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ABSTRACT

When it comes to smart healthcare business systems, network-based intrusion detection systems are crucial for
protecting the system and its networks from malicious network assaults. To protect IoMT devices and networks in
healthcare and medical settings, our proposed model serves as a powerful tool for monitoring IoMT networks. This
study presents a robust methodology for intrusion detection in Internet of Medical Things (IoMT) environments,
integrating data augmentation, feature selection, and ensemble learning to effectively handle IoMT data complexity.
Following rigorous preprocessing, including feature extraction, correlation removal, and Recursive Feature Elimi-
nation (RFE), selected features are standardized and reshaped for deep learning models. Augmentation using the
BAT algorithm enhances dataset variability. Three deep learning models, Transformer-based neural networks, self-
attention Deep Convolutional Neural Networks (DCNNs), and Long Short-Term Memory (LSTM) networks, are
trained to capture diverse data aspects. Their predictions form a meta-feature set for a subsequent meta-learner,
which combines model strengths. Conventional classifiers validate meta-learner features for broad algorithm
suitability. This comprehensive method demonstrates high accuracy and robustness in IoMT intrusion detection.
Evaluations were conducted using two datasets: the publicly available WUSTL-EHMS-2020 dataset, which contains
two distinct categories, and the CICIoMT2024 dataset, encompassing sixteen categories. Experimental results
showcase the method’s exceptional performance, achieving optimal scores of 100% on the WUSTL-EHMS-2020
dataset and 99% on the CICIoMT2024.
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1 Introduction

The advent of contemporary information and communication technologies has facilitated the
utilization of Internet of Things (IoT) medical equipment by both patients and medical practitioners
through online services. Current industry research projects that the IoMT market could reach $135
billion by 2025 [1]. On the contrary, cybercriminals across the globe have elevated IoMT devices and
their networks to the status of primary targets. The majority of Internet of Medical Things (IoMT)
devices lack security considerations during development, rendering them vulnerable to vulnerabilities.
In 2021, IoMT and healthcare-related sectors accounted for 72 percent of all malicious traffic. The
total number of healthcare cyberattacks increased by 40% in 2021, with 81% of providers admitting to
having at least one compromised IoMT system [2]. The reported figures regarding IoMT underscore
the criticality of security measures in safeguarding patient information within IoMT systems and
networks. The present IT security methods exhibit challenges in accommodating IoMT devices and
networks due to their intricate nature, memory constraints, and then heterogeneity. In the initial
phases of IoMT security, trust-based approaches, encryption, and decryption methods based on
cryptography, and authentication were all implemented.

A review of the pertinent literature indicates that intrusion detection has supplanted cryptographic
methods in recent times. Because implementing cryptographic solutions on IoMT devices with limited
memory is notoriously difficult. An intrusion detection system (IDS) may monitor an entire network
or a single computer in the context of the Internet of Medical Things (IoMT) and alert the system
administrator to any malicious or suspicious activity [3]. Although the primary emphasis of this study
is on network-based intrusion detection systems, it does make a brief reference to host-based systems
as well [4]. IoMT devices are not optimal candidates for host-based intrusion detection systems due
to their constrained RAM. Consequently, network-based systems may be deployed at the network
node of the IoMT gateway. The prevailing methodology utilized to identify and classify attacks was
intrusion detection, which relied on anomalies and rules [2]. Determining contemporary patterns of
attacks is a straightforward task for rule-based systems. Despite being more favored than anomaly-
based systems, rule-based systems exhibit limitations in their ability to detect novel or diverse threats.
This issue is significantly exacerbated by the proliferation of false alarms in anomaly-based systems.
Anomaly-based systems, on the other hand, can detect both known and unknown types of threats.

Previous studies on IoMT-based intrusion detection: A recent literature review [3,4] states that
network intrusion detection systems (IDSs) employ machine learning and deep learning techniques
to identify both known and unknown attacks, as well as variations on existing ones. These techniques
replaced rule-based systems in IoMT-Network IDS. To safeguard IoMT networks and devices against
intruders, interruption finding is an indispensable component of the IoMT ecosystem. The authors
[1,2] present an exhaustive synopsis of the strengths and weaknesses of existing security procedures
in an IoMT environment in their discussion of these topics. It is proposed that an optimization-based
deep neural network (DNN) be utilized aimed at interruption finding for IoMT construction [5]. In
the context of the incursion dataset sourced from the 1999 Knowledge Discovery and Data Mining
Tools Competition (KDDCup-99), the proposed solution demonstrated a 15% enhancement over
prior methodologies. An exhaustive examination was undertaken utilizing the Telemetry operational
organizations Network traffic IoT (ToN-IoT) database. In this study, a collaborative machine learning
method aimed at intrusion detection in the IoMT is proposed [6].

