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ABSTRACT

Security and safety remain paramount concerns for both governments and individuals worldwide. In today’s
context, the frequency of crimes and terrorist attacks is alarmingly increasing, becoming increasingly intolerable
to society. Consequently, there is a pressing need for swift identification of potential threats to preemptively
alert law enforcement and security forces, thereby preventing potential attacks or violent incidents. Recent
advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer
vision in object detection, particularly in identifying firearms. This paper introduces a novel automatic firearm
detection surveillance system, utilizing a one-stage detection approach named MARIE (Mechanism for Real-
time Identification of Firearms). MARIE incorporates the Single Shot Multibox Detector (SSD) model, which has
been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications. The
SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature
extraction capabilities. The experimental results demonstrate that this modified SSD configuration provides highly
satisfactory performance, surpassing existing methods trained on the same dataset in terms of the critical speed-
accuracy trade-off. Through these innovations, MARIE sets a new standard in surveillance technology, offering a
robust solution to enhance public safety effectively.
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1 Introduction

Homicide remains a significant threat to human life, with studies indicating a rising trend in
homicide rates over the years, predominantly due to firearm incidents [1-3]. According to the latest
global report by the United Nations Office on Drugs and Crime (UNODC), firearms were identified as
the principal cause of homicides, accounting for 54% victims in 2017 [4]. This escalation corresponds
with an increase in civilian possession of weapons, particularly noted in the United States, which
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leads global statistics [5]. Notably, the United States has seen a marked increase in school-associated
homicide incidents from 2009 to 2018, with the majority involving firearms [6]. For instance, a
reduction in gun homicides in the state of Minneapolis within a single year catalyzed the creation
of 80 jobs and generated an additional $9.4 million in sales for local businesses the following year
[7]. On a sociological level, gun violence instills fear and contributes to psychological distress among
victims and communities, exacerbating the broader social impact of this issue.

Gun violence remains a critically understudied area of public safety, necessitating further research
to decrease gun-related fatalities and prevent such incidents [8]. One effective strategy to mitigate
homicides is early incident detection, facilitating rapid police response. In this regard, an innovative
approach was explored using a camera-embedded automatic firearm detection system. The system
leverages Convolutional Neural Networks (CNNs), which are adept at feature selection and are
position invariant, to perform object detection [9,10]. Despite their effectiveness, CNNs require
extensive datasets and the use of Graphics Processing Units (GPUs) for precise training [9,11]. CNNs
are generally divided into two classes: one-stage and two-stage detectors. One-stage detectors provide
immediate predictions, whereas two-stage detectors create region proposals and extract features prior
to making predictions. Notably, while one-stage detectors excel in speed, two-stage detectors typically
offer greater accuracy [12].

Firearm detection is a nascent field of research. Initial studies on gun detection were conducted
using X-ray and millimeter wave imaging with traditional machine learning techniques [13,14]. More
recent research has employed CNNs to enhance detection capabilities, focusing particularly on two-
stage detectors like the Faster-Region based CNN (R-CNN) using the Visual Geometry Group (VGG-
16) classifier [15,16]. The primary challenges in developing a real-time automatic firearm detection
system include achieving rapid detection without compromising accuracy, which is crucial for swift
police intervention. Since the predominant challenge in object detection models is balancing speed
and accuracy, the proposed research aims to optimize this trade-off specifically for firearm detection.
Additional hurdles include constructing and labeling image datasets, a manual and time-consuming
process.

This paper makes several significant contributions to the field of firearm detection through object
detection technologies. Key contributions of the paper are as follows:

o Innovative Detection Mechanism: This paper introduces a one-stage object detection mecha-
nism, named MARIE, specifically designed for real-time identification of firearms. The use of
the Single Shot Multibox Detector (SSD) model is proposed, incorporating modifications to
the base architecture by integrating MobileNetV2 and InceptionV2. This adaptation aims to
enhance the model’s efficiency and accuracy in detecting firearms.

e Model Training and Fine-Tuning: A pre-trained model was utilized from the Microsoft Common
Objects in Context (COCO) dataset [17], and fine-tuned it using a specifically constructed and
labeled image dataset by Olmos et al. [15]. This process tailors the model more closely to the
nuances of firearm detection.

e Focus on Held-Gun Types: The proposed technique specifically addresses the detection of
various types of held guns, refining the model’s applicability to real-world scenarios where
different firearm types are present.

e Comparative Analysis: The performance of the proposed modified SSD model is rigorously
compared with existing methods, including traditional classifiers [18] and other deep learning
models [15,19], all trained and tested on the same firearm dataset. This comparison highlights
the strengths and potential improvements in the proposed approach.
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The remaining of the paper is structured as follows. Section 2 shows related models used in object
and firearm detection. Section 3 presents the architecture of the model used in the proposed work.
Section 4 presents the classifier variations used. Section 5 explains the performance metrics and the
obtained results. Finally, the paper is concluded and future directions are given in Section 6.

