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ABSTRACT

The separation-of-variable (SOV) methods, such as the improved SOV method, the variational SOV method, and
the extended SOV method, have been proposed by the present authors and coworkers to obtain the closed-form
analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells. By
taking the free vibration of rectangular thin plates as an example, this work presents the theoretical framework
of the SOV methods in an instructive way, and the bisection–based solution procedures for a group of nonlinear
eigenvalue equations. Besides, the explicit equations of nodal lines of the SOV methods are presented, and the
relations of nodal line patterns and frequency orders are investigated. It is concluded that the highly accurate
SOV methods have the same accuracy for all frequencies, the mode shapes about repeated frequencies can also
be precisely captured, and the SOV methods do not have the problem of missing roots as well.
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1 Introduction

The free vibration problems of rectangular plates can be classified into three categories according
to boundary conditions (BCs), Category 1: all edges are simply supported and/or guided; Category
2: only two opposite edges are simply supported and/or guided; Category 3: BCs not falling into
any of the above two categories. This classification is also suitable for the eigenbuckling problems
of rectangular plates.

The problems of Categories 1 and 2 have the well-known Navier and Levy types of exact solutions
that rigorously satisfy characteristic partial differential equations (PDEs) and BCs [1–5]. For the
problems of Category 3, it is hard or even impossible to find exact solutions. To obtain analytical
solutions to the problems of Category 3, several analytical methods have been developed from different
perspectives since the 1950s, such as the Kantorovich-Krylov (K-K) method [6–10], the separation-
of-variable (SOV) methods [11–15], the superposition method [16–19], the series expansion-based
methods [20–24], the symplectic eigenfunction expansion method [25–29], and the dynamic stiffness
method [30–34] for the plate assemblies.
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Since the present work focuses on the SOV methods obtaining closed form eigensolutions, the
motivations of the SOV methods are presented below. In the Navier method (an inverse method)
and Levy method (a semi-inverse method), the separable mode function has the form of w(x, y) =
ϕ(x)ψ(y), in which both ϕ(x) and ψ(y), or any one of them is constructed based on the simply
supported BCs, limiting the application scope of the inverse methods. To extend the application of
the Levy method, the direct SOV method [11] also using w(x, y) = ϕ(x)ψ(y) is proposed from a new
perspective, wherein both unknown ϕ(x) and ψ(y) are solved simultaneously, and the closed-form
solutions for the free vibration of rectangular plates with clamped adjacent edges were obtained for
the first time. Afterwards, a few more powerful SOV methods are proposed based on the Rayleigh
quotient, including the imSOV method [13], the vSOV method [12], the iSOV method [12], and the
eSOV method [14]. Among them, the imSOV, iSOV, and eSOV methods are general ones, implying
that they are suitable for rectangular plates and cylindrical shells with arbitrary homogeneous BCs.

In the SOV methods, mode functions have separable forms, like w(x, y) = ϕ(x)ψ(y). The
relationships of the eigenvalues corresponding to spatial and temporal coordinates are achieved
according to characteristic PDEs or/and the Rayleigh quotient. Transcendental eigenvalue equations
are attained with the homogeneous BCs. Although there are several publications for each SOV method,
there are no works about the following things: the general theoretical frameworks, the practical
calculation method for natural frequencies and modes, the accuracy of frequencies of different orders,
and the problem of missing frequencies or solution integrity.

In this context, this work presents the general methodology of how to solve the SOV solutions
of characteristic PDEs, and how to obtain closed-form analytical solutions through the Rayleigh
quotient. In addition, bisection-based solution procedures are presented to solve eigenvalue equations,
and nodal line patterns which are used to check the accuracy and integrity of the SOV solutions are
investigated. Note that the free vibration analysis of an isotropic rectangular thin plate is employed to
achieve the objective of the present work.

The rest of this manuscript is organized as follows. Section 2 presents the theoretical framework
of the SOV methods. After presenting the designing purposes and nonlinear eigenvalue equations of
each SOV method, Section 3 gives the bisection-based solution procedures. Section 4 investigates the
relations of nodal line patterns and frequency orders, as well as the accuracy and integrity of solutions.
Section 5 compares the results of the SOV methods with those of the finite element method (FEM)
and other methods, and conclusions are drawn in Section 6.

2 Theoretical Frameworks of the SOV Methods

The SOV methods are used to solve characteristic PDEs, the stationary value problems of the
Rayleigh quotient, or both simultaneously. This section first presents the theoretical framework of the
SOV methods, including the introduction of the characteristic PDEs and the Rayleigh quotient, as
well as the methodology of finding SOV solutions based on them, and then demonstrates that all SOV
methods come from the framework.

Fig. 1 shows a rectangular plate with length 2a, width 2b, and thickness h. According to the
Kirchhoff plate theory [35], the displacement functions of thin plates have the forms as

U (x, y, z, t) = −z
∂W (x, y, t)

∂x

V (x, y, z, t) = −z
∂W (x, y, t)

∂y



CMES, 2025, vol.142, no.1 331

W (x, y, z, t) = W (x, y, t) (1)

where x, y are the coordinates of the middle surface, z is the coordinate of the thickness direction,
and the origin of the coordinates is at the center of the middle surface; U , V , and W represent the
displacements in the x, y and z directions, respectively, and only the deflection W is the independent
variable according to Eq. (1).

Figure 1: A rectangular plate and the Cartesian coordinates

2.1 Characteristic Partial Differential Equations and Boundary Conditions
For a harmonic motion, the deflection W (x, y, t) = w (x, y) eiωt, where i = √−1, ω is the radial

frequency, and w (x, y) is the mode function. The equation of the lateral translational motion for the
free vibration of thin plates are [35]

∂Qx

∂x
+ ∂Qy

∂y
= −ρhω2w (2)

where ρ is the density, and h is the thickness; Qx and Qy are the transverse shear forces, which have the
forms as

Qx = ∂Mx

∂x
+ ∂Mxy

∂y
, Qy = ∂Mxy

∂x
+ ∂My

∂y
(3)

Mx = −D
(

∂2w
∂x2

+ ν
∂2w
∂y2

)
, My = −D

(
∂2w
∂y2

+ ν
∂2w
∂x2

)
, Mxy = −D (1 − ν)

∂2w
∂x∂y

(4)

where Mx and My, and Mxy are the bending moments, and the twisting moment per unit length; D =
Eh3/

[
12

(
1 − ν2

)]
is the flexural rigidity, in which E is the Young’s modulus, and ν is the Poisson’s

ratio. The equivalent shear forces have the forms as

Vx = Qx + ∂Mxy

∂y
, Vy = Qy + ∂Mxy

∂x
(5)

By substituting Eq. (4) into Eq. (3) and then into Eq. (2), the characteristic PDE is obtained as

D
(

∂4w
∂x4

+ 2
∂4w

∂x2∂y2
+ ∂4w

∂y4

)
− ρhω2w = 0 (6)

With the coordinate transformations ξ = x/a, η = y/b, Eq. (6) changes to

∂4w
∂ξ 4

+ 2α2 ∂4w
∂ξ 2∂η2

+ α4 ∂
4w

∂η4
= Ω4w (7)

where the aspect ratio α = a/b and the non-dimensional frequency Ω4 = ω2
(
ρha4/D

)
. All

homogeneous BCs expressed in terms of w are listed in Table 1. Besides, symbolisms are used to denote
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the BCs of four edges. For example, “CSGF” indicates that the edges of ξ = −1, η = −1, ξ = 1
and η = 1 are clamped (C), simply supported (S), guided (G) and free (F) respectively, and other
combinations of BCs can be interpreted in the same way.

Table 1: Boundary conditions in terms of deflection

BCs Deflection Slope Shear force Bending moment
For edges ξ = −1 and ξ = 1

w
∂w
∂ξ

Vξ = − D
a3

(
∂3w
∂ξ3 + (2 − ν) α2 ∂3w

∂ξ∂η2

)
Mξ = − D

a2

(
∂2w
∂ξ2 + να2 ∂2w

∂η2

)

For edges η = −1 and η = 1

w
∂w
∂η

Vη = − D
b3

(
∂3w
∂η3 + (2 − ν)

α2

∂3w
∂η∂ξ2

)
Mη = − D

b2

(
∂2w
∂η2 + ν

α2

∂2w
∂ξ2

)

Simple support (S) 0 0
Clamp (C) 0 0
Guide (G) 0 0
Free (F) 0 0

2.2 Separation-of-Variable Solutions
This section introduces the general method of solving Eq. (7). Assuming that the closed-form

mode function (deflection) w has the separable form as

w(ξ , η) = φ (ξ) ψ (η) (8)

then one can see from Table 1 that S, C, and G are separable, but F is not. Here ‘separable boundary
condition’ implies that the boundary condition depends only on φ(ξ ) or ψ(η). However, there is a
special case: if a pair of opposite edges are S-S, G-G, or S-G, then even if the other two edges are free,
their BCs are also separable. Section 3 will give an integration method to convert inseparable free BCs
into separable ones.

