ρ̈)(�̈), m(ρ̈)(�̈)

)
= �m(ρ̈)

Clearly, �m ⊆ �r = �m ∪�m. Now, we will show that �m ∩ �m ⊇ �m. For this, let �m ∩ �m = ζz,

ζz(ρ̈) =
(
ζ(ρ̈)(�̈), z(ρ̈)(�̈)

)
, ∀ρ̈ ∈ �̈ =

n∏
i=1

�̈i, ∀�̈ ∈ Ü

=
(
�(ρ̈)(�̈) ∩ �(ρ̈)(�̈), m(ρ̈)(�̈) ∩ m(ρ̈)(�̈)

)
=
(
�(ρ̈)(�̈), m(ρ̈)(�̈)

)
= �m(ρ̈)

Clearly, �m ⊆ ζz = �m ∩ �m.

(2). Obvious from (1).
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(3). For proving this �m ∪ ξθ = �m. Let �m ∪ ξθ = �r.

�r(ρ̈) =
(
�(ρ̈)(�̈), r(ρ̈)(�̈))

)
, ∀ρ̈ ∈ �̈ =

n∏
i=1

�̈i

=
(
�(ρ̈)(�̈) ∪ ξ(ρ̈)(�̈), m(ρ̈)(�̈) ∪ θ(ρ̈)(�̈)

)
=
(〈

max
{
ε�(ρ̈)(�̈), εξ(ρ̈)(�̈)

}
, min

{
τ�(ρ̈)(�̈), τξ(ρ̈)(�̈)

}〉
, max

{
μm(ρ̈)(�̈), μθ(ρ̈)(�̈)

})
=
(〈

max
{
ε�(ρ̈)(�̈), 0

}
, min

{
τ�(ρ̈)(�̈), 1

}〉
, max

{
μm(ρ̈)(�̈), 0

})
, by using Definition 11

=
(〈

ε�(ρ̈)(�̈), τ�(ρ̈)(�̈)
〉
, μm(ρ̈)(�̈)

)
=
(
�(ρ̈)(�̈), m(ρ̈)(�̈)

)
= �m(ρ̈)

�r(ρ̈) = �m(ρ̈)

Clearly, �m ∪ ξθ = �m.

Now, we will show that �m ∩ ξθ = ξθ . For this, let �m ∩ ξθ = ζz, where

ζz(ρ̈) =
(
ζ(ρ̈)(�̈), z(ρ̈)(�̈)

)
, ∀ρ̈ ∈ �̈ =

n∏
i=1

�̈i

=
(
�(ρ̈)(�̈) ∩ ξ(ρ̈)(�̈), m(ρ̈)(�̈) ∩ θ(ρ̈)(�̈)

)
=
(〈

min
{
ε�(ρ̈)(�̈), εξ(ρ̈)(�̈)

}
, max

{
τ�(ρ̈)(�̈), τξ(ρ̈)(�̈)

}〉
,

min
{
μm(ρ̈)(�̈), μθ(ρ̈)(�̈)

})
=
(〈

min
{
ε�(ρ̈)(�̈), 0

}
, max

{
τ�(ρ̈)(�̈), 1

}〉
, min{μm(ρ̈)(�̈), 0}

)
= (〈0, 1〉, 0

)
By using Definition 11, we have (〈0, 1〉, 0) = (ξ(ρ̈)(�̈), θ(ρ̈)(�̈))

=
(
ξ(ρ̈)(�̈), θ(ρ̈)(�̈)

)
= ξθ(ρ̈)

(4). Obvious from (3). �
Theorem 2. Suppose �m, �q, ϒp ∈ 	̂λ̂, then properties of commutativity and associativity hold

true for union and intersection operations, as stated below:

1. �m ∪ �q = �n ∪ �m,

2. �m ∩ �q = �n ∩ �m,

3. (�m ∪ �q) ∪ ϒq = �m ∪ (�q ∪ ϒp),

4. (�m ∩ �q) ∩ ϒq = �m ∩ (�q ∩ ϒp).

Proof. By using the Definition 10, we obtain these properties
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(1). Let �m ∪ �q = �r, where

�r(ρ̈) =
(
�(ρ̈)(�̈), r(ρ̈)(�̈)

)
, ∀ρ̈ ∈ �̈ =

n∏
i=1

�̈i

=
(
�(ρ̈)(�̈) ∪ �(ρ̈)(�̈), m(ρ̈)(�̈) ∪ q(ρ̈)(�̈)

)
=
(〈

max
{
ε�(ρ̈)(�̈), ε�(ρ̈)(�̈)

}
, min

{
τ�(ρ̈)(�̈), τ�(ρ̈)(�̈)

}〉
, max

{
μ�(ρ̈)(�̈), μ�(ρ̈)(�̈)

})
=
(〈

max
{
ε�(ρ̈)(�̈), ε�(ρ̈)(�̈)

}
, min

{
τ�(ρ̈)(�̈), τ�(ρ̈)(�̈)

}〉
, max

{
μ�(ρ̈)(�̈), μ�(ρ̈)(�̈)

})
=
(
�(ρ̈)(�̈) ∪ �(ρ̈)(�̈), q(ρ̈)(�̈) ∪ m(ρ̈)(�̈)

)
= �q ∪ �m,

Therefore, �m ∪ �q = �q ∪ �m.

(2). Obvious from (1).

(3). Since, �m, �q and ϒp ∈ 	̂λ̂.

