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ABSTRACT

In radiology, magnetic resonance imaging (MRI) is an essential diagnostic tool that provides detailed images of a
patient’s anatomical and physiological structures. MRI is particularly effective for detecting soft tissue anomalies.
Traditionally, radiologists manually interpret these images, which can be labor-intensive and time-consuming due
to the vast amount of data. To address this challenge, machine learning, and deep learning approaches can be
utilized to improve the accuracy and efficiency of anomaly detection in MRI scans. This manuscript presents the
use of the Deep AlexNet50 model for MRI classification with discriminative learning methods. There are three
stages for learning; in the first stage, the whole dataset is used to learn the features. In the second stage, some layers
of AlexNet50 are frozen with an augmented dataset, and in the third stage, AlexNet50 with an augmented dataset
with the augmented dataset. This method used three publicly available MRI classification datasets: Harvard whole
brain atlas (HWBA-dataset), the School of Biomedical Engineering of Southern Medical University (SMU-dataset),
and The National Institute of Neuroscience and Hospitals brain MRI dataset (NINS-dataset) for analysis. Various
hyperparameter optimizers like Adam, stochastic gradient descent (SGD), Root mean square propagation (RMS
prop), Adamax, and AdamW have been used to compare the performance of the learning process. HWBA-dataset
registers maximum classification performance. We evaluated the performance of the proposed classification model
using several quantitative metrics, achieving an average accuracy of 98%.
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1 Introduction

Transfer learning has become a crucial component in computer vision, addressing the limitations
of traditional machine learning [1], which typically relies on training and testing on datasets with the
same feature space. However, in real-world applications, unseen cases often differ significantly from the
training data, leading to challenges in model generalization [2]. Transfer learning involves two disjoint
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domains, the source domain (training) and the target domain (testing). The source domain can consist
of multiple datasets, whereas the target domain is used exclusively for testing. Unlike conventional
methods [3] where training and testing share the same feature space [4], transfer learning operates with
distinct feature spaces for training and testing, reflecting real-world complexities more accurately.

The advantages of transfer learning [5] are listed below:

• Knowledge Transfer: Transfer learning emulates the human visual system by applying knowl-
edge from past experiences to new, unseen cases. This enhances the model’s ability to generalize.

• Versatility: It allows the model to handle diverse scenarios without the need to relearn feature
spaces for each new instance, making it adaptable to various applications.

The disadvantages of transfer learning are listed below:

• Complexity: The need to determine which features to learn, when to apply transfer learning,
and where it will be most effective introduces complexity.

• Domain Dependence: The success of transfer learning can heavily depend on the similarity
between the source and target domains. If they are too dissimilar, the transfer may not be
effective.

The approach is superior in real-world scenarios where datasets are often diverse and do not share
the same feature space. Transfer learning provides a more robust and flexible solution than traditional
methods, which may struggle with unseen cases. By leveraging existing knowledge, transfer learning
reduces the need for extensive retraining, saving time and computational resources.

For those focused on model performance, transfer learning offers a way to improve accuracy
and generalization in complex, real-world applications. From a research perspective, the challenges of
selecting the right features, timing, and application make transfer learning a rich field for exploration
and innovation. In practical applications, transfer learning’s ability to adapt to new data with minimal
retraining makes it an attractive choice for industries that require flexible and scalable solutions.

In summary, transfer learning stands out as a powerful tool in computer vision, offering significant
advantages in handling diverse and unseen cases, though it comes with its own set of challenges that
need careful consideration.

1.1 Motivation
To find tumors, the feature analysis on MRI is used in the neurology field [6,7]. In a diagnosis

using MRI, a large skilled human interpretation is required. The diagnosis can be made with small
size new feature set. This proposed method aims to apply transfer learning to classify the MRI images
with different sources and target domains with different feature spaces. So, it is not required to apply
feature selection and feature reduction processes on the source domain.

1.2 Related Works
Tumors from MRI images can be segmented using an automated technique proposed by

Alhassan et al. [8]. This technique has preprocessing and segmentation techniques for clustering and
extending the range of data to separate benign from malignant tumors or tissue. This work proposes
the clustering approach of the Bat Algorithm with Fuzzy C-ordered means (BAFCOM) as a current
learning-based approach for processing the automatic segmentation in multimodal MRI images to
find brain cancers. Using the Bat technique, the BAFCOM clustering technique finds the starting
centroids and distances inside the pixels. By measuring the distance between the tumor Region of
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Interest (RoI) and the non-tumor RoI, this technique also obtains the tumor. Using the Enhanced
Capsule Networks (ECN) processing method, the MRI image was next categorized as either normal
or a brain tumor.