2 Related Work

Object detection algorithms have undergone significant evolution since their inception, advancing
from basic traditional machine learning techniques to sophisticated deep learning networks [20]. A
variety of methods have been developed to tackle object detection broadly [21-25]. While specific
techniques have been crafted for the detection of particular objects, such as firearms and other
weapons [26].

2.1 General Detection Techniques

Object detection models are primarily categorized into two types: two-stage and one-stage
detectors. Among the two-stage detectors, the R-CNN family is notably popular. The initial R-CNN
model was introduced in [21]. Enhanced object detection by reducing the regions analyzed to 2000
proposals, which are processed by a VGG-based CNN for feature extraction before being evaluated
by a Support Vector Machine (SVM) to produce predictions. Subsequent developments led to Fast
R-CNN, which increased processing speed by extracting image features prior to generating region
proposals and replaced the SVM with a softmax layer [22]. The introduction of Faster R-CNN further
advanced this model by substituting the selective search with a Region Proposal Network (RPN),
rendering the model fully trainable and significantly improving both speed and accuracy [23]. Among
its peers, Faster R-CNN has demonstrated superior accuracy [27].

The early one-stage detector “Overfeat” [12] uses the sliding window approach for feature
extraction and shares it with the classification and localization layers to improve accuracy [28]. This
approach affects the detection speed because it generates a large number of windows for processing
[29]. Later, the fastest known model “You Only Look Once” (YOLO) was first introduced in [24]. It
divides the input image into a 7 x 7 grid cells and predicts the bounding box and the class of an object
using a single network. However, YOLO suffered from the detection of small objects. YOLOV2 was
developed in order to address YOLO drawbacks while maintaining a real-time detection speed [30]. In
[31], YOLOvV3 used multi-scale detection to improve the previous versions. Similarly, the SSD model,
proposed in [25], adopted VGG-16 as its base network and introduced anchor boxes from Faster R-
CNN to enhance accuracy while maintaining real-time inference speeds. In this study, utilizing SSD
for firearm detection is proposed to leverage its balance of speed and precision.

2.2 Firearm Detection Techniques

The current state of the art in firearm detection can be categorized as follows: traditional machine
learning techniques, generic detection models tailored for firearm detection, and specialized models
developed specifically for identifying firearms.

Earlier techniques in image feature extraction employed methods such as edge detection and multi-
modal image matching, utilizing Radiation-Invariant Feature Transform (RIFT) and Scale-Invariant
Feature Transform (SIFT) [13], along with basic local density descriptors [32]. Additionally, Haar-
like features were used for feature extraction as noted in [14]. Subsequent studies [33,34] refined
this approach by combining SIFT with K-means clustering before classification via Support Vector
Machines (SVM). Another innovative framework was proposed in [35,36] for Red-Green-Blue (RGB)
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images, which involved color segmentation using Speeded Up Robust Features (SURF) [35], further
enhanced with K-means and the Harris interest point detector paired with Fast Retina Keypoint
(FREAK) [36]. However, these techniques often faced limitations due to their sensitivity to noise [29]
and slow inference speeds.

Initial studies employing Convolutional Neural Networks (CNNs) for firearm detection advo-
cated for the use of transfer learning applied to Faster R-CNN with VGG-16 as the base network.
These authors achieved high accuracy, surpassing that of traditional machine learning techniques
[15,37]. Specifically, Verma et al. focused on detecting handguns in cluttered scenes [37], while
Olmos et al. optimized the base classifier using both a sliding window approach and a Region
Proposal Network (RPN) with Faster R-CNN, which yielded superior results [15]. Furthermore,
another study [38] utilized the same dataset to implement the Overfeat classifier using TensorFlow,
where Overfeat-3 achieved high accuracy but fell short in real-time detection capabilities. Additionally,
Olmos et al. explored enhancements in detection accuracy by integrating binocular image fusion into
Faster R-CNN [39]. In related research, the effectiveness of soft deep CNNs was examined to address
computational resource limitations [19].