(�m ∪ �n) ∪ ϒp

= �r ∪ ϒp

=
(
�(ρ̈)(�̈) ∪ ϒ(ρ̈)(�̈), r(ρ̈)(�̈) ∪ p(ρ̈)(�̈)

)
, ∀ρ̈ ∈ �̈ =

n∏
i=1

�̈i

=
(〈

�(ρ̈)(�̈) ∪ �(ρ̈)(�̈)
〉 ∪ ϒ(ρ̈)(�̈),

〈
m(ρ̈)(�̈) ∪ q(ρ̈)(�̈)

〉 ∪ p(ρ̈)(�̈)
)

=
(〈

max
{
ε�(ρ̈)(�̈), εϒ(ρ̈)(�̈)

}
, min

{
τ�(ρ̈)(�̈), τϒ(ρ̈)(�̈)

}〉
, max

{
μr(ρ̈)(�̈), μp(ρ̈)(�̈)

})
=
(〈

max
{
ε�(ρ̈) ∪ �(ρ̈)(�̈), εϒ(ρ̈)(�̈)

}
, min

{
τ�(ρ̈) ∪ �(ρ̈)(�̈), τϒ(ρ̈)(�̈)

}〉
,

max
{
μm(ρ̈) ∪ q(ρ̈)(�̈), μp(ρ̈)(�̈)

})
=
(〈

max
{
ε�(ρ̈)(�̈), ε�(ρ̈) ∪ ϒ(ρ̈)(�̈)

}
, min

{
τ�(ρ̈)(�̈), τ�(ρ̈) ∪ ϒ(ρ̈)(�̈)

}〉
,

max
{
μm(ρ̈)(�̈), μq(ρ̈) ∪ p(ρ̈)(�̈)

})
=
(
�(ρ̈)(�̈) ∪ 〈

�(ρ̈)(�̈) ∪ ϒ(ρ̈)(�̈)
〉
, m(ρ̈)(�̈) ∪ 〈

q(ρ̈)(�̈) ∪ p(ρ̈)(�̈)
〉)

=
(
�m(ρ̈)(�̈) ∪ 〈

�q(ρ̈)(�̈) ∪ ϒp(ρ̈)(�̈)
〉)

This implies, (�m ∪ �q) ∪ ϒp = �m ∪ (�q ∪ ϒp).

(4). Obvious from (3). �
Theorem 3. If �m, �q, ϒp ∈ 	̂λ̂, then the following results should hold true:

1. (�m ∪ �q)
c = (�m)c ∩ (�q)

c
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2. (�m ∩ �q)
c = (�m)c ∪ (�q)

c

3. (�m ∪ �q) ∩ �m = �m

4. (�m ∩ �q) ∪ �m = �m

5. �m ∪ (�q ∩ ϒp) = (�m ∪ �q) ∩ (�m ∪ ϒp)

6. �m ∩ (�q ∪ ϒp) = (�m ∩ �q) ∪ (�m ∩ ϒp)

Proof. The properties are a direct consequences of Definitions 9 and 10.

(1). Since �m, �q, ϒp ∈ 	̂λ̂.

(�m ∩ �q)
c

=
(
ζz(ρ̈)(�̈)

)c

=
(
ζ(ρ̈)(�̈), z(ρ̈)(�̈)

)c

, ∀ρ̈ ∈ �̈ =
n∏

i=1

�̈i

=
(
�(ρ̈)(�̈) ∩ �(ρ̈)(�̈), m(ρ̈)(�̈) ∩ q(ρ̈)(�̈)

)c

=
(〈

min
{
ε�(ρ̈)(�̈), ε�(ρ̈)(�̈)

}
, max

{
τ�(ρ̈)(�̈), τ�(ρ̈)(�̈)

}〉
, min

{
μm(ρ̈)(�̈), μq(ρ̈)(�̈)

})c

=
(〈

max
{
τ�(ρ̈)(�̈), τ�(ρ̈)(�̈)

}
, min

{
ε�(ρ̈)(�̈), ε�(ρ̈)(�̈)

}〉
, max

{
μm(ρ̈)(�̈), μq(ρ̈)(�̈)

})
=
(
�c(ρ̈)(�̈) ∪ �c(ρ̈)(�̈), m(ρ̈)(�̈) ∪ q(ρ̈)(�̈)

)
=
(
�c

m(ρ̈)(�̈) ∪ �c
q(ρ̈)(�̈)

)
= (�m)c ∪ (�q)

c

Therefore, (�m ∩ �q)
c = (�m)c ∪ (�q)

c

(2). Obvious from (1).

(3). For this, let �m, �q and ϒp ∈ 	̂λ̂.

(�m ∪ �q) ∩ �m

= �r(ρ̈) ∩ �m(ρ̈)

=
(
�(ρ̈)(�̈) ∩ �(ρ̈)(�̈), r(ρ̈)(�̈) ∩ m(ρ̈)(�̈)

)
, ∀ρ̈ ∈ �̈ =

n∏
i=1

�̈i

=
(〈

�(ρ̈)(�̈) ∪ �(ρ̈)(�̈)
〉 ∩ �(ρ̈)(�̈),

〈
m(ρ̈)(�̈) ∪ q(ρ̈)(�̈)

〉 ∩ m(ρ̈)(�̈)
)

=
(〈

max
{
ε�(ρ̈)(�̈), ε�(ρ̈)(�̈)

}
, min

{
τ�(ρ̈)(�̈), τ�(ρ̈)(�̈)

}〉 ∩ 〈ε�(ρ̈)(�̈), τ�(ρ̈)(�̈)
〉
,

〈
max{μm(ρ̈)(�̈), μq(ρ̈)(�̈)}

〉 ∩ μm(ρ̈)(�̈)
)

=
(〈

min{max{ε�(ρ̈)(�̈), ε�(ρ̈)(�̈)}, ε�(ρ̈)(�̈)}, max
{
min

{
τ�(ρ̈)(�̈), τ�(ρ̈)(�̈)

}
, τ�(ρ̈)(�̈)

}〉
,

min{max{μm(ρ̈)(�̈), μq(ρ̈)(�̈)}, μm(ρ̈)(�̈)}
)

=
(〈

ε�(ρ̈)(�̈), τ�(ρ̈)(�̈)
〉
, μm(ρ̈)(�̈)

)
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= (�(ρ̈)(�̈), m(ρ̈)(�̈)
)= �m(ρ̈)

Therefore, (�m ∪ �q) ∩ �m = �m.

(4). Obvious from (3).

(5). To prove this, let �m, �q, ϒp ∈ 	̂λ̂.