Glory et al. [9] presented a Deep Neural Network (DNN) architecture combining MobilenetV2
and U-net. It takes advantage of both the local and universal contextual features of 2D MRI FLAIR
images. Encoders and decoders are used in the proposed network design. Various performance
indicators have been calculated, such as accuracy, Intersection Over Union (IOU), and dice loss. Brain
tumor identification, evaluation, and treatment rely heavily on automated 3D MRI segmentation. This
project aims to use Brain Tumor Image Analysis (BraTumIA) to do 3D volumetric segmentation.

Cristin et al. [10] introduced a reliable classification technique called fractional-chicken swarm
optimization (fractional-CSO) to classify the severity degree of malignancies. This study integrates
the derivative factor with the behavior of the chicken swarm to improve the precision of severity level
classification. Optimal outcomes are achieved by fine-tuning the positioning of the rooster, which
is determined by a superior measure of physical prowess. The classification of cancer is performed
following the preprocessing of brain images and the effective extraction of characteristics. In addition,
the proposed fractional-CSO algorithm is utilized to train a deep recurrent neural network, which is
employed to classify the severity level of malignancies.

Using 3D MR and 2D ultrasound (US) data, Qiao et al. [11] proposed the MRI-US multi-
modality network (MUM-Net) to categorize breast tumors into various categories. Our explicit
distillation of modality-agnostic variables for tumor classification is the main finding of MUM-
Net. To be more precise, the authors use min-max training techniques and a discrimination-adaption
module to separate features into modality-specific and modality-agnostic ones. Then, using an affinity
matrix and the selection of the nearest neighbor, they presented a feature fusion module to improve
the compactness of the modality-agnostic features. They created a paired MRI-US breast tumor
classification dataset of 502 samples and three medical indications to validate the suggested strategy.

An improved strategy for classifying Schizophrenia (SCZ) and Healthy Controls (HC) using
individual hierarchical brain networks created from structural MRI images was put forth by
Chawla et al. [12]. Individual hierarchical networks are built using this technique, with each node and
edge signifying an ROI and the correlation between two ROIs, respectively. The authors show that edge
features significantly improve SCZ/HC classification performance compared to node characteristics.
Classification performance is further examined by merging edge characteristics with node features
using a multiple kernel learning architecture.

Khaliki et al. [13] examined the classification process of transfer learning methods on brain pic-
tures to determine the transfer learning method with the most superior performance. The researchers
examined the efficacy of Convolutional Neural Network (CNN) and CNN based models such as
Inception V3, EfficientNet B4, and VGG19 on brain pictures. They also explored the use of transfer
learning using CNN as a multilayer without employing transfer learning.

Ahmmed et al. [14] developed and optimized two robust frameworks, ResNet 50 and Inception V3,
specifically tailored for the categorization of brain MRI images. Expanding on the past achievements
of ResNet 50 and Inception V3 in accurately categorizing various medical imaging datasets, our study
includes datasets with unique features, such as one with four distinct categories and another with two.
The authors have incorporated crucial strategies, such as Early Stopping and ReduceLROnPlateau,
to enhance the model by optimizing hyperparameters. This entailed augmenting the model with
more layers, exploring different loss functions and learning rates, and integrating dropout layers and
regularization techniques to guarantee the convergence of predictions. In addition, the implementation
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of strategic improvements, such as tailored pooling and regularization layers, has greatly increased the
precision of our models, leading to exceptional classification accuracy.

Majeed et al. [15] and his colleagues utilized a MobileNetV3 model that is optimized for mobile
CPU usage to extract features and transfer information. The authors proceed to develop a model
for classifying brain lesions by integrating lightweight DepthWise and PointWise blocks. The study
employs a fusion of three datasets that have the same picture structures. The classification performance
of this fusion is then compared to both pre-trained and fine-tuned approaches. Table 1 compares the
state-of-the-art methods with the methodology and dataset used.

Table 1: Comparison of state-of-the-art methods [8–15]

Authors Methodology Dataset used Remarks

Alhassan et al.
(2020)

BAFCOM clustering with
Bat Algorithm and
Enhanced Capsule
Networks (ECN)

Multimodal
MRI images

Automated segmentation and
classification of brain tumors.
Clustering separates benign from
malignant tissues; ECN classifies
MRI as normal or tumor.

