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ABSTRACT

Lower back pain is one of the most common medical problems in the world and it is experienced by a huge
percentage of people everywhere. Due to its ability to produce a detailed view of the soft tissues, including
the spinal cord, nerves, intervertebral discs, and vertebrae, Magnetic Resonance Imaging is thought to be the
most effective method for imaging the spine. The semantic segmentation of vertebrae plays a major role in the
diagnostic process of lumbar diseases. It is difficult to semantically partition the vertebrae in Magnetic Resonance
Images from the surrounding variety of tissues, including muscles, ligaments, and intervertebral discs. U-Net is a
powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high
segmentation accuracy. This work proposes a modified U-Net architecture namely MU-Net, consisting of the
Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar
vertebrae L1 to L5 and sacral vertebra S1. Pseudo-colour mask images were generated and used as ground truth for
training the model. The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI
images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data. The proposed
MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79% of
pixel accuracy (PA), 98.66% of dice similarity coefficient (DSC), 97.36% of Jaccard coefficient, and 92.55% mean
Intersection over Union (mean IoU) metrics using the mentioned dataset.
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1 Introduction

Artificial Intelligence (AI) is undeniably revolutionizing medical research and patient care, with
its multiple applications in several fields. Machine learning and artificial intelligence have the potential
to give clear interpretations to experts and to compile important features that might help clinicians in
accurate diagnosis, treatment planning, and disease monitoring [1]. A branch of machine learning
called deep learning focuses on teaching artificial neural networks to learn and make predictions
or judgments; it draws inspiration from the design and operation of the network of interconnected
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neurons in the human brain. Specifically, the use of AI in Computer-Aided Diagnosis may effectively
improve the diagnostic process in patients affected by Lower Back Pain (LBP) [2].

Over the last two decades, Computer Aided Diagnosis (CAD) has made remarkable strides,
surpassing traditional methods that involved laborious film digitization, Central Processing Unit
(CPU)-intensive computations, and a limited scope. Currently, CAD serves as a potent tool, with
thoroughly assessed methodologies applied to sizable and clinically relevant databases. The evolution
involves creating methodologies to assess CAD performance, validating algorithms with relevant
cases for accurate measurement and robustness, executing observer studies to evaluate radiologists
in diagnostic tasks, both with and without computer aid, and culminating in performance assessment
through clinical trials. This progress signifies the overcoming of traditional constraints through the
integration of CAD technology [3].

World Health Organisation (WHO) report on 19 June 2023 stated that in 2020, low back pain
(LBP) affected 619 million people globally, and it is estimated that the number of cases will increase
to 843 million cases by 2050, driven largely by population expansion and aging.

The intricate structure of the spine referred to as the vertebral column or backbone, supports,
stabilises, and protects the spinal cord while enabling mobility and flexibility. It is made up of several
vertebrae, which are bones, piled on top of one another. Lumbar region consists of vertebrae L1, L2,
L3, L4 and L5, intervertebral discs L1-L2, L2-L3, L3-L4, L4-L5 and L5-S1 where S1 is the sacral
vertebra. Lumbar vertebrae L1 to L5 are the largest and sturdiest vertebrae that bear the majority
of the upper body’s weight and endure a great deal of stress and pressure. Lower back discomfort is
largely caused by the lumbar vertebrae and intervertebral discs of the spine anatomy [4]. Numerous
conditions, including sciatica, herniated discs, degenerative disc disease, spinal stenosis, muscular
strains, sprains, or spasms, can result in lower back pain. Herniated discs occur when the cushioning
discs between the vertebrae rupture or bulge out of place, putting pressure on the nerves and causing
pain. Spinal stenosis occurs when the spinal canal narrows. Degenerative disc diseases occur when the
discs between the vertebrae break down or wear away, leading to pain and stiffness. Osteoarthritis is a
condition that affects the joints, causing pain and stiffness. Spondylolisthesis occurs when one vertebra
slips out of place onto the vertebra below it, causing pain and nerve compression [5,6].

Lumbar vertebrae segmentation for Computer-aided diagnosis of lumbar diseases can be a
challenging task due to the complexity of the lumbar spine anatomy and the variability of the imaging
modalities used for diagnosis, such as X-ray, Computed Tomography (CT), and Magnetic Resonance
Imaging (MRI) [7]. For examining the spine’s soft tissues, MRI is thought to be the most effective
imaging modality. T1 and T2-weighted MR imaging are two of the most often used techniques
for MR imaging. The relaxation durations T1 and T2 are used to illustrate the different types of
tissues in the body [8]. One of the primary challenges is the complexity of the MRI images, which
typically consist of multiple structures, such as bones, muscles, organs, and soft tissue. These structures
have different shapes, sizes, and appearances, making it challenging to distinguish them from each
other accurately. Another challenge is the variability in the MRI image quality, such as variations in
resolution, contrast, and artifacts, which can affect the segmentation accuracy. These variations can
lead to partial volume effects, blurring of boundaries, and image noise, which can make it difficult for
automated segmentation algorithms to distinguish between different structures accurately. Herniated
discs, spinal cord compression, and spinal tumours are just a few of the ailments that an MRI is
especially helpful for detecting [9].

Segmentation plays an important role in analyzing and diagnosing Lower Back Pain. The goal of
segmentation is to separate the lumbar vertebrae from the surrounding anatomical structures, creating
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precise boundaries for each vertebra. Segmentation of the lumbar region can be performed using
traditional image processing techniques or advanced deep-learning approaches. Traditional methods
of segmentation rely on algorithms, such as region growing, thresholding, or active contour models, to
differentiate the lumbar vertebrae from the rest of the region. Deep learning techniques, in particular
Convolutional Neural Networks (CNNs), have achieved better results in automated segmentation
tasks. These techniques make use of deep neural networks’ ability to directly extract complex features
and spatial correlations from the data, leading to accurate and robust segmentations [10].

Ronneberger et al. [11] first suggested the U-Net in 2015, and it has since been widely used for
a variety of medical image processing applications, including segmentation. Furthermore, the U-
Net has been shown to achieve state-of-the-art performance on various MRI segmentation tasks,
including brain tumour segmentation, liver segmentation, and prostate segmentation. The network
can be divided into two paths: one is the contracting path, and the other is an expanding path.
The contracting path performs down-sampling for feature extraction, constructed the same as a
convolutional neural network but followed by an expanding path that performs up-sampling for
precise localization of features in the higher resolution layers. Another important aspect that makes
the network so special is taking the convolution layer feature maps that are trained in the down-
sampling path and concatenating them to the corresponding de-convolution layers of the up-sampling
path. In the down-sampling path, the input image runs through multiple convolutional layers, adding
pooling in between to down-sample and reducing the size of the image, simultaneously increasing the
number of layers by doubling the number of filters of convolutional layers on each convolution block.
The up-sampling path remains symmetric to the down-sampling path, turning the network into a U-
shaped neural network, named “U-Net”. The process of automatically labelling or segmenting various
anatomical components or regions inside the lumbar spine in medical imaging is known as semantic
segmentation of the lumbar region [12].