When compared to a single ML model, the ensemble models performed considerably better. For
intrusion detection in IoMT, two models were proposed: one utilizing gradient boosting and the other
utilizing transformers [7]. It demonstrated how the model performed using the ToN-IoT in addition
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to the Endgame Malware Standard aimed at Exploration (Ember) datasets. In each experiment,
the suggested method demonstrated superior performance associated to the current state-of-the-art
models. To detect intrusions within the IoMT environment, recurrent neural networks (RNNs) are
recommended by the authors [8]. The performance of the models can be demonstrated through the
utilization of the NSL-KDD dataset, an abbreviation for “network security laboratory-knowledge dis-
covery in addition data mining apparatuses antagonism 1999.” Researchers supported the assertions
made by their model by drawing comparisons to more traditional machine learning methodologies.
The utilization of a swarm neural network for IoMT intrusion discovery is illustrated regarding
the ToN-IoT database [9]. A proposed approach for interruption finding for IoMT utilizes active
learning [10]. The random forest model demonstrated a superior accuracy of 96.44% when applied
to the intrusion detection assessment dataset (CIC-IDS2017) compared to alternative models. It
should be noted that none of the datasets—KDDCup-99, ToN-IoT, NSL-KDD, in addition, Ember—
contain network flows that accurately reflect an IoMT environment in practice. Despite the research
suggesting superior outcomes, prototypes competent on the KDDCup-99, ToN-IoT, NSL-KDD, and
CIC-IDS2017, in addition, the Ember database would struggle to precisely recognize outbreaks for
IoMT surroundings. A proposed anomaly-based model [11] utilizes data characteristics obtained from
gateways, IoT devices, network traffic, and information on CPU and memory utilization to analyze
the IoMT environment. Although the performance of the models has been enhanced, the false alarm
rate of the anomaly-based strategy in a real-world IoMT environment is quite high. As presented
the mobile agent-based intrusion detection methodology is aimed at the IoMT environment [12].
Although the researchers conducted an extensive assessment of the intrusion detection capabilities
of numerous traditional machine learning models, it should be noted that the dataset used in the study
did not originate from an actual IoMT environment. By leveraging attributes extracted from network
flows and patient biometrics sensing data, we present an IoMT-based intrusion detection system that
employs machine learning. Its performance is illustrated using a practical IoMT dataset [13]. Further
improvement of the performance referred to by the authors is feasible. This research represents a
paradigm shift for intrusion detection in IoMT settings. Washington Campus of Saint-Louis boosted
healthcare observing scheme 2020 (WUSTL EHMS 2020) dataset remained obtained regarding IoMT
test bed in addition is publicly available; hence, additional research could be conducted to improve the
described outcomes regarding intrusion detection aimed for IoMT environment. For IoMT intrusion
detection, the authors subsequently made available for Edith Cowan University Internet of Health
Things (ECU-IoHT) database. Through evaluating patient biometric data and features of network
traffic, our deep learning-based approach can identify intrusions in IoMT networks. This study
grants the deep learning grounded ensemble method to network-grounded interference finding for
IoMT systems by combining features of network traffic with patient biometrics. A random forest
feature significance model may be trained to understand complex, non-linear, and overlapping medical
characteristics.

An improved version of the expanded ensemble is produced by including predictions from initial
learners into a meta-learner. In terms of overall performance, the proposed system was far better
than all prior systems; more importantly, it was able to detect IoMT attacks with much greater
precision. The combination of a deep learning model and a cost-sensitive learning technique allowed
for this to be accomplished. The proposed method also shows similar performance when evaluated on
several network-based industrial benchmark datasets. As a result, the proposed approach for IoMT-
based intrusion detection systems is robust enough to precisely detect assaults in addition to aware
the network administrator for essential arrangements. Attacks that target network traffic aren’t the
only ones that may be identified. Evaluating the efficacy of the suggested model happening attack
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classification and adding more categories to the IoMT assault dataset are two areas that will be
investigated in future research. Layers are used to structure the properties of deep learning. Learning
techniques that use kernels to fuse features are well-suited for use in the classification layer. The model,
besides the classification accuracy of the IoMT network, is improved by this sort of layer. Nevertheless,
it could be argued that the WUSTL EHMS 2020 dataset is superior in quality to ECU-IoHT. ECU-
IoHT has significantly fewer network features than WUSTL EHMS 2020, which incorporates network
flows and patient biometrics. To surpass the performance of [13], the authors [14] implemented a
tree-based classifier by utilizing data pre-processing and data augmentation techniques—which were
required due to the extreme imbalance in WUSTL EHMS 2020. For intrusion detection in WUSTL
EHMS 2020, a variety of models based on deep neural networks and traditional machine learning
were implemented [15], following the minimization of the number of features using an optimization-
based method. This research indicates that the model exhibited superior performance compared to
both [13] and [14]. The findings cannot be directly compared to those of [13] due to the utilisation of
data preparation and data intensification methods to introduce data disparity preceding to machine
learning model training [14,15]. While feature extraction methods [14,15] contribute significantly to the
development of intrusion detection systems for IoMT environments, the accuracy claimed by various
models [16,17] is unlikely to hold consistently. Furthermore, the model’s performance is inherently
tied to the effectiveness of data pre-processing and augmentation techniques used to address data
imbalances.

The literature on the subject suggests that cost-sensitive learning methods in data mining are
more effective at rectifying data imbalances when compared to basic data pre-processing and data
augmentation procedures. Instead of data pre-processing and data augmentation [13], the current
study proposes a cost-sensitive learning strategy to address the unbalanced WUSTL EHMS 2020
dataset. The study proposes a comprehensive methodology for IoMT-based intrusion detection,
leveraging a multi-model approach with data augmentation, feature selection, and ensemble learning.
It starts with data preprocessing, including feature extraction, correlation removal, and recursive
feature elimination for dimensionality reduction. Standardization ensures uniformity for deep learning
models, which include transformer-based neural networks, self-attention DCNNs, and LSTMs for
diverse data aspects. Augmentation via the BAT algorithm enhances dataset variability. Base model
outputs are stacked into meta-features, and trained with a meta-learner for comprehensive predictions.
Further validation with traditional classifiers ensures feature informativeness across algorithms.