�m ∪ (�q ∩ ϒp)

= �m ∪ ζz

=
(
�(ρ̈)(�̈) ∪ ζ(ρ̈)(�̈), m(ρ̈)(�̈) ∩ z(ρ̈)(�̈)

)
, ∀ρ̈ ∈ �̈ =

n∏
i=1

�̈i

=
(
�(ρ̈)(�̈) ∪ 〈

�(ρ̈)(�̈) ∩ ϒ(ρ̈)(�̈)
〉
, m(ρ̈)(�̈) ∪ 〈

q(ρ̈)(�̈) ∩ p(ρ̈)(�̈)
〉)

=
(〈

ε�(ρ̈)(�̈), τ�(ρ̈)(�̈)
〉 ∪ 〈min

{
ε�(ρ̈)(�̈), εϒ(ρ̈)(�̈)

}
, max

{
τ�(ρ̈)(�̈), τϒ(ρ̈)(�̈)

}〉
,

〈
μm(ρ̈)(�̈) ∪ min

{
μq(ρ̈)(�̈), μp(ρ̈)(�̈)

}〉)
=
(〈

max
{
ε�(ρ̈)(�̈), min

{
ε�(ρ̈)(�̈), εϒ(ρ̈)(�̈)

}}
, min

{
τ�(ρ̈)(�̈), max

{
τ�(ρ̈)(�̈), τϒ(ρ̈)(�̈)

}}〉
,

max
{
μm(ρ̈)(�̈), min

{
μq(ρ̈)(�̈), μp(ρ̈)(�̈)

}})
=
(〈

min
{
max

{
ε�(ρ̈)(�̈), ε�(ρ̈)(�̈)

}
, max

{
ε�(ρ̈)(�̈), εϒ(ρ̈)(�̈)

}}
, max

{
min

{
τ�(ρ̈)(�̈), τ�(ρ̈)(�̈)

}
,

min
{
τ�(ρ̈)(�̈), τϒ(ρ̈)(�̈)

}}〉
,
〈
min

{
max

{
μm(ρ̈)(�̈), μq(ρ̈)(�̈)}, max

{
μm(ρ̈)(�̈), μp(ρ̈)(�̈)

}}〉)
=
(〈{

max
{
ε�(ρ̈)(�̈), ε�(ρ̈)(�̈)

}
, min

{
τ�(ρ̈)(�̈), τ�(ρ̈)(�̈)

}} ∩ {max
{
ε�(ρ̈)(�̈), εϒ(ρ̈)(�̈)

}
,

min
{
τ�(ρ̈)(�̈), τϒ(ρ̈)(�̈)

}}〉
,
〈
max

{
μm(ρ̈)(�̈)〉, μq(ρ̈)(�̈)

} ∩ max
{
μm(ρ̈)(�̈), μp(ρ̈)(�̈)

}〉)
=
(〈{

�(ρ̈)(�̈) ∪ �(ρ̈)(�̈)
}∩ {�(ρ̈)(�̈) ∪ ϒ(ρ̈)(�̈)

}〉
,
〈{

m(ρ̈)(�̈) ∪ q(ρ̈)(�̈)
} ∩ {m(ρ̈)(�̈) ∪ p(ρ̈)(�̈)

}〉)
= (�m ∪ �q

) ∩ (�m ∪ ϒp

)
Therefore, �m ∪ (�q ∩ ϒp) = (�m ∪ �q) ∩ (�m ∪ ϒp).

(6). Obvious from (5). �
Remark 1. Let �m be a pPyFHSS over (Ü, Â). If �m is not equal to �� or ξθ , then according to

Definitions 9 and 10, we can conclude that �m ∪ �c
m is not equal to ξθ and �m ∩ �c

m is not equal to
��.

In subsequent sections, we introduce AND and OR operations for the pairs of pPyFHSS in the
following manner:

Definition 13. If (�m, �̈) and (�q, Ŷ) are two pPyFHSSs on (Ü, �̈1 × �̈2 × ... × �̈n) and (Ü, Y1 ×
Y2 × ... × Yn), respectively, then the operation (�m, �̈)AND(�q, Ŷ), denoted by (�m, �̈) ∧ (�q, Ŷ)

and is defined as:
(
�m, �̈

)
AND

(
�q, Ŷ

)
=
(
ϒp, �̈ × Ŷ

)
. Here ϒp(ρ̈, ŷ) = { (

ϒ(ρ̈, ŷ)(�̈), p(ρ̈, ŷ)(�̈)
)

:

∀(ρ̈, ŷ) ∈ �̈ × Ŷ
}
, where, ϒ(ρ̈, ŷ) = �(ρ̈) ∩ �(ŷ), and p(ρ̈, ŷ) = m(ρ̈) ∩ q(ŷ).
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Definition 14. If (�m, �̈) and (�q, Ŷ) are two pPyFHSSs on (Ü, �̈) and (Ü, Ŷ) then the operation

(�m, �̈)OR(�q, Ŷ), defined as:
(
�m, �̈

)
OR

(
�q, Ŷ

)
=
(
ϒp, �̈ × Ŷ

)
, and denoted by (�m, �̈) ∨

(�q, Ŷ).

Here, ϒp(ρ̈, ŷ) =
{(

ϒ(ρ̈, ŷ)(�̈), p(ρ̈, ŷ)(�̈)
)

, ∀(ρ̈, ŷ) ∈ �̈ × Ŷ
}

, where ϒ(ρ̈, ŷ) = �(ρ̈) ∪ �(ŷ)

and p(ρ̈, ŷ) = m(ρ̈) ∪ q(ŷ).

Remark 2. If �m and �q are two pPyFHSSs over (Ü, �̈) and (
¨

U, Ŷ). For all (ρ̈, ŷ) ∈ �̈ × Ŷ , if
ρ̈ �= ŷ, then (�m ∨ �q) �= (�q ∨ �m) and (�m ∧ �q) �= (�q ∧ �m).

