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ABSTRACT

With the rise of remote collaboration, the demand for advanced storage and collaboration tools has rapidly
increased. However, traditional collaboration tools primarily rely on access control, leaving data stored on cloud
servers vulnerable due to insufficient encryption. This paper introduces a novel mechanism that encrypts data
in ‘bundle’ units, designed to meet the dual requirements of efficiency and security for frequently updated
collaborative data. Each bundle includes updated information, allowing only the updated portions to be re-
encrypted when changes occur. The encryption method proposed in this paper addresses the inefficiencies of
traditional encryption modes, such as Cipher Block Chaining (CBC) and Counter (CTR), which require decrypting
and re-encrypting the entire dataset whenever updates occur. The proposed method leverages update-specific
information embedded within data bundles and metadata that maps the relationship between these bundles and
the plaintext data. By utilizing this information, the method accurately identifies the modified portions and applies
algorithms to selectively re-encrypt only those sections. This approach significantly enhances the efficiency of
data updates while maintaining high performance, particularly in large-scale data environments. To validate this
approach, we conducted experiments measuring execution time as both the size of the modified data and the
total dataset size varied. Results show that the proposed method significantly outperforms CBC and CTR modes
in execution speed, with greater performance gains as data size increases. Additionally, our security evaluation
confirms that this method provides robust protection against both passive and active attacks.
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1 Introduction

In recent years, global economic and technological changes have increased the need for innovative
collaboration methods in the corporate environment. With the ongoing trend of geographically
dispersed teams and competition in the global market, remote collaboration has become increasingly
important for efficient teamwork. The rise in remote collaboration is primarily driven by technological
advancements and the rapidly evolving business environment. Additionally, there is a growing need
for flexibility to respond quickly to emergencies and maintain operations. Companies can enhance
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their resilience by swiftly transitioning to remote collaboration during unforeseen events, such as
natural disasters or emergencies. Cloud-based real-time document editing services allow multiple
users to upload shared documents to the cloud and edit them simultaneously [1–5]. These services
enable teams to track each other’s progress and provide real-time feedback without the need for
face-to-face meetings, thus saving time and costs associated with collaboration. This technology
simplifies collaboration between geographically separated teams and has emerged as a crucial means
to reduce corporate expenses while increasing productivity [6,7]. Prominent examples of cloud-
based real-time document editing services include Overleaf, which supports LaTeX for collaborative
document editing, Google Docs, Google Slides, and a variety of office applications in Google Suite,
as well as Dropbox Paper. These tools offer seamless collaboration capabilities. However, these cloud-
based document editing services primarily maintain security by effectively controlling access to the
documents stored in the cloud. Nevertheless, this method still poses risks to the security of the data
[8]. Additionally, if an individual with absolute access rights to the cloud, such as a cloud service
provider, tampers with the collaborative data stored in the cloud, users may not be able to detect such
an attack [9–11].

However, the aforementioned cloud-based document editing services primarily maintain security
by effectively controlling access to documents stored in the cloud. This security method relies on
restricting access through URLs or similar mechanisms. If a link is accidentally or intentionally shared
with unauthorized individuals, the collaborative data could be exposed. To address this issue, it is
necessary to protect stored collaborative documents by encrypting the data. Only individuals with
the appropriate decryption key should be able to access the collaborative data, ensuring data security.
Block cipher algorithms are used to secure the data. These algorithms can protect the confidentiality
of collaborative data stored in the cloud. A notable example of a block cipher algorithm is AES
(Advanced Encryption Standard) [12–14]. However, block cipher algorithms are designed to process
single blocks of data. To encrypt larger datasets, block cipher modes of operation are used. When
encrypting collaborative data, these block cipher modes must support frequent updates, unlike static
data encryption. Therefore, it is essential to use block cipher modes of operation that can handle
frequent updates to ensure the security of collaborative data.

Traditional block cipher modes of operation [15–19], such as Electronic Codebook (ECB), Cipher
Block Chaining (CBC), Counter (CTR), Xor encrypt xor Tweakable Block Ciphertext Stealing
(XTS) mode [20–23], are not suitable for handling updates efficiently. ECB and CTR modes allow
independent encryption and decryption of specific blocks, which enables updates to be applied to
particular blocks. However, ECB mode is inappropriate due to its deterministic nature it produces
the same ciphertext for identical plaintexts, making it vulnerable to ciphertext block rearrangement
attacks. Such attacks can disrupt the relationship between plaintext blocks during decryption [24].
While CTR mode and tweakable block ciphers address some of these issues, they face challenges
in managing counters and tweak values during updates. In CTR mode, reusing the same counter
weakens security, while using a new counter can break continuity, causing decryption problems [25].
In XTS mode, block positions are used as tweak values. However, when updates occur, block positions
change, meaning all tweak values need to be updated, which makes this approach unsuitable for
updates. Lastly, in CBC mode, the chaining dependency between blocks requires re-encrypting the
entire dataset when an update occurs, making it inefficient. An alternative to traditional block cipher
modes is homomorphic encryption [26–29], which allows operations like addition and multiplication to
be performed on encrypted data. This technology makes it possible to update encrypted data without
exposing it, which is useful in cloud environments. However, homomorphic encryption is not suitable
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for collaborative work due to its computational complexity and performance limitations, especially in
real-time scenarios.