Glory et al. (2023) Deep Neural Network
(DNN) combining
MobileNetV2 and U-net

2D MRI
FLAIR images

Focuses on local and global feature
extraction for 3D MRI
segmentation. Evaluated using
performance indicators like
accuracy, IOU, and dice loss.

Cristin
et al. (2021)

Fractional-Chicken Swarm
Optimization
(fractional-CSO)
integrated with a deep
recurrent neural network

Brain images Classifies severity of malignancies.
The approach enhances
classification by optimizing the
positioning of the rooster and
effective feature extraction.

Qiao et al. (2022) MRI-US Multi-Modality
Network (MUM-Net) with
modality-agnostic feature
extraction

3D MRI and
2D US breast
tumor dataset
(502 samples)

Categorizes breast tumors using
modality-specific and
modality-agnostic features.
Includes affinity matrix for feature
fusion.

Chawla
et al. (2022)

Hierarchical brain
networks built from
structural MRI images,
combining node and edge
features with multiple
kernel learning

Structural
MRI images

Improves classification of
schizophrenia (SCZ) and healthy
controls (HC) by enhancing edge
features and combining them with
node features.

Khaliki et al.
(2024)

Transfer learning using
CNN and CNN-based
models (Inception V3,
EfficientNet B4, VGG19)

Brain images Compares CNN-based models
with and without transfer learning
for brain image classification.
Aims to identify the most effective
approach.

(Continued)
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Table 1 (continued)

Authors Methodology Dataset used Remarks

Ahmmed
et al. (2023)

ResNet 50 and Inception
V3 frameworks with
advanced techniques
(Early Stopping,
ReduceLROnPlateau, etc.)

Brain MRI
datasets with
four and two
categories

Optimizes model performance with
hyperparameter tuning, strategic
improvements like tailored pooling,
and regularization layers, achieving
high classification accuracy.

Majeed
et al. (2024)

MobileNetV3 optimized
for mobile CPUs,
integrating DepthWise and
PointWise blocks

Fusion of
three datasets
with similar
structures

Classifies brain lesions. Compares
the performance of the fusion
approach with pre-trained and
fine-tuned models.

1.3 Challenges and Contributions
MRI data analysis to find tumors is generally the responsibility of the neurology field. However,

the process faces a huge obstacle and necessitates a high level of topic knowledge through intensive
formal skill acquisition. As a prelude to classification, researchers have suggested feature selection and
reduction techniques as distinct approaches to this classification task. The main contributions are:

1. AlexNet 50 is trained with three different datasets and three different learning models: AlexNet
50 with dropped layers and AleNet 50 with augmented source domain.

2. To classify the small target domain, the knowledge that was gained in training the source
domain is used. Thus, the knowledge gained in the three architectures is used to classify the
images.

3. The performance of the proposed model has been analyzed with different hyperparameter
optimizers.

2 Proposed Method
2.1 Preprocessing

Since this is a supervised learning technique, the initial stage involves loading the image samples
together with their corresponding labels or class names. Next in the sequence is batch normalization,
which is followed by cross-validation. Cross-validation involves dividing the dataset into separate
training and validation sets. To address the issue of overfitting, we have employed diverse data
augmentation approaches to generate virtual reproductions of brain MRI scans. This document
outlines many approaches for increasing the size of datasets, including zooming, flipping, rotating,
mirroring, and other methods.

2.2 Transfer Learning
Transfer learning is the application of prior experience knowledge to new cases. By utilizing their

previously acquired model parameters in training data, this method makes the application of deep
learning networks that have been pre-trained for novel tasks. Data-driven neural networks restrict
access to its secrets to the concealed layers, which function inverted from the output layer. This makes
the layers to be dropped selectively. So, this impedes any modifications to their weights and biases
during the training process. Transfer learning is advantageous when enormous datasets are used to
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construct pre-trained models. A decrease in computation time may ensue when a subset of the model
is trained as opposed to the entire model.

Transfer learning has three key components. Domain (D), task (T), and marginal characteristics
(P) are their names. According to Eqs. (1) and (2), two values are defined, namely the input space (X )
and the prior probability (P(X)).