The authors of [40] explored several key aspects of designing and testing an automated detection
system aimed at locating and identifying small firearms either left at a training range or found on a
battlefield. The system they proposed utilizes a small unmanned aerial system (sUAS) equipped with a
modern electro-optical (EO) sensor, which operates based on a convolutional neural network (CNN)
trained specifically for this purpose. Furthermore, the system employs a YOLOv2 CNN framework,
utilizing a ResNet-50 as the backbone network to train the model using ground truth data.

Recent studies have furthered the application of neural networks in firearm detection. Mehta
etal.[41]employed YOLOV3 to detect handguns and conducted evaluations across various benchmark
datasets. Romero et al. [42] and Basit et al. [43] developed models for human-firearm detection using
the VGG-16 architecture; the former utilized YOLO while the latter implemented Faster R-CNN.
Additionally, Igbal et al. [26] introduced a novel two-stage system called Orientation Aware Object
Detection (OAOD), which incorporates VGG-16 to specifically tackle challenges related to the angle
variations and occlusions encountered in firearm detection.

While existing approaches provide effective solutions, results in this paper indicate a need for
further improvement. In this paper, MARIE is proposed, which utilizes a Single Shot Multibox
Detector (SSD) as a one-stage detector. This method not only offers enhanced speed in detection
but also achieves accuracy comparable to that of Faster R-CNN [12,27]. The proposed methodology
involves training the SSD using MobileNetV2 [44] and InceptionV2 [45] architectures on the dataset
compiled by Olmos et al. [15]

3 Deep Learning Model

SSD is a deep learning model that utilizes multi-scale feature maps for making predictions [12]
(see Fig. 1). It employs a base network for feature map extraction, followed by the application of
convolution filters to detect objects. Drawing inspiration from Faster R-CNN, SSD incorporates
aspect ratios in a manner that preserves real-time processing speeds by utilizing default boxes, which
eliminate the need for resampling the features within them [25].
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Figure 1: SSD multi-scale feature map: (a) feature map with 4 x 4, (b) feature map with 8 x 8

The SSD architecture comprises a base network and six additional convolution layers that
generate multi-scale feature maps [25]. Each layer can make 4 or 6 predictions in the same location
independently from other layers by applying 3 x 3 convolution filters to each cell. For example, after
feature extraction from VGG-16, the first feature map is 38 x 38, where each cell undergoes four
predictions [46]. The complete SSD architecture is depicted in Fig. 2.

Base Network SSD Convolution Feature Layers
Input image
=y - ﬂ -
Conv4_3
4 Bounding 6 Bounding 4 Bounding
Boxes Boxes Boxes

Figure 2: SSD main architecture

The convolutional feature layers progressively reduce the spatial dimensions of the feature maps,
enabling the detection of objects of varying sizes. As spatial dimensions diminish, so does resolution,
with lower-resolution layers being utilized for detecting larger objects. Additionally, each cell is
assigned a list of initial boxes with varying aspect ratios to accommodate the detection of different
shapes (illustrated in Fig. 3). The scaling of default boxes across feature map layers is detailed in the
following formula:

. (k_l) Xsmax+(m_k)xsmin
B m—1

Sk

, kell,m] (1)

where s,,,, = 0.1 or s,,,, = 0.2 is the smallest scale, s, = 0.9 is the largest scale and m is the number of
feature maps.
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Figure 3: Default boxes aspect ratio variation

Additionally, the weights (w,) and heights (/) of the default boxes are calculated in relation to the
scale and different aspect ratio values (a,) as follows:

we = S/a, and b = s/ /a, )
where a, € {0.5,1/3,1,2,3}.

Each default box yields to a boundary box prediction offsets of the object locationand to ¢ = N+1
confidence scores, where ¢ = N + 1 is the expected class number plus an additional class for no object

(background) predictions (Fig. 4). The model calculates the offsets of the initial boxes and picks the
class with the largest confidence score.