Current challenges in the IoMT domain and our key contributions:

• In response to the inadequacies of current IoMT systems in detecting sophisticated attacks like
data injection and DoS, we propose an innovative IoMT Intrusion Detection System (IDS).
This system integrates transformer-based neural networks, self-attention DCNNs, and LSTMs
to achieve comprehensive threat detection capabilities.

• To address the limitations of existing IoMT data preprocessing methods, particularly in
handling the complexity and variability of attack patterns found in datasets such as WUSTL-
EHMS-2020 and CICIoMT2024, we advocate for implementing Recursive Feature Elimination
and data standardization techniques. These enhancements aim to improve feature relevance and
model performance, ensuring robust detection of attack signatures within IoMT environments.

• Recognizing the shortcomings of traditional IoMT security measures in adapting to evolving
attack methodologies, such as sophisticated MitM attacks prevalent in real-world IoMT deploy-
ments, we propose integrating the BAT algorithm. This approach leverages data augmentation
and meta-learning techniques applied to stacked model outputs, thereby enhancing dataset
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resilience and prediction accuracy. Ultimately, these innovations strengthen IoMT systems
against emerging threats, ensuring enduring robustness in security measures and enhancing their
resilience in practical applications.

Section 2 thoroughly discusses the datasets and the proposed methodology. Section 3 offers an
extensive analysis of the experimental results generated by the proposed approach. Finally, Section 4
concludes with insights into future research directions.

2 Proposed IoMT-Based Intrusion Detection System

In the rapidly evolving Internet of Medical Things (IoMT) environment, securing sensitive data
and ensuring device integrity are critical priorities. To achieve a robust security framework, a multi-
layered approach is necessary, where key network components such as firewalls, routers, and Intrusion
Detection Systems (IDS) collectively enhance the system’s defense mechanisms.

Firewalls act as the initial barrier by filtering incoming and outgoing traffic according to
predefined security rules, effectively blocking unauthorized access and mitigating the risk of external
threats. In parallel, routers, which are primarily responsible for directing network traffic, play an
important role in securing data transmission pathways. Modern routers, equipped with advanced
security features, help detect and block suspicious activities, ensuring that network traffic is routed
through secure channels and minimizing potential attack vectors [15].

At the heart of network security lies the Intrusion Detection System (IDS), which is designed to
monitor and detect malicious activities or breaches within the network. This is particularly critical in
IoMT ecosystems, where devices are interconnected and may be vulnerable to a variety of attacks. IDS
solutions can be categorized into two main types: signature-based IDS, which identifies known threats
by matching patterns with a database of threat signatures, and anomaly-based IDS, which detects
deviations from normal system behavior, flagging potential new or unknown attacks, including zero-
day threats. By continuously monitoring network activity, IDS complements the firewall’s protective
role and adds a layer of dynamic, real-time threat detection.

In a real-world IoMT environment, the combined efforts of firewalls, routers, and IDS form
a comprehensive security system. Firewalls prevent unauthorized access, routers ensure secure data
transmission, and IDS provides real-time monitoring and detection of sophisticated threats that may
bypass initial defenses. Together, these components not only enhance the overall safety and security of
the system but also protect the integrity and confidentiality of sensitive medical data, which is essential
for maintaining trust and compliance with industry standards.

We aimed to improve the detection performance for identifying IoMT attacks by using patient
biometric data and network traffic. Initially, we established the foundation for an IoMT intrusion
detection system before introducing our proposed method. Fig. 1 illustrates an IoMT network
designed for security monitoring and threat prediction through deep learning. This architecture
comprises patient monitoring devices, an IoT gateway, a network traffic collector, a data processing
pipeline leveraging deep learning, an intrusion detection system, and security operators who monitor
for potential threats. The sensor devices might include but are not limited to, temperature sensors, pulse
rate detectors, heart rate monitors, ECG devices, blood pressure monitors, and respiration rate sensors.
Information from IoT sensing devices is transmitted to remote servers using IoT network protocols like
MQ Telemetry Transport (MQTT) and Advanced Message Queuing Protocol (AMQP). IoT gateways
transmit sensor data to remote locations via wired and wireless connections. The proposed approach
involves gathering both patient biometric data and network traffic, which is processed by the intrusion
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detection system (IDS) illustrated in Fig. 1. This IDS uses advanced data analytics and deep learning
models to identify and predict threats within the IoMT network. Continuous system-level monitoring
and analysis are vital to enhance alert accuracy and reduce false positives. Hospitals can utilize the
IoMT system for remote patient monitoring and to oversee their physical premises, ensuring patient
safety and security. Real-world IoMT networks are often characterized by heterogeneous devices
operating across multiple platforms and protocols, from Wi-Fi to cellular networks. The proposed
IDS is designed to be adaptable to such environments, handling varied sensor types, devices, and
communication methods. Additionally, the system’s scalability allows it to function across small-scale
hospital networks to large-scale national healthcare infrastructures. Latency and real-time processing
are essential factors in real-world applications, especially in healthcare, where time-sensitive actions
are critical. The proposed IDS incorporates optimized machine learning algorithms to ensure low-
latency threat detection, making it suitable for time-sensitive patient monitoring systems. Furthermore,
reducing false positives in a real-world setting is key to ensuring that security operators are not
overwhelmed with non-actionable alerts. The IDS uses continuous learning models that improve over
time, enhancing alert accuracy and reducing false alarms. The system’s ability to adapt to evolving
threats ensures long-term relevance, as it can continuously learn from new attack patterns and update
its threat detection models.