D = X , P (X) (1)

P (X) = {xi} , xi ∈ X , 1 ≤ i ≤ n (2)

So, in the previous illustration, xi stands for a particular vector. A job, on the other side, is a target
function f (:) with a tuple with two components, and a label space. The goal function can be expressed
as follows: P(alpha|X) as a posterior probability from a probabilistic perspective. Task T is defined by
two components, as described below, given a domain D.

T = τ , P(B|A) = τ , f (:)B = b1, b2, b3, ...bn, ∀bi ∈ (3)

where τ is the label Space, f (:) is the predictive function trained using the feature vector and the labels
(ai; bj); ai ∈ A and ∀bi ∈ τ . For every feature vector ai there is a label, f (ai) = bi.

A transfer learning setting is defined as follows: where the source domain DS, source task TS, the
destination domain DT , and the target task TT as mentioned below:

DS = {aS, P(AS)} , AS = {
aS1

, aS2
, aS3

, . . . aSn

}
∀aSi ∈ aS

(4)

TS = {τS, P(BS|AS)} , BS = {
bS1

, bS2
, bS3

, . . . bSn

}
∀bSi ∈ τS

(5)

DT = {aT , P(AT)} , AT = {
aT1

, aT2
, aT3

, . . . aTn

}
∀aTi ∈ aT

(6)

TT = {τT , P(BT |AT)} , BT = {
bT1

, bT2
, bT3

, . . . bTn

}
∀bTi ∈ τT

(7)

With A is the space of input and B is the space of labels, consider the classification job T . Assuming
two collections of examples from the source domain and the target domain as shown here.

DS = {ai, yi}m
i=1 , P(AS) (8)

DT = {ai, yi}N
i=m+1 , P(AT) (9)

Transfer learning aims to develop a mapping f (:) : A → B has a lower classification loss
on the target domain with the assumptions that the DS and DT are RDT

= Pr(f (x) �= y) is the
miss-classification probability (a; b) DT . The simple definition of transfer learning is to permit the
conversion of the P(TT |DT), the conditional probability in DT . This uses the domain knowledge, which
is latent invariant in nature where DS �= DT or TS �= TT . The transfer learning is suitable for datasets
with many target labels that are smaller than the size of source labels.
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2.3 Lemma
Let’s say we have two tasks, X and Y. Let A represent the input space, BX stands for the output

space for Task X, and BX stands for Task Y’s output space. Let fX be the function that maps inputs
to outputs for Task X and fY be the function that does the same for Task Y. In transfer learning, we
presume that Task X and Task Y are related in some way, making part of the knowledge gained from
Task X applicable to Task Y. The function f: BX → BY , which maps the output space of Task X to the
output space of Task Y, can be used to illustrate this relationship.

Fig. 1 gives an overview of the proposed transfer learning method. Initially, it is required to
prepare the dataset, which involves loading the brain MRI image data along with any associated class
labels. After that, batch normalization and cross-validation are required. Next, batch normalization
and cross-validation, separated into training sets and validation sets, must be performed. We have
created virtual replicas of brain MRI scans using a variety of data augmentation techniques to combat
overfitting. This contains techniques to up-sample the datasets, such as image zoom, image flip,
rotation, and image mirroring. The transfer learning with three stages is shown in Fig. 2.

Figure 1: Proposed framework

The AlexNET50 model has a zero padding layer followed by five convolution stages and a pooling
layer with a fully connected layer. The first stage has a convolution layer, batch normalization, ReLu
activation layer, and a max pooling layer. Stage 2 and Stage 3 have a convolution block and an identity
block with different dimensions. The knowledge obtained through these features will be transferred
for classification.
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Figure 2: Transfer learning with AlexNet50

2.4 Learning Optimizer
Hyper-parameter adjustment is essential for improving model performance but can be time-

consuming. We employed the learning rate optimizer technique to improve model generalization
performance to discover a stable set of learning rates [16]. The learning rate represents the step size
utilized to estimate the training weight of the model. This impacts the pace of convergence. If the
learning rate is too low, convergence to the error surface’s optimum takes a long time, and only minor
adjustments to the model weights are made. The optimization method shoots over the minimum when
the learning rate is very high, causing divergence and reducing model performance. The process used
to determine the step size critically influences performance in out-of-sample generalization.