Theorem 4. If �m and �q be two pPyFHSSs over (Ü, �̈) and (Ü, Ŷ), then,

1.
(
(�m, �̈) ∨ (�q, Ŷ)

)c

= (�m, �̈
)c ∧

(
�q, Ŷ

)c

2.
(
(�m, �̈) ∧ (�q, Ŷ)

)c

= (�m, �̈
)c ∨

(
�q, Ŷ

)c

Proof. (1) From Definitions 13 and 9(
(�m, �̈) ∨ (�q, Ŷ)

)c = (ϒp, �̈ × Ŷ
)c

=
(
ϒ(ρ̈, ŷ)(�̈), p(ρ̈, ŷ)(�̈)

)c

, ∀(ρ̈, ŷ) ∈ (�̈ × Ŷ)

=
(
�(ρ̈)(�̈) ∪ �(ŷ)(�̈), m(ρ̈)(�̈) ∪ q(ŷ)(�̈)

)c

=
(
�c(ρ̈)(�̈) ∩ �c(ŷ)(�̈), mc(ρ̈)(�̈) ∩ qc(ŷ)(�̈)

)
=
((

�c(ρ̈)(�̈), mc(ρ̈)(�̈)
)∧(�c(ŷ)(�̈), qc(ŷ)(�̈)

))
.

By Definition 9

=
((

�(ρ̈)(�̈), m(ρ̈)(�̈)
)c∧(�(ŷ)(�̈), q(ŷ)(�̈)

)c
)

= (�m, �̈
)c∧(�q, Ŷ

)c
.

This implies,
(
(�m, �̈) ∧ (�q, Ŷ)

)c

= (�m, �̈
)c ∨

(
�q, Ŷ

)c

.

(2) To prove this, let
(
(�m, �̈) ∧ (�q, Ŷ)

)c

(
(�m, �̈) ∧ (�q, Ŷ)

)c = (ϒp, �̈ × Ŷ
)c

=
(
ϒ(ρ̈, ŷ)(�̈), p(ρ̈, ŷ)(�̈)

)c

, ∀(ρ̈, ŷ) ∈ (�̈ × Ŷ)

=
(
�(ρ̈)(�̈) ∩ �(ŷ)(�̈), m(ρ̈)(�̈) ∩ q(ŷ)(�̈)

)c

=
(
�c(ρ̈)(�̈) ∪ �c(ŷ)(�̈), mc(ρ̈)(�̈) ∪ qc(ŷ)(�̈)

)
.

By Definition 9

=
((

�c(ρ̈)(�̈), mc(ρ̈)(�̈)
)∨(�c(ρ̈)(�̈), qc(ŷ)(�̈)

))
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=
((

�(ρ̈)(�̈), m(ρ̈)(�̈)
)c∨(�(ρ̈)(�̈), q(ŷ)(�̈)

))c

= (�m, �̈
)c∨(�q, Ŷ

)c
.

This implies,
(
(�m, �̈) ∧ (�q, Ŷ)

)c

= (�m, �̈
)c ∨

(
�q, Ŷ

)c

�

3.1 Similarity Measure between Two pPyFHSSs
In this section, the idea of similarity measures between two pPyFHSSs is introduced, inspired by

the concept of [8,16,39] as follows:
Definition 15. If Ü be the universe of discourse and �̈i, (i = 1, 2, ..., n) be the sub attributes values

sets of attributes ẍi, (i = 1, 2, ..., n), respectively. Suppose that �m and �q be two pPyFHSSs over (Ü, �̈).
Then similarity between two pPyFHSSs is denoted by Sim(�m, �q) and is defined as follows:

Sim(�m, �q) = ϕ̈(�, �).�̈ (m, q), (3)

such that

ϕ̈(�, �) = T̈(�(ρ̈)(�̈), �(ρ̈)(�̈)) + S̈(�(ρ̈)(�̈), �(ρ̈)(�̈))

2
, (4)

�̈ (m, q) = 1 −

n∑
i=1

|α̈i − β̈i|
n∑

i=1

|α̈i + β̈i|
, (5)

T̈(�(ρ̈)(�̈), �(ρ̈)(�̈)) =

n∑
i=1

ε�(ρ̈i)(�̈).ε�(ρ̈i)(�̈)

n∑
i=1

(
1 −

√
(1 − ε2

�(ρ̈i)
(�̈)).(1 − ε2

�(ρ̈i)
(�̈))

), (6)

where

S̈(�(ρ̈)(�̈), �(ρ̈)(�̈)) =

√√√√√√√1 −

n∑
i=1

|τ 2
�(ρ̈i)

(�̈) − τ 2
�(ρ̈i)

(�̈)|
n∑

i=1

(
1 + τ 2

�(ρ̈i)
(�̈).τ 2

�(ρ̈i)
(�̈)
) , (7)

α̈i = μm(ρ̈i)(�̈), where i = 1, 2, 3, .., n. (8)

β̈i = μq(ρ̈i)(�̈), where i = 1, 2, 3, .., n. (9)

∀�̈ ∈ Ü and ∀ρ̈ ∈ �̈ = �̈1 × �̈2 × ... × �̈n.
Example 8. To find the similarity between two pPyFHSSs, consider �m and �q from Example 5.

The pPyFHSS, �m and �q of a first sample �̈1, the number of particular parameters are used to analyze
the vehicles that are chosen and �̈ = {ρ̈1, ρ̈2, ρ̈3} can be characterized as follows, in that order:

�m(ρ̈1) =
{

�̈1

(0.9, 0.4)
, 0.75

}
, (10)

�m(ρ̈2) =
{

�̈1

(0.8, 0.5)
, 0.77

}
, (11)
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�m(ρ̈3) =
{

�̈1

(0.7, 0.5)
, 0.78

}
. (12)

and

�q(ρ̈1) =
{

�̈1

(0.8, 0.6)
, 0.31

}
, (13)

�q(ρ̈2) =
{

�̈1

(0.7, 0.3)
, 0.32

}
, (14)

�q(ρ̈3) =
{

�̈1

(0.5, 0.6)
, 0.33

}
. (15)

T̈(�(ρ̈)(�̈), �(ρ̈)(�̈))

= (0.9)(0.8) + (0.8)(0.7) + (0.7)(0.5)