Assuming the functions φ(ξ ) or ψ(η) in Eq. (8) are as follows:

φ (ξ) = Aeμξ , ψ (η) = Beλη (9)

where μ and λ are the spatial eigenvalues concerning spatial coordinates ξ and η, respectively. With
the substitution of Eq. (9) into Eq. (7), we have(
μ2 + α2λ2

)2 = Ω4 (10)

or

μ2 + α2λ2 = ±Ω2 (11)

which is the explicit relations of the two spatial eigenvalues μ and λ and the frequency Ω. One can see
that there are four μ and four λ satisfying Eq. (10), and they can be written as

μ1,2 � ±iα1, μ3,4 � ±β1 (12)

λ1,2 � ±iα2, λ3,4 � ±β2 (13)

where α1, β1, α2, β2 are real numbers. Accordingly, the closed-form φ and ψ can be expressed as
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φ (ξ) = A1 cos (α1ξ) + A2 sin (α1ξ) + A3 cosh (β1ξ) + A4 sinh (β1ξ) (14)

ψ (η) = B1 cos (α2η) + B2 sin (α2η) + B3 cosh (β2η) + B4 sinh (β2η) (15)

where A1 − A4 and B1 − B4 are the mode function coefficients. It should be emphasized that the mode
functions in all SOV methods have the same expressions as given in Eqs. (8), (14) and (15), but each
SOV method has a different technique to obtain α1, β1, α2, β2 and Ω. By substituting φ and ψ into
the BCs of two pairs of opposite edges in Table 1, one can achieve A1 − A4 and B1 − B4 and two
transcendental eigenvalue equations about α1, β1, α2, β2 and Ω. Solving for these five unknowns needs
the other three equations, which are obtained below.

With the substitution of the four combinations (μ1,2, λ1,2), (μ1,2, λ3,4), (μ3,4, λ1,2), (μ3,4, λ3,4) into
Eq. (10), one can have

α2
1 + (αα2)

2 = Ω2 (16)

− α2
1 + (αβ2)

2 = ±Ω2 (17)

β2
1 − (αα2)

2 = ±Ω2 (18)

β2
1 + (αβ2)

2 = Ω2 (19)

If the right-hand terms of Eqs. (17) and (18) are all equal to Ω2, or −Ω2, then using Eqs. (16)–(18)
yields β2

1 + α2β2
2 = 3Ω2, or β2

1 + α2β2
2 = −Ω2. These two equations contradict with Eq. (19), and this

situation is denoted as Case 1. If the signs of the right-hand terms of Eqs. (17) and (18) are opposite,
then Eq. (17) plus Eq. (18) and using (16) lead to Eq. (19), denoting this situation as Case 2.

Therefore, it can be seen that in Case 2, β2
1 +α2

1 = 0 or β2
2 +α2

2 = 0, having no non-trivial solutions,
thus Case 2 is unrealistic and not considered further. In Case 1, the right-hand terms of Eqs. (17) and
(18) should be equal to Ω2 since β2

1 + α2β2
2 = 3Ω2 is more reasonable than β2

1 + α2β2
2 = −Ω2 in terms

of Eq. (19), so Eqs. (17) and (18) should be

(αβ2)
2 = Ω2 + α2

1 (20)

β2
1 = Ω2 + (αα2)

2 (21)

The Eqs. (16), (20) and (21) are the three required equations. By using Eqs. (16), (20), (21) and
two transcendental eigenvalue equations, one can determine α1, β1, α2, β2 and Ω. Besides, according
to Eqs. (16), (20) and (21), we have

α2
1 + β2

1 = 2Ω2 (22)

(αβ2)
2 + (αα2)

2 = 2Ω2 (23)

Eq. (22) denotes the relation between Ω and two x-direction eigenvalues (α1, β1), and Eq. (23)
stands for the relation between Ω and two y-direction eigenvalues (β2, α2).

For the problems of Category 1, Eq. (16) and two transcendental eigenvalue equations are solved
together, and the solutions satisfy Eq. (7) and BCs exactly. For the problems of Category 2, Eqs. (16)
and (20) or Eqs. (16) and (21) are solved together with two transcendental eigenvalue equations, and
the results also satisfy Eq. (7) and BCs exactly. Therefore, the Navier method and the Levy method
are the two special cases of the SOV methods.
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For the problems of Category 3, three Eqs. (16), (20), (21) and two transcendental eigenvalue
equations are solved concurrently, but Eq. (7) is not satisfied since Eq. (19) is not satisfied, implying
that the obtained closed-form mode function w and the frequency Ω are not exact. There are two
SOV methods solving Eqs. (16), (20), (21) and two transcendental eigenvalue equations. For the case
without free edges, the constructed SOV method is the direct SOV method [11]. For the case with free
edges, the constructed SOV method is the imSOV method [13], in which the expressions of separable
free BCs are given in Section 2.3.

2.3 Rayleigh Quotient
The Rayleigh quotient is generally used to derive characteristic PDEs of continuous systems and

generalized eigenvalue equations of discrete systems and also serves as the foundation of FEM for
dynamics problems. However, the present authors and coworkers found that the closed-form SOV
analytical solutions can also be achieved through the Rayleigh quotient.

For free vibration, the Rayleigh quotient [36] has the form as

ω2 = st
Umax

T0

(24)

where ‘st’ denotes ω2 is the stationary value of the quotient (Umax/T0); Umax is the maximum potential
energy of a harmonic vibration; ω2T0 is the maximum kinetic energy; T0 is called the reference kinetic
energy or the kinetic energy coefficient. For thin plates, we have

Umax = D
2

� [(
∂2w
∂x2

)2

+ 2ν
∂2w
∂x2

∂2w
∂y2

+
(

∂2w
∂y2

)2

+ 2 (1 − ν)

(
∂2w
∂x∂y

)2
]

dxdy (25)

T0 = 1
2

�
ρhw2dxdy (26)

By using the non-dimensional coordinates ξ and η, Eqs. (25) and (26) can be transformed into

Umax = abD
2

� [
1
a4

(
∂2w
∂ξ 2

)2

+ 2ν

a2b2

∂2w
∂ξ 2

∂2w
∂η2

+ 1
b4

(
∂2w
∂η2

)2

+ 2 (1 − ν)

a2b2

(
∂2w
∂ξ∂η

)2
]

dξdη (27)

T0 = ab
2

ρh
�

w2dξdη (28)

With the substitution of Eqs. (27) and (28) into Eq. (24), one can obtain the same PDE as Eq. (7)
and the same natural BCs as those in Table 1.

When seeking the SOV solutions based on the Rayleigh quotient, Eqs. (8), (9) and Eqs. (12)–(15)
are also used, and we assume that ψ is known but φ is unknown, or ψ is unknown but φ is known.
When ψ is known and φ is unknown, Ωx is used to denote the corresponding frequency. When ψ is
unknown and φ is known, Ωy is used to represent the corresponding frequency.

For the case with known ψ and unknown φ, according to Eqs. (27), (28) and (24), we can obtain
the governing equation for φ, as

d4φ

dξ 4
+ 2α2

[
ν

S2

S1

− (1 − ν)
S3

S1

]
d2φ

dξ 2
+

(
α4 S4

S1

− Ω4
x

)
φ = 0 (29)
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and the boundary bending moment and equivalent shear force for the edges ξ = −1 and ξ = 1, as

Mξ = abD
a4

(
S1

d2φ

dξ 2
+ να2S2φ

)

Vξ = abD
a4

[
S1

d3φ

dξ 3
+ α2 (νS2 − 2 (1 − ν) S3)

dφ

dξ

]
(30)

where the integral constants are

S1 =
∫ 1

−1

ψ 2dη, S2 =
∫ 1

−1

(
ψ

d2ψ

dη2

)
dη, S3 =

∫ 1

−1

(
dψ

dη

)2

dη, S4 =
∫ 1

−1

(
d2ψ

dη2

)2

dη (31)

If an edge parallel to the y-axis is free, the separable free BCs can be obtained from Eq. (30), as

d2φ

dξ 2
+ να2

S2

S1

φ = 0

d3φ

dξ 3
+ α2

(
ν

S2

S1

− 2 (1 − ν)
S3

S1

)
dφ

dξ
= 0

(32)

By substituting the first expression in Eq. (9), or φ (ξ) = Aeμξ into Eq. (29), one can obtain the
relation between μ and Ωx as