Location:

A (cx, cy, w, h)

Class scores:
Hat: 0.95; Person: 0.9; Bike:
0.75; ...; Car: 0.115

Figure 4: SSD default box output prediction

SSD employs a matching strategy to select default boxes and calculate localization loss. It identifies
default boxes as positive matches with the ground truth if they achieve a Jaccard overlap threshold
greater than 0.5. These positive matches serve as references for the predicted boxes and are used in the
calculation of localization loss. In contrast, negative matches are disregarded. The localization loss is
computed using a Smooth L1 loss, which is calculated between the coordinates of the predicted box
(/) from positive matches and the ground truth bounding box (g), according to the formula:

N

Ly.(x,[,8) = Z Z Xt x smoothy, (I" — g'") 3)

iePos me{cx,cy,w,h}
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where N in the localization loss is the fitted boxes number, i is the default box index, j is the ground
truth box index and

= 1 ifIoU > 0.5 between i and j on class p
7|0 otherwise

The ground truth bounding box offsets values on each feature map (g!") are calculated using the
following formulas:

g = (g —d/d’ and g"=(g —d")/d

W gu /i g,}
g" =log (d—’) and g’ =log (d—’h) 4)

1

where d is the default box, and c, and ¢, are the left firearm corner coordinates of the bounding boxes.

The confidence loss is defined as the loss in making a class prediction and calculated as the softmax
loss over multiple classes (¢):

N
Loy (x,¢) = — D X log(c!) — D log(c?) (5)
iePos ieNeg
where ¢/ = L(d)).
2., exp (¢)

The final loss function is a weighted sum of the localization loss and the confidence loss as follows:

1
L(xa ¢, la g) = ﬁ(Lconf (xa C) + aL/oc(xa la g)) (6)

where « is the weight.

To make final predictions, SSD employs Non-Maximum Suppression (NMS) to eliminate redun-
dant predictions for the same classes. This is achieved by first arranging the confidence scores within
the same class in descending order and then comparing the value of the current prediction against that
of the previous one using an Intersection over Union (IoU) threshold of 0.45. Any prediction with an
IoU greater than 0.45 relative to a preceding prediction is disregarded. Additionally, SSD facilitates
the use of various data augmentation techniques to enhance both training and detection accuracy [25].

4 Base Classifiers Architecture

Base classifiers in object detection models are typically CNNs that extract features from input
images before these features are classified by subsequent classification layers. Consequently, object
detection models utilize these base classifiers as the backbone for their networks, which are then
referred to as base networks [25]. The evolution of CNNs has spurred the development of various
new base classifiers. In the proposed research, two variations of base classifiers have been employed
for the SSD architecture. This section outlines the details of these two base architectures.

4.1 MobileNetV?2

MobileNet was initially developed with the goal of reducing the high computational costs and
complexity typically associated with CNNs, without compromising performance [46]. As a lightweight
model, MobileNet is particularly well-suited for integration into resource-constrained devices, playing
a crucial role in facilitating the deployment of CNNs in real-time applications.
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A key innovation of MobileNet is the introduction of depth-wise separable convolution. This
technique begins by applying a 3 x 3 convolution filter to each input channel independently with a
depth of 1. Subsequently, it uses point-wise convolution to combine these outputs through a 1 x 1
kernel. This approach significantly cuts computational costs by reducing the number of parameters
by a factor of nine compared to standard convolution [46].

MobileNetV2 builds on this by further decreasing the number of parameters [44]. It replaces
point-wise convolutions with a bottleneck layer designed to minimize information loss during RELU
activation while maintaining low end-to-end dimensionality and reducing parameter count. Inverted
residual connections are used between bottleneck blocks to preserve gradients during transmission
through the layers. Additionally, a 1 x 1 expansion layer is introduced prior to the depth-wise separable
convolution to increase the number of channels based on an expansion factor, thereby enhancing the
effectiveness of depth-wise separable convolutions [44,46,47] (see Fig. 5).