For these reasons, using traditional block cipher modes, which require decrypting all data,
applying updates, and re-encrypting the entire dataset before re-uploading it to the cloud, is not
optimal for frequently updated collaborative data. There are two main reasons for this. First, from
a computational perspective, this method is inefficient. It requires re-encrypting the entire dataset, not
just the updated parts, leading to significant computational overhead. This inefficiency becomes more
pronounced when updates are frequent. Second, from a transmission perspective, traditional modes
do not support updating only the modified portion in the cloud. Instead, they require uploading a
new ciphertext for the entire dataset, increasing data transfer and inefficiency. Therefore, to protect
frequently updated collaborative data efficiently, it is essential to consider new modes of operation or
modern encryption techniques that support updates.

To address the difficulties of frequently updating collaborative data encrypted using traditional
modes, the Linked Block Cipher (LBC) mode [30,31] has been proposed. LBC mode is designed based
on the flexibility of ECB mode in handling block-level updates. Theoretically, ECB mode can provide
dynamic updates to encrypted data, but its structural vulnerabilities make it impractical. LBC mode
addresses these vulnerabilities while maintaining the ECB’s flexibility. The core idea of LBC mode
is to place random link data at the beginning and end of each data block, ensuring connectivity
between consecutive blocks. This approach allows LBC mode to support updates in an encrypted
state while mitigating known security weaknesses of ECB. During encryption, the random link value
is used as input within each block, ensuring that identical plaintext blocks result in different ciphertext
blocks, unlike ECB mode. Additionally, in LBC mode, adjacent blocks are linked by the same link
data, preventing the ciphertext block reordering issue inherent in ECB mode, thus defending against
attacks that alter the order of ciphertext blocks. However, using link data to overcome the limitations
of ECB mode in LBC mode presents efficiency challenges. Small link data sizes may still result in
identical ciphertexts for identical plaintexts. To mitigate this, sufficiently large link data must be used.
Similarly, to prevent reordering attacks, large link data must be employed to ensure that the link data
shared between adjacent blocks is unlikely to match that of other data blocks.

As described, to provide strong security through link data, sufficiently large link data must be
utilized. However, as the size of the link data within each block increases, the amount of valid data
corresponding to the plaintext decreases, leading to larger ciphertext sizes compared to the plaintext.
This creates inefficiencies in both computational and transmission aspects.

Therefore, this paper proposes a new block cipher mode of operation based on the CTR mode,
utilizing a bundle configuration of data blocks. This new approach aims to provide efficient and
secure encryption for frequently updated collaborative data. The proposed technique demonstrates
significant performance improvements. To assess the efficiency of the proposed method, we conducted
experiments by fixing the size of the modified data and measuring execution time as the total data size
increased. The results demonstrated that the proposed method achieved significantly faster execution
compared to CBC and CTR modes, with an especially pronounced advantage as data size grew.
When the data size reached 8 MB, the proposed method exhibited drastically shorter execution times
than traditional encryption modes. Furthermore, with a fixed total data size, the proposed method
delivered over 10 times faster performance than CBC mode when inserting a 3900 KB file into
a fixed 200 KB dataset, highlighting its superior efficiency for data modifications Additionally, in
the security evaluation, the proposed method using CTR mode was confirmed to provide sufficient
security against passive adversaries. For active adversaries, the continuous counter increment and the
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inclusion of sequence information in the counter block made the probability of a successful attack
negligible, demonstrating significantly enhanced security. This technique can be used to perfectly
protect data from attackers targeting data stored in the cloud during collaborative processes. By
encrypting collaborative data using the proposed method, the data can be securely protected not only
from external attackers but also from those who may not have access permissions to the data but can
directly access the storage infrastructure, such as in the case of cloud environments.

In Section 2, we elaborate on the threat models targeted by this paper and provide detailed criteria
for secure responses to these threats. We also describe how existing block cipher modes satisfy or fail
to meet these criteria regarding threat responses. In Section 3, we detail the basic idea of our proposed
approach, the structure of its bundles and metadata, and how our proposed technique operates in
update scenarios. Following this, in Section 4, we conduct experiments to analyze the performance
and security of our proposed technique.

2 Preliminaries
2.1 System Model

The proposed technique in this paper is based on the following system model. There exists n for
clients collaborating and a single cloud server where collaborative data is stored. When collaboration
begins, the client, who generates the initial data, creates the collaborative data, generates a secure key
for data protection, and encrypts the collaborative data using the generated key. The encrypted data is
then uploaded to the cloud server. Clients participating in the collaboration are assumed to share keys
for encrypting and decrypting collaborative data through agreed-upon means. When updates occur to
the collaborative data, the client performing the update uploads the ciphertext of the updated plaintext
to the cloud server. The server disseminates the received update details to other collaborating clients.
Based on the received updated ciphertext, clients update the collaborative data. After updates to the
collaborative data are completed, clients do not retain the collaborative data separately but store it on
the cloud server for protection. This system model is illustrated in Fig. 1

Figure 1: System model

2.2 Threat Model
This section describes the security requirements that the proposed technique must guarantee

during collaborative processes based on data stored in the cloud. Current cloud-based collaboration
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systems provide security for collaborative data through access control. However, as documents are
stored in plaintext on the cloud, collaboration-related information can be leaked if unauthorized
individuals such as cloud service administrators access the cloud in an improper manner. Therefore,
data must be stored in an encrypted state within the cloud. However, attackers exist who can exploit
encrypted data to derive meaningful results. Hence, appropriate security-providing cipher modes of
operation must be used. This section analyzes the threat model that may arise in the proposed system
to emphasize the need for cipher modes of operation supporting updates. The threat model proposed
in this paper involves the presence of passive adversaries and active adversaries.