μ4 + 2α2

[
ν

S2

S1

− (1 − ν)
S3

S1

]
μ2 +

(
α4 S4

S1

− Ω4
x

)
= 0 (33)

the roots of which can be written in the same forms as those in Eq. (12), but here the spatial eigenvalues
are

α1 = α

√√√√√[
ν

S2

S1

− (1 − ν)
S3

S1

]2

− S4

S1

+ Ω4
x

α4
+

[
ν

S2

S1

− (1 − ν)
S3

S1

]
(34)

β1 = α

√√√√√[
ν

S2

S1

− (1 − ν)
S3

S1

]2

− S4

S1

+ Ω4
x

α4
−

[
ν

S2

S1

− (1 − ν)
S3

S1

]
(35)

The expression of φ in terms of α1 and β1 has the same form as that in Eq. (14). Similarly, for the
situation with unknown ψ and known φ, the governing equation for ψ can be achieved as

d4ψ

dη4
+ 2α−2

[
ν

T2

T1

− (1 − ν)
T3

T1

]
d2ψ

dη2
+ α−4

(
T4

T1

− Ω4
y

)
ψ = 0 (36)

where

T1 =
∫ 1

−1

φ2dξ , T2 =
∫ 1

−1

(
φ

d2φ

dξ 2

)
dξ , T3 =

∫ 1

−1

(
dφ

dξ

)2

dξ , T4 =
∫ 1

−1

(
d2φ

dξ 2

)2

dξ (37)
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The separable boundary bending moment and equivalent shear force for the edges η = −1 and
η = 1 are

Mη = abD
b4

(
T1

d2ψ

dη2
+ νT2

α2
ψ

)

Vη = abD
b4

[
T1

d3ψ

dη3
+ νT2 − 2 (1 − ν) T3

α2

dψ

dη

]
(38)

The separable free BCs of an edge parallel to the x-axis can be obtained from Eq. (38), as

d2ψ

dη2
+ νT2

α2T1

ψ = 0

d3ψ

dη3
+ νT2 − 2 (1 − ν) T3

α2T1

dψ

dη
= 0

(39)

With the substitution of the second expression in Eq. (9), or ψ (η) = Beλη into Eq. (36), the relation
between λ and Ωy is obtained as

λ4 + 2α−2

[
ν

T2

T1

− (1 − ν)
T3

T1

]
λ2 + α−4

(
T4

T1

− Ω4
y

)
= 0 (40)

whose roots have the forms of Eq. (13), and

α2 = α−1

√√√√√[
ν

T2

T1

− (1 − ν)
T3

T1

]2

− T4

T1

+ Ω4
y +

[
ν

T2

T1

− (1 − ν)
T3

T1

]
(41)

β2 = α−1

√√√√√[
ν

T2

T1

− (1 − ν)
T3

T1

]2

− T4

T1

+ Ω4
y −

[
ν

T2

T1

− (1 − ν)
T3

T1

]
(42)

The expression of ψ in terms of α2 and β2 is the same as that in Eq. (15).

The SOV methods based on the Rayleigh quotient include the iSOV method [12], the eSOV method
[14], and the vSOV method [12]. In these three methods, the coefficients A1 − A4 and B1 − B4 and two
transcendental eigenvalue equations can also be achieved by substituting φ and ψ into the simply
support, clamp and guide BCs in Table 1 and the free BCs in Eqs. (32) and (39).

In the iSOV and eSOV methods, two transcendental eigenvalue equations and Eqs. (34), (35),
(41), (42) are solved for α1, β1, α2, β2, Ωx and Ωy. In the vSOV method, Ωx = Ωy = Ω, and
two transcendental eigenvalue equations and Eqs. (34), (35), (23), or two transcendental eigenvalue
equations and Eqs. (41), (42), (22) are solved for α1, β1, α2, β2, Ω.

The iSOV and the eSOV methods are suitable for solving three Categories of problems. For the
problems of Categories 1 and 2, the obtained solutions are exact; for the problems of Category 3, the
solutions make the Rayleigh quotient take stationary value, implying that the solutions are the most
accurate in the SOV function space. The vSOV method applies to the eigenproblem analysis of the
rectangular plates without adjacent free edges.
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3 SOV Methods and Bisection-Based Solution Procedures

In Section 2, the SOV methods have been formed based on the theoretical framework. This
section first gives the purposes of proposing each SOV methods and then presents the corresponding
eigenvalue equations. Then, the bisection-based solution procedures are provided for the imSOV
method, the vSOV method, and the eSOV method respectively. Unlike the Newton iteration method,
the bisection-based methods do not have the problem of choosing the initial values of solutions. The
computational cost is discussed finally.

3.1 Improved SOV Method
The imSOV method [13] is proposed to solve characteristic partial differential Eq. (7), which is a

general method since it is capable of dealing with arbitrary homogeneous BCs. If an edge is free, its
separable BCs are given in Eqs. (32) and (39).

This method uses Eqs. (16), (20), (21) and two transcendental equations to solve α1, β1, α2, β2 and
Ω. The two transcendental equations can be attained through the substitution of φ (ξ) and ψ (η) into
two pairs of BCs, as shown in Section 2.2. Here, taking a CCSS rectangular plate as an example, the
two transcendental equations can be derived as

α1 tanh 2 β1 = β1 tan 2 α1 (43)

α2 tanh 2 β2 = β2 tan 2 α2 (44)

The bisection-based solution procedure for the imSOV method is as follows:

Preparation

1) To express α2 and β2 in terms of α1 and β1.

Eliminating Ω from Eqs. (16) and (21) generates

α2
2 = β2

1 − α2
1

2α2
(45)

Then, with Eqs. (16), (20) and (45), one can have

β2
2 = β2

1 + 3α2
1

2α2
(46)

2) Substituting Eqs. (45) and (46) into Eq. (44) yields

√
β2

1 − α2
1 tanh

√
2

(
β2

1 + 3α2
1

)
α2

=
√

β2
1 + 3α2

1 tan

√
2

(
β2

1 − α2
1

)
α2

(47)

Therefore, the original five Eqs. (16), (20), (21), (43) and (44) reduce to two nonlinear equations
Eqs. (43) and (47), and the unknowns are α1 and β1.

Solution procedure

The flowchart of solving Eqs. (43) and (47) together is presented in Figs. 2 and 3, in which the
non-zero small number ε is the initial value of α1; Δ is a small increment, and f1 (α1, β1) = 0 denotes
Eq. (47) and f2 (α1, β1) = 0 stands for Eq. (43).
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Figure 2: The procedure finding solution domains in the imSOV method

Figure 3: The process of calculating accurate results in each solution domain

Step 1 Find solution domains

The flowchart in Fig. 2 is used to search solution domains of Eq. (47), and a domain is represented
by α1 ∈ (

α1bot, α1up

)
, β1 ∈ (β1bot, β1up).
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It can be seen that by increasing the value of α1 gradually, one can find a set of (α1, β1) satisfying
Eq. (43); then, one can select the solution domains of Eq. (47) from the set of (α1, β1) satisfying
Eq. (43).

Step 2 Calculate accurate results

For each domain, the procedure shown in Fig. 3 is employed to calculate accurate solutions with
the bisection method, in which δ, the solution precision of α1 and β1, is a number much smaller than
Δ. Note that δ is also the solution precision when using the bisection method, for example, to solve
β1bot for a given α1bot in Fig. 2. Finally, α2, β2 and Ω can be calculated through Eqs. (45), (46), and one
of Eqs. (16), (20), (21).

It is noteworthy that the above solution procedure including two steps, finding solution domains
and calculating accurate solutions, is also used in other SOV methods. If the imSOV method is used to
deal with the plates with free corners, the solution procedure is the same as that of the eSOV method,
refer to Section 3.3.

3.2 Variational SOV Method
The vSOV method [12] is proposed to improve accuracy and extend the application of the direct

SOV method [11]. The vSOV method can deal with rectangular plates without free corners (a free
corner implies two adjacent edges are free). In addition to two transcendental eigenvalue equations,
this method assumes Ωx = Ωy = Ω and solves either Eqs. (22), (41) and (42) or Eqs. (23), (34) and (35).

It can be seen that Eqs. (22) and (23) comes from Eq. (7) (a strong-form equation) and Eqs. (34)
and (35), or (41) and (42) comes from Eq. (24) (a weak-form equation). So the vSOV method can be
viewed as a mixed method, implying that the vSOV method is used to solve the strong-form Eq. (7)
in the x or the y direction and obtain the stationary value of the Rayleigh quotient in the y or the x
direction simultaneously.