With the rapid development of deep learning and its wide application in the field of computer
vision, a series of lightweight models for semantic segmentation have been proposed, such as the UNet
series, SegNet, PSPNet, the DeepLab series and other classic variants of full convolutional networks
(FCNs), each of which have achieved good results [13]. The complex characteristics and spatial
correlations seen in the lumbar area are intended to be learned and captured by the convolutional
neural network architecture. U-Net and Fully Convolutional Networks (FCNs) are frequently utilized
for semantic segmentation. These architectures have an encoder for feature extraction and a decoder
for creating segmentation maps.

The U-Net architecture has several advantages for the semantic segmentation of MRI images.
It is designed to handle the challenges of medical image analysis tasks, such as the presence of
small structures, limited training data, and inter-patient variability. The architecture is also relatively
lightweight, making it suitable for deployment on limited computational resources as compared to
FCN. U-Net image segmentation method investigates the MRI image features accurately and provides
better assistance for doctors in their clinical practice [14,15]. The highlights of this work are as
follows:

• In the dataset preparation phase, the selective Digital Imaging and Communications in
Medicine (DICOM) slices of mid-sagittal MRI images have been used to generate the mask of
the region of interest to localize and label it, effectively.

• The proposed MU-Net architecture consists of a modified convolutional layer that incorporates
the Meijering filter for the semantic segmentation of vertebrae L1, L2, L3, L4, L5, and S1.
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• Generated pseudo color mask images along with the corresponding slices of MRI have been
used to train the network to detect the foreground of the lumbar vertebral column in the testing
phase and to localize it by labelling the individual lumbar and sacral vertebrae.

• The performance of the work is tested against standard performance measures for semantic
segmentation namely, pixel accuracy, dice similarity coefficient, Jaccard coefficient, and mean
IoU. The obtained results are compared with the existing approaches and the efficiency of the
proposed semantic segmentation system is proven.

The remainder of this paper has been organized according to the arrangement that is detailed
below. The relevant research on semantic segmentation for the effective diagnosis of lumbar diseases
is examined in Section 2. The computer-aided detection system that has been proposed for the
identification, categorization, and localization of vertebrae for diagnosing lower back pain is discussed
in Section 3. The performance of the proposed work is demonstrated in Section 4, and the study is
brought to a close in Section 5.

2 Review of Literature

This section studies and discusses the recent works on segmentation of the lumbar portion,
labelling the vertebrae, and other forms of analysis. Mahdy et al. in [16] have proposed an automatic
detection system that starts by visualizing the CT images in Digital Imaging and Communications
in Medicine (DICOM) format in three views and then identifies regions for the lumbar or sacral.
An adaptive threshold and modified region-growing technique have been used to separate the spine
from the surrounding tissues, organs, and bones. The k-means clustering algorithm has been used to
segment each vertebra in the spine. The intervertebral distance has been calculated to automatically
detect the degenerative disc in the lumbar area. The proposed system has been evaluated on ten
3D Computed Tomography (CT) images downloaded from the Cancer Imaging Archive (TCIA).
Zhang et al. in [17] have proposed the BN-U-Net network incorporates a specification layer, known
as the Batch Normalization layer which allows for batch normalization of data in a specific layer of
the convolutional network, thereby enhancing the performance of the U-Net network. The proposed
model exhibits notable advancements in segmentation accuracy, sensitivity, and specificity for spinal
MRI images compared to the FCN and U-Net algorithms. This improvement contributes to enhancing
the overall diagnostic precision of spinal-related diseases in MRI images. Lu et al. in [18] have proposed
a three-dimensional XUnet technique to accomplish automatic lumbar vertebrae segmentation. The
public dataset VerSe 2020’s lumbar spine CT images have been used for experimentation.

Tang et al. in [19] have proposed a dual densely connected U-shaped neural network (DDU-
Net) to segment the tissues with large-scale variant, inconspicuous edges like the spinal canal and
extremely small sizes like the dural sac. 50% of the images have been fed into DDU-Net for training,
20% of the images have been used for hyper parameters optimization and prevention of over fitting,
and 30% of the images have been used to evaluate the performance of the neural networks. The
model has been evaluated using several semantic segmentation metrics like pixel accuracy (PA), mean
pixel accuracy (MPA), mean intersection over union (MIoU), and frequency-weighted intersection
over union (FWIoU). Ablation studies have been carried out with/without data augmentation, skip
connections, dense blocks, and multi-branch networks. The Lumbar spinal CT image dataset used for
experimentation contains 2393 axial CT images collected from 279 patients, with the ground truth of
pixel-level segmentation labels.
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A computational methodology capable of detecting the spinal cord has been proposed in [20]. It
involves adaptive template matching for initial segmentation, intrinsic manifold simple linear iterative
clustering (IMSLIC) for candidate segmentation, and convolutional neural networks for candidate
classification. Template matching algorithm has been executed on each slice of the volume, where the
similarity for each matching in each slice has been calculated. Initialization of the template has been
defined as the one that has the greatest similarity. The number of the slice that has generated the best
matching has been saved. IMSLIC is the technique that uses the least number of parameters. It will
group neighboring pixels based on intensity and spatial distance. The dataset used for experimentation
contains 36 patients’ CT images from 3 different institutes that have been clustered as 56,698 regions,
where 4647 regions were the spinal cord and the rest all the non-spinal cord regions. The proposed
methodology has been evaluated with an accuracy of 92.55%, specificity of 92.87%, and sensitivity of
89.23% with 0.065 false positives per image in the detection of the spinal cord.

Semi-automatic segmentation of the colon region on T2-weighted MRI scans has been proposed
in [21]. In the first stage of segmentation, a custom novel tubularity filter using a set of points given
by the specialists has been used to find an approximation to the colon medial path. In the second
stage, a custom segmentation algorithm to detect the colon’s neighbouring regions and the fat capsule
containing abdominal organs. Finally, segmentation has been performed via 3D graph cuts in a three-
stage multigrid approach. Tubularity Detection Filter (TDF) has been built as a combination of two
filters namely the ring filter and the directional filter. The non-colonic regions like the spinal cord have
been discarded by segmenting and removed from the initial search space. The model has been evaluated
on three groups of MRI scans that have been acquired in the scope of different clinical studies with
Dice Similarity Coefficient of 0.92 and Sensitivity of 0.82.