1 − √
(1 − 0.92)(1 − 0.82) + 1 − √

(1 − 0.82)(1 − 0.72) + 1 − √
(1 − 0.72)(1 − 0.52)

= 0.72 + 0.56 + 0.35
(0.73847) + (0.57151) + (0.38153)

= 0.96363

This implies,

T̈(�(ρ̈)(�̈), �(ρ̈)(�̈)) = 0.96363 (16)

S̈(�(ρ̈)(�̈), �(ρ̈)(�̈))

=
√

1 − |0.42 − 0.62| + |0.52 − 0.32| + |0.52 − 0.62|
(1 + (0.42)(0.62)) + (1 + (0.52)(0.32)) + (1 + (0.52)(0.62))

=
√

1 − 0.47
3.17010

= 0.92290

This implies,

S̈(�(ρ̈)(�̈), �(ρ̈)(�̈)) = 0.92290, (17)

by using (16) and (17) in (4) and we obtain

ϕ̈(�, �) = 0.94327. (18)

By taking the values of αi

‘

s and βi

‘

s, (i = 1, 2, 3) from Eqs. (10)–(15), and using them in Eq. (5)

�̈ (m, q)

= 1 − |0.75 − 0.31| + |0.77 − 0.32| + |0.78 − 0.33|
|0.75 + 0.31| + |0.77 + 0.32| + |0.78 + 0.33|

= 0.58896
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This implies,

�̈ (m, q) = 0.58896. (19)

By using Eqs. (18) and (19) in (4) and we have

Sim(�m, �q) = 0.94327 × 0.58896 = 0.55554 ∈ [0, 1].

It implies that �m and �q are strikingly similar. Therefore, it is highly recommended to choose a
vehicle from the showroom.

Theorem 5. If �m, �q, and ϒp be any three pPyFHSS over (Ü, �̈), then,

1. Sim(�m, �q) = Sim(�q, �m)

2. 0 ≤ Sim(�m, �q) ≤ 1

3. �m = �q ⇒ Sim(�m, �q) = 1

4. �m ⊆ �q ⊆ ϒp ⇒ Sim(�m, ϒp) ≤ Sim(�q, ϒp)

5. �m ∩ �q = ∅ ⇔ Sim(�m, �q) = 0

Proof. (1) For proving this we use the Definition 3

Sim(�m, �q) = ϕ̈(�, �).�̈ (m, q)

=
[
T̈(�(ρ̈)(�̈), �(ρ̈)(�̈)) + S̈(�(ρ̈)(�̈), �(ρ̈)(�̈))

2

]
.

⎡
⎢⎢⎣1 −

q∑
i=1

∣∣∣α̂i − β̂i

∣∣∣
n∑

i=1

∣∣∣α̂i + β̂i

∣∣∣

⎤
⎥⎥⎦

=
[
T̈(�(ρ̈)(�̈), �(ρ̈)(�̈)) + S̈(�(ρ̈)(�̈), �(ρ̈)(�̈))

2

]
.

⎡
⎢⎢⎣1 −

q∑
i=1

∣∣∣β̂i − α̂i

∣∣∣
n∑

i=1

∣∣∣β̂i + α̂i

∣∣∣

⎤
⎥⎥⎦

= ϕ̈(�, �).�̈ (q, m)

= Sim(�q, �m)

This implies, Sim(�m, �q) = Sim(�q, �m)

(2) Since, ε�m(ρ̈)(�̈), τ�q(ρ̈)(�̈) ∈ [0, 1],

This implies, (6) and (7) ∈ [0, 1]

so, ϕ̈(�, �), �̈ (m, q) ∈ [0, 1], this implies that, 0 ≤ ϕ̈(�, �).�̈ (m, q) ≤ 1,

Hence, 0 ≤ Sim(�m, �q) ≤ 1

(3) Let �m = �n then (3) becomes that

Sim(�n, �n) = T̈(�(ρ̈)(�̈), �(ρ̈)(�̈)) + S̈(�(ρ̈)(�̈), �(ρ̈)(�̈))

2
.

⎡
⎢⎢⎣1 −

n∑
i=1

∣∣∣β̂i − β̂i

∣∣∣
n∑

i=1

∣∣∣β̂i + β̂i

∣∣∣

⎤
⎥⎥⎦
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= 1/2

⎡
⎢⎢⎢⎣

n∑
i=1

ε�(ρ̈i)(�̈).ε�(ρ̈i)(�̈)

n∑
i=1

(
1 −

√
(1 − ε2

�(ρ̈i)
(�̈)).(1 − ε2

�(ρ̈i)
(�̈))

) +

√√√√√√√1 −

n∑
i=1

|τ 2
�(ρ̈i)

(�̈) − τ 2
�(ρ̈i)

(�̈)|
n∑

i=1

(
1 + τ 2

�(ρ̈i)
(�̈).τ 2

�(ρ̈i)
(�̈)
)
⎤
⎥⎥⎥⎦ .

(1 − 0)

= 1/2

⎡
⎢⎢⎣

n∑
i=1

ε2
�(ρ̈i)

(�̈)

n∑
i=1

(
1 −

√
(1 − ε2

�(ρ̈i)
(�̈))2

) + √
1 − 0

⎤
⎥⎥⎦

= 1/2

⎡
⎢⎢⎣

n∑
i=1

ε2
�(ρ̈i)

(�̈)

n∑
i=1

(1 − 1 + ε2
�(ρ̈i)

(�̈))

+ 1

⎤
⎥⎥⎦

= [1 + 1]/2 = 1.

This implies, Sim(�m, �q) = 1

(4) Let �m ⊆ �q ⊆ ϒp then by Definition 7

m(ρ̈)(�̈) ⊆ q(ρ̈)(�̈) if μm ≤ μq and, n(ρ̈)(�̈) ⊆ p(ρ̈)(�̈) if μq ≤ μp.