It should be noteworthy that the vSOV method is the basis of the iSOV method [12] and the
eSOV method [14]. Based on the bisection method, the solution procedures of the vSOV method are
presented below for two cases.

Case1: Plates without free edges

Also take a CCSS plate as an example, and the transcendental equations are Eqs. (43) and (44).
The coefficients A1 − A4 of φ (ξ) are

A2 = A1 cot α1, A3 = −A1

cos α1

cosh β1

, A4 = −A1

cos α1

sinh β1

(48)

Preparation

1) To express α2, β2 and Ω in terms of α1 and β1.

As shown in Eqs. (14) and (48), φ (ξ) is the explicit function of α1 and β1, then Eq. (37) shows that
T1 − T4 are the explicit functions of α1 and β1.

Besides, Eq. (22) shows that Ω is also the function of α1 and β1, so Eqs. (41) and (42) indicate that
α2 and β2 are the explicit functions of α1 and β1.

2) Substituting Eqs. (41) and (42) into Eq. (44), one can have a transcendental equation about α1

and β1, which can be solved together with Eq. (43) for α1 and β1.

Solution procedure

The solution procedure is the same as that in Section 3.1, refer to Figs. 2 and 3.
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Case2: Plates with one free edge or two opposite free edges

Here taking a CSSF plate as an example, the transcendental equation for the x direction is Eq. (43).
According to the BCs of the edges η = −1 and η = 1, the y-direction transcendental equation can be
achieved as

β2

(
Ny2 − α2

2

) (
Ny1 + β2

2

)
tan 2 α2 = α2

(
Ny2 + β2

2

) (
Ny1 − α2

2

)
tanh 2 β2 (49)

where Ny1 and Ny2 are⎧⎪⎪⎨
⎪⎪⎩

Ny1 = νT2 − 2 (1 − ν) T3

α2T1

Ny2 = νT2

α2T1

(50)

Preparation

1) To express α2, β2 and Ω in terms of α1 and β1.

Eq. (37) shows T1−T4 are the explicit functions of α1 and β1, and Ω can be calculated from Eq. (22)
using α1 and β1, so α2 and β2 are the explicit functions of α1 and β1, refer to Eqs. (41) and (42).

2) By substituting Eqs. (41) and (42) into Eq. (49), one can obtain a transcendental equation
regarding α1 and β1, which can be solved together with Eq. (43) for α1 and β1.

Solution procedure

The solution procedures of the vSOV method are the same as that of the imSOV method in
Section 3.1.

3.3 Extended SOV Method
The eSOV method [14] is proposed to improve accuracy and extend the application of the vSOV

method [12], and it applies to any homogeneous BCs, so it is a general solution method. The eSOV
method obtains the closed form eigensolutions by finding the stationary values of the Rayleigh
quotient.

The method has nothing to do with Eq. (7). In this method, four Eqs. (34), (35), (41) and (42) in
conjunction with two transcendental eigenvalue equations are solved to achieve the six unknowns α1,
β1, α2, β2, Ωx and Ωy, in which Ωx and Ωy are independent each other in mathematical sense, but they
are the same in physical sense, which can be proved through the Rayleigh quotient itself.

To simplify solution procedures, the four unknowns of α1, β1, α2 and β2 are solved first. By
eliminating Ωx from Eqs. (34) and (35), we have

α2
1 − β2

1 = 2α2

[
ν

S2

S1

− (1 − ν)
S3

S1

]
(51)

and eliminating Ωy from Eqs. (41) and (42) generates

α2
2 − β2

2 = 2α−2

[
ν

T2

T1

− (1 − ν)
T3

T1

]
(52)

Then we only need to solve Eqs. (51), (52) and two transcendental equations for α1, β1, α2 and β2.
After obtaining α1, β1, α2 and β2, one can use any one of Eqs. (34), (35), (41) and (42) to obtain the
frequency Ω because of Ω = Ωx = Ωy.
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Case1: Plates without free edges

Also taking the CCSS plate as an example, and the two transcendental equations are Eqs. (43)
and (44). The mode function coefficients A1 − A4 are given in Eq. (48), and B1 − B4 are

B2 = B1 cot α2, B3 = −B1

cos α2

cosh β2

, B4 = −B1

cos α2

sinh β2

(53)

Preparation

1) To express β2 in terms of α1, β1, and α2.

Eq. (52) can be reformed as

β2
2 = α2

2 − 2α−2

[
ν

T2

T1

− (1 − ν)
T3

T1

]
(54)

which shows that β2 is an explicit function of α1,β1, and α2. Then ψ (η) in Eq. (15) and S1 − S4 in
Eq. (31) are also the explicit functions of α1, β1, α2.

2) By substituting Eq. (54) into Eq. (44), we have

α2 tanh 2

√
α2

2 − 2α−2

[
ν

T2

T1

− (1 − ν)
T3

T1

]
=

√
α2

2 − 2α−2

[
ν

T2

T1

− (1 − ν)
T3

T1

]
tan 2 α2 (55)

Since T1 − T4 are the explicit functions of α1 and β1, thus the y-direction transcendental Eq. (55)
is an equation for α1, β1 and α2,

Solution procedure

After preparation, we can solve Eqs. (55), (43) and (51) for α1, β1, α2. Eqs. (43) and (55) are the
transcendental equations, and Eq. (51) denotes the relation between the two-direction eigenvalues.

The procedure to find solution domains of Eqs. (55), (43) and (51) is presented in Fig. 4, wherein
Eq. (43) is denoted by f2(α1, β1) = 0, Eq. (55) is denoted by f1(α1, β1, α2) = 0 and Eq. (51) is denoted
by f3(α1, β1, α2) = 0. The process of calculating accurate results is similar to that in Fig. 3. More
explanations about Fig. 4 are given below:

1) Since Eq. (43) is only about α1 and β1, so to facilitate the solution procedure, for a given α1bot

Eq. (43) is solved firstly to obtain β1bot with the bisection method.

2) With the known (α1bot, β1bot), Eq. (55) is a nonlinear equation of α2, which can be solved by the
bisection method to obtain α2bot.

3) After having a group of (α1bot, β1bot, α2bot) satisfying Eqs. (43) and (55). By gradually increasing
the value of α1 with the increment Δ, one can determine a group of (α1up, β1up, α2up), then the solution
domain of Eq. (51) is obtained, which is α1 ∈ (

α1bot, α1up

)
, β1 ∈ (β1bot, β1up) and α2 ∈ (

α2bot, α2up

)
.
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Figure 4: The procedure finding solution domains in the eSOV method

Case2: Plates with one free edge or two opposite edges free

The situation with one free edge is considered first. Similar to the vSOV method, the CSSF plate
is taken as an example too. Eqs. (43) and (49) are the two transcendental equations. The coefficients
A1 − A4 are given in Eq. (48), and the coefficients B1 − B4 are

B2 = B1 cot α2, B3 = −B1

cos α2

cosh β2

Ny2 − α2
2

Ny2 + β2
2

, B4 = −B1

cos α2

sinh β2

Ny2 − α2
2

Ny2 + β2
2

(56)

Preparation

1) As shown in Section 3.1, β1 can be achieved from Eq. (43) for a given α1 with the bisection
method, and T1 − T4 are the explicit functions of α1 and β1.

2) Ny1 and Ny2 are also the explicit functions of α1 and β1 according to Eq. (50), from which we
have

Ny1 + Ny2 = 2α−2

[
ν

T2

T1

− (1 − ν)
T3

T1

]
(57)

From Eqs. (52) and (57), one can obtain

β2
2 = α2

2 − Ny1 − Ny2 (58)
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Substituting Eq. (58) into Eq. (49) to eliminate β2 generates√
α2

2 − Ny1 − Ny2

(
Ny2 − α2

2

)2
tan 2α2 = α2

(
Ny1 − α2

2

)2
tanh

(
2
√

α2
2 − Ny1 − Ny2

)
(59)

which is a nonlinear equation for α1,β1,α2. Then from Eqs. (58), (56), (15) and (31), one can see that β2,
B1 − B4, ψ (η) and S1 − S4 are also the explicit functions of α1,β1,α2.

Solution procedure

Solving Eqs. (43), (59) and (51) can give α1, β1, α2. Among these three equations, Eqs. (43) and (59)
are the transcendental equations corresponding to two coordinate directions respectively, and Eq. (51)
establishes the eigenvalue relation of two directions. The process for finding the solution domains of
these three equations is the same as that shown in Fig. 4. Then a similar process as that in Fig. 3 can
be used to calculate accurate results.