Input

1x1

Expansion layer

RelLU6 Activation

3x3 Inverted
Depth-wise conv. Residual
Connection

ReLUG6 Activation

1x1
Bottleneck layer

ReLUG6 Activation

¥
Figure 5: MobileNetV2 building block

4.2 InceptionV?2

Inception, a complex CNN architecture, was developed to address three primary challenges.
Firstly, selecting an appropriate kernel size is challenging due to the varying sizes of objects. Secondly,
increasing the depth of the model often leads to difficulties in propagating gradients through its
layers, which can cause overfitting. Additionally, constructing larger networks incurs substantial
computational costs. To mitigate these issues, Inception adopts a wider rather than deeper architecture
[46]. It employs three parallel convolution filters of sizes 1 x 1, 3 x 3 and 5 x 5 to manage computational
efficiency and reduce input dimensions. A 1 x 1 convolution layer precedes the 3 x 3 and 5 x 5 filter
to further decrease computational demands and condense input dimensions. The outputs from these
filters are concatenated into a single vector, serving as the input for subsequent layers. Fig. 6 illustrates
the original Inception architecture as described [47].
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Figure 6: Inception model architecture
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Large convolution sizes can drastically reduce input dimensions, leading to information loss and
decreased accuracy, in addition to raising the network’s complexity and computational demands.
Inception V2 was introduced to enhance the accuracy of its predecessor while further diminishing
computational costs. This enhancement was achieved through the use of scaled-up networks that
incorporate efficient factorized convolutions. The 5 x 5 convolution layer of size 2n— 1) x 2rn— 1) in
the original model, which is 2.78 times more expensive than a 3 x 3 convolution, is replaced by two 3 x 3
convolution layers. Convolution filters of size n x n are factorized to a combination of 1 x nand n x 1
convolutions where two-layer convolutions are 33% cheaper in computational complexity compared
to a single convolution. Finally, the filter banks convolutions are expanded as shown in Fig. 7 to go
wider instead of deeper. This prevents excessive dimensions reduction and excessive information loss

[45]. Essentially, Inception works on multi-level feature extraction [47].

Previous
layer
1x1 1x1
convolutions convolutions 3 x 3 max
/\. —~ pooling
1x1
convolutions 1x3 3x1 3x3
convolutions convolutions convolutions
_— . 1x1
convolutions
1x3 3x1
convolutions convolutions
Filter

concatenation

Figure 7: InceptionV2 architecture
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5 Experiments and Results

Numerous research efforts in firearm detection have involved the collection and labeling of
proprietary datasets. For the proposed study, a firearm dataset has been utilized initially created by the
pioneering research that applied CNNs for firearm detection. The dataset was processed, the model
parameters were set up and configured, and subsequently, two variations of the model were trained
and tested. To assess the effectiveness of these models, two distinct tests were conducted. The results
of these tests, along with a detailed analysis of the detection performance, are discussed in this section.

5.1 Data Collection and Preprocessing

The original handgun dataset compiled by the University of Granada was utilized [15], which
focuses on the types of handguns most frequently used in crimes, including revolvers, automatic and
semi-automatic pistols, six-gun shooters, horse pistols, and derringers. This dataset comprises 3000
images of firearms, each enriched with contextual details and sourced from various websites [15].

Training effective models require substantial data; however, video surveillance data are often
limited and confidential. Importantly, using different datasets for experiments can preclude direct
model comparisons, as the dataset significantly influences the learning process. To facilitate research
consistency, the dataset collected and labeled by Olmos et al. [15] was employed, and formatted
according to the PascalVOC standard [4£].

For the training and testing of the proposed models, the dataset was divided into two parts: 2400
images randomly selected for training and 600 for testing. The annotations were transformed from
Extensible Markup Language (XML) files into two Comma Separated Values (CSV) files, one for each
set. During this process, a single box position mismatch was identified and corrected by removing the
erroneous record from the CSV file. Subsequently, the two CSYV files were converted into TensorFlow
binary files (TFRecords). Fig. § illustrates the data preprocessing steps implemented.

XML training CSV training TFRecord
annotations file training file
XML Split
annotations
XML testing CSV testing TFRecord
annotations file testing file

Figure 8: Data preprocessing steps

5.2 Experimental Setup
In this study, pre-trained TensorFlow models were utilized based on the COCO dataset, which
were further fine-tuned. These models are accessible through the TensorFlow Model [49].

To facilitate weapon identification, a single class label “gun” was defined and categorized all
other objects as background. The dataset comprises 3000 images, of which 2400 were allocated for
training and 600 for testing. All images were resized to 300 x 300 pixels. Identical configurations were
maintained for both model variations. The settings included a batch size of 16, an initial learning rate



CMES, 2025, vol.142, no.1 289

0f 0.003, and a momentum of 0.9, a weight decay of 0.001, over a total of 200,000 steps. The RMSprop
optimizer was employed to enhance the training process. To mitigate overfitting, a dropout strategy
was implemented with a probability of 0.8. Additionally, to augment the data, random horizontal
flips were applied, random contrast adjustments, and SSD random crops. The proposed models were
implemented using the GPU capabilities of Google Colab [50]. Table | provides a summary of the
configuration parameters used.