In the proposed work, hyperparameter optimizers like Adam, Stochastic Gradient Descent
(SGD), Root Mean Square (RMS) prop, Adamax and AdamW are used. By default, the Adam
optimizer is used, and others are compared with it. Adam is a technique used for efficient stochastic
optimization that relies solely on first-order gradients and has minimal memory requirements.
Stochastic optimization refers to the act of maximizing an objective function while taking into account
the existence of random elements. The SGD optimizer is highly effective when dealing with large
amounts of data and a high number of parameters. During each step, SGD computes an approximation
of the gradient by using a randomly selected subset of the data, known as a mini-batch, unlike Gradient
Descent, which takes into account the complete dataset at every iteration.

RMSProp adjusts the learning rate by considering the average of the recent gradient magnitudes.
RMSProp calculates and stores the average of the squared gradients. Therefore assigning greater
significance to more recent changes in gradients. AdamW optimization is a variant of stochastic
gradient descent that incorporates an adaptive estimate of first-order and second-order moments,
together with a weight decay methodology. Adamax is a first-order optimization approach that is
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derived from Adam and is based on the infinite norm. Because it can adapt the learning rate according
to the features of the data, it is well-suited for learning processes that change over time.

3 Dataset Description

This research uses three datasets to analyze the performance of transfer learning. The first dataset
is the Harvard whole brain atlas (HWBA-dataset) [17] with five classes of T2-weighted contrast-
enhanced images. The classes are normal, neoplastic, degenerative, inflammatory, infectious, and
cerebrovascular diseases, with 65, 277, 223, 189, and 376 slices, respectively. Brain MRI dataset from
the School of Biomedical Engineering of Southern Medical University (SMU-dataset) [18], which
includes 3064 samples of contrast-enhanced T1-weighted images of 233 research participants. There
are three classes in this dataset. They are Meningioma, Glioma, and Pituitary tumors with 708,
1426, and 930 slices, respectively. The National Institute of Neuroscience and Hospitals brain MRI
dataset (NINS-dataset) [18], and the Computer Science and Engineering Department, University of
Bangladesh, collaborated to curate the third dataset. There are 37 categories and 5285 T1-weighted,
contrast-enhanced brain MRI pictures in total.

4 Result Analysis and Discussion

The Anaconda runtime environment was used to test the suggested strategy. It is suitable for
massively parallel machine learning (ML) and deep learning (DL) model training since it has faster
GPUs, more RAM, and more disc space. We used Python 3.6 and other Python libraries like
TensorFlow and Keras to implement the suggested models. Our dataset was loaded using the OpenCV
library, and its division and results were computed using the scikit-learn package. Also utilized was
Matplotlib to display the plots. The primary component specifications of the computer also include
the following: Intel Core i5 processor clocked at 2.40 GHz, NVIDIA Quadro RTX 3000 graphics card,
32 GB of RAM, and more parts. x64-based CPU operating system type and 64-bit operating system.
The classification process aims to find the maximum log-likelihood, associating a larger probability
mass with the correct class and a smaller probability mass with the incorrect class. As a result, the loss
and cost functions are defined as follows:

L = −log
(

es
y∑

i esi

)
(10)

L′ = 1
N

N∑
i=1

L(f (xi, W), yi) {(xi, yi)}N
i=1 (11)

where s is the probabilities of the class in unnormalized logarithmic form.

4.1 Analysis of Dataset 1: Harvard Whole Brain Atlas (HWBA-Dataset)
The HWBA-dataset has five classes of MRI brain images. Table 2 summarises the classes and their

subcategories. The transfer learning model has three stages. Retraining of AlexNet50, training with
augmented dataset, and retraining AlexNet50 with augmented dataset. The accuracy of the proposed
framework is evaluated with a learning rate of 0.5, and the confusion matrix in Stage 1 is shown
in Fig. 3.
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Table 2: Classes and subclasses of HWBA-dataset

Class Subclass

Normal brain Normal Anatomy in 3-D with MRI/Positron emission
tomography (PET) (Javascript)
Atlas of normal structure and blood flow
Vascular anatomy
Normal ageing: structure and function
Top 100 brain structures
Normal aging: coronal plane

Cerebrovascular disease Cerebral hemorrhage
Vascular dementia
Acute stroke: speech arrest
Acute stroke: speaks nonsense words, “fluent aphasia”
Subacute stroke: hesitating speech, “transcortical aphasia”
Subacute stroke: loss of sensation
Chronic subdural hematoma
Cavernous angioma
Acute stroke: writes, but can’t read, “alexia without agraphia”
Hypertensive encephalopathy
Multiple embolic infarctions
Hypertensive encephalopathy
Fatal stroke
NEW: multiple embolic infarction, diffusion and FLAIR imaging