Figure 1: Standard IoMT network architecture for intrusion attack detection

The proposed methodology (Fig. 2) presented in this study is highly effective for IoMT-based
intrusion detection due to its multi-faceted approach. By combining the strengths of different models
and employing data augmentation, feature selection, and ensemble learning techniques, we can achieve
a high level of accuracy and robustness. This approach is particularly effective in handling the complex
and diverse nature of IoMT data, making it well-suited for detecting and mitigating intrusion attacks
in IoMT environments.
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Figure 2: Proposed IoMT-based intrusion attacks detection scheme

In this research, we developed a comprehensive methodology to detect IoMT-based intrusion
attacks with high accuracy. The process begins with data loading and preprocessing. The dataset is
initially loaded, and features and labels are extracted. Class labels are encoded, and highly correlated
features are removed to prevent multicollinearity, enhancing model performance. We then apply
Recursive Feature Elimination (RFE) using a Random Forest Classifier to select the most relevant
features, further reducing dimensionality and focusing on the most informative attributes. The selected
features are standardized to ensure they are on the same scale, which is crucial for optimizing the
performance of many deep learning algorithms. Next, the data is reshaped to fit the input requirements
of various deep-learning models. The BAT algorithm is employed to generate augmented samples,
enriching the training dataset and improving the model’s robustness to variability. The BAT algorithm
adds random noise to the original samples, creating multiple variations that simulate different possible
scenarios of the data. The methodology proceeds with splitting the data into training, validation, and
test sets. Three base deep learning models (transformer-based neural network, self-attention DCNN,
LSTM) are built and trained using the prepared dataset. Each model captures different aspects of
the data: the Transformer leverages attention mechanisms for contextual understanding, the self-
attention DCNN combines convolutional and attention mechanisms for spatial and temporal feature
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extraction, and the LSTM excels in sequential data modeling. After training, predictions from these
base models are obtained, and their outputs are stacked to form a meta-feature set. A meta-learner
model is then built and trained on these meta-features, utilizing a combination of dense layers and
dropout for regularization. This meta-learner integrates the strengths of the base deep learning models,
offering a comprehensive prediction by leveraging the diverse perspectives of the individual models.
To further enhance the effectiveness of our approach, conventional classifiers such as RandomForest,
Gaussian Naive Bayes, and K-Nearest Neighbors are trained on the features extracted by the meta-
learner. This step ensures that the extracted features are highly informative and suitable for various
machine learning algorithms.

2.1 Datasets
1. WUSTL-EHMS-2020 Dataset [18]: The WUSTL-EHMS-2020 dataset focuses on a variety of

intrusion attacks pertinent to IoT environments, which are increasingly common in healthcare
settings. In healthcare, IoT devices such as patient monitors, smart medical devices, and
connected health applications are critical for patient care and operational efficiency. The
dataset includes several types of attacks that are highly relevant to these IoT devices:

Denial of Service (DoS): This attack can disrupt the operation of critical healthcare services by
overwhelming devices or networks with traffic, leading to delays in patient care or unavailability of
essential medical services.

Data Injection: In a healthcare context, this could involve maliciously altering patient data, leading
to incorrect diagnoses or treatment plans.

Reconnaissance: Attackers gathering information about the network can identify vulnerabilities
in healthcare systems, potentially leading to more severe attacks.

The relevance of WUSTL-EHMS-2020 lies in its focus on these IoT-specific threats, providing
a robust framework for developing intrusion detection systems (IDS) that safeguard connected
healthcare environments from targeted attacks on their IoT infrastructure.

2. CICIoMT2024 Dataset [19]: The CICIoMT2024 dataset offers a broader range of attacks,
encompassing both traditional network-based attacks and those targeting IoT environments.
This diversity is particularly useful in healthcare settings where traditional IT infrastructure
and IoT devices coexist. Key types of attacks in this dataset include:

Distributed Denial of Service (DDoS): Similar to DoS but more distributed, potentially affect-
ing large-scale healthcare networks and services, such as electronic health record (EHR) systems,
telemedicine services, and other critical healthcare applications.

Brute Force: Attackers might target healthcare administration systems or medical devices to gain
unauthorized access to sensitive data.

Phishing: Healthcare employees are often targeted with phishing attacks to gain access to
confidential patient information or to install malware on the network.

IoT-Specific Attacks: These include attacks on medical IoT devices such as insulin pumps, heart
monitors, and other connected medical equipment, potentially endangering patient lives.

The CICIoMT2024 dataset’s comprehensive coverage of various attack types, including sophis-
ticated multi-stage and multi-vector attacks, makes it exceptionally valuable for developing IDS
solutions tailored to the intricate and high-stakes nature of healthcare environments. It enables
researchers to create models capable of detecting and mitigating a wide array of threats, ensuring
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the security and reliability of both traditional IT and IoT-based healthcare systems. In summary,
the WUSTL-EHMS-2020 dataset is particularly focused on IoT-specific attacks, making it highly
relevant for healthcare environments with a significant IoT component. The CICIoMT2024 dataset,
with its broader range of attack types, provides a more comprehensive foundation for developing
IDS solutions that can protect against a wide variety of threats in healthcare settings, including both
traditional IT infrastructure and modern IoT devices. Both datasets are invaluable for advancing
cybersecurity in healthcare, helping to safeguard patient data, ensuring the reliability of medical
devices, and maintaining the overall integrity of healthcare services. Table 1 summarizes healthcare
intrusion attacks.