Case3: Plates with free corners

Taking a SSFF plate as an example, the y-direction transcendental equation is Eq. (49), and the
x-direction transcendental equation is similar to Eq. (49), as

β1

(
Nx2 − α2

1

) (
Nx1 + β2

1

)
tan 2α1 = α1

(
Nx2 + β2

1

) (
Nx1 − α2

1

)
tanh 2 β1 (60)

where Nx1 and Nx2 are the variables from the free BCs of the edges ξ = −1 and ξ = 1, as

Nx1 = α2 νS2 − 2 (1 − ν) S3

S1

(61)

Nx2 = α2νS2

S1

(62)

The mode function coefficients B1 − B4 are listed in Eq. (56), and A1 − A4 are

A2 = A1 cot α1, A3 = −A1

cos α1

cosh β1

Nx2 − α2
1

Nx2 + β2
1

, A4 = −A1

cos α1

sinh β1

Nx2 − α2
1

Nx2 + β2
1

(63)

Preparation

1) Deal with the eigenvalue equations in the x direction.

From Eqs. (61) and (62), we have

Nx1 + Nx2 = 2α2

[
ν

S2

S1

− (1 − ν)
S3

S1

]
(64)

Then from Eqs. (51) and (64), one can obtain

α2
1 − β2

1 = Nx1 + Nx2 (65)

By substituting Eq. (65) into Eq. (60), we have

β1

(
Nx2 − α2

1

)2
tan 2α1 = α1

(
Nx2 + β2

1

)2
tanh 2 β1 (66)

which is a quadratic equation of Nx2. By using the root formula, Nx2 can be obtained, which is the
explicit function of α1, β1, then the coefficient A1−A4 and the integrals T1−T4 are the explicit functions
of α1, β1.
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2) Deal with the eigenvalue equations in the y direction, and the work is the same as that in
Section 3.2.

3) From Eqs. (65) and (66), we know that both Nx1 and Nx2 are the explicit functions of α1, β1. It can
be seen from 2) that S1 − S4 are the explicit functions of α1, β1 and α2. By substituting S1 − S4, Nx1, Nx2

into Eqs. (61) and (62), we have two nonlinear equations for α1, β1, α2.

Solution procedure

In the above preparation, one has obtained three nonlinear equations, including Eqs. (59), (61)
and (62). Among them, Eq. (59) is the y-direction transcendental equation, and Eqs. (61) and (62)
relate the eigenvalues of the x and y directions.

The solution domains of these three equations can be found with the procedure in Fig. 5, in
which f1 = 0, f2 = 0 and f3 = 0 stand for Eqs. (59), (62) and (61), respectively. By increasing the
value of α1 gradually, one can find a set of (α1, β1, α2) satisfying Eqs. (59) and (62); then by using the
bisection method again, one can find (α1, β1, α2) satisfying Eq. (61) from the set of (α1, β1, α2). Finally,
the closed-form solutions are achieved.

Figure 5: The procedure finding solution domains for SSFF plates in the eSOV method

In addition to the above solution procedures, an iteration method can also be used here. If (α1,
β1, Ωx) are obtained with the assumed (α2, β2, Ωy), then (α2, β2, Ωy) can be updated with the obtained
(α1, β1, Ωx), then updating (α2, β2, Ωy) again, the iteration ends if

∣∣Ωy − Ωx

∣∣ /Ωx is small enough. This
iteration solution method is the iSOV method [12].

3.4 Computational Cost
The SOV methods are analytical methods, which can be used to solve characteristic PDEs or

the stationary value of the Rayleigh quotient, not requiring to discretize spatial domain like FEM.
To obtain frequencies and modes, only a few closed-form transcendental and algebraic eigenvalue
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equations need to be solved, as shown in Sections 3.1–3.3. So, the SOV methods are efficient and
economical, and solving programs can be implemented on regular PCs.

In previous publications (for example, [11–15]), the Newton iteration method was used to solve
eigenvalue equations. If initial values are appropriate, convergence can be reached after 3 or 4
iterations. But the initial values of solutions should be close to solutions, otherwise the solutions cannot
be found, or the solutions are not expected, implying that selecting initial values is a troublesome issue
especially when solving solutions of many orders.

To avoid the issue of selecting initial values, the bisection-based solution procedures are presented
in this work as alternative methods to the Newton method, as shown in Sections 3.1–3.3. The
procedures include two steps, searching solution intervals and calculating accurate solutions, and the
bisection approach is used in the two steps.

4 Nodal Line Patterns and the Solution Integrity

This section gives the nodal line equations, from which the nodal line geometrical configurations
or patterns can be obtained. Besides, with the help of the nodal line patterns, the solution integrity of
the SOV methods is qualitatively discussed.

4.1 Nodal Line Patterns
The SOV methods have the advantage that they have separable and explicit equations of nodal

lines. The nodal line equations can be achieved by assuming the mode function w(ξ , η) in Eq. (8) is
equal to zero, that is

w(ξ , η) = φ (ξ)ψ (η) = 0 (67)

then the nodal line equations are

φ(ξ) = 0 (68)

ψ(η) = 0 (69)

Solving the above two equations yields the positions of nodal lines within a plate. Since φ(ξ) is
just a function of ξ and ψ(η) is just a function of η, then the nodal lines determined by Eqs. (68) and
(69) are straight lines parallel to plate edges. That is, the nodal lines of φ(ξ) = 0 are perpendicular to
the x-axis, and the ones of ψ(η) = 0 perpendicular to the y-axis. Besides, at the intersections of the
nodal lines, φ(ξ) = ψ(η) = 0. In the SOV methods, Eq. (68) and Eq. (69) are applicable to arbitrary
homogeneous BCs.

According to Eqs. (14), (15), (68) and (69) can be rewritten as

φ (ξ) = A1 cos (α1ξ) + A2 sin (α1ξ) + A3 cosh (β1ξ) + A4 sinh (β1ξ) = 0 (70)

ψ (η) = B1 cos (α2η) + B2 sin (α2η) + B3 cosh (β2η) + B4 sinh (β2η) = 0 (71)

where A1 − A4, B1 − B4, α1, α2, β1, β2 can be obtained through the procedures provided in Section 3, so
the forms of these two equations are explicit. A mode of a plate has no or many nodal lines, and the
feature of a mode shape depends on the positions of nodal lines. The nodal line pattern of a mode is
a geometry graph including all nodal lines inside a plate.

In the following, a simply supported plate is considered to show how to determine the positions of
nodal lines. According to Eqs. (14) and (15) and the simply supported BCs, see Table 1, we can obtain
the eigenvalue equations and mode function coefficients as follows:
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sin 2 α1 = 0
sin 2 α2 = 0

}
⇒

α1 = mπ

2

α2 = mπ

2

⎫⎪⎬
⎪⎭ (72)

A1 = sin α1, A2 = cos α1, A3 = A4 = 0

B1 = sin α2, B2 = cos α2, B3 = B4 = 0 (73)

where m, n = 1, 2, 3, · · · are the numbers of half waves in the x and y directions, respectively. Then
using Eqs. (70) and (71) generates the equations of nodal lines as

φ (ξ) = sin
mπ

2
cos

(mπ

2
ξ
)

+ cos
mπ

2
sin

(mπ

2
ξ
)

= sin
mπ

2
(1 + ξ) = 0 (74)

ψ (η) = sin
nπ

2
cos

(nπ

2
η
)

+ cos
nπ

2
sin

(nπ

2
η
)

= sin
nπ

2
(1 + η) = 0 (75)

where ξ ∈ (−1, 1), η ∈ (−1, 1). Given m and n, one can calculate the nodal line positions and the
number of nodal lines from Eqs. (74) and (75). For example, if m = 2, then ξ = 0 and there is only one
nodal line; if m = 3, then ξ = ±1/3 and there are two nodal lines. The number of nodal lines is equal
to the number of half waves minus one.

The nodal line patterns of the SSSS and CCSS isotropic square plates (α = 1) are shown in Figs. 6
and 7 respectively, where the values (i, j) = (m – 1, n – 1), wherein i and j represent the numbers of
nodal lines perpendicular to the x-axis and the y-axis, respectively. By observing the nodal line patterns
and the frequency orders, one can find that for these two square plates, the correspondences between
the numbers of nodal lines and the frequency orders are the same, but the positions of nodal lines
are different. For the SSSS plate, the nodal lines distribute evenly within the plate, while for the CCSS
plate, the nodal lines no longer distribute evenly, further away from the clamped edges parallel to them,
refer to the two patterns of (2, 2) in Figs. 6, 7. It can be seen that the sizes of square 1© and square 2©
in Fig. 6 are the same, while in Fig. 7 square 1© is larger than square 2©.

For comparison, Tables 2, 3 present the relationships between the numbers of nodal lines and
the frequency orders for the SSSS and CCSS rectangular plates (α = 1.5) respectively. For the two
rectangular plates, the correspondences between the nodal line patterns and frequency orders are
different. For example, the frequency of order 15 for the SSSS plate corresponds to the pattern (0,
3), while the frequency of the same order for the CCSS plate corresponds to the pattern (5, 0).