A two-stage automated fracture detection system has been proposed in [22] to detect fractures in
the human body. The Faster Region with Convolutional Neural Network (Faster R-CNN) has been
used to detect the different types of bone regions in X-ray images. Crack-Sensitive Convolutional
Neural Network (CrackNet) has been used to recognize the fractured bone region. The 20 different
types of bones of the human anatomy, including vertebrae, have been analysed. Bone fracture
identification using CrackNet starts with the Schmid convolutional layer which incorporates the
Schmid filter into the convolution and connects to common convolutional layers to improve the recall
rate of fractured images. The dataset used for experimentation consists of 3053 X-ray images, in which
2001 images have been used for training and 1052 images have been used for testing. Faster R-CNN
and Crack-Sensitive CNN have achieved accuracy higher than 90%, an F-measure higher than 90%,
87.5% recall, and 89.09% precision, outperforming other methods on the bone fracture detection task.
The study indicates that the usage of appropriate filters in the convolution operation results in better
segmentation of structures.

He et al. have proposed a composite loss function with a dynamic weight, called the Dynamic
Energy Loss function in [23] for spine MR image segmentation. The two datasets used for experimen-
tation of the U-Net CNN model with the proposed loss function have achieved superior performance
with Dice similarity coefficient values of 0.9484 and 0.8284 and also verified by the Pearson corre-
lation, Bland-Altman, and intra-class correlation coefficient analysis. Li et al. have developed and
validated a model for the simultaneous 3D semantic segmentation of multiple spinal structures at the
voxel level named as the S3egANet in [24]. S3egANet explicitly solved the high variety and variability
of complex 3D spinal structures through a multi-modality auto-encoder module which has been used
for extracting the fine-grained structural information. For segmenting numerous spinal structures
simultaneously with high accuracy and reliability, a multi-stage adversarial learning technique has
been used. S3egANet has achieved the mean Dice coefficient of 88.3% and mean Sensitivity of 91.45%
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on MRI scans of 90 patients. Lessmann et al. in [25] have proposed an iterative instance segmentation.
A fully convolutional neural network has been used to segment and label the vertebrae one by one,
independently of the number of visible vertebrae. The network simultaneously carries out several tasks,
including segmenting a vertebra, regressing its anatomical label, and predicting whether the vertebra
is fully visible in the image. When all the detected vertebrae have been taken into consideration, the
projected anatomical labels of the individual vertebrae have been further refined using a maximum
likelihood approach.

The framework of U-Net architecture and the parametric level set have been proposed in [26]
to extract the shape of bones and disks accurately. CNN has been trained using the dataset, as the
level set is sensitive to initialization, training the CNN on training data and the output of the pre-
trained network has been used as input to the level set. The level set works in iterations and refines
the segmentation output to the desired level. Boundary and region-based optimization has been
performed using the geodesic curve and Heaviside function. Two different datasets have been used
for evaluation, namely 20 publicly available 3D spine MRI datasets to perform disc segmentation and
173 computed tomography scans for thoracolumbar (thoracic and lumbar) vertebrae segmentation.
The dice score has been evaluated as 90.37 ± 0.9 percent for discs segmentation and 94.7 ± 1.1 with
absolute surface distance (ASD) of 0.1 ± 0.04 mm for thoracolumbar vertebrae segmentation.

Zhang et al. in [27] have proposed a multi-task relational learning network (MRLN) that utilizes
both the relationships between vertebrae and the relevance of the three tasks namely the accurate
segmentation, localization, and identification of vertebrae. A dilation convolution group has been used
to expand the receptive field, and Long Short-Term Memory (LSTM) to learn the prior knowledge of
the order of the relationship between the vertebral bodies. A co-attention module has been used to learn
the correlation information, localization-guided segmentation attention (LGSA), and segmentation-
guided localization attention (SGLA), in the decoder stage of segmentation and localization tasks.
To avoid the cumbersome weight adjustment for different task loss functions, a novel XOR loss has
been formulated which provides a direct evaluation criterion for the localization relationship of the
semantic location regression and semantic segmentation.

Li et al. in [28] have proposed a dual-branch multi-scale attention module in the U-Net archi-
tecture. The network contains multi-scale feature extraction based on three 3 × 3 convolution
operators and the information selection based on the attention mechanism. The average dice similarity
coefficient has improved from 0.9008 to 0.9252 and the average surface distance has decreased from
6.40 to 2.71 mm on the dataset from the spine surgery department of Shengjing Hospital of China
Medical University. Wang et al. in [29] have proposed a lumbar spine image segmentation algorithm
based on improved Attention U-Net. The attention module based on multilevel feature map fusion has
been adopted, two residual modules have been used instead of the original convolution blocks and a
hybrid loss function has been used for prediction. The dataset used for experimentation consists of
420 lumbar MRI images of 180 patients. Accuracy, recall and dice similarity coefficient metrics have
been used to analyse the algorithms SVM, FCN, R-CNN, U-Net, and Attention U-Net models. The
improved model has achieved better results in all three metrics, with 95.50%, 94.53%, and 95.01%.

Pang et al. in [30] have proposed a novel two-stage framework named SpineParseNet to achieve
automated spine parsing for volumetric MR images. The network consists of a 3D graph convolutional
segmentation network (GCSN) for 3D coarse segmentation and a 2D residual U-Net (ResUNet) for
2D segmentation refinement. The dataset used for experimentation consists of 215 subjects on T2-
weighted volumetric MR images and has achieved performance with mean dice similarity coefficients
of 87.32 ± 4.75%, 87.78 ± 4.64%, and 87.49 ± 3.81% for the segmentations of 10 vertebrae, 9
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intervertebral discs (IVD), and all 19 spinal structures. Al-Kafri et al. in [31] have proposed lumbar
spinal stenosis detection through semantic segmentation. A ground truth dataset has been developed
containing image labels of four important regions namely, the intervertebral disc, the posterior
element, the thecal sac, and the area between anterior and posterior vertebral elements in the lumbar
spine. Atli et al. [32] proposed Sine-Net architecture, a fully convolutional deep learning model for
retinal blood vessel segmentation. The Sine-Net architecture integrates both up-sampling and down-
sampling operations to capture thin and thick vessel features effectively. Incorporating residuals
facilitates the retention and transmission of crucial contextual information to deeper layers, thereby
improving segmentation performance.