This implies, m(ρ̈) ⊆ p(ρ̈) if μm ≤ μp

�(ρ̈)(�̈) ⊆ �(ρ̈)(�̈) if ε�(ρ̈)(�̈) ≤ ε�(ρ̈)(�̈) and, τ�(ρ̈)(�̈) ≤ τ�(ρ̈)(�̈)

& �(ρ̈)(�̈) ⊆ ϒ(ρ̈)(�̈) if ε�(ρ̈)(�̈) ≤ εϒ(ρ̈)(�̈) and τϒ(ρ̈)(�̈) ≤ τ�(ρ̈)(�̈).

(5) Let �m ∩ �q = ∅ then (4) and (5) becomes that

ϕ̈(�, �), �̈ (m, m) = 0.

This implies that,

Sim(�m, �q) = 0.

�

4 Decision-Making Application of Similarity Measure

In life, decisions are always being made. For this reason, most real-world issues, including those
involving politics, economics, management, technology, and daily living, require our decision-making.
The educational outcomes to determine which institution of education is better. When choosing an
institution to teach, teacher education is evaluated based on a variety of expert standards. There are
numerous studies, mostly conducted, have looked into the factors that parents consider when choosing
an institution that best fits their child’s needs and their expectations for the institution graduate.
We find an element regarded to be involved in parental decision-making: The academic element is
comprised of five distinct aspects namely Geographical Location, Academic Reputation, Operational
Environment, Internship Opportunities, and faculty/staff. Our objective is to pick the best option from
a wide range of options by comparing the expert assessment with the criteria.
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4.1 Algorithm for Evaluation of Optimum Educational Institution
Input:

(i) Consider Ü be the universe of discourse comprising the educational institutions that are
being observed.

(ii) Assume a collection of parameters ẍ1, ẍ2, ẍ3, ..., ẍn.

(iii) Categorize the n attributes into disjoints sub-attributes valued sets �̈1 = {ẍ11, ẍ12, ẍ13, . . . , ẍ
1n}, �̈2 = {ẍ21, ẍ22, ẍ23, . . . , ẍ2n}, �̈3 = {ẍ31, ẍ32, ẍ33, . . . , ẍ3n}, and so on �̈n = {ẍn1, ẍn2, ẍn3, . . . , ẍnn}.

Construction:

(iv) Determine the Cartesian product of non-overlapping attributes valued set i.e., �̈ = �̈1 ×
�̈2 × �̈3 × .. × �̈n = {ρ̈1, ρ̈2, ρ̈3, ..., ρ̈p}.
(v) Construct the pPyFHSS by utilizing definition 6 in tabular representation and the views of
decision-makers. Arrange the chosen Pythagorean fuzzy numbers in the first row correspond-
ing to each attribute value ρ̈, while in the second row display the corresponding possibility
membership grade.

Computation:

(vi) Compute the values of T̈ and S̈ by using the Eqs. (6) and (7), respectively.

(vii) By taking
T̈ + S̈

2
, compute the value of ϕ̈.

(viii) By taking 1 − |α̈i − β̈i|
|α̈i + β̈i|

for i ∈ {1, 2, 3, 4, 5, 6}, calculate the value of ρ̈.

(ix) By multiply ϕ̈ and ρ̈, calculate the similarity measure.

Output:

(x) Find the maximum similarity measure, and max{Similarityi} = maximum similarity for
i ∈ {1, 2, 3, 4, 5, 6}.
(xi) Select the educational institution with the maximum similarity measure as the optimal
solution.

Fig. 1 is meant to briefly preview the steps of the proposed algorithm.

4.2 Case Study
Mrs. Emily has shifted from village to city and she intends to enroll her children in a good reputed

educational institution. For the evaluation of educational institutions, she is accompanied by her
friend who is well-known educationist (expert) in the area. They have considered the universal set
Ü = {�̈1, �̈2, �̈3, �̈4, �̈5} comprising five prestigious educational institutions, from which the ideal one
can be chosen. The attributes finalized by experts for this evaluation, are ẍ1: Geographical Location,
ẍ2: Academic Reputation, ẍ3: Operational Environment, ẍ4: Internship Opportunities, ẍ5: faculty/staff
and their corresponding attribute values are Geographical Location = �̈1 = {ẍ11 = urban area},
Academic Reputation = �̈2 = {ẍ21 = A+tier, ẍ22 = B tier}, Operational Environment = �̈3 = {ẍ31 =
safe, ẍ32 = better, ẍ33 = unsafe}, Internship Opportunities = �̈4 = {ẍ41 = career}, faculity/staff
= �̈5 = {ẍ51 = hard working}. The Cartesian product is �̈ = �̈1 × �̈2 × �̈3 × �̈4 × �̈5 =
{ρ̈1, ρ̈2, ρ̈3, ρ̈4, ρ̈5, ρ̈6}, where 1 × 2 × 3 × 1 × 1 = 6, each ρ̈i is a 5-tuple component of �̈. Table 1
lists the attributes of an optimal educational institution. Assume that the evaluators can provide the
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Pythagorean fuzzy values for these attributes, which indicate how well each attribute fits the institution.
The evaluations of the educational institution by the evaluators, based on pPyFHSS, are shown in
Tables 2–6. The Pythagorean fuzzy values in these tables are provided by expert evaluators based on
their assessments of the alternatives against the given criteria.

Figure 1: Algorithm construct for the proposed technique

Table 1: pPyFHSS for optimal educational institution evaluation

K̈m(ρ̈) ρ̈1 ρ̈2 ρ̈3 ρ̈4 ρ̈5 ρ̈6

K̈(ρ̈)(�̈) (0.8, 0.3) (0.75, 0.2) (0.8, 0.35) (0.9, 0.35) (0.9, 0.3) (0.7, 0.3)

m(ρ̈)(�̈) 1 1 1 1 1 1

Table 2: pPyFHSS for first educational institutional evaluation

¨Am1
(ρ̈) ρ̈1 ρ̈2 ρ̈3 ρ̈4 ρ̈5 ρ̈6

¨A (ρ̈)(�̈) (0.5, 0.4) (0.6, 0.3) (0.7, 0.45) (0.6, 0.5) (0.7, 0.3) (0.5, 0.6)

m1(ρ̈)(�̈) 0.9 0.6 0.65 0.7 0.8 0.8
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Table 3: pPyFHSS for second educational institution evaluation