Table 1: Simulation environment

Model parameter Parameter value

Size of image 300 x 300

Size of batch 16

Initial learning rate 0.003

Momemtum 0.9

Weight 0.001

Step 200,000

Dropout probability 0.8

Detection per class 16

Used optimizer RMSprop

Data augmentation methods =~ Random adjust contrast,
SSD random crop,

Random horizontal flip

5.3 Comparison of the SSD Base Network Variations

Two SSD base network variations were implemented using MobileNetV2 and InceptionV2 feature
extractors for firearm detection. After 200,000 training steps, SSD with MobileNetV2 reached a total
loss 0f 4.267 while SSD InceptionV2 based reached a total loss of 4.189. Fig. 9 shows the SSD decrease
in total loss in correspondence to the number of steps and the evolution of the training model over
time. The results reveal the following observations:

1.5 8
6.5 7
55 6
45 5
35 4
0 40k 80k 120k 160k 200k 0 40k 80k 120k 160k 200k
(a) (b)

Figure 9: Total loss evolution during training: (a) SSD with MobileNetV2, (b) SSD with InceptionV2

While the loss decreased for both models, the Inception-based model exhibited a more substantial
reduction in loss compared to the MobileNet-based model. At the final measurement step, the SSD
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model with Inception reported a loss value of 1.552, whereas the SSD model with MobileNet recorded
a loss value of 2.428, as detailed in Table 2.

Table 2: Comparison of the SSD model backbone variations

Backbone variation  Learning time mAP Total loss  Final step loss
@IoU=0.5 @IoU=0.75

MobileNetV2 24 h 22 min 0.800 0.615 4.267 2.428

InceptionV2 19 h 10 min 0.794 0.621 4.189 1.552

Additionally, the total loss curve, representing the weighted sum of classification and localization
losses, exhibits periods of stagnation and decline at certain points. This phenomenon occurs because,
although the localization loss consistently decreases, the classification loss encounters difficulties in
showing similar reductions. A potential cause for this issue could be the suboptimal resolution of
the dataset. Consequently, over time, the classification loss function in the Inception variant shows a
greater reduction compared to that of the MobileNet variant.

To assess the performance of object detection models, the mean Average Precision (mAP) metric
was employed [48], which quantifies the overlap between detected bounding boxes and ground truth
using an Intersection over Union (IoU) threshold. Typically, an IoU of 0.5 or higher is required to
classify detections as True Positives (TP). For evaluating the proposed SSD variants, the COCO mAP
metrics were utilized [17].

Fig. 10 illustrates the increase in mean Average Precision (mAP) in relation to the number of
training steps over time. The performance of two model variations was assessed using the 600-image
testing set, applying IoU thresholds of 0.5 and 0.75, respectively. At an IoU of = 0.5, the SSD
model equipped with MobileNetV2 achieved an 80% accuracy rate for firearm detection at the final
measurement step, with a peak accuracy of 81.65%. This slightly exceeded the performance of the
SSD model with InceptionV2, which reached an accuracy of 79.4% at the final step and a maximum
accuracy of 80.91%. However, at the higher IoU threshold of = 0.75, the SSD with the InceptionV2
model outperformed the MobileNetV2 variant by achieving an accuracy of 62.1%, compared to 61.5%
for MobileNetV2. Table 2 summarizes the key metrics from the training and testing phases.

Figure 10: (Continued)
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(c) (d)

Figure 10: mAP evolution during training of base network SSD model: (a) MobileNetV2 mAP @ IoU
= 0.5, (b) InceptionV2 mAP @ IoU = 0.5, (c) MobileNetV2 mAP @ IoU = 0.75 and (d) InceptionV2
mAP @ IoU = 0.75

Increasing the Intersection over the Union (IoU) threshold tends to reduce model accuracy,
and the variations observed can be explained as follows. When using the COCO mAP metrics to
evaluate the mean Average Precision (mAP) across different firearm sizes, the results generally indicate
that the SSD model performs better at detecting larger firearms. Specifically, the SSD model utilizing
the InceptionV2 architecture excels in detecting medium and large firearm sizes, whereas the SSD with
MobileNetV2 architecture shows superior performance in detecting smaller firearm sizes, as illustrated
in Fig. 11. As the threshold is raised, smaller firearms are often dismissed due to their confidence scores
falling below the heightened threshold, resulting in an accuracy decline for MobileNetV2 and allowing
InceptionV2 to surpass it.