• Passive Adversary: A passive adversary can inspect ciphertext data to infer information without
directly tampering with the data. By analyzing patterns or changes in ciphertext data, a passive
adversary can deduce plaintext content.

• Active Adversary: An active adversary inspects ciphertext data and directly manipulates the
data. An active adversary can reorder data blocks to disrupt the relationship with the plaintext
or modify ciphertext blocks themselves to corrupt data content.

All attackers capable of accessing the data in the proposed system model may be either active
adversaries or passive adversaries. Therefore, cipher modes of operation capable of mitigating such
attacks must be used, as malicious modifications to ciphertext that result in normal decryption
may lead to collaboration issues due to obtaining content different from the originally intended
collaboration.

To define the security of our scheme against passive and active adversaries, we need the following
notations. Let ENCk(Data) be the encryption of Data under the key k.

Definition 1. (DyEnck(·), DyDeck(·)). Let E = {DyEnck(·), DyDeck(·)} be an encryption scheme
supporting the update of encrypted data under the key k. DyDeck(· · · ) performs decryption, returning
the data if successful, and 0 otherwise.

Definition 2. (Security against Passive Adversary). Let E = {DyEnck(·), DyDeck(·)} be an
encryption scheme supporting the update of encrypted data under the key k. Let U = {Om, Oi, Od} be
the set of all update operations. We assume that only one block is modified for each update operation.
Let Data′ = m1|| · · · ||m′

i|| · · · ||ml be updated from the current data Data = m1|| · · · ||mi|| · · · ||ml. If
the update operation is Oi or Od, mi or m′

i does not exist, respectively. Let and be two ciphertexts for
Data and Data′ such that C = Enc(Data) and C ′ = Enc(Data′). Let A be a passive adversary who
breaks the security of E . Then, the scheme is secure against passive adversaries if the following holds
for randomly chosen b ∈ {0, 1}:
∣
∣
∣
∣
Pr[A (E , {C, Cb}, m′) = b] − 1

2

∣
∣
∣
∣

< ε

where C0 = Enc(m1|| · · · ||mi−1||r||mi+1|| · · · ||ml) and C1 = Enc(m1|| · · · ||mi−1||m′||mi+1|| · · · ||ml), r is a
random value in {0, 1}lm , and ε is negligible.

Note that, in the above definition, the security of the scheme against a passive adversary for
deletion is not clearly proved since C0 = C1. However, in this case, there is no additional information
that an attacker can obtain. So, we can see that Definition 2 can cover all attack scenarios for update
operations.

Definition 3. (Security against Active Adversary). Let E = {DyEnck(·), DyDeck(·)} be an encryp-
tion scheme supporting the update of encrypted data under the key k. Let U = {Om, Oi, Od} be the set of
all update operations. Let C be a valid ciphertext obtained after performing updates many from a valid
ciphertext by using update operations in U . Let Ca be the ciphertext obtained after modifications by an
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active adversary A on C. Then, the proposed scheme is considered secure against A if the decryption
probability by a verifier P, using the decryption algorithm D = DyDeck(·) on Ca, satisfies:

Pr[P(Dk(Ca)) �= 0] < ε.

Additionally, in the case of attacks performed by an active adversary, a common attack involves
swapping the order of two blocks. However, this case can be generalized to include all typical attacks.

2.3 Existing Block Cipher Operation Modes
To ensure secure collaboration, the cryptographic operation mode utilized in collaboration must

guarantee efficient computation and transmission within the system model while also providing
security against the active adversary and passive adversary as specified in the threat model. This section
aims to describe whether existing block cipher operation modes can effectively respond when applied
to the system model and threat model, using terminology suitable for technical documents.

The ECB mode is a block cipher mode where plaintext is divided into blocks, and each block
is encrypted using the same encryption key. Each block is processed independently, resulting in the
same ciphertext block being generated consistently for the same plaintext block. However, the lack
of interaction between blocks in ECB mode makes it vulnerable to exposure of patterns or structures
by passive adversaries. Additionally, if an active adversary performs block-wise permutation attacks
on the ciphertext, independently existing ciphertext blocks may form meaningful data that disrupts
the relationship with the plaintext. While ECB mode is simple and suitable for parallel processing,
its security vulnerabilities make it not recommended for modern applications, particularly due to its
susceptibility to analyzing patterns in encrypted data when identical plaintext blocks are repeated.

CTR mode generates blocks incrementally by adding numbers to a specific counter and encrypts
these blocks using block cipher techniques, followed by XOR operations with plaintext. Similar to ECB
mode, CTR mode conducts block-wise encryption, allowing encryption and decryption to proceed
without affecting neighboring blocks. Moreover, it enables parallelization of encryption by using a
pre-generated stream of ciphertext. However, if modifications occur, the same counter must be used for
the affected block in CTR mode. Since CTR mode employs XOR operations, repeatedly performing
XOR operations with the same key and counter on generated ciphertext may compromise security.
Moreover, when additions or deletions occur, new counters must be used for encryption. However, the
existing CTR mode lacks established rules for this counter usage, and even assigning a new counter
for encryption may result in an inability to decrypt properly due to non-sequential counter advances
during decryption.