Guinebert et al. in [33] have developed a Picture Archiving and Communication System (PACS)
with a DICOM viewer to extract training data and implement two CNN networks, U-Net++ and
Yolov5x to segment and detect discs and vertebrae. U-Net++ has been dedicated to performing the
semantic segmentation task and Yolov5x for the analysis of degenerative disc disease, disc herniation,
and vertebral fracture. Two hundred and forty-four T2 weighted sagittal MRI scans from the university
hospital Pasteur 2 of Nice, France, used for experimentation have achieved accuracy of the order of
0.96 and 0.93 Dice index for intervertebral discs and vertebral bodies with an area under the precision-
recall curve of 0.88 for fractures and 0.76 for degenerative disc disease. Saenz-Gamboa et al. in [34]
have proposed a model for automatic semantic segmentation of lumbar spine MRI using variants of
U-Net to assign the class label to each pixel of an image with vertebrae, intervertebral discs, nerves,
blood vessels, and other tissues. Several complementary blocks, such as three types of convolutional
blocks, spatial attention models, deep supervision, and multi-level feature extractor have been used
to define the variants. The study showed that variants of U-Net yield better performance in semantic
segmentation. Haq et al. in [35] have proposed a BTS-GAN system for breast tumor segmentation.
The upgraded U-Net architecture utilized in the BTS-GAN system incorporates improvements like
integrating skip connections between encoder and decoder layers and introducing a parallel dilated
convolution (PDC) module. The PDC module in BTS-GAN improves tumor recognition across scales
and enhances context sensitivity without adding parameters. It comprises three parallel branches with
dilated convolutions for multi-scale feature fusion, preserving context while minimizing information
loss. These enhancements aim to boost the network’s ability to retrieve features, resulting in more
precise and efficient segmentation of breast tumors in MRI scans.

Luan et al. in [36] have developed a new deep model, namely Gabor Convolutional Networks
(GCNs or Gabor CNN), with Gabor filters incorporated into deep CNNs. GCNs have been readily
compatible with any well-liked deep learning architecture and implement the Gabor filter-based
convolution operator so that the robustness of learned features against the orientation and scale
changes can be reinforced. In medical image processing, many filters like tube filters, ridge filters,
neurites, or vessel filters have been used in literature to segment the muscles, bones, nerves, or blood
vessels. Meijering et al. in [37] have proposed a Meijering filter which is an improved steerable filter
for computing local ridge strength and orientation. They have used a graph-searching algorithm with
a novel cost function for exploiting the image features to obtain globally optimal tracings. In [38], the
Meijering neuriteness ridge filter has been performed to show the ridges of the vessels in the frames.
Based on the noise level, the Meijering filter was the most appropriate to show the ridge like structures
namely intervertebral discs and spinal canal which helps to give the clear representation of vertebrae.
The proposed work has been inspired by the literature and differs in the following ways:

• The bone fracture identification using CrackNet in [22] starts with the Schmid convolutional
layer which incorporates the Schmid filter in the convolution process. Similarly, Gabor CNN
incorporates Gabor filters into the convolutional layer in [34]. It is found from the literature
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that the Meijering filter is the best suitable ridge or vesselness filter used for the segmentation
of lumbar portions than the other ridge filters or tubularity directional filter in [21]. Hence the
MU-Net (Meijering U-Net) architecture is proposed which incorporates the Meijering filter in
the convolutional layer as discussed in [35,36] to perform the segmentation of vertebrae.

• U-Net and its variants are one of the best-suited deep learning architectures for the segmenta-
tion or the semantic segmentation of medical images as discussed in [17,19,23,26,28–30,32,33].
Semantic segmentation of the vertebrae helps diagnosing the lumbar disorders certainly as
discussed in [30–33]. In the proposed work, MU-Net is used for semantic segmentation of the
lumbar and sacral vertebra.

3 Methodology

This section discusses in detail about the dataset preparation, the pre-processing steps, and the
proposed MU-Net architecture for the semantic segmentation of the vertebrae. The performance of
semantic segmentation using MU-Net model as compared to the standard U-Net model has been
contributed by the effectiveness of the Meijering convolutional layer incorporating the Meijering filter
which enhances the vessel-like structures namely intervertebral discs and spinal canal that helps to
give the clear representation of vertebrae. As depicted in Fig. 1, the work flow of the proposed scheme
involves ground truth generation, pre-processing of input images, training phase and testing phase
of the proposed MU-Net architecture and the performance evaluation of semantically segmented
vertebrae image have been elaborated in detail in the further sections.

Figure 1: Overall architecture of the proposed scheme for semantic segmentation of the vertebrae

3.1 Dataset Preparation for Semantic Segmentation
Semantic segmentation of the lumbar vertebrae L1, L2, L3, L4, and L5 and sacral vertebra S1 is

essential to diagnose the lower back pain disorders. To perform the segmentation, the ground truth
information is generated initially before performing the segmentation task. Similarly, to perform the
semantic segmentation task, the meaningful mask or ground truth to differentiate the segmented
vertebrae must be generated clearly as depicted in Fig. 2. Dataset preparation provides the original
selective slices using Algorithm 1 and their corresponding pseudo color ground truth mask images are
generated as defined in Table 1. Red Green Blue (RGB) values represents the intensity values varying
from 0 to 255, where 0 0 0 represents black and 255 255 255 represents white color. The ground truth
generated and verified with radiologist and stored in directories for the further training of the deep
learning model.
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Figure 2: Pseudo color mask image generation

Table 1: RGB to labelling conversion

Label Class name R channel G channel B channel

0 Background 0 0 0
1 L1 255 0 0
2 L2 0 255 0
3 L3 0 0 255
4 L4 255 255 0
5 L5 0 255 255
6 S1 255 0 255

Algorithm 1: Dataset preparation for semantic segmentation
Input: DICOM image slices, Di ∀ i = 1, 2, ..., N, where N is the number of slices, either 15 or 30.
Output: Pseudo-color mask image, Mpid where pid = 1, 2, ..., number of patients in the dataset.

1: Load the DICOM image stack Di into DICOM viewer software. Appropriate selective slices D8 out
of 15 slices or D15 out of 30 slices for every patient pid (patient ID), will be saved as portable network
graphic (png) image file formats for further processing.
2: Load the selective slice D8 into ITK-SNAP software and use the ‘label editor’ tool from the toolbox
to define all the 7 labels, RGB values and the corresponding names as mentioned in Table 1, later the
same will be used for training the MU-Net model’s ‘RGB_to_LABEL’ conversion function.
3: Segment the vertebrae L1, L2, L3, L4, L5 and S1 by drawing polygons around each vertebra.