Neoplastic disease (brain tumor) Sarcoma
Meningioma
Metastatic adenocarcinoma
Glioma TITc single-photon emission control tomography
(SPECT) with a Tour
Metastatic bronchogenic carcinoma
Glioma, Fludeoxyglucose-18 (FDG)-PET
Glioma, TITc-SPECT
Glioma, FDG-PET

Degenerative disease Alzheimer’s disease, visual agnosia
Pick’s disease
Cerebral calcinosis
Motor neuron disease
Huntington’s disease
Alzheimer’s disease
NEW: Mild Alzheimer’s disease, FDG-PET and MRI
Alzheimer’s disease with functional MRI

(Continued)
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Table 2 (continued)

Class Subclass

Inflammatory or infectious
disease

Cerebral toxoplasmosis

Creutzfeld-Jakob disease
Herpes encephalitis
Lyme encephalopathy
AIDS dementia
Multiple sclerosis

Figure 3: Confusion matrix for the HWBA-dataset in Stage 1

The results show that the overall accuracy is 84.5% with a precision of 82.2%, recall of 84.4%,
and F1-score of 82.6%. The top 5 misclassified samples in Stage 1 are shown in Fig. 4. The Receiver
Operating Characteristic (ROC) curve is an important performance metric to analyze the classwise
classification performance [19,20]. Obtained with the default optimizer Adam has been shown in Fig. 5
for Stage 1. The class normal (Class 0) registers an area under curve (AUC) with 1 and the classes
degenerative disease (Class 1), neoplastic disease (Class 2), inflammatory infectious disease (Class 3),
and cerebrovascular disease (Class 4) with an AUC of 0.96, 0.96, 0.97 and 0.98, respectively.
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Figure 4: Top 5 misclassified samples of the HWBA-dataset in Stage 1

Figure 5: ROC curve for HWBA-dataset in Stage 1

The accuracy of the HWBA-dataset in Stage 2 is 87.43%. The precision of the same is 84.8%, recall
is 87.2%, and F1-score is 85.6%. The confusion matrix of Stage 2 classification is shown in Fig. 6. The
top misclassified samples in Stage 2 are shown in Fig. 7. The normal class (Class 0) has an AUC
of 1, while the degenerative disease class (Class 1), neoplastic disease class (Class 2), inflammatory
infectious disease class (Class 3), and cerebrovascular disease class (Class 4) have AUC values of 0.96,
0.95, 0.96, and 0.98 correspondingly as shown in Fig. 8.

The confusion matrix of Stage 3 is shown in Fig. 9. The accuracy of the HWBA-dataset in
Stage 3 is 97.96%. The precision is 96.6%, recall is 97.4%, and the F1-score is 97.4%. The top
misclassified samples are shown in Fig. 10. The normal class (Class 0) has an AUC of 1, while the
degenerative disease class (Class 1), neoplastic disease class (Class 2), inflammatory infectious disease
class (Class 3), and cerebrovascular disease class (Class 4) have AUC values of 0.96, 0.95, 0.97, and
0.98 correspondingly as shown in Fig. 11. The training accuracy of transfer learning with AlexNet50,
ResNet 50, VGG16 and ResNet32 are shown in Fig. 12. Sixty epochs were run in total, and each stage
of transfer learning will be run in each of the 20 epochs.
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Figure 6: Confusion matrix for the HWBA-dataset in Stage 2

Figure 7: Top 5 misclassified samples of HWBA-dataset in Stage 2

Figure 8: ROC curve for HWBA-dataset in Stage 2
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Figure 9: Confusion matrix for the HWBA-dataset in Stage 3

Figure 10: Top 5 misclassified samples of HWBA-dataset in Stage 3

Figure 11: ROC curve for HWBA-dataset in Stage 3
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Figure 12: Training accuracy for the HWBA-dataset through three stages

4.2 Analysis of Dataset 2: School of Biomedical Engineering of Southern Medical University Brain
MRI Dataset (SMU-Dataset)