[0 MobileNetV2 [ InceptionV2

0.7

0.6

0.5

0.4

accuracy

0.3

0.2

0

Overall mAP mAP (large) mAP (medium) mAP (small)

Figure 11: Accuracy grouped by gun size and base network

Overall, the SSD model based on the InceptionV2 architecture outperforms the MobileNetV2-
based model in terms of firearm detection accuracy. As shown in Fig. 11, the InceptionV2-based
model achieved a 57.2% overall accuracy, while the MobileNetV2 achieved a 56.3% overall size-related
accuracy. These results are consistent with previous findings reported in [27] regarding general object
detection. In summary, the more complex feature extraction capabilities of InceptionV2 allow it to
capture a broader range of features, thereby improving accuracy. Conversely, the lighter architecture
of MobileNetV?2 facilitates faster detection times, albeit at a slight compromise in accuracy. Table 3
summarizes the accuracy values obtained for the two model variations at the final training step,
detailing performance relative to different firearm sizes.
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Table 3: Comparison of the accuracy at final step of the model variations training on different firearms
sizes

AccuracyBackbone MobileNetV2 InceptionV2

Overall mAP 0.563 0.572
mAP (large) 0.654 0.661
mAP (medium) 0.229 0.294
mAP (small) 0.110 0.087

Fig. 12 shows some results from testing the SSD-based MobileNetV2 on firearms images, while
Fig. 13 shows some images from the SSD-based InceptionV?2 testing results.

Figure 13: Detection results in SSD-based InceptionV2
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5.4 Comparison with Previous Firearms Detection Approaches

In this section, the performance of the SSD model was analyzed, focusing on the balance between
speed and accuracy in firearm detection. Table 4 presents the accuracy values achieved by various
base classifiers at an Intersection over Union (IoU) of = 0.5. Although VGGNet is commonly used in
firearm detection, the results in this paper demonstrate that MobileNetV2 and InceptionV2 surpass
both VGGNet and Overfeat, achieving accuracies of 81.65% and 80.91%, respectively.

Table 4: Comparison of the firearms detection base classifiers

Base classifier IoU threshold Testing accuracy Testing execution time (ms per image)
MobileNetV2 0.5 0.81 7

InceptionV2 0.5 0.80 16

VGGNet [38] 0.5 0.46 36

Overfeat-2 [38] 0.5 0.64 29

Overfeat-3 [38] 0.3 0.89 22

Lowering the threshold value generally improves model accuracy, as observed with Overfeat-3.
Among the classifiers, MobileNetV2 stands out as the fastest, making it highly suitable for real-time
firearm detection due to its rapid feature extraction capabilities and ease of deployment in surveillance
systems. Conversely, Overfeat-3, with its slower detection speed [38], is less appropriate for real-time
applications. For benchmarking, all base classifiers were trained and tested using the same dataset
of 3000 firearm images [38], which was preprocessed and augmented with additional images from
another dataset. This standardization makes them comparable. In previous studies [38], 2535 images
were used for training and 218 for testing. In contrast, proposed models were trained on 2400 images
and evaluated on 600 images. Additionally, Table 4 details the execution time per image during the
testing phase, measured in milliseconds for each model. The results highlight several key findings:
1) Proposed trained models (MobileNetV2 and InceptionV2) in the MARIE system demonstrate
superior performance compared to the models proposed in [38] (VGGNet and its improved variants).
2) MobileNetV2 outperforms the InceptionV2 model in reducing image detection time, enhancing its
efficiency for real-time applications.

To maintain consistency with existing research, the handgun dataset was utilized, originally
created by Olmos et al. [15], which has been subsequently employed by other studies addressing
firearm detection. Unlike previous studies that trained SSD models on all 3000 images, the dataset
was randomly divided into training and testing subsets. Furthermore, to facilitate comparison with
prior research, an additional test was conducted using the same test dataset that previous works used
to assess model accuracy. The test set comprised 608 images, evenly split between 304 handgun and 304
non-handgun images. During preprocessing, errors in the dataset were corrected while maintaining the
original composition and the image size of 160 x 120 pixels. Specifically, 11 images (5 handgun were
replaced and 6 non-handgun images) with similar class images sourced from the internet and another
dataset containing a pistol class.