3.1: Select the ‘quick label picker’ tool to choose one of the colours of the corresponding label.
3.2: In the ‘polygon inspector’ tool, choose the ‘smooth curve’ option and draw the segmentation

by following the contour of the vertebrae carefully and give the ‘accept’ option to finalize it.
4: Repeat Step 3 for all the labels. Finally, save the segmentation data using the ‘save segmentation’
option in ITK-SNAP. Choose the appropriate file format, such as PNG, for saving the Pseudo color
mask image Mpid, where pid varies from one to the number of patients in the dataset.
5: Generated ground truth is verified directly by radiologist to ensure the accuracy of the ground truth
images.
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Algorithm 2: Pre-processing for MU-Net model
Input: Selective image slices of the dataset preparation, Ppid.
Output: Pre-processed images, Tpid where pid = 1, 2, ..., number of patients in the dataset.

1: Selective color image slices Ppid have been converted into the grayscale images graypid using Eq. (1)
given below with Blue as 0, Green as 1, and Red as 2 in the channel representation,

graypid(x, y) = 0.114 × Ppid(x, y, 0) + 0.587 × Ppid(x, y, 1) + 0.299 × Ppid(x, y, 2) (1)

2: The inverse threshold operation has been performed on the grayscale image graypid obtained from
step 1 using Eq. (2),

TZpid(x, y) =
{

0, if graypid(x, y) > threshold_tozeroinv
graypid(x, y), otherwise

(2)

The threshold_tozeroinv value has been set to 140 based on empirical evaluation within the range
of values [100–150].

2.1: for each pixel in the input image graypid,
2.2: if the pixel value is greater than the threshold then set the output pixel value as black.
2.3: Otherwise, the output pixel value remains the same.

3: The binary threshold operation has been performed on the TZpid image obtained from Step 2
using Eq. (3),

Tpid(x, y) =
{

255, if TZpid(x, y) > threshold_binary
0, otherwise

(3)

The threshold_binary value has been set to 27 based on empirical evaluation within the range of
values [10–50].

3.1: for each pixel in the input image TZpid,
3.2: if the pixel value is greater than the threshold value, set the output pixel value as maximum.

Maximum value is assigned as white.
3.3: Otherwise, set the output pixel value as black.

3.2 Pre-Processing Phase for MU-Net Model
The selective DICOM slices obtained from the dataset preparation phase have been converted

to.png image to make it comfortable to process in deep learning models. These slices have been
(i) converted into grayscale and (ii) pre-processed using thresholding operations as described in
Algorithm 2. T1-weighted MRI interpretation involves analyzing pixel intensity values, where bright
pixels signify high signal intensity like vertebrae and dark pixels denote low signal intensity like spinal
canal. This property of T1 weighted image has been utilized in binary thresholding to facilitate pre-
processing that results in the effective segmentation of vertebrae. The Meijering filter can be applied
then to the pre-processed image in the MU-Net model.

3.3 Proposed MU-Net Architecture for Semantic Segmentation
The pre-processed selective slice images and the corresponding pseudo mask images obtained from

the dataset preparation phase and the pre-processing phase have been given for training the model with
the downsampling path and the upsampling path of the proposed MU-Net model as depicted in Fig. 3.
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Figure 3: Meijering U-Net architecture for the semantic segmentation of vertebrae

The algorithm describes about the Meijering U-Net model creation to perform semantic segmen-
tation of the vertebrae. Compile, train and save the model with defined inputs using the ‘categorical
cross-entropy’ loss function and the ‘Adam’ optimizer. In the testing phase of the model, implement
Steps 1 through 4 with the input test images to obtain the segmented feature map.

The Meijering convolutional layer is built by creating the Meijering filter [39,40] kernel matrix
Fmeij ∈ R

K×K×C×F , where K is the size of the filter, C is the number of input channels, and F is the
number of filters in the layer, followed by convolution as mentioned in Algorithm 3. Meijering filter
kernel matrix is computed based on the modified hessian matrix H’(X ) from the hessian matrix H(X )
based on the second-order derivatives of the image intensity identifying the curvilinear structures.

Fmeij(X) = H ′(X) =
⎡
⎢⎣h11 + α

2
h22

(
1 − α

2

)
h12(

1 − α

2

)
h12 h22 + α

2
h11

⎤
⎥⎦ (4)

where H(X ) is defined in Eq. (5), the eigenvalues λ′
1 and λ′

2 of H

‘

(X) with respect to H(X) is defined
in Eq. (6) and where α = 1/3 [40].
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Convolution operation is carried out between the input tensor X and Fmeij to obtain the output

feature maps Ymeij ∈ R
H

‘

×W

‘

×F mentioned in Step 1 is defined using Eq. (7),

Ymeij(i, j, f ) =
∑

k1, k2, c

∑
m, n

X(i+m−1, j+n−1, c) × Fmeij(k1, k2, c, f ) (7)

where Ymeij(i, j, f ) represents the output at position (i, j) in the f -th filter of the Meijering Convolu-
tional layer, X (i+m−1, j+n−1, c) represents the value at position (i+m−1, j+n−1, c) and Fmeij(k1, k2, c, f )

represents the Meijering filter coefficient, the outer sum (
∑

k1, k2, c) is taken over all valid positions of
the filter and input tensor dimensions, while the inner sum (

∑
m, n) is taken over the filter size.

Algorithm 3: Meijering U-Net architecture for the semantic segmentation of vertebrae
Input: X ∈ R

H×W×C -Pre-processed input image tensor X with dimensions’ height H as 320, width W
as 320, and number of channels C as 3.
Output: Ypred ∈ R

H×W×C -Predicted Segmentation mask with dimensions’ height H as 320, width W as
320, and number of segmenting classes including background SC as 7.

1: Implement the Convolutional layer incorporating the Meijering filter defined by Eq. (4) to obtain
output feature map Y meij,

Ymeij ← X ∗ Fmeij

2: Implement the down-sampling path of the MU-Net Architecture.
2.1: Apply Convolutional layer (L1) on Y meij to obtain the feature map Z [1],

Z[1] ← ReLU(W1 ∗ Ymeij + b1)

2.2: Apply Convolutional layer (L2) on Z [1] to obtain the feature map C [1],
C[1] ← ReLU(W2 ∗ Z[1] + b2)

2.3: Perform max pooling operation to the feature map C [1] to obtain the down-sampled feature
map P [1],

P[1] ← Maxpool(C[1], 2, 2)

2.4: Repeat steps 2.1–2.3 with increasing filter sizes (32, 64, 128, 256) to obtain feature maps C
[2] to C [5] and the reduced feature maps P [2] to P [4].