SMU-dataset has three classes with 5285 slices of MRI images. This dataset is also used to train
the model with 60 epochs, 20 epochs for each stage of transfer learning. The confusion matrix for
Stage 1 is shown in Fig. 13. Stage 1 ensures the classification with 96% of precision with 95.6%, recall
of 96% and F1-score of 95.6% The overall accuracy is 98.07% with a precision of 97%, recall of 98%,
and F1-score of 98.8%. The top misclassified samples are shown in Stage 2 and are listed in Fig. 14.
The Meningioma class (Class 0) has an AUC of 0.96, while the Glioma class (Class 1) registers an
AUC of 0.98 and Pitutary (Class 2) with 0.99 as shown in Fig. 15. The overall accuracy of the Stage
2 classification of the SMU dataset is 97.2%. The confusion matrix of Stage 2 is shown in Fig. 16.
Precision, recall, and F1-score achieved are 96.6%, 97.33% and 97%, respectively. The top misclassified
samples in Stage 2 are shown in Fig. 17. The Meningioma class (Class 0) has an AUC of 0.97, while
the glioma class (Class 1) registers an AUC of 0.98 and Pituitary with 0.99, as shown in Fig. 18.

In Stage 3, the SMU dataset achieves 98.08% accuracy. The other metrics are 97% of precision,
recall of 98.8%, and F1-score of 98.9%. The confusion matrix of Stage 3 classification is shown in
Fig. 19. The top 5 misclassified samples in Stage 3 are shown in Fig. 20. The Meningioma class (Class
0) has an AUC of 0.97, while the glioma class (Class 1) registers an AUC of 0.98 and Pituitary with
0.98, as shown in Fig. 21. The accuracy obtained in the three stages using the state-of-the-art CNN
models is shown in Fig. 22.
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Figure 13: Confusion matrix of SMU-dataset in Stage 1

Figure 14: Top 5 misclassified samples of SMU-dataset in Stage 1

Figure 15: ROC curve for SMU dataset in Stage 1
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Figure 16: Confusion matrix of SMU-dataset in Stage 2

Figure 17: Top 5 misclassified samples of SMU-dataset in Stage 2

Figure 18: ROC curve for SMU dataset in Stage 2
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Figure 19: Confusion matrix of SMU-dataset in Stage 3

Figure 20: Top 5 misclassified samples of SMU dataset in Stage 3

Figure 21: ROC curve for SMU dataset in Stage 3
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Figure 22: Training accuracy for SMU-dataset

4.3 Analysis of Dataset 3: NINS Brain MRI Dataset (NINS-Dataset)
The NINS dataset contains 5285 T1-weighted MRI images divided into 37 categories. In total, 60

epochs are run, with 20 epochs for each stage.

Stage 1 achieved 82% of accuracy with 81% of precision, 82% of recall, and 81% of F1-score.
The confusion matrix of the Stage 1 classification with the NINS dataset is shown in Fig. 23. The
misclassified samples in Stage 1 are shown in Fig. 24. Fig. 25 shows the classwise ROC in Stage 1, the
AUC values are listed in labels.

Stage 2 achieved 87% of accuracy with 85% of precision, 86% of recall, and 84% of F1-score.
The confusion matrix of the Stage 1 classification with the NINS dataset is shown in Fig. 26. The
misclassified samples in Stage 2 are shown in Fig. 27. The classification of the NINS dataset in Stage 3
has a 92% accuracy with 90% precision, 90% recall, and 92% of F1-score. Fig. 28 shows the classwise
ROC in Stage 2, the AUC values are listed in labels.

The confusion matrix of the Stage 3 classification with the NINS dataset is shown in Fig. 29. The
misclassified samples in Stage 3 are shown in Fig. 30. Fig. 31 shows the classwise ROC in Stage 3, the
AUC values are listed in labels.

The performance of various hyperparameter optimizers has been discussed in Table 3. The
AlexNet50 has 62,378,344 learnable parameters. The CNN model with a frozen convolution layer has
58,631,144 learnable parameters. The proposed model has been analyzed with the default optimizer
Adam. Similarly, the other optimizers were also used, and the performance has been analyzed in terms
of accuracy. It registers that the SGD optimizer registers a maximum average accuracy of 98.4%.
Adamax registers the poor performance with 86% of accuracy as it suits well for the data that change
over time.
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To illustrate the performance of convolution layers, the Gradcam analysis is performed on the
trained model. The super-imposed feature sets are shown in Fig. 32.