B̈m2
(ρ̈) ρ̈1 ρ̈2 ρ̈3 ρ̈4 ρ̈5 ρ̈6

B̈(ρ̈)(�̈) (0.7, 0.5) (0.6, 0.5) (0.85, 0.4) (0.5, 0.6) (0.75, 0.3) (0.55, 0.6)

m2(ρ̈)(�̈) 0.8 0.7 0.75 0.6 0.9 0.85

Table 4: pPyFHSS for third educational institution evaluation

C̈m3
(ρ̈) ρ̈1 ρ̈2 ρ̈3 ρ̈4 ρ̈5 ρ̈6

C̈(ρ̈)(�̈) (0.6, 0.4) (0.75, 0.3) (0.6, 0.45) (0.55, 0.5) (0.8, 0.3) (0.7, 0.6)

m3(ρ̈)(�̈) 0.5 0.8 0.85 0.7 0.85 0.9

Table 5: pPyFHSS for fourth educational institutional evaluation

D̈m4
(ρ̈) ρ̈1 ρ̈2 ρ̈3 ρ̈4 ρ̈5 ρ̈6

D̈(ρ̈)(�̈) (0.7, 0.35) (0.55, 0.4) (0.6, 0.45) (0.7, 0.5) (0.65, 0.3) (0.45, 0.6)

m4(ρ̈)(�̈) 0.85 0.8 0.9 0.65 0.6 0.7

Table 6: pPyFHSS for fifth educational institution evaluation

Ëm5
(ρ̈) ρ̈1 ρ̈2 ρ̈3 ρ̈4 ρ̈5 ρ̈6

Ë(ρ̈)(�̈) (0.5, 0.4) (0.6, 0.3) (0.7, 0.45) (0.6, 0.35) (0.65, 0.3) (0.5, 0.6)

m5(ρ̈)(�̈) 0.9 0.65 0.75 0.7 0.9 0.8

In this survey, in order to evaluate the educational institution which is the closest to the optimal
educational institution, we should calculate the similarity measure of pPyFHSS in Tables 2–6 with the
one in Table 1 in accordance with the definition 15. The bar of similarity measure should be based
on the optimal educational institution. Typically, among all the five educational institutions, the one
with a similarity measure above this bar is the best-suited one. The similarity measure computations
for the educational profiles of 1–5 institutions are provided in the table below. The Table 7 presents the
scores of similarity measures corresponding to each educational institution. According to the above-
mentioned data, the third educational institution evaluation whose similarity measure has the greatest
value of 0.81620 is the one that most closely resembles the optimal educational institution. Fig. 2
represents that a third educational institution is the optimal solution. By using the pPyFHSS approach,
the inherent uncertainty and subjectivity in survey responses are handled more effectively, leading to
a more nuanced and reliable evaluation of the educational institution.
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Table 7: Computation of the similarity measures of each pPyFHSS in Tables 2–6 with Table 1

T̈ S̈ ϕ̈ ρ̈ Similarity

(K̈, ¨A ) 0.90313 0.94988 0.92650 0.85167 0.78908
(K̈, B̈) 0.92377 0.92244 0.92311 0.86792 0.80119
(K̈, C̈) 0.93094 0.94988 0.94041 0.86792 0.81620
(K̈, D̈) 0.91521 0.94707 0.93114 0.80000 0.74491
(K̈, Ë) 0.89476 0.96069 0.92773 0.87850 0.81501

Figure 2: A graphical representation of scores of similarity measures corresponding to each educational
institution shown in Table 7 (EIE represents the educational institution evaluation)

4.3 Comparison of the pPyFHSS Approach with PFHSS Approach without Generalizing the
Parameter

In order to examine the impact of the possibility parameter, we shall reexamine the aforemen-
tioned survey study in this subsection by applying the PFHSS technique. The similarity measure
for the aforementioned educational institutions’ evaluation is presented in Table 8. The possibility
parameter significantly affects how the similarity measure of pPyFHSS is calculated, as can be seen
from the preceding data. According to the similarity measure, it is found that the first, second, fourth,
and fifth identify the educational institution with the maximum similarity measure as the optimal
solution are significantly different from the optimum educational institution. We ought to select the
third educational institution as a possible institution if the evaluator selects the threshold 〈0.6, 0.4〉.
On the other hand, if we employ the PFHSS technique without a generalization parameter, we are
unable to determine which educational institution is the optimum due to more ambiguity in decision-
making of similarity measures of PFHSS. The results of similarity-based pPyFHSS and PFHSS
are shown in Fig. 3, along with a ranking of each educational institution. Therefore, the similarity
measure of the third educational institution is significantly influenced by the possibility parameter, as
this parameter greatly mitigates uncertainty in decision-making. As a result, the pPyFHSS approach
is more reasonable and scientific in decision-making when it comes to the evaluation of optimum
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educational institutions than the PFHSS methodology without a generalization parameter and it can
be seen in Fig. 3.

Table 8: The similarity measures for the aforementioned educational institution’s evaluation

T̈ S̈ Similarity

(K̈, ¨A ) 0.90313 0.94988 0.92650
(K̈, B̈) 0.92377 0.92244 0.92311
(K̈, C̈) 0.93094 0.94988 0.94041
(K̈, D̈) 0.915214 0.94707 0.93114
(K̈, Ë) 0.89476 0.96069 0.92773

Figure 3: A graphical representation of comparison of similarity-based pPyFHSS with PFHSS

4.4 Flexibility Assessment through Structural Comparison
Many scholars have already discussed the evaluation of various educational institutions in the

literature using Pythagorean hypersoft set-like structures. These methods employ fictional data with
broad conclusions. In contrast, the suggested study evaluates and analyzes the challenges encountered
by educational institutions using a synergistic strategy. Evaluation of educational institutions is actu-
ally a situation that needs further attribute partitioning into the corresponding sub-attribute values
in the form of disjoint sets, which is something neglected by the existing methods. A classification
like this guarantees accurate outcomes and decisions. To assess the structural differences between the
proposed model and the most relevant existing models, a few attributes are thought to be sufficient.
To minimize the possibility of biased decisions, the grade of possibility in the pPyFHSS model makes
sure that expert opinions have been assessed under their level of acceptability. Table 9 illustrates this
comparison in detail and shows how our suggested model fully combines all required components
while existing models frequently lack key elements.
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Table 9: Comparison of proposed structure