Besides, Figs. 6, 7 show that the nodal lines in the SOV methods are straight, even though for
repeated frequencies, such as the two frequencies with patterns of (1, 0) and (0, 1). But the combinations
of two modes having straight nodal lines that are parallel to plate edges can produce the modes having
diagonal or curved nodal lines, also refer to the modes plotted in Section 5. Here the SSSS square
plate is taken as an example to show the combining results. For clarity’s sake, the first pair of repeated
frequencies corresponding to the patterns of (1, 0) and (0, 1), or (m, n) = (2, 1) and (1, 2), is taken into
account below. The two-mode functions are

w (ξ , η)|(m,n)=(2,1) = φ (ξ)|m=2 ψ (η)|n=1 = − sin (πξ) cos
(π

2
η
)

w (ξ , η)|(m,n)=(1,2) = φ (ξ)|m=1 ψ (η)|n=2 = − sin (πη) cos
(π

2
ξ
)

(76)
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Figure 6: Nodal line patterns of the SSSS square plate for the first 15 modes

Figure 7: Nodal line patterns of the CCSS square plate for the first 15 modes

Then by letting the two combinations of the two modes equal to zero, we have

w (ξ , η)|(m,n)=(2,1) + w (ξ , η)|(m,n)=(1,2) = −4 cos
πη

2
cos

πξ

2
cos

π (ξ − η)

4
sin

π (ξ + η)

4
= 0

w (ξ , η)|(m,n)=(2,1) − w (ξ , η)|(m,n)=(1,2) = −4 cos
πη

2
cos

πξ

2
cos

π (ξ + η)

4
sin

π (ξ − η)

4
= 0

(77)
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Table 2: The numbers of nodal lines and frequency orders for the SSSS rectangular plate (α = 1.5) for
the first 15 modes

Frequency orders The number of nodal lines parallel to the y axis

0 1 2 3 4

T
he

nu
m
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r

of
no

da
l

lin
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ra
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lt

o
th

e
x

ax
is

0 Ω2
1 = 8.0191 Ω2

2 = 15.421 Ω2
4 = 27.758 Ω2

7 = 45.030 Ω2
12 = 67.237

1 Ω2
3 = 24.674 Ω2

5 = 32.076 Ω2
6 = 44.413 Ω2

10 = 61.685 Ω2
13 = 83.892

2 Ω2
8 = 52.432 Ω2

9 = 59.835 Ω2
11 = 72.172 Ω2

14 = 89.443

3 Ω2
15 = 91.294

Table 3: The numbers of nodal lines and frequency orders for the CCSS rectangular plate (α = 1.5)
for the first 15 modes

Frequency orders The number of nodal lines parallel to the y axis

0 1 2 3 4 5

T
he

nu
m

be
r

of
no

da
l

lin
es

pa
ra
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lt

o
th

e
x

ax
is

0 Ω2
1 = 11.224 Ω2

2 = 19.138 Ω2
4 = 32.350 Ω2

6 = 50.663 Ω2
11 = 73.989 Ω2

15 = 102.29

1 Ω2
3 = 30.581 Ω2

5 = 38.134 Ω2
7 = 50.892 Ω2

10 = 68.834 Ω2
13 = 91.886

2 Ω2
8 = 61.104 Ω2

9 = 68.554 Ω2
12 = 81.084 Ω2

14 = 98.741

Since ξ = ±1 and η = ±1 are not the required nodal lines for the simply supported plate, hence
we obtain two equations of nodal lines from Eq. (77), as

ξ + η = 0
ξ − η = 0 (78)

which correspond to two diagonal nodal lines for the repeated frequencies.

As for other BCs, the above combining method can also be used to achieve the modes with
diagonal or curved nodal lines corresponding to repeated frequencies.

4.2 Solution Accuracy and Integrity
For the problems of Categories 1 and 2, the SOV methods achieve the Navier and Levy solutions

respectively, and the solutions are exact. For the problems of Category 3, one generally believes that
there are no SOV exact solutions, and even believes that there are no closed-form solutions. To obtain
the SOV and closed-form solutions of the problems of Category 3, the SOV methods are proposed, and
the solutions are found to be highly accurate [12]. It is noteworthy that the nSOV method in [12] was
renamed as the vSOV method after it was proposed. The imSOV method [12] has the same accuracy as
the direct SOV method [11], and the iSOV method almost has the same accuracy as the eSOV method.
In Section 5, the results of the SOV methods are compared with those of the FEM, and their high
accuracy and versatility are validated.
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According to the Rayleigh quotient, if the modes obtained by two methods have the same nodal
line patterns, then the frequencies obtained by the two methods have the same accuracy, and the
accuracy of the frequencies is one order higher than that of the modes. Through the numerical
comparisons in [12] and [15], etc., also refer to Figs. 8 and 9 in Section 5, one can see that the SOV
methods generate the same nodal line patterns as the referenced FEM, so the SOV methods are highly
accurate, even though for the inseparable problems of Category 3.

FEM

eSOV

(a) (b) (c)

Figure 8: Some modes for the CCSS square plate. (a) Mode 2; (b) Mode 15; (c) Mode 20

FEM

eSOV

(a) (b) (c)

Figure 9: Some modes for the SSFF square plate. (a) Mode 2; (b) Mode 7; (c) Mode 11

In addition, the closed-form analytical solutions obtained by the SOV methods are simple and
have explicit forms, therefore, it is necessary to check the integrity of the simple solutions or if there
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is a problem with missing roots. This can be fulfilled by counting the numbers of the nodal lines of
modes.

It can be seen from Figs. 6 and 7 and Tables 2 and 3 that for both square and rectangular plates,
the numbers of the vertical (parallel to the y-axis) and horizontal (parallel to the x-axis) nodal lines
increase one by one with the frequency order, indicating that the SOV methods have no problem
missing frequencies. This also ensures that the SOV methods have the same accuracy for the frequencies
of different orders.

5 Numerical Comparisons

To show the high accuracy of the SOV methods and the effectiveness of the proposed bisection-
based procedures for solving eigenvalue equations, this section compares the frequencies and modes
obtained by the SOV methods and the FEM, as well as several non-SOV methods including the method
of superposition [37,38], the spectral dynamic stiffness method (S-DSM) [39], the Galerkin method [40]
and the symplectic superposition method [41].

The FEM’s results are achieved by NASTRAN using 200 × 200 (for Tables 4, 5, Figs. 8, 9) and
250 × 500 (for Table 6) bending panel elements. In calculation, ν = 0.33, a = 1 and the thickness length
ratio h/2a = 1/200. The results of the SOV methods are calculated by the bisection-based solution
procedures given in Section 3.

Table 4: The first 20 frequencies Ω2 for the CCSS square plate

Mode orders 1 2 3 4 5

imSOV 6.7168 15.1373 15.1373 23.1662 28.6419
vSOV 6.7653 15.1668 15.1672 23.2113 28.6582
eSOV 6.7647 15.1667 15.1667 23.2110 28.6582
FEM 6.7628 15.1330 15.1949 23.2036 28.6362

Mode orders 6 7 8 9 10

imSOV 28.6419 36.4465 36.4465 47.1173 47.1173
vSOV 28.6585 36.4844 36.4846 47.1272 47.1274
eSOV 28.6582 36.4843 36.4843 47.1272 47.1272
FEM 28.6732 36.4349 36.5098 47.1108 47.1338

Mode orders 11 12 13 14 15

imSOV 49.4851 54.8048 54.8048 67.6662 67.6662
vSOV 49.5291 54.8331 54.8334 67.7064 67.7066
eSOV 49.5289 54.8331 54.8331 67.7064 67.7064
FEM 49.5056 54.7857 54.8454 67.6302 67.7078

Mode orders 16 17 18 19 20

imSOV 70.5404 70.5404 78.1612 78.1612 85.6736
vSOV 70.5470 70.5471 78.1822 78.1824 85.7171
eSOV 70.5470 70.5470 78.1822 78.1822 85.7169
FEM 70.5327 70.5489 78.1346 78.1803 85.6548
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Table 5: The first 20 frequencies Ω2 for the SSFF square plate