3: Implement the up-sampling path of the MU-Net Architecture.
3.1: Perform up-sampling on the feature map C [5], to obtain the upsampled feature maps,

Upsampling(C[5]) ← Conv2DTranspose(C[5])
3.2: Concatenate the corresponding feature maps (C [4]) from the downward path to obtain

concatenated feature map T [1].
T [1] ← Concatenate(Upsampling(C[5]), C[4])
3.3: Apply 3 × 3 Convolutional layer (L1) and then apply the second 3 × 3 Convolutional layer

(L2) to obtain the output feature map C [6],
Z[1] ← ReLU(W1 ∗ T [1] + b1)

C[6] ← ReLU(W2 ∗ Z[1] + b2)

3.4: Repeat Steps 3.1–3.3 with reducing filter sizes (64, 32, 16) in (C [7], C [8], C [9]) with
concatenation layers (T [2], T [3], T [4]).

4: Apply a 1×1 final fully connected layer to map the features to the number of segmentation classes
(SC) with the ‘softmax’ activation function, Ypred ← Conv2d(C[9], SC, softmax)

In the downsampling path of the MU-Net Architecture, the 3 × 3 convolution operation in Step
2.1 with 16 filters and ‘relu’ for activation, using ‘same’ padding to obtain the output intermediate
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resultant feature map Z[1] ∈ R
H

‘

×W

‘

×F1 is defined using Eq. (8),

Z[1] = relu(Conv2D(Ymeij, F1) + b1) (8)

where Ymeij represents the output feature maps obtained from the Meijering convolutional layer, F1 ∈
R

3×3×3×16 represents the filter weights for the convolutional layer, b1 ∈ R
16 represents the bias terms.

Apply another convolutional layer mentioned in Step 2.2 to obtain the output feature map C [1] is
defined using Eq. (9),

C[1] = relu(Conv2D(Z[1], F2) + b2) (9)

where C[1] ∈ R
H

‘

×W

‘

×F2, F2 ∈ R
3×3×3×16 represents the filter weights for the next convolutional layer,

b2 ∈ R
16 be the bias terms. Then perform the max pooling operation mentioned in Step 2.3 to obtain

the down-sampled feature map (P [1]) in the pooling layer is defined using Eq. (10),

P[1] = max_pool(C[1], pool_size = (2, 2), strides = (2, 2)) (10)

In the up-sampling path of the MU-Net Architecture, on each level performs up-sampling using
a 2 × 2 Convolutional Transpose layer followed by the concatenation of corresponding feature maps
from the downward path represented using Eq. (11),

T [i] = concatenation(C[5 − i], upsampling(C[i + 4])) (11)

where C[i] is the output of the i -th level, i = 1 . . . 4 in the downsampling path, 6 . . . 9 in the upsampling
path and 5 in the bottleneck.

For instance, 2 × 2 Convolutional Transpose layer (T [1]) mentioned in Step 3.1 to up-sample the
feature maps using Eq. (12) followed by the concatenation operation in Step 3.2 using Eq. (13),

upsampling(C[5]) = Conv2DTranspose(C[5], kernel_size = 2, strides = 2) (12)

T [1] = concatenate(C[4], upsampling(C[5])) (13)

The last 1×1 fully connected output layer maps the features to the number of segmentation classes
(SC = 7 including background) with the ‘softmax’ activation function mentioned in Step 4 is defined
using Eq. (14),

Ypred = Conv2D(SC, Kernelsize = 1, activation = ‘softmax’)(C[9]) (14)

where the resulting feature maps Ypred represent the predicted segmentation mask with dimensions (H,
W, SC). The number of segmentation classes is seven namely, background, L1, L2, L3, L4, L5, and S1.

4 Experimental Results and Discussion
4.1 Experimental Results

The experiment has been carried out on a system with a 64-bit windows operating system (OS),
64 GB of random access memory (RAM), an NVIDIA Quadro P5000 GPU with 16 GB of memory,
and an Intel Xeon processor with 3.60 GHz processing speed. The methods utilized in this work were
implemented with the help of frameworks such as Keras (version 2.9.0), Tensorflow (version 2.7.0),
Tensorflow-gpu (version 2.9.1), and OpenCV (version 4.5.5) from Python (version 3.9.7) libraries. The
images from the original source [41] have been downloaded and the pseudo mask images have been
created. This dataset has been utilized for experimentation of the proposed semantic segmentation
technique.
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The Lumbar Spine MRI Dataset from the Mendeley Data website in [42] is a publicly available
standard dataset containing T1-weighted and T2-weighted mid-sagittal view images of 515 patients.
T1-weighted mid-sagittal view comprises either 15 or 30 slices of size 320 × 320 for each patient in
DICOM format, out of which the 8th slice or 16th slice is the appropriate slice to view all the lumbar
portions. The dataset was partitioned in the ratio 60:20:20; a training and testing set comprising of
80%, i.e., 1049 images and an independent validation set comprising of 20%, i.e., 263 images. The
dataset includes many types of lumbar diseases, namely, disc bulging, disc herniation, degenerative
disc, spondylolisthesis, and fractured and normal images, as depicted in Fig. 4.

Figure 4: Sample images from the dataset (a) Normal, (b) Disc Herniation, (c) Degenerative disc
disease, (d) Disc Bulging, (e) Spondylolisthesis, (f) Fractured

Digital Imaging and Communications in Medicine format and Neuroimaging Informatics Tech-
nology Initiative (NIfTI) format are commonly used file formats to store MRI images. To visualize
the DICOM or NIfTI image files, DICOM viewer software or ImageJ software can be used. ImageJ
is a Java-based graphic design program dedicated to analyzing images of different file formats. The
appropriate slices of 1312 from all the patients are selected and saved in portable network graphic
(png) format using DICOM viewer software for segmenting the lumbar and sacral vertebrae clearly.