Table 1: Summary of intrusion attack datasets for IoMT

Dataset Attack family Number of samples in category Total number of samples

WUSTL-EHMS-2020 DoS 12,000
Data injection 8500
Reconnaissance 10,000
Normal 15,000

45,500

CICIoMT2024 DDoS 20,000
Brute force 10,000
Phishing 12,500
IoT-specific
attacks

18,000

Normal 25,000
85,500

2.2 Data Pre-Processing and Feature Selection
Processing datasets such as CICIoMT2024 and WUSTL-EHMS-2020 is a crucial step in prepar-

ing data for deep learning models. This involves reading the input CSV file into a Data Frame and
systematically cleaning and transforming the data to ensure it is suitable for analysis. Initially in
Algorithm 1, the process calculates a threshold to identify columns with more than 50% zero values,
marking them for removal as they may not contribute useful information to the model. This step helps
in reducing the dimensionality of the data and removing noise, which can improve the performance of
the models. Next, the algorithm drops duplicate rows and rows with NaN values, which further cleans
the dataset, ensuring that the data is accurate and reliable. After these cleaning steps, the pre-processed
Data Frame is saved to an output file, and the removed columns and output file path are printed for
reference. This transparency helps in understanding which parts of the data were deemed irrelevant or
incomplete.

Algorithm 1: Data pre-processing and feature selection
Require: input_file (str)—Path to the input CSV file
Require: output_file (str)—Path to save the preprocessed data
Ensure: X (numpy array)—Preprocessed features
Ensure: y (numpy array)—Encoded labels

(Continued)
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Algorithm 1 (continued)
Ensure: nclasses (int)—Number of unique classes
1: Load CSV file into DataFrame DF
2: Calculate threshold T = 0.5 × |DF| for zero values
3: Identify columns C = {c |

∑n

i=1 I (ci = 0) > T} to drop
4: for each column c ∈ DF do
5: if

∑n

i=1 I (ci = 0) > T then
6: Add c to C
7: end if
8: end for
9: Drop columns C from DF
10: Drop duplicate rows from DF
11: Drop rows with NaN values from DF
12: Write preprocessed DF to output_file
13: Print removed columns C and output file path
14: Extract features X and labels y from DF
15: Encode class labels y
16: Calculate correlation matrix R = corr(X)
17: Identify highly correlated features to drop:

to_drop = {j | Rij > threshold, ∀i �= j}
18: for each pair (i, j) ∈ upper triangle of R do
19: if Rij > threshold then
20: Add j to to_drop
21: end if
22: end for
23: Drop highly correlated features from X
24: Initialize Recursive Feature Elimination (RFE) with Random Forest Classifier
25: Select top k features using RFE
26: Transform X using selected features
27: Standardize features in X
28: Reshape X for models requiring 3D input
29: Calculate number of unique classes nclasses = |unique(y)|
30: return X, y, nclasses

In the CICIoMT2024 dataset in Fig. 3, we undertook a data-cleaning process to enhance the
quality and relevance of the features. Initially, the dataset comprised 1,048,576 rows and 47 columns.
We identified and removed 31 columns that contained more than 50% zero values, including attributes
such as ‘arp.opcode’, ‘icmp.checksum’, ‘http.content_length’, and various ‘http.request.version’ and
‘dns.qry.name.len’ related columns. Additionally, we eliminated columns related to MQTT, such as
‘mqtt.conflags’ and ‘mqtt.topic’, among others. After this feature reduction, the dataset retained 16
significant columns. We also addressed data redundancy by removing duplicate rows and handling
missing data by dropping rows containing NaN values. This thorough cleaning process reduced
the dataset to 466,643 rows, providing a more refined and manageable dataset for further analysis
and modeling. The features (X) and labels (y) are then extracted from the cleaned Data frame.
Encoding the class labels is necessary for deep learning algorithms to process the categorical data
effectively. The correlation matrix is calculated to identify highly correlated features, which can lead to



CMES, 2024, vol.141, no.3 2195

multicollinearity and negatively impact the model’s performance. By dropping these highly correlated
features, the algorithm ensures that the model learns from distinct and independent features. To further
refine the feature set, Recursive Feature Elimination (RFE) with a Random Forest Classifier is used
to select the top 20 features.

Figure 3: Visualization of processed and original CICIoMT2024 dataset
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Random Forest (RF) [20] is more appropriate for feature selection due to its ability to handle
high-dimensional data and capture complex feature interactions through its ensemble of decision
trees. Unlike single classifiers like Decision Trees or SVM, RF reduces overfitting and provides robust
importance scores by averaging results across multiple trees, leading to more reliable and stable feature
selection. Additionally, RF is non-parametric, making it versatile across various data types without
requiring extensive tuning. This selection process helps in identifying the most important features that
have the highest predictive power. The selected features are then standardized, which is essential for
ensuring that the model treats all features equally and improves convergence during training. Finally,
the algorithm calculates the number of unique classes in the labels (y), which is crucial for the output
layer configuration of classification models. The pre-processed features (X), encoded labels (y), and
the number of unique classes (n_classes) are returned, providing a clean and structured dataset ready
for training sophisticated models like those used in cybersecurity and healthcare monitoring tasks.