XTS mode [20] is a type of block cipher operation mode similar to ECB, CBC, and CTR modes.
XTS is a tweakable cipher specialized for encrypting block-based data, and it was standardized by
IEEE in 2007. It is widely used in various storage encryption technologies, such as disk encryption.
The encryption process in XTS mode is as follows: Two different keys are used in XTS mode. First,
the tweak value is encrypted using the first key. This encrypted value is used consistently across the
same data block. Then, based on the block number i, the encrypted tweak value is multiplied by αi.
Here, α is a constant defined in the Galois Field, GF(2128), and it is used to modify the tweak value
depending on the order of each block. α is defined as 2, and for each block number i, αi is applied.
Through this multiplication, even if the same data is encrypted, different ciphertexts are generated
for each block, enhancing security. The XTS mode is not well-suited for scenarios involving updates
such as insertion, deletion, or replacement. This is because the tweak value used during encryption is
dependent on the block’s position. When updates occur, the positions of all subsequent blocks change,
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requiring the tweak value to be updated for every affected block. As a result, like in CTR mode, XTS
mode becomes inefficient in handling updates.

CBC mode is another widely used block cipher operation mode. In CBC, each block is XORed
with the previous ciphertext block before encryption. The first block undergoes XOR with an
initialization vector (IV). One key feature of CBC mode is the chained dependency between blocks:
the encryption result of one block serves as input for the next block. This means that if any part of
the ciphertext is modified, all subsequent blocks are affected, ensuring data integrity. Additionally,
CBC mode allows key reuse by modifying the IV and generating different ciphertexts even with the
same key. However, one of the main drawbacks of CBC mode is the difficulty in partial encryption.
Since each block depends on the previous ciphertext block, encryption must proceed sequentially. If a
part of the ciphertext needs to be changed, all subsequent blocks must be re-encrypted, making partial
encryption and decryption inefficient. Furthermore, other block cipher modes like Output Feedback
(OFB) and Cipher Feedback (CFB), as well as authenticated encryption modes like Counter with
CBC-MAC (CCM), also suffer from the same limitation, as they require sequential operations during
encryption, preventing partial updates to the ciphertext.

2.4 Linked Block Cipher (LBC) Mode
To address the computational and transmission limitations of existing block cipher operation

modes, research has been conducted on modifying the ECB mode for encrypting collaborative data.
The LBC mode leverages the independent block encryption and decryption features of the ECB mode
while resolving its security limitations.

The ECB mode generates the same ciphertext for identical plaintext, making it vulnerable to
exposing plaintext patterns by passive adversaries. Additionally, if an active adversary changes the
order of ciphertext blocks, the independence of each block in ECB mode disrupts the relationship
with the plaintext, leading to the creation of data that can modify the content of collaborative data.

The LBC mode addresses these ECB mode limitations by assigning random link data at the
beginning and end of data blocks. Adding link data at the start and end of data blocks allows for
the generation of different ciphertexts for identical data blocks by using random link values, thus
supporting appropriate defense against passive adversaries. Furthermore, this approach uses a method
where the start link of the preceding block and the end link of the current block, as well as the end link
of the current block and the start link of the subsequent block, are matched. This method provides
block connectivity, enabling approximate sequence information of ciphertext blocks to be inferred,
thereby allowing the detection of attacks by active adversaries who attempt to change the sequence of
ciphertext blocks. Moreover, it facilitates recovery in a state before the attack occurs.

However, the LBC mode has a structural limitation. LBC mode features a block structure that
places link data at the beginning and end of the block. To counter both passive and active adversaries,
as described previously, LBC mode must meet the following requirements. Let the sum of the sizes of
the two link data present at the very beginning and end of the block in Fig. 2 be Ls bits. When the two
link data included in Block2 are denoted as L2 and L3, as shown in Fig. 3, if the ciphertext for a plaintext
message M1 is given, a passive adversary can determine information about the block by generating a
ciphertext for M1 using randomly chosen link values R2 and R3. If this generated ciphertext matches the
ciphertext for M1, the adversary learns about the block. Hence, the probability of a successful attack

by a passive adversary on ciphertext encrypted with LBC mode is Prp[R2 = L2 and R3 = L3] = 1
2Ls

.

Additionally, as shown in Fig. 4, if an active adversary swaps the order of Block 2 and Block 3 and
if L2 = L3 and L4 = L2, the attack is successful, causing the order of the blocks to change and the
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meaning of the plaintext to be corrupted. The probability of a successful attack by an active adversary

is Pra[L2 = L3 and L4 = L2] = 1
2Ls

. Therefore, the likelihood of an attack on LBC mode by passive

and active adversaries is dependent on the size of the link, Ls, within the block. To provide adequate
security against such adversaries, Ls must be allocated a size that offers sufficient security strength.
However, increasing the size of the link data within the block reduces the space occupied by useful
data within the block, resulting in larger ciphertext blocks compared to plaintext and thus increasing
computational and transmission costs. Conversely, reducing the link data size to save on these costs
results in an insufficient defense against adversaries, creating a security-efficiency trade-off.

Figure 2: LBC operational structure

Figure 3: Security against passive adversary

Figure 4: Security against active adversary

3 Design
3.1 Basic Idea

In this paper, we propose a modified block cipher mode of operation based on CTR mode to
protect collaborative data on the cloud more efficiently. Traditional CTR mode encounters issues
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during data updates due to counter sequence confusion and counter reuse problems, which limit its
effectiveness. Our proposed method addresses these issues by structuring the data into units called
bundles for encryption and decryption. Additionally, we use metadata to manage and keep track of
the structure of these bundles.