Mode orders 1 2 3 4 5

eSOV 0.8300 4.5963 4.5963 9.5259 13.0962
FEM 0.8416 4.3285 4.8228 9.5506 12.7574

Mode orders 6 7 8 9 10

eSOV 13.0962 18.4047 18.4047 26.5481 26.5481
FEM 13.3704 18.2363 18.6529 26.1762 26.8057

Mode orders 11 12 13 14 15

eSOV 28.0206 31.8916 31.8916 41.9365 41.9365
FEM 28.1269 31.6947 32.1796 41.8191 42.1856

Mode orders 16 17 18 19 20

eSOV 44.9395 44.9395 50.2564 50.2564 56.3692
FEM 44.5486 45.2999 50.0386 50.5494 56.4808

Table 6: The first 8 frequencies for non-Levy type of rectangular plates (α = 1/2)

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

CCCC, λ = Ω2, ν = 0.3
Superposition [37] 6.120 7.956 11.19 15.83 16.00 17.77 20.82 21.81
FEM 6.144 7.956 11.19 15.83 16.00 17.77 20.82 21.81
eSOV 6.145 7.958 11.19 15.83 16.00 17.77 20.82 21.82
S-DSM [39] 6.144 7.956 11.19 15.83 16.00 17.77 20.82 21.81
Galerkin [40] 6.145 7.958 16.00 17.74

CFFF, λ = 4Ω2, ν = 0.333

Superposition [38] 3.487 5.278 10.03 18.84 21.78 24.55 31.07 33.88
FEM 3.487 5.278 10.03 18.84 21.78 24.55 31.06 33.88
eSOV 3.511 5.312 10.19 19.36 21.96 24.58 31.89 33.59
S-DSM [39] 3.487 5.278 10.03 18.84 21.78 24.55 31.07 33.88

FFFF, λ = 4Ω2, ν = 0.3

Symplectic superposition [41] 5.366 6.644 14.62 14.90 22.00 25.38 26.00 29.68
FEM 5.366 6.643 14.62 14.90 22.00 25.37 26.00 29.68
eSOV 5.557 6.662 14.73 15.29 22.34 25.64 26.18 29.99
S-DSM [39] 5.366 6.644 14.62 14.90 22.00 25.38 26.00 29.68
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Tables 4 and 5 compare the first 20 frequencies Ω2 = ωa2
√

ρh/D of the CCSS and SSFF square
plates, Table 6 compares the first 8 frequencies of the clamped, free and cantilever rectangular plates
(α = 1/2), and Figs. 8 and 9 compare some mode shapes.

It can be seen from Tables 4–6 that the SOV methods are quite accurate, especially when the plates
have no free edges (for example, the CCSS and CCCC plates), and in general, the accuracy of the
SOV methods holds with the increase in mode orders (for instance, from the first to twenty orders).
Since the CCSS and SSFF square plates are diagonal symmetrical, the SOV methods obtain repeated
frequencies, while the FEM does not.

Besides, the nodal lines of the modes obtained by the SOV methods are straight lines even though
for repeated frequencies, as mentioned in Section 4. However, when there are repeated frequencies,
modes can have diagonal and curved nodal lines. In this situation, one can also see that the SOV
methods can accurately capture this kind of modes by using the combining method as explained in
Section 4.1. For example, Tables 4 and 5 show that the 2nd, the 7th, and the 15th frequencies are
repeated frequencies, and Figs. 8 and 9 show that the nodal lines of the corresponding modes obtained
by the eSOV method are also curves, as those obtained by NASTRAN.

6 Conclusion

The SOV methods provide a general approach for obtaining closed-form analytical solutions to
characteristic problems involving rectangular plates and cylindrical shells. This work introduces three
notable contributions and observations.

The theoretical framework of the SOV methods is presented in a thought-provoking manner,
outlining the construction principles and methodologies behind these techniques. Based on the concept
of finding the stationary value of the Rayleigh quotient, the vSOV method, the eSOV method, and the
iSOV method were developed to achieve precise solutions. Additionally, using a different concept, the
imSOV method was formulated to directly solve characteristic partial differential equations. Similar
theoretical frameworks can also be established for the SOV methods used in solving eigenvalue
problems of circular cylindrical shells and the eigenbuckling problems of rectangular plates.

Beyond the theoretical framework, this work presents a few bisection-based procedures for solving
nonlinear eigenvalue equations, accompanied by flowcharts to illustrate implementation steps. In these
procedures, the bisection method is initially applied to identify solution intervals and subsequently
used to determine accurate solutions within each interval, thus avoiding the issue of missing roots.
Unlike the Newton iteration method, these procedures are self-starting, eliminating the need to choose
initial values for eigenvalues of different orders. Numerical results confirm the effectiveness of the
proposed procedures.

Lastly, the explicit equations for nodal lines are provided, and the integrity of the solutions along
with the patterns of nodal line modes are examined. It is concluded that, while the SOV methods
produce straight nodal lines, diagonal and curved lines can also be accurately represented by the
combining approaches for repeated frequencies. Moreover, by counting the nodal lines, it is observed
that the SOV methods do not miss any modes, achieving consistent accuracy across frequencies and
modes of various orders.

The closed-form solutions obtained by the SOV methods are highly accurate but are not exact
except in cases where at least two opposite edges are simply supported/ guided. Furthermore, the SOV
methods are not suitable for anisotropic rectangular plates and cylindrical shells.



CMES, 2025, vol.142, no.1 353

Acknowledgement: None.

Funding Statement: This study is supported by the National Natural Science Foundation of China
(12172023).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Yufeng Xing; analysis and interpretation of results: Yufeng Xing, Ye Yuan; draft manuscript
preparation: Gen Li, Ye Yuan. All authors reviewed the results and approved the final version of the
manuscript.

Availability of Data and Materials: All data generated or analyzed during this study are included in
this published article.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Srinivas S, Rao AK. Bending, vibration and buckling of simply supported thick orthotropic rectangular

plates and laminates. Int J Solids Struct. 1970;6(11):1463–81. doi:10.1016/0020-7683(70)90076-4.
2. Bert CW, Malik M. Frequency equations and modes of free vibrations of rectangular plates with var-

ious edge conditions. Proc Inst Mech Eng Part C J Mech Eng Sci. 1994;208(5):307–19. doi:10.1243/
PIME_PROC_1994_208_133_02.

3. Hosseini-Hashemi S, Fadaee M, Rokni Damavandi Taher H. Exact solutions for free flexural vibration
of Lévy-type rectangular thick plates via third-order shear deformation plate theory. Appl Math Model.
2011;35(2):708–27. doi:10.1016/j.apm.2010.07.028.

4. Brischetto S. Exact elasticity solution for natural frequencies of functionally graded simply-supported
structures. Comput Model Eng Sci. 2013;95:391–430. doi:10.3970/cmes.2013.095.391.

5. Eisenberger M, Godoy LA. Navier type exact analytical solutions for vibrations of thin-walled shallow
shells with rectangular planform. Thin-Walled Struct. 2021;160:107356. doi:10.1016/j.tws.2020.107356.

6. Kantorovich LV, Krylov VI. Approximate methods of higher analysis. New York: Interscience Publishers;
1958.

7. Kerr AD. An extended Kantorovich method for the solution of eigenvalue problems. Int J Solids Struct.
1969;5(6):559–72. doi:10.1016/0020-7683(69)90028-6.

8. Rafiefar M, Moeenfard H. Analytical modeling of variable thickness cylindrical shallow shells using
extended Kantorovich method. Eur J Mech A/Solids. 2022;96(1968):104727. doi:10.1016/j.euromechsol.
2022.104727.

9. Singhatanadgid P, Singhanart T. The Kantorovich method applied to bending, buckling, vibration, and
3D stress analyses of plates: a literature review. Mech Adv Mater Struct. 2019;26(2):170–88. doi:10.1080/
15376494.2017.1365984.

10. Zafarabadi MMM, Aghdam MM, Araujo AL. Buckling and free vibration of grid-stiffened composite
conical panels using Extended Kantorovich Method. Thin-Walled Struct. 2024;200:111845. doi:10.1016/
j.tws.2024.111845.

11. Xing Y, Liu B. New exact solutions for free vibrations of rectangular thin plates by symplectic dual method.
Acta Mech Sin. 2009;25(2):265–70. doi:10.1007/s10409-008-0208-4.

12. Xing Y, Sun Q, Liu B, Wang Z. The overall assessment of closed-form solution methods for free vibrations
of rectangular thin plates. Int J Mech Sci. 2018;140(208):455–70. doi:10.1016/j.ijmecsci.2018.03.013.

https://doi.org/10.1016/0020-7683(70)90076-4
https://doi.org/10.1243/PIME_PROC_1994_208_133_02
https://doi.org/10.1016/j.apm.2010.07.028
https://doi.org/10.3970/cmes.2013.095.391
https://doi.org/10.1016/j.tws.2020.107356
https://doi.org/10.1016/0020-7683(69)90028-6
https://doi.org/10.1016/j.euromechsol.2022.104727
https://doi.org/10.1080/15376494.2017.1365984
https://doi.org/10.1016/j.tws.2024.111845
https://doi.org/10.1007/s10409-008-0208-4
https://doi.org/10.1016/j.ijmecsci.2018.03.013


354 CMES, 2025, vol.142, no.1

13. Xing Y, Wang Z. An improved separation-of-variable method for the free vibration of orthotropic
rectangular thin plates. Compos Struct. 2020;252:112664. doi:10.1016/j.compstruct.2020.112664.