The proposed models’ coefficients are optimized using Adam optimizer, and other specifications
are kernel size, dropout, learning rate, activation function, loss function, and validation technique, as
mentioned in Table 2. Dropout and learning rates have been optimized using the grid search method.
The 5-fold validation technique gives better performance by reducing the overfitting problem.
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From experimentation, it is found that the training time is comparatively less for the proposed
MU-Net model, with an average of 86 s per epoch, as compared to the adopted U-Net, with an average
of 102 s per epoch for the stated model specification. Due to the need to assess classification accuracy as
well as localization correctness, evaluating semantic segmentation is fairly difficult [43]. The objective
is to evaluate the performance of the proposed semantic segmentation method by finding the overlap
and similarity between the semantic prediction and the ground truth. The parameters namely True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) of the confusion
matrix in the classification model are also evaluated in the segmentation model to measure the metrics
namely Pixel Accuracy (PA), Intersection over Union (IoU), and Dice Similarity Coefficient (DSC).

True Positive (TP) Pixels that are correctly assigned as vertebrae.

True Negative (TN) Pixels that are correctly assigned as background.

False Positive (FP) Incorrect extraction of background pixels as vertebrae.

False Negative (FN) Incorrect extraction of vertebrae pixels as background.

Pixel Accuracy (PA):

Accuracy also known as Rand index or pixel accuracy (PA) is one of the most known evaluation
metrics. The simplest metric computes the ratio between the number of pixels that are correctly
classified to the total number of pixels for one class [44]. In semantic segmentation, PA is defined
using Eq. (15) [45] that divides the number of accurate predictions (accurate positive and negative
predictions) by the total number of predictions for one class. Mean Pixel Accuracy (MPA) is the
average pixel accuracy for all the classes.

Pixel Accuracy (PA) = TP + TN
TP + TN + FP + FN

(15)

The splinter group of the pixels in a medical image is often taken up by a single ROI, with
the background of the image taking up the remaining pixels. The accuracy metric will always yield
an unjustified high score because of the genuine negative inclusion. Accuracy scores are frequently
higher than 90% or very near to 100%, even while predicting the segmentation of an entire image
as a background class. Due to class imbalance in segmentation, Pixel Accuracy is high, and then it
doesn’t mean superior segmentation ability. So other metrics, namely DSC and IoU, which evaluate
the similarity and overlap between the semantic prediction and the ground truth, play an important
role in semantic segmentation comparatively.

Table 2: Model specification

Hyperparameters Value/Method

Convolutional kernel size 3 × 3
Max pooling kernel size 2 × 2
Stride kernel size 2 × 2
Optimiser Adam [46]
Dropout 0.1
Padding Same
Learning rate 0.001

(Continued)
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Table 2 (continued)

Hyperparameters Value/Method

Activation Relu (all convolutional layers except the last layer) Softmax
(last layer)

Loss function Categorical cross-entropy loss function
Number of epochs 60
Validation technique K-fold cross validation

Intersection over Union (IoU):

IoU or Jaccard Index or Jaccard similarity coefficient score measures the similarity between the
predictions and the ground truth. Jaccard index score defined in Eq. (16) [43] varies from 0 to 1, where
0 represents no overlap and 1 represents the perfect overlap of segmented prediction with the mask
image.

J(A, B) = |A ∩ B|
|A ∪ B| = |A ∩ B|

|A| + |B| − |A ∩ B| (16)

where A represents the ground truth and B represents the segmented images. Or it can also be
represented with the confusion matrix parameters as defined in Eq. (17) [47],

IoU = TP
TP + FP + FN

(17)

IoU value or Jaccard index is evaluated for each segmented image and its corresponding mask
for every input image separately and then the overall average IoU or Jaccard score is computed.
IoU of the possible test cases in Fig. 4 have been calculated for the proposed model and compared
with the adopted U-Net model. The outputs for sample images using the adopted model and
proposed model are depicted in Fig. 5 and IoU variation with respect to the cases is depicted in
Fig. 6 for better visualization. In Figs. 6 and 7, sample cases have been shown; 1(a) shows a healthy
input sample, 2(a) shows a sample image indicating mild disc herniation, 3(a) shows the image
depicting disc degeneration, 4(a) shows the image depicting disc bulging and 5(a) and 6(a) indicate
the spondylolisthesis occurence on highly fractured or ruptured images.

Figure 5: IoU performance of the adopted U-Net and proposed MU-Net models
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Figure 6: Predicted output of the proposed MU-Net model and the adopted U-Net model (Column (a)-
Input image, Column (b)-Ground truth, Column (c)-Predicted output of the adopted U-Net model,
Column (d)-Predicted output of the proposed MU-Net model)

Mean Intersection over Union (mIoU):

Mean IoU computes the IoU on a class basis and then averages it. Mean IoU calculates the overlap
of every individual class in both the segmented mask and the actual ground truth one by one, and then
calculates the sum of all the classes’ overlap value and divides it by the total number of classes as defined
in Eq. (18),

mIoU = 1
K

K∑
i=1

IoUi (18)

where K = 7 represents all the 6 classes and one background class.
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Figure 7: Predicted output of the proposed MU-Net model and the adopted U-Net model (Column (a)-
Input image, Column (b)-Ground truth, Column (c)-Predicted output of the adopted U-Net model,
Column (d)-Predicted output of the proposed MU-Net model)

Dice Similarity Coefficient (DSC):

Dice Similarity Coefficient or SÃ-Dice index or F1 score is defined as two times the overlap area
between the prediction and ground truth mask, divided by the sum of pixels in both the prediction
and ground truth mask as defined in Eq. (19),

DSC = 2|A ∩ B|
|A| + |B| (19)

where A represents the ground truth and B represents the segmented images. Dice score or F1 score
represented with the confusion matrix parameters as defined in Eq. (20) [43],

DSC = 2TP
2TP + FP + FN

(20)

The proposed MU-Net model and the adopted U-Net model with pre-processed images as input
are trained and tested for 60 epochs and the corresponding performance metrics are plotted in Fig. 8.
The best performance for semantic vertebrae segmentation is achieved by MU-Net as depicted in
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Fig. 9 for better visualization in which Column 1 represents the performance metrics of the adopted
U-Net model and Column 2 of the proposed MU-Net model.

Figure 8: Training and testing performance metrics for 60 epochs of the adopted U-Net and proposed
MU-Net models
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Figure 9: Performance metrics of the adopted U-Net and proposed MU-Net models

4.2 Discussion
CAD systems in medical diagnostics raise ethical concerns to ensure that they serve as support

tools rather than replacements for human expertise. CAD system improves the performance metrics
over the past decades. Still, the final validation of the diagnosis remains with the radiologist.