3.2 Bundle and Metadata Structure
Our proposed method divides data into multiple bundles, as shown in Fig. 5. Each bundle consists

of data blocks and counter blocks. Data blocks contain the actual data corresponding to plaintext,
which is encrypted using a counter mode starting from a specific counter value. The starting counter
value used for encrypting a data block is stored in the counter block. To maintain the sequence
of bundles, the counter block also includes the starting counter value of the next bundle, ensuring
continuity. The counter block is encrypted using ECB mode and combined with the encrypted
data block to form a bundle. During decryption, the counter block is used to retrieve the starting
counter value for decrypting the data block and verify the position of the next bundle. The sequence
information stored in the counter block enables encryption and decryption of data blocks using
counter mode. Even when updates such as insertion, deletion, or replacement occur and affect the
entire dataset, each bundle’s counter block allows the corresponding data blocks to be decrypted using
counter mode. This bundle structure is designed to maintain counter-mode encryption and decryption
efficiently and securely, even in update scenarios. In Fig. 5, the notation CTRn within the counter block
represents the specific counter value contained within the counter block. For example, CTR1 signifies
that the counter value used is 1. However, in update scenarios where bundles are added or deleted, the
order of counter values depends on the sequence in which the bundles were added. Unlike the sequence
depicted in Fig. 5, the counter value used to encrypt a later-positioned bundle might be greater than the
counter value used to encrypt an earlier-positioned bundle. Additionally, by comparing the counter
values used for encryption, it is possible to infer the sequence in which the bundles were updated.
However, storing bundles in ciphertext form poses a challenge in distinguishing between data blocks
and counter blocks. To solve this problem, we introduce metadata to manage the data.

Figure 5: Bundle and metadata structure
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The metadata structure in our proposed method stores the size of valid data in each bundle. For
each data block, the number of bytes of valid data is stored, while counter blocks are represented by
a value of 0. Additionally, the most recently used counter value for creating new bundles is stored
at the end of the metadata. This metadata helps identify the location of ciphertext corresponding to
plaintext during updates. To determine the index number in the metadata where updates exist, we sum
the numbers present within the block and identify the corresponding update position in both plaintext
and ciphertext. As shown in Fig. 5, the metadata reveals the presence of three zeroes, indicating the
composition of three bundles. Specifically, we observe a 44-byte bundle comprising three data blocks
and one counter block, a 62-byte bundle containing five blocks (a combination of counter and data
blocks), and a 28-byte bundle consisting of three blocks in total. This detailed observation confirms
the configuration of the bundles within the metadata.

3.3 Data Encryption
To ensure the secure protection of data, the input data must be transformed into a bundle structure

and encrypted through a process called bundlization. This process is used not only for encrypting data
but also for handling updates such as additions, deletions, or replacements. The bundlization process
follows these steps: (1) Encrypt the target data using the last counter used to store it in the metadata
to create a data block. (2) Create a counter block using the counter value used for encrypting the
target bundle and the starting counter value of the next bundle. (3) Combine the generated data block
and counter block to form a bundle. (4) Generate metadata containing the information of the created
bundle, update the last used counter value, and then encrypt and store it.

For initial data encryption, since there is no previously used counter value, the bundlization
process starts with a counter value of 0. Additionally, since no previous bundles exist, the next bundle’s
counter value is also set to 0. This process is depicted in Algorithm 1.

Algorithm 1: Bundlization algorithm
Require: data, key, last used counter, next bundle’s counter
1: Data block ← CTR_ENC(data, key, last used counter)
2: Counter block ← ECB_ENC(last used counter || next bundle’s counter, key)

3: Bundle data ← Counter block || Data block
4: return Bundle data

3.4 Ciphertext Update
To efficiently handle encryption/decryption processing in remote collaboration, selectively modi-

fying ciphertexts instead of decrypting and re-encrypting all data is essential. Therefore, the initial task
for partial ciphertext modification involves decrypting metadata to locate where data updates occur.
There are three cases for updating ciphertexts: adding new data, deleting existing data, and replacing
existing data, which is akin to deleting and then adding. Data bundling is utilized to perform the
update process as described. When updates occur within an existing bundle, it necessitates dividing
the bundle. The division process proceeds as follows: (1) Trace the block within the bundle where
the update occurs using metadata. This involves finding the counter value used for encrypting that
block. Specifically, by identifying the index in metadata where the sum of plaintext indices matches and
finding the nearest zero index from that point, the position of the bundle’s counter block corresponding
to the update location in plaintext can be determined. (2) Decrypt the identified counter block in the
ciphertext to retrieve the counter value used for encryption at the update location. (3) Afterward,
divide the bundle into two blocks based on the update location: the first block is referred to as the
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front bundle, and subsequent blocks are termed the rear bundle. (4) Set the starting counter value
of the front bundle to the counter value stored in the counter block of the existing bundle where the
update occurred. Set the counter value used for encrypting the block containing the update location
as the starting counter value of the rear bundle’s counter block. To determine this encrypting counter
value, calculate the index distance between the front bundle’s counter value and the update location
in metadata, then add these values to the counter of the front bundle. (5) Finally, depending on the
type of update, conclude by updating the counter block of the front bundle. Specifically, for additions,
update the counter block value using the starting counter value of the added bundle. Update metadata
with information regarding the updated bundle. This process is illustrated in Fig. 6, and depicted in
Algorithm 2.