Figure 23: Confusion matrix of NINS-dataset in Stage 1

Figure 24: Top 5 misclassified samples of NINS-dataset in Stage 1
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Figure 25: ROC curve for NINS dataset in Stage 1

Besides the deep learning models, the proposed method was compared with the traditional
image processing algorithms. It is compared with the MRI binary classification algorithm [21],
which uses a multi-level wavelet transform-based feature extraction with a Support Vector Machine
(SVM) classifier. The proposed method outperforms with 98% accuracy, whereas the existing one
obtained 96%. On the other hand, the SVM-based MRI classifier [22] with feature extraction using
Discrete Wavelet Transform (DWT), curvelet transform, and shearlet transform with particle swarm
optimization obtained an accuracy of 97.3% with an MRI dataset with 612 samples using Shearlet
Transform. In another diagnosis process [23] with Discrete Wavelet Packet Transform (DWPT), multi-
level entropies for binary MRI classification achieved 99.33% accuracy using a dataset of 255 brain
MRI images. The proposed method achieved 99.2% of accuracy on the same dataset.
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Figure 26: Confusion matrix of NINS-dataset in Stage 2

Figure 27: Top 5 misclassified samples of NINS-dataset in Stage 2
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Figure 28: ROC curve for NINS dataset in Stage 2

Another MRI classifier [21] with DWT and principal component analysis (PCA) for dimensional-
ity reduction was compared with the proposed method with 101 MRI samples. The proposed method
achieves 99% of accuracy, whereas the other method achieved 98.6%. The MRI image classifier [24]
with a pipeline of Stationary Wavelet Transform for feature extraction, PCA with Particle swarm
optimization (PSO), and Artificial Vee Colony to classify MRI brain images obtained an accuracy of
99.45%. Where the proposed method achieved 99.5% of accuracy. The proposed method is compared
with a traditional histogram equalization-based image enhancement-based diagnosis system [24], and
the existing method reported 99.45% of accuracy on 255 MRI images. The proposed method reported
99.2% of accuracy. The recent transfer learning method [25] for binary classification Transfer Learning
to perform MRI tumor classification used ResNet 50 on the three datasets that are used in this paper.
The HWBA-dataset reported 84.4% accuracy, the NINS dataset 93.8% [26] and the Biomedical School
of Engineering obtained 97.05% accuracy.
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Figure 29: Confusion matrix of NINS-dataset in Stage 3

Figure 30: Top 5 misclassified samples of NINS-dataset in Stage 3
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Figure 31: ROC curve for SMU dataset in Stage 3

Table 3: Perfomance analysis for various hyperparameter optimizers

Hyperparameter optimizer Accuracy (%)

Adam 98%
SGD 98.4%
RMS Prop 97.7%
Adamax 86.4%
AdamW 96.2%
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 32: (a) Sample image from SMU-dataset, (b) Super-imposed heat map of (a), (c) Sample image
from HWBA-dataset, (d) Super-imposed heat map of (c), (e) Sample image from NINS-dataset, (f)
Super-imposed heat map of (e)
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5 Conclusion

Deep Transfer Learning has demonstrated its efficacy in terms of performance metrics and
exhibits the ability to quickly adapt an architecture for tackling a specific problem rather than
building one from the ground up. Transfer learning, a significant area of deep learning research,
emphasizes the ability to quickly adapt models to various challenges by leveraging transferable and
invariant underlying information. We conducted three case studies using publicly accessible datasets.
To address the limitations of the small-sized dataset in the multi-class classification problem, our
research employed data augmentation techniques. The AlexNet 50 model has acquired knowledge
from both original and augmented data, namely from the frozen convolution layers. This knowledge
is now being transferred for further learning but without the frozen layers. The inadequate learning
performance in certain classes of the NINS dataset limits the suggested study. The reason for this
is the resemblance between those classes, which leads to an increase in both false positive and false
negative instances. We have successfully showcased the viability of employing transfer learning as a
potential solution for the multi-class classification challenge in brain MRI, regardless of the number
of classes involved. The performance has been evaluated using different hyperparameter optimizers.
In the future, Progressive Learning will facilitate the continual enhancement of MRI classification
models by transferring information from easier classification tasks to more intricate MRI datasets,
hence improving diagnosis accuracy without necessitating complete retraining. This methodology
can likewise be expanded to adaptively assimilate MRI data adaptively, facilitating real-time model
changes when fresh patient information is incorporated, resulting in enhanced accuracy and prompt
diagnosis in a dynamic clinical setting.
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