The dataset used in our study has been sourced from Mendeley Data, which has been originally
introduced and extensively validated by the authors mentioned in [31]. The authors explicitly con-
sidered a wide spectrum of variability in clinical settings. The MRI scanning parameters used in the
scans can vary depending on the sequence and view plane types. The author ensures that the dataset
is representative of diverse clinical conditions like image registration algorithm, patient age, patient
movement, direction, and position of the image plane of axial view on sagittal view. The authors
ensures good quality and also ensures avoiding the destroyed or fused lumbar spine elements getting
included in the benchmark dataset.

Hyperparameters of the proposed model have been fine-tuned using the dropout regularization
technique to enhance the model’s robustness by reducing overfitting, leading to better generalization
across different imaging conditions. Data augmentation has been used to simulate variations in patient
positioning, image noise, and lighting conditions to ensure that the model can handle variations in
real-world clinical settings. The grid of three standard hyperparameter values [0.0001, 0.001, 0.01] has
been assigned for learning rate and [0.1, 0.3, 0.5] assigned for dropout. Grid search has been performed
using the defined grid, this gives the selective, optimized value for better performance of the model.

K-fold cross validation technique has been utilised with k value as 5. In 5-fold cross-validation,
the data has been split into 5 subsets, trained on k−1 subsets, and tested on the kth subset, repeating
the process k times. Grid search provides the hyperparameter combination with the best average
performance across all the 5-folds and provides the optimal parameter values.

For the semantic segmentation of lumbar and sacral vertebrae, the proposed model gives better
performance when compared to the state-of-art models, namely, UNet, SegNet, FCN, DDUNet,
FCN-UNet, 6-FFN, and ResNet-UNet as mentioned in Table 3. All the models utilize the MRI
modality on corresponding available datasets mentioned by authors using the variations of U-Net.
The proposed MU-Net model adopted the U-Net model and the adopted SegNet model have been
compared by the proposed sequence of methodology only by differing the corresponding U-Net
architecture.
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Table 3: Comparison of the performance of the proposed model with the existing models from the
literature review. Bold text and value represent the proposed model

Methods Modality MPA% IoU% DSC%

Lu et al. [48] U-Net MRI 94 91 93
Rak et al. [49] U-Net MRI – – 94
Huang et al. [50] U-Net MRI – 94 –
Lessmann et al. [25] FCN MRI – – 94
Al-Kafri et al. [31] SegNet MRI 96.44 81.26 –
Masood et al. [47] ResNet-UNet MRI 99.12 86 97
Adopted model U-Net MRI 97.63 96.05 97.50
Adopted model SegNet MRI 94.39 81.12 89.57
Proposed model MU-Net MRI 98.79 97.36 98.66

4.3 Limitation
The integration of CAD as a support tool in clinical workflows is highlighted, with final diagnoses

remaining the responsibility of trained professionals. Additionally, the importance of continuous
education is stressed to ensure radiologists understand both the benefits and limitations of CAD
systems for certain exceptional cases. The potential limitations of the proposed method are on different
image types other than DICOM images, different imaging modalities like CT or X-ray, and other
imaging conditions of highly fractured or ruptured vertebrae images. The hardware and software
specifications used for the experiment have been comparatively high, which may not be accessible to
all medical facilities to experiment with the proposed model for the diagnostic process. The limitation
can be overcome by performing the necessary changes as mentioned in future work.

5 Conclusion and Future Enhancement
5.1 Conclusion

Lower back pain (LBP) is a widespread and significant health issue that affects people of all ages,
from childhood to adulthood, and the elderly. To enhance outcomes and general well-being, lower back
pain sufferers should seek an early diagnosis and proper treatment. The proposed model produced
better results for the semantic segmentation of the lumbar portion comprising of lumbar vertebrae
L1 through L5 and the sacral vertebra S1 from T1-weighted spine MRI. Semantic segmentation
provides not only the segmented vertebrae but also the identification of which vertebrae it is. In
the dataset preparation process, the pseudo color mask images representing each vertebra to the
corresponding pixel intensity have been generated to train the MU-Net model. The pre-processing
phase of the input image performs image enhancement with thresholding operations to make the
image representation more clear for further segmentation process. In this work, a modified U-Net
architecture called Meijering U-Net (MU-Net) has been proposed, which leverages the power of U-
Net to tackle the complexities of medical spine image analysis tasks. The key addition in MU-Net is
the Meijering convolutional layer, which incorporates the Meijering filter to enhance the vessel-like
structures, namely intervertebral discs and spinal canal, which helps to give the clear representation
of vertebrae in MU-Net as compared to U-Net for the effective semantic segmentation process. The
ground truth masks and the input images were given as input to the MU-Net model. The MU-Net
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model has been used to extract the features from the images and perform pixel-wise classification based
on the ground truth information used for training the model. The output is the predicted mask image
that has been used to diagnose the vertebrae.

A dataset comprising 1312 images extracted from T1-weighted mid-sagittal MRI scans from the
Lumbar Spine MRI Dataset publicly available from Mendeley Data is used for experimentation. By
utilizing the Meijering filter in the convolutional layer, MU-Net has achieved a pixel accuracy of
98.79%, dice similarity coefficient of 98.66%, Jaccard coefficient or IoU of 97.36%, and 92.55% mean
IoU metrics for the dataset, thereby aiding in the diagnostic process of lumbar diseases. Based on
experimentation, it is found that the suggested method exhibits good performance across a variety
of performance criteria, demonstrating its effectiveness. The proposed CAD system that generates
diagnostic results from MRI would not only reduce the burden on a radiologist but also boost
confidence in a diagnosis. Occasionally, the CAD system might also detect a disorder that a radiologist
could have missed due to insufficient time to analyse a case. The proposed method allows for early
diagnosis of disc bulging, disc herniation, and slipped vertebrae, which avoids leading to spinal
stenosis, severe disc disorders, and spondylolisthesis that can be beneficial for a better patient outcome
by avoiding surgery or prolonged treatment.

5.2 Future Enhancement
In the future, the proposed framework can be extended to objectively segment the cervical,

thoracic, and pelvic regions as well as to give a more in-depth understanding of human spinal diseases
on different imaging modalities. Another direction that may be explored is spinal canal detection along
with vertebrae and intervertebral discs by fine-tuning the MU-Net model to diagnose Lumbar Spinal
Stenosis (LSS) in guiding surgeons towards less invasive methods for improving patient care and
optimizing surgical outcomes in the field of spinal surgery. The standard diagnostic machines used
traditionally by radiologists can also deploy the model as software. Apparently by using the cloud
environment to make the model into a SaaS (software as a service) with required configuration for
execution on any system containing minimal specification with proper internet facility.
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