References with
frameworks

Membership-
grade

Non-membership-
grade

Membership
grade based
possibility
grade

Multi-
argument
approximate
mapping

Educational
institution
ranking

Muthukumar
et al. [16] (IFSS)

Adequate Adequate Inadequate Inadequate Inadequate

Peng et al. [17]
(PyFSS)

Adequate Adequate Inadequate Inadequate Inadequate

Smarandache [20]
(HSS)

Inadequate Inadequate Inadequate Adequate Inadequate

Debnath [22] (FHSS) Adequate Inadequate Inadequate Adequate Inadequate
Sajid et al. [26]
(CIFHSS)

Adequate Adequate Inadequate Adequate Inadequate

Siddique et al. [31]
(PyFHSS)

Adequate Adequate Inadequate Adequate Inadequate

Alkhazaleh et al. [32]
(pFSS)

Adequate Inadequate Adequate Inadequate Inadequate

Bashir et al. [36]
(pIFSS)

Adequate Adequate Adequate Inadequate Inadequate

Jia-Hua et al. [39]
(pPyFSS)

Adequate Adequate Adequate Inadequate Inadequate

Rahman et al. [43]
(pFHSS)

Adequate Inadequate Adequate Adequate Inadequate

Rahman et al. [44]
(pIFHSS)

Adequate Adequate Adequate Adequate Inadequate

Proposed model
(pPyFHSS)

Adequate Adequate Adequate Adequate Adequate

The significant preferential features of the proposed study are:

1. It has the proper arrangements to manage the biased tendency of the decision maker in
decision-making to retain the validity of the decision. It has the settings to evaluate the
observations and opinions of the decision-makers with the help of an impartial expert.

2. To strengthen the credibility of decision-making, it has a specific arrangement for short-term
approximations. Decision-makers do not consider attributes one by one for the approxima-
tions of alternatives, rather, they have multiple arguments in mind for this purpose. That is
accomplished in less time and more reliably.

3. It provides optimal and more generalized membership and non-membership functions that
play a key role in controlling uncertainty based on incomplete and ambiguous information.

4. It embodies the characteristics and features of existing structures such as the possibility
fuzzy hypersoft set (pFHSS), possibility intuitionistic fuzzy hypersoft set (pIFHSS), and the
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possibility Pythagorean fuzzy soft set (pPFSS). Thus, it is appropriate to consider pPyFHSS
as a generalized form of all these structures.

5 Conclusion

The current study introduces a novel theoretical framework called pPyFHSS by generalizing exist-
ing models like pFHSS, pIFHSS, and pPFSS. This framework utilizes possible degree-based settings
to cope with the biased tendency of decision-makers. The elementary notions of pPyFHSS, basic
operations like union, intersection, AND-operations, OR-operations, etc., and essential theorems have
been discussed with illustrations. Additionally, the formulation for similarity measures of pPyFHSS is
developed and explained by numerical examples. Based on suggested similarity measures, an intelligent
decision-assisted system has been developed with the proposal of an algorithm. The suggested steps
of proposed algorithm are explained by a prototype case study for the evaluation of educational
institutions. The flexibility of the pPyFHSS is checked through structure-based comparison. One
of its limitations is that it utilizes possibility degree in terms of fuzzy membership value, but it is
inadequate for those scenarios where falsity and indeterminacy are required to be considered for
assessing the acceptance level through possibility degree. This work investigates the innovative use
of the pPyFHSS model to enhance the educational institutions’ assessment procedure. In the past,
assessing these kinds of organizations has included intricate decision-making processes involving the
management of several criteria, frequently with ambiguous or contradicting data. With its special
abilities, the pPyFHSS model offers a more accurate and adaptable method of tackling these problems.
The model may be adjusted to the unique requirements and features of various educational institutions
by incorporating parameterization, which increases its adaptability and effectiveness over current
approaches. The pPyFHSS model has many sophisticated features that improve its ability to make
decisions. These characteristics include the membership grade, which shows how effectively an institu-
tion satisfies specific requirements, and the nonmembership grade, which serves as a counterweight by
demonstrating how much an institution falls short of those requirements. The model also presents the
grade of possibility, which illustrates the likelihood of different scenarios and provides a sophisticated
approach to managing uncertainty. The model provides a thorough evaluation framework by taking
into account both individual criteria and the interactions between numerous criteria through the use
of the single-argument approximate function and the multi-argument approximate function.

The ability to handle scenarios where the sum squares of the membership and nonmembership
grades exceed one is one of the many notable advantages of the pPyFHSS model. This feature allows
the model to represent uncertainty in a more realistic and complex way, which is helpful when making
decisions in the real world. The pPyFHSS model is particularly well-suited for the complex evaluations
required in the education sector because it offers a more accurate and scientific approach to evaluation
by eliminating the constraints that hinder current approaches. Operational features and similarity
measurements of the pPyFHSS model further verify its robustness. These features guarantee that
the model operates consistently and dependably in a range of scenarios, offering a solid basis for its
implementation in real-world scenarios. This study is all the more interesting and significant because
this particular model has never been used to evaluate educational institutions. The results imply that
the pPyFHSS model could produce assessments that are more accurate and trustworthy, providing
a fresh viewpoint that has the potential to have a big influence on the evaluation of educational
institutions.

The study recommends that future research may apply the pPyFHSS model to a broader range
of educational institutions to further validate its effectiveness. This wider application would reinforce
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the model’s flexibility and robustness in a variety of circumstances. Insightful information regarding
the relative benefits and drawbacks of the pPyFHSS model may also be provided by comparative
studies with other complex models, which may lead to further advancements. These studies’ practical
applicability would be further enhanced by incorporating real-world data, which would also ensure
that the model meets the needs of decision-makers in the education sector.
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