To evaluate and benchmark proposed models against previous approaches, three metrics were
employed: Precision, Recall, and the F1 measure. Precision calculates the percentage of handguns
correctly detected, Recall assesses the retrieval rate from the 304 handgun images, and the F1 measure
provides a balance between Precision and Recall. These metrics were computed using the following
formulas:
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TP

Precision — 7
recision TP+ FP (7)
TP
Recall = — (8)
TP+ FN

Precision x Recall
F1 measure = 2 x — 9)
Precision + Recall

where TP = True Positives, FP = False Positives, FN = False Negatives and TN = True Negatives.

For real-time firearms detection, precise localization of the firearm is less critical than ensuring its
detection. Therefore, reducing FN was prioritizing and increasing TP to minimize missed detections
and maximize the identification of present firearms. This approach aims to enhance the model’s recall
and the inference speed in firearm detection. Table 5 presents a comparison of various previous firearm
detection models, all implemented using the same training and testing datasets. While all models
utilized the entire test set, the MobileNet-CNN in [19] was tested on a subset of 420 images. The results
indicate that SSD outperforms the previous models, achieving 100% recall with the fastest detection
speed. Although Faster R-CNN also reaches 100% recall with higher precision, it, along with Fast
R-CNN both being two-stage detectors exhibits slower real-time detection speeds compared to SSD.
Overall, as a one-stage detector, SSD demonstrates comparable performance in firearm detection and
excels in optimizing the speed/accuracy trade-off.

Table 5: Comparison of the SSD model variation with previous works

Model TP FN TN FP Precision Recall F1 measure

SSD with MobileNetV2 304 0 199 102 74.87% 100% 85.63%
SSD with InceptionV2 304 O 206 98 75.62% 100% 86.11%
Faster R-CNN [23] 304 0 247 57 84.21% 100% 91.43%
Fast R-CNN [22] 232 72 248 56 80.76% 76.31%  78.37%
MobileNet-CNN [19] 156 54 168 42 78.78% 74.28%  76.46%

Further, authors [43] suggested that additional work is needed to train their proposed models,
including MobileNet-CNN, on more powerful machines. However, the F1 measure reveals that SSD
with MobileNetV2 and InceptionV2 outperformed Fast R-CNN and MobileNet-CNN, achieving
85.63% and 86.11%, respectively. In terms of the speed/accuracy trade-off, SSD proves effective as
a one-stage detector for real-time surveillance systems.

The variations in the base network using MobileNetV2 and InceptionV2 showed comparable
performance. While SSD based on InceptionV2 slightly surpasses SSD based on MobileNetV2 in
accuracy, the latter excels in terms of detection speed. Therefore, the selection of a specific SSD
base network depends on the operational context. For environments with limited hardware resources
aiming to optimize detection speed, SSD with MobileNetV2 is preferred. Conversely, in settings where
powerful equipment is available and greater detection accuracy is prioritized, InceptionV2 would be
the preferred choice for the SSD base network.
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6 Conclusion

Despite significant global development, firearm incidents continue to rise, resulting in substantial
human casualties. This escalating trend necessitates multifaceted interventions to mitigate and prevent
homicides. This paper, introduced MARIE, a one-stage object detection mechanism designed for the
real-time identification of firearms. MARIE incorporates SSD with two variations in the base network
MobileNetV2 and InceptionV2 to optimize the speed/accuracy trade-off essential for prompt law
enforcement responses. Transfer learning was applied to a handgun dataset previously collected and
labeled, and results were benchmarked against existing techniques using the same dataset.

Both architectures demonstrated high efficiency, surpassing VGG-16, which is commonly used in
firearm detection. Remarkably, SSD achieved 100% recall with zero false negatives, a significant count
of true negatives, and commendable precision while maintaining rapid detection speeds, outperform-
ing Faster R-CNN and other advanced two-stage detectors. The chosen training dataset contributed
to this success by providing images with distinct, clear features, enhancing training effectiveness.
Conversely, the use of video surveillance data can detract from learning outcomes due to cluttered
and noisy scenes.

Looking ahead, the aim is to enhance the proposed model’s precision for small objects and reduce
false positives by integrating a Feature Pyramid Network (FPN). Also, there is a plan to assess the
speed/accuracy trade-off using newer SSD base networks, such as MobileNetV3 and InceptionV3.
Furthermore, there is the intention to train and evaluate the proposed model variations across diverse
benchmark firearm datasets to explore how different datasets influence detection performance.
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