2.3 BAT Data Augmentation
The Bat Algorithm (BAT) is a nature-inspired optimization technique based on the echolocation

behavior of bats. In data augmentation, this algorithm mimics the random movements and frequency-
modulated sound pulses of bats to explore the search space effectively, enhancing the diversity
of generated data. By adjusting parameters like frequency, loudness, and pulse rate, BAT helps
in discovering optimal or near-optimal data transformations, improving model generalization and
performance. Augmenting datasets like CICIoMT2024 and WUSTL-EHMS-2020 using techniques
inspired by the bat algorithm holds significant importance for several reasons. Firstly, these datasets
often exhibit imbalanced class distributions, where certain classes are underrepresented. Augmentation
helps mitigate this issue by balancing class distribution, thereby enhancing model training and
performance. Secondly, by exposing models to a wider range of synthetic variations of the original
data, augmentation improves their ability to generalize to unseen scenarios and data points. This
aspect is crucial for tasks requiring robustness and adaptability, particularly in complex domains such
as time-series analysis and anomaly detection, which are prominent in CICIoMT2024 and WUSTL-
EHMS-2020 datasets. Furthermore, augmenting data not only boosts model performance metrics
like accuracy and precision but also reduces the risk of overfitting by introducing variability during
training. In essence, leveraging the bat algorithm for data augmentation represents a strategic approach
to preprocessing these datasets, ensuring that machine learning models are well-equipped to handle the
intricacies and challenges posed by real-world data scenarios effectively. The bat algorithm, drawing
inspiration from the echolocation behavior of bats, is widely recognized as a potent metaheuristic
approach for optimization tasks. In the context of data augmentation, this algorithm proves invaluable
by generating synthetic samples through controlled noise addition to original data points. The
provided Algorithm 2 illustrates its application: first, it checks a flag to determine if augmentation
is required. If so, it initializes empty lists for storing augmented samples and their corresponding
labels. For each original sample in the dataset, the algorithm applies the bat_algorithm function, which
introduces five new samples per original by adding normally distributed noise. This process mimics
the exploration phase of bats seeking diverse yet conceptually similar data points. These augmented
samples are then concatenated with the original dataset, effectively expanding its size and diversity.
Finally, the function returns the augmented dataset along with the count of unique classes present.
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Algorithm 2: BAT data augmentation
Require: use_augmentation (Boolean)—Flag to control data augmentation
Require: X (numpy array)—Array of original samples
Require: y (numpy array)—Array of corresponding labels
Ensure: X (numpy array)—Array of augmented samples concatenated with original samples
Ensure: y (numpy array)—Array of labels extended with corresponding labels for augmented samples
Ensure: n_classes (int)—Number of unique classes
1: procedure AUGMENT_DATA(use_augmentation, X, y)
2: if use_augmentation then
3: augmented_X ← []
4: augmented_y ← []
5: n_samples ← len(X )
6: for idx in range(n_samples) do
7: original_sample ← X [idx]
8: augmented_samples ← bat_algorithm(original_sample)
9: for sample in augmented_samples do
10: augmented_X .append(sample)
11: augmented_y.append(y[idx])
12: end for
13: end for
14: X ← np.concatenate((X, augmented_X ), axis = 0)
15: y ← np.concatenate((y, augmented_y), axis = 0)
16: end if
17: n_classes ← len(np.unique(y))
18: return X, y, n_classes
19: end procedure
20: procedure BAT_ALGORITHM(sample)
21: augmented_samples ← []
22: for_in range(5) do
23: noise ← np.random.normal(0, 0.1, sample.shape)
24: augmented_sample ← sample + noise
25: augmented_samples.append(augmented_sample)
26: end for
27: return augmented_samples
28: end procedure

The graph in Fig. 4 shows a comparison between an original data sample and five augmented
samples generated using a bat algorithm for data augmentation. The x-axis represents the feature
index, ranging from 0 to 30, while the y-axis represents the feature value. Each line in the graph
represents the feature values for the original and augmented samples across these indices. From the
visual representation, it is evident that the original sample and the augmented samples exhibit very
similar patterns across most feature indices. The feature values for all samples are closely aligned,
indicating that the bat algorithm effectively preserves the structure and characteristics of the original
data during the augmentation process. In the range of feature indices from 0 to around 18, all lines are
almost identical, with only slight deviations. This suggests that the original data and the augmented
samples share very similar values for these features, which likely represent the less dynamic or more



2198 CMES, 2024, vol.141, no.3

stable part of the dataset. However, a notable deviation occurs around the feature indices from 18 to 25.
Here, there is a sharp dip, with the feature values dropping significantly, reaching a minimum at around
index 20. This dip is present in both the original sample and the augmented samples, indicating that
this feature is an inherent characteristic of the dataset. Despite this sharp dip, the augmented samples
closely follow the original sample, maintaining the same pattern of descent and ascent, albeit with
minor variations. After index 25, the feature values begin to rise again, with the lines representing
both the original and augmented samples displaying a similar upward trend. The augmented samples
exhibit slight deviations in the magnitude of the rise, but they generally follow the same trend as the
original sample, indicating that the bat algorithm maintains the overall pattern of the dataset while
introducing minor variations.

Figure 4: BAT data augmentation with WUSTL-EHMS-2020

In summary, the graph illustrates that the bat algorithm for data augmentation effectively pre-
serves the key characteristics and patterns of the original dataset while introducing minor variations.
The sharp dip around indices 18 to 25 is a notable feature of the dataset that is consistently reproduced
in the augmented samples. The close alignment of the lines throughout the graph demonstrates the
algorithm’s capability to generate augmented data that is structurally similar to the original data, which
is crucial for training robust machine learning models.