Figure 6: Bundle divide process

3.4.1 Addition

When new data is added, the insertion location within the ciphertext must be identified using
the metadata. If the new data is to be added between existing bundles, the counter values of the
preceding and succeeding bundles are checked, and the new bundled data is inserted between them.
The counterblocks of the adjacent bundles are then updated accordingly. However, if the insertion
point is within an existing bundle, the bundle dividing process described earlier must be carried out.
After dividing the existing bundle, the counter values used for encrypting the new bundled data and
the bundle following the newly added data are updated to complete the addition process. This process
is illustrated in Fig. 7 and depicted in Algorithm 3.
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Algorithm 2: Bundle divide process
Require: bundle, next bundle’s counter, divide location, insert bundle

� Find bundle’s start and divide index using metadata
1: start index ← get_start_index(metadata, divide location)

2: divide index ← get_divide_index(metadata, divide location)

3: front bundle ← bundle[0 : divide index]
4: rear bundle ← bundle[divide index + 1 :]
5: front bundle’s counter ← bundle[0]′s front half 8 bytes

� Calculate counter for rear bundle
6: rear bundle’s counter ← front bundle’s counter
7: for i ← start index to divide index do
8: rear bundle’s counter += 1
9: end for

� Make rear bundle
10: rear bundle’s counter block ← rear bundle’s counter || next bundle’s counter
11: rear bundle ← rear bundle’s counter block || rear bundle

� Link bundles
12: if insert bundle between front and rear then
13: front bundle[0] ← front block’s counter || insert bundle’s counter
14: else
15: front bundle[0] ← front block’s counter || rear bundle’s counter
16: end if

Figure 7: Data Insertion process
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Algorithm 3: Insertion process
Require: insert location, key, counter
1: insert index ← find_insert_index(insert location)

2: if insert location inside existing bundles then
3: bundle_divide_process(insert index)

4: end if
5: next bundle’s counter ← find_next_bundle’s_counter(insert index)

6: insert bundle ← bundlization(insert data, key, last used counter, next bundle’s counter, counter)
7: location(insert bundle, insert index)

3.4.2 Deletion

The process involves the following steps when deleting existing data: First, identify the start and
end points of the data to be deleted and locate these points within the ciphertext using metadata. If
both the start and end points are between bundles, simply delete the bundles in between and update
the counterblocks of the preceding and succeeding bundles. However, if either or both the start and
end points are within a bundle, the bundle dividing process must be performed. First, find the counter
value of the bundle that will follow the deleted segment. Divide the bundles at the start and end points
of the deletion. Delete the bundles between the start and end points, update the counter block of the
bundle preceding the deletion point, and update the metadata to complete the deletion process. This
process is illustrated in Fig. 8 and depicted in Algorithm 4.

Figure 8: Data deletion process

Algorithm 4: Deletion process
Require: delete start location, delete end location, key
1: delete start index ← find_location(delete start location)

2: delete end index ← find_location(delete end location)

3: if delete start index inside existing bundle then
4: bundle_divide_process(delete start index)

(Continued)
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Algorithm 4 (continued)
5: end if
6: if delete end index inside existing bundle then
7: bundle_divide_process(delete end index)

8: end if
9: next bundle’s counter ← find_next_bundle’s_counter(delete end index)

10: delete data between delete start index and delete end index
11: modify previous bundle’s counter block using next bundle’s counter

3.4.3 Modification

The process follows these steps to modify existing data. First, identify the start and end points
of the data to be modified using metadata and delete the existing data. This process is similar to the
deletion process. Next, bundle the new modified data and insert it into the deletion location. Finally,
the metadata must be updated to reflect the changes, completing the modification process. This process
is illustrated in Fig. 9 and depicted in Algorithm 5.

Figure 9: Data modification process

Algorithm 5: Modification process
Require: modify start location, modify end location, modify data
1: modify start index ← find location(modify start location)

2: modify end index ← find location(modify end location)

3: if modify start index inside existing bundle then
4: bundle divide process(modify start index)

5: end if
6: if modify end index inside existing bundle then

(Continued)
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Algorithm 5 (continued)
7: bundle divide process(modify end index)

8: end if
9: next bundle’s counter ← find next bundle’s counter(modify end index)

10: modify bundle ← bundlization(modify data, key, last used counter, next bundle’s counter,
counter)

11: location(modify bundle, modify start index)

3.5 Decryption
To utilize securely stored collaborative data, users need to download and decrypt the data from

the cloud. The decryption process is performed as follows: (1) First, decrypt the encrypted metadata
to locate the counter blocks. (2) Using the identified locations, decrypt the counter blocks to obtain
the counter information. (3) Use the counter information to decrypt the data blocks and verify their
integrity.(4) Repeat these steps for all bundles to complete the decryption process. This process is
depicted in Algorithm 6.

Algorithm 6: Decryption process
Require: key, counter
1: for each bundle do
2: counter block’s index ← find_counter_block_index(metadata)

3: counter ← ECB_DEC(counter block, key) � Gain counter
4: add plain text using CTR_DEC(data block, key, counter, counter)
5: end for

4 Analysis

In this section, we conduct experiments to validate the requirements of the encryption algorithm
for secure collaboration proposed in this paper. The experiment in Section 4.1.1 was conducted on
a system running Ubuntu 20.04 LTS, equipped with an AMD Ryzen 5 5600 6-Core Processor and
32.0 GB of RAM, while the experiment in Section 4.1.2 was carried out on a system running Ubuntu
20.04 LTS, equipped with an AMD Ryzen 9 5950X 3.4 GHz CPU and 64 GB of memory. The
Cryptopp library was utilized to implement both the proposed method and existing modes, and AES-
128 was selected as the block cipher technique, with a block size of 16 bytes.