14. Xing Y, Wang Z. An extended separation-of-variable method for the free vibration of orthotropic rectan-
gular thin plates. Int J Mech Sci. 2020;182:105739. doi:10.1016/j.ijmecsci.2020.105739.

15. Xing Y, Li G, Yuan Y. A review of the analytical solution methods for the eigenvalue problems of
rectangular plates. Int J Mech Sci. 2022;221:107171. doi:10.1016/j.ijmecsci.2022.107171.

16. Timoshenko S. Theory of plates and shells. New York: McGraw-Hill Book Company; 1940.
17. Gorman DJ, Sharma RK. A comprehensive approach to the free vibration analysis of rectangular plates by

use of the method of superposition. J Sound Vib. 1976;47(1):126–8. doi:10.1016/0022-460X(76)90414-4.
18. Gorman DJ. Free in-plane vibration analysis of rectangular plates by the method of superposition. J Sound

Vib. 2004;272(3–5):831–51. doi:10.1016/S0022-460X(03)00421-8.
19. Gorman DJ, Yu SD. A review of the superposition method for computing free vibration eigenvalues of

elastic structures. Comput Struct. 2012;104–105(4):27–37. doi:10.1016/j.compstruc.2012.02.018.
20. Hurlebaus S, Gaul L, Wang JS. An exact series solution for calculating the eigenfrequencies of orthotropic

plates with completely free boundary. J Sound Vib. 2001;244(5):747–59. doi:10.1006/jsvi.2000.3541.
21. Zhang S, Xu L, Li R. New exact series solutions for transverse vibration of rotationally-restrained

orthotropic plates. Appl Math Model. 2019;65(3):348–60. doi:10.1016/j.apm.2018.08.033.
22. Bhaskar K, Kaushik B. Simple and exact series solutions for flexure of orthotropic rectangular

plates with any combination of clamped and simply supported edges. Compos Struct. 2004;63(1):63–8.
doi:10.1016/S0263-8223(03)00132-6.

23. Tenenbaum J, Eisenberger M. Analytic solution for buckling of rectangular isotropic plates with internal
point supports. Thin-Walled Struct. 2021;163(2):107640. doi:10.1016/j.tws.2021.107640.

24. Deutsch A, Eisenberger M. Benchmark analytic in-plane vibration frequencies of orthotropic rectangular
plates. J Sound Vib. 2022;541(5):117248. doi:10.1016/j.jsv.2022.117248.

25. Zhong WX. A new systematic methodology for theory of elasticity. China: Dalian University of Technology
Press; 1995.

26. Lim CW, Lü CF, Xiang Y, Yao W. On new symplectic elasticity approach for exact free vibration solutions
of rectangular Kirchhoff plates. Int J Eng Sci. 2009;47(1):131–40. doi:10.1016/j.ijengsci.2008.08.003.

27. Hu Z, Zheng X, An D, Zhou C, Yang Y, Li R. New analytic buckling solutions of side-cracked
rectangular thin plates by the symplectic superposition method. Int J Mech Sci. 2021;191:106051.
doi:10.1016/j.ijmecsci.2020.106051.

28. Shi Y, An D, Wu Z, Liang L, Chen L, Li R. Symplectic analytical solutions for free vibration of
elastically line-hinged orthotropic rectangular plates with rotationally restrained edges. Appl Math Model.
2024;136(1–2):115629. doi:10.1016/j.apm.2024.08.001.

29. Zheng X, Xu D, Ni Z, Zhou C, An D, Wang B, et al. New benchmark free vibration solutions of
non-Lévy-type thick rectangular plates based on third-order shear deformation theory. Compos Struct.
2021;268(3):113955. doi:10.1016/j.compstruct.2021.113955.

30. Banerjee JR. Dynamic stiffness formulation for structural elements: a general approach. Comput Struct.
1997;63(1):101–3. doi:10.1016/S0045-7949(96)00326-4.

31. Wittrick WH, Williams FW. Buckling and vibration of anisotropic or isotropic plate assemblies under
combined loadings. Int J Mech Sci. 1974;16(4):209–39. doi:10.1016/0020-7403(74)90069-1.

32. Wei Z, Yin X, Yu S, Wu W. Dynamic stiffness formulation for transverse and in-plane vibration of
rectangular plates with arbitrary boundary conditions based on a generalized superposition method. Int
J Mech Mater Des. 2021;17(1):119–35. doi:10.1007/s10999-020-09515-9.

33. Liu X, Liu X, Adhikari S. Exact dynamic stiffness formulations and vibration response analysis of
orthotropic viscoelastic plate built-up structures. Comput Struct. 2024;302(11):107455. doi:10.1016/j.
compstruc.2024.107455.

https://doi.org/10.1016/j.compstruct.2020.112664
https://doi.org/10.1016/j.ijmecsci.2020.105739
https://doi.org/10.1016/j.ijmecsci.2022.107171
https://doi.org/10.1016/0022-460X(76)90414-4
https://doi.org/10.1016/S0022-460X(03)00421-8
https://doi.org/10.1016/j.compstruc.2012.02.018
https://doi.org/10.1006/jsvi.2000.3541
https://doi.org/10.1016/j.apm.2018.08.033
https://doi.org/10.1016/S0263-8223(03)00132-6
https://doi.org/10.1016/j.tws.2021.107640
https://doi.org/10.1016/j.jsv.2022.117248
https://doi.org/10.1016/j.ijengsci.2008.08.003
https://doi.org/10.1016/j.ijmecsci.2020.106051
https://doi.org/10.1016/j.apm.2024.08.001
https://doi.org/10.1016/j.compstruct.2021.113955
https://doi.org/10.1016/S0045-7949(96)00326-4
https://doi.org/10.1016/0020-7403(74)90069-1
https://doi.org/10.1007/s10999-020-09515-9
https://doi.org/10.1016/j.compstruc.2024.107455


CMES, 2025, vol.142, no.1 355

34. Liu X, Li Y, Lin Y, Banerjee JR. Spectral dynamic stiffness theory for free vibration analysis of
plate structures stiffened by beams with arbitrary cross-sections. Thin-Walled Struct. 2021;160(2):107391.
doi:10.1016/j.tws.2020.107391.

35. Ventsel E. Thin plates and shells: theory, analysis, and applications. New York: CRC Press; 2001.
36. Meirovitch L. Elements of vibration analysis. New York: McGraw-Hill Book Company; 1986.
37. Gorman DJ. Free-vibration analysis of rectangular plates with clamped-simply supported edge conditions

by the method of superposition. J Appl Mech. 1977;44(4):743–9. doi:10.1115/1.3424166.
38. Gorman DJ. Free vibration analysis of cantilever plates by the method of superposition. J Sound Vib.

1976;49(4):453–67. doi:10.1016/0022-460X(76)90828-2.
39. Liu X, Banerjee JR. Free vibration analysis for plates with arbitrary boundary conditions using a

novel spectral-dynamic stiffness method. Comput Struct. 2016;164(4):108–26. doi:10.1016/j.compstruc.
2015.11.005.

40. Ng SF, Araar Y. Free vibration and buckling analysis of clamped rectangular plates of variable thickness
by the Galerkin method. J Sound Vib. 1989;135(2):263–74. doi:10.1016/0022-460X(89)90725-6.

41. Li R, Wang B, Li G, Tian B. Hamiltonian system-based analytic modeling of the free rectangular thin plates’
free vibration. Appl Math Model. 2016;40(2):984–92. doi:10.1016/j.apm.2015.06.019.

https://doi.org/10.1016/j.tws.2020.107391
https://doi.org/10.1115/1.3424166
https://doi.org/10.1016/0022-460X(76)90828-2
https://doi.org/10.1016/j.compstruc.2015.11.005
https://doi.org/10.1016/0022-460X(89)90725-6
https://doi.org/10.1016/j.apm.2015.06.019

	Insight Into the Separation-of-Variable Methods for the Closed-Form Solutions of Free Vibration of Rectangular Thin Plates
	1 Introduction
	2 Theoretical Frameworks of the SOV Methods
	3 SOV Methods and Bisection-Based Solution Procedures
	4 Nodal Line Patterns and the Solution Integrity
	5 Numerical Comparisons
	6 Conclusion
	References