The experiments are divided into two main parts: the Performance section, which measures the
computational load, transmission volume, and space efficiency of the proposed technique; and the
Security Evaluation chapter, which assesses the technique’s resilience against the defined threat models.
These experiments provide insights into the efficiency and security of the proposed technique.

4.1 Performance
In this paper, we conducted experiments to evaluate the efficiency of the proposed technique

in encrypting and decrypting collaborative data stored in the cloud. To protect collaborative data
efficiently, the proposed technique must offer advantages in terms of computational and transmission
costs compared to traditional encryption modes. Therefore, this section analyzes the proposed
technique by measuring the time taken to encrypt data as an indicator of computational cost. The
specific experiments involved measuring execution time by fixing a certain update size and increasing
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the total data size, as well as by fixing the total data size and varying the update size. This allowed
us to measure the costs associated with updates for each encryption mode. To measure processing
speed, we conducted experiments comparing the time to modify data for different total file sizes and
the time to modify data for different insertion data sizes. The results were obtained by performing
each operation 100 times under the same conditions for each mode and data size, excluding the top
and bottom 5% of execution times, and calculating the average of the remaining values. Additionally,
we conducted experiments to evaluate cost efficiency by comparing the length of the ciphertext to the
plaintext. The results demonstrate that the proposed technique provides significant improvements in
both computational and transmission efficiency for cloud-based collaborative data encryption and
decryption. In Fig. 10, the x-axis represents the data size in megabytes (MB), while the y-axis shows
the time in seconds (s). Similarly, in Fig. 11, the x-axis represents the data size in kilobytes (KB), and
the y-axis shows the time in milliseconds (ms). Additionally, throughout our performance experiments,
we referred to our proposed method as B-CTR mode, which stands for Bundled Counter Mode. This
term accurately reflects our approach of using counter-mode encryption with a bundled structure.

Figure 10: Execution time by total data size

4.1.1 Execution Time by Total Data Size

To measure the execution time for the total data size using the proposed technique, we fixed the
modified data size to 100 bytes of plaintext and increased the total data size incrementally from 1 MB to
over 8 MB, measuring the program’s execution time at each step. As observed in Fig. 10, the execution
time of the proposed technique, which is designed with ciphertext updates in mind, was lower than
that of CBC and CTR modes. Furthermore, as the data size increased, the difference in execution time
between traditional encryption modes such as CBC and CTR and the proposed technique became
more pronounced. A more detailed analysis of the results shows that when the data size was as small
as 1 MB, all three encryption modes exhibited similar execution times. However, as the data size grew



CMES, 2025, vol.142, no.1 829

to 8 MB, the proposed technique demonstrated a significant performance advantage, with execution
times far superior to those of the traditional modes. Moreover, the proposed method’s execution
time remained largely unaffected by the increased data size, thanks to its ability to perform partial
encryption and decryption, even as the dataset grew larger, which mitigated the impact of updates on
overall performance.

Figure 11: Execution time by data insertion size

4.1.2 Execution Time by Data Insertion Size

To measure the execution time based on the size of the inserted data, we conducted experiments
by fixing the total data size to 200 KB of plaintext and varying the inserted data size from 100 bytes
to 3900 bytes in increments of 100 bytes. We then measured the time required to update the plaintext
after encrypting with each mode. As observed in Fig. 11, the execution time decreased in the order
of CBC, CTR, and the proposed method. For the overall range of inserted data sizes, the proposed
method demonstrated an execution time that was about 20% of that of the CTR mode and less than
10% of the execution time of the CBC mode. These results confirm that the proposed technique can
perform this process efficiently, even as the size of the inserted data increases.

4.2 Comparison of Plaintext and Ciphertext Lengths
In this section, we compare the transmission volume and space efficiency between the proposed

encryption method and existing encryption modes by comparing the lengths of the ciphertexts
generated from the same plaintext. The length for each mode is calculated in bytes, with the block
size defined as 16 bytes. Due to the nature of stream ciphers, modes such as CFB, OFB, and CTR
produce ciphertexts that are the same length as the plaintext. In contrast, ECB and CBC modes use
padding, generating ciphertexts that are either the same length as the plaintext or up to 15 bytes
longer, depending on the length of the last block. The proposed technique uses additional space
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for metadata and the final usage counter, producing ciphertexts approximately 1.06 times the size
of the plaintext, with an additional 16 bytes for the final usage counter. These figures assume the
initial state of the ciphertext. However, in scenarios where modifications are frequent, the proposed
method, while handling ciphertext updates quickly, may require additional storage space as the
number of counterblocks increases due to the splitting of bundles. Thus, the proposed technique may
appear less space-efficient compared to traditional encryption modes, but it does not increase the
transmission volume. Unlike traditional encryption modes, which require retransmission of the entire
ciphertext upon updates, the proposed method only transmits the modified portions, thereby avoiding
a significant increase in transmission volume despite its potential space inefficiency.

4.3 Security Evaluation
To evaluate the security of the proposed technique, we assess its compliance with the conditions

to counter both passive and active adversaries as outlined in Section 2.2.
Theorem 1. (Security against Passive Adversary). Let E = {DyEnck(·), DyDeck(·)} be the proposed

encryption scheme supporting the update of encrypted data under the key k. We assume that E is
constructed based on a secure encryption function such as AES. Then, E is secure against passive
adversaries.

Proof. For the proposed technique, let Data′ = m1|| · · · ||m′
i|| · · · ||ml be a data which is updated

from Data = m1|| · · · ||mi|| · · · ||ml. Let

C = DyEnck(Data) = c1|| · · · ||ci|| · · · ||cl and C1 = DyEnck(Data′) = c1|| · · · ||c′
i|| · · · ||cl

be two ciphertexts for Data and Data′, respectively. Note that, we assume that two ciphertexts, and C1,
will differ only in the blocks containing mi and m′

i, by definition. Let

C0 = DyEnck(Data) = c1|| · · · ||c′′
i || · · · ||cl

where c′′
i is the encryption of a random r. Let A be an adversary against our scheme in terms of

passive attacks. We need to verify whether the adversary cannot distinguish a valid ciphertext and a
meaningless ciphertext encrypted from a random value with probability sufficiently greater than 1/2.
To correctly guess the bit b, the adversary A need to determine whether the encryption of m′

i is c′
i

or c′′
i . Since the underlying encryption function is Indistinguishability(IND)-secure, A determines the

correct ciphertext with probability less than 1/2 + ε for a negligible ε. So, we can see that
∣
∣
∣
∣
Pr[A (E , C, Cb, m′) = b] − 1

2

∣
∣
∣
∣
< ε.

Therefore, the proposed scheme is secure against passive adversaries. �
Theorem 2. (Security against Active Adversary). Let E = {DyEnck(·), DyDeck(·)} be the proposed

encryption scheme supporting the update of encrypted data under the key k. We assume that E is
constructed based on a secure encryption function such as AES. Then, E is secure against active
adversaries.

Proof. Let Data = m1|| · · · ||mi|| · · · ||ml and C = DyEnck(Data) = c1|| · · · ||ci−1||ci||ci+1|| · · · ||cl.
Let Ca = DyEnck(Data) = c1|| · · · ||ci−1||c′

i||ci+1|| · · · ||cl be the ciphertext generated by an active
adversary A . Note that the goal of the adversary is to generate a valid ciphertext without obtaining the
encryption key k. We need to show that Ca is a valid ciphertext with negligible probability. To mount
an active attack, the adversary can remove, modify, or insert a ciphertext block. For deletion, c′

i is the
null message, which means the attack is successful only if ci−1 and ci + 1 are encrypted using a continuous
counter, which is impossible since the difference of two counters for ci−1 and ci + 1 is 2. For modification
and insertion, c′

i should be encrypted using the same counter that is used for the encryption of ci or a



CMES, 2025, vol.142, no.1 831

new counter that is not used yet. Even if the adversary knows the counter, it is not computationally
intractable to generate a ciphertext that is computed using the same counter due to the security of
the underlying encryption function. Therefore, it is not computationally intractable to generate valid
ciphertext which means that the proposed method provides security against active adversaries. �

5 Conclusion

This paper proposes a solution to the fundamental challenges that can arise during non-face-to-
face document collaboration through encryption. The proposed technique introduces a new structure
called a “bundle” for ciphertext blocks. Instead of storing the plaintext data in every ciphertext
block, the bundle consists of counter blocks for updates and data blocks for storing the actual data.
This approach allows for updating the ciphertext by modifying only the blocks within the relevant
bundle without the need to decrypt all blocks. As a result, it offers more efficient computational and
transmission costs compared to traditional encryption techniques in the collaboration process. To
evaluate the efficiency of the proposed method, we fixed the size of the modified data and measured
the execution time as the total data size increased. The experimental results showed that as the data
size increased, the proposed method significantly reduced execution time compared to CBC and
CTR modes. In particular, when the data size reached 8 MB, the proposed method demonstrated
an overwhelmingly shorter execution time compared to traditional encryption modes. Additionally,
when the total data size was fixed, and the size of the modified data was increased, the proposed
method showed more than ten times faster execution compared to CBC mode when inserting a
3900 KB file into a fixed 200 KB initial dataset. In the security evaluation, the proposed method,
using counter mode (CTR mode), was confirmed to provide sufficient protection against passive
adversaries. For active adversaries, the continuous increment of the counter and the inclusion of
sequence information within the counter block significantly reduced the likelihood of a successful
attack, thereby demonstrating enhanced security.

However, one potential limitation of the proposed method lies in version control during the update
process. Specifically, if an attacker obtains the ciphertext generated during a previous update and
reintroduces this outdated ciphertext after a new update has occurred, the system may still successfully
decrypt the old ciphertext. While decryption may appear valid to the user, the absence of the latest
update could result in data inconsistency. This issue highlights the need for a mechanism that ensures
only the most recent version of the ciphertext is accepted during decryption to prevent such rollback
attacks. Furthermore, the potential threat of side-channel attacks in cloud environments must also be
considered. Side-channel attacks, which exploit physical characteristics such as timing, power analysis,
and electromagnetic emissions, could be particularly effective in shared cloud infrastructures. To
address these threats, additional security measures such as masking or noise generation techniques
should be implemented to strengthen the system. Additionally, by exploring variable-sized bundles
based on the type of update or the sensitivity of the data, the system can further optimize data
overhead.

Despite these potential limitations, the proposed method demonstrates promising potential to
support more efficient and secure collaboration in non-face-to-face environments. It is expected to
prevent data breaches and other security incidents, thus providing a safer collaborative environment.
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