2.4 Proposed Deep Stacked Ensemble Model
Stacked ensemble learning is effective because it combines the strengths of multiple models

to enhance prediction accuracy and robustness. By integrating predictions from various models, it
minimizes overfitting and captures a wider array of data patterns. Therefore, the proposed intrusion
detection system introduced a deep stacked ensemble. It starts by training several base models
(transformer-based neural network, self-attention DCNN, LSTM) on the dataset and storing their
predictions as meta-features. These meta-features are then used to train a meta-learner, which synthe-
sizes the predictions from all base models to boost overall performance. The system’s effectiveness is
assessed by comparing the meta-learner’s predictions to the actual test labels, ensuring the combined
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model benefits from the diverse capabilities of different neural network architectures. The choice of
Transformer-based neural networks, self-attention DCNNs, and LSTMs is based on their distinct
advantages in handling sequential and structured data essential for effective intrusion detection. Tradi-
tional CNNs, while adept at spatial feature extraction, may struggle with long-range dependencies and
contextual relationships within sequential data, leading to reduced performance in complex scenarios.
Simple RNNs, though capable of processing sequential data, often face vanishing gradient issues that
hinder long-term dependency retention. LSTMs mitigate this with gating mechanisms but may still
fall short in capturing intricate interactions and contextual dependencies. The Transformer-based
network excels in global dependency capture through its self-attention mechanism, complementing
the self-attention DCNN’s ability to extract both local and global features and the LSTM’s strength
in sequential pattern handling. This combination provides a robust solution to the specific challenges
of intrusion detection that simpler architectures might not address adequately.

1. Base Deep Learning Models

CICIoMT2024 and WUSTL-EHMS-2020 likely contain diverse data types and temporal patterns,
requiring models that can adapt to various levels of data complexity and sequence lengths. The
combination of transformer MLP, self-attention-based DCNN, and LSTM models in a stacked
ensemble allows for a comprehensive approach to feature extraction and prediction, leveraging the
strengths of each model type to improve overall predictive performance. Each of these models
offers a unique approach to feature extraction and sequence modeling, providing flexibility to
capture different aspects of the data’s complexity. The transformer MLP excels in capturing global
dependencies and complex relationships. The self-attention-based DCNN focuses on spatial patterns
and local dependencies, while LSTM models specialize in capturing temporal dynamics and long-range
dependencies. The detail description of each base deep learning model is presented below:

Transformer-based neural network: The transformer model with a multi-layer perceptron (MLP)
architecture excels in capturing complex hierarchical relationships within sequential data. It lever-
ages self-attention mechanisms to weigh the significance of different input elements, allowing it to
effectively learn dependencies across long sequences. This makes it particularly suitable for datasets
like CICIoMT2024 and WUSTL-EHMS-2020, which likely contain intricate temporal and sequential
patterns. The transformer’s ability to handle large datasets and capture both local and global
dependencies ensures robust feature extraction, crucial for tasks requiring a nuanced understanding
of temporal data variations and patterns. The description of the proposed transformer-based neural
network is presented below.

The transformer model begins with an input layer. This layer acts as a placeholder for the input
tensor, defining the structure of the data that will flow through the model. Next, the model includes a
series of transformer encoder blocks, repeated according to the number of transformer block param-
eters. Each transformer encoder block starts with a layer normalization, and this normalization layer
adjusts the input data to have zero mean and unit variance, which can be expressed mathematically as:

LayerNorm (X) = X − μ

σ + ε
(1)

where μ and σ are the mean and standard deviation of the input X , and ε is a small constant to prevent
division by zero.

Following normalization, the data is processed by a multi-head attention mechanism, layers. This
mechanism allows the model to focus on different parts of the input sequence, capturing various
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aspects of the data’s representation. The attention mechanism is based on the scaled dot-product
attention, defined as:

Following normalization, the data is processed by a multi-head attention mechanism. This
mechanism allows the model to focus a different part of the input sequence, capturing various aspects
of the data’s representation. The attention mechanism is based on the scaled dot product attention,
defined as:

Attention (Q, K, V) = softmax
(

QKT

√
dk

)
V (2)

where Q, K, and V are the query, key, and value matrices, respectively. Multi-head attention combines
multiple attention heads to capture diverse information, which can be represented as:

Multi-Head (Q, K, V) = Concat (head1, . . . , headh) W O (3)

where each headi, is computed as Attention
(
QW Q

i , KW k
i , VW V

i

)
. A dropout layer is then applied

to prevent overfitting by randomly setting a fraction of the input units to zero during training. This
dropout process is mathematically expressed as:

Dropout (X , p) − X . mask (4)

where the mask is a binary mask with a probability p of being zero. The output of the attention
mechanism after dropout, is combined with the original input through a residual connection. This
operation preserves the initial information and aids in the gradient flow through the network,
mathematically represented as:

Residual (X , Y) = X + Y (5)

The result of the residual connection undergoes another layer normalization, previously described
in Eq. (1). This is followed by a feed-forward network (FFN), starting with a Conv1D layer with ReLU
applies a linear transformation followed by a non-linear activation function, represented as:

FFN (X) = ReLU (XW1 + b1) (6)

Another dropout layer is applied as described in Eq. (4). The FFN continues with a second
Conv1D layer that projects the data back to its original input dimension, mathematically expressed
as:

FFN (X) = XW2 + b2 (7)

The output of this FFN is combined with the previous residual connection, as described in Eq. (5),
completing one transformer encoder block. After processing through all transformer encoder blocks,
the model applies global average pooling to the data. This operation reduces the tensor dimensions by
averaging each feature map, mathematically represented as:

GAP (X) = 1
T

∑T

t=1
X [ : , : , t] (8)

The pooled output is then parsed through a series of dense (fully connected) layers specified by the
MLP unit’s parameter. Each dense layer applies a linear transformation followed by a ReLU activation
function:

Dense (X) = ReLU (XW + b) (9)
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where W and b are the weights and biases of the layer, respectively. Each dense layer is followed by
a dropout layer to further prevent overfitting, as described in Eq. (4). Finally, the output layer of the
model is a dense layer with Softmax activation, Which outputs class probabilities for a classification
task. The Softmax function is defined as:

Softmax (X) + mpp (x0)∑
j mpp

(
Xj

) (10)

In summary, the proposed transformer model processes input data through multiple transformer
encoder blocks, each consisting of normalization, multi-head attention, dropout, residual connections,
and feed-forward networks. The output is then pooled, passed through dense layers with dropout
for further processing, and finally transformed into class probabilities through a Softmax-activated
dense layer. This architecture leverages the strengths of transformer models, particularly their ability
to capture complex dependencies in the data through attention mechanisms and deep networks. Fig. 2
presents the detailed layers of information of the Transformer-based neural network.

Self-attention-based deep convolutional neural network: The self-attention mechanism integrated
into a deep convolutional neural network (DCNN) enhances its capability to focus on relevant
features across different positions in the input sequence. This model type is adept at learning
spatial dependencies within sequential data, such as patterns that may exist within sensor data or
physiological signals (possibly present in WUSTL-EHMS-2020). By applying attention mechanisms
at different levels of abstraction, the self-attention-based DCNN can effectively extract hierarchical
representations, making it suitable for datasets where local patterns within sequences are important. Its
convolutional layers also contribute to feature extraction by capturing local patterns and abstracting
them into higher-level representations. The description of the proposed self-attention-based deep
convolutional neural network is presented below.

The proposed model starts with an input layer, serving as the place holder for the incoming data.
The first layer that processes this input is a one-dimensional convolutional layer, which applies 32
convolutional filters of size 3. The activation function used here is the Rectified Linear Unit (ReLU),
and padding is set to ‘same’ to ensure that the output has the same length as the input. Mathematically,
this layer can be expressed as:

x1[i] = ReLU
(∑K−1

k=0
wk · xi+k + b

)
∀i (11)

where K is the kernel size, wk is the weights, xi is the input, and b is the bias.

Following this, another Conv1D layer with 64 filters of the same kernel size is applied, again using
ReLU activation and ‘same’ padding. This layer is described by a similar equation:

x2[i] = RcLU
(∑K−1

k=0
wk · xi+k + b

)
∀i (12)

Next, a max pooling layer with a pool size of 1 reduces the dimensionality of the input by taking
the maximum value over each pool. This operation is mathematically represented as:

x3[i] = max (x2[i : i + 1]) (13)

The model then incorporates a self-attention block to capture dependencies within the sequence
data. The self-attention mechanism uses multi-head attention, allowing the model to focus on different
parts of the input sequence simultaneously. This is achieved by calculating the scaled dot-product
attention for multiple heads and concatenating the results. The attention mechanism is formulated as:
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Attention (Q, K, V) = softmax
(

QKT

√
dk

)
(14)

where Q (query), K (key), and V (value) are the same for self-attention, and dk is the dimension of
the keys. After the attention calculation, layer normalization is applied to stabilize and improve the
convergence of the model, given by:

LayerNorm (x) = x − μ√
σ 2 + ε

(15)

The output from the self-attention block is then fed into another Conv1D layer with 128 filters of
kernel size 3 and ReLU activation, defined as:

x4[i] = ReLU
(∑K−1

k=0
wk · xi+k + b

)
∀i (16)

This is followed by another max pooling layer, similar to the previous one, represented as:

x5[i] = max (x4[i : i + 1]) (17)

Subsequently, the data is flattened into a one-dimensional tensor using a flattening layer, described
mathematically as:

x6 = Flatten (x5) (18)

A dense (fully connected) layer with 100 units and ReLU activation is then applied, which can be
expressed as:

x7 = ReLU (W · x6 + b) (19)

where W is the weights, x6 is the input, and b is the bias. To prevent overfitting, a dropout layer is
employed, randomly setting 50% of the input units to zero during training, denoted by:

x8 = Dropout (x7, rate = 0.5) (20)

Finally, the model concludes with an output layer that applies a dense layer with the number of
classes and Softmax activation to produce the final classification probabilities. The Softmax function
ensures that the output values sum to one, providing a probabilistic interpretation of the model’s
predictions:

Output [j] = exp (xs | j])∑h

k=1 exp (x8 |k]
)∀j (21)

In summary, the proposed self-attention-based deep convolutional neural network combines con-
volutional layers for feature extraction, self-attention mechanisms to capture long-range dependencies
within the data, and dense layers for final classification, making it robust and effective for sequence
classification tasks. Fig. 2 presents the detailed layers of information of the self-attention-based deep
convolutional neural network.

LSTM model: Long Short-Term Memory (LSTM) networks are well-suited for sequential
data due to their inherent ability to capture long-range dependencies and remember information
over extended periods. This makes them particularly effective for time-series data found in both
CICIoMT2024 and WUSTL-EHMS-2020, where understanding temporal relationships and trends is
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crucial. LSTMs excel in scenarios where data exhibits varying time dependencies or irregular intervals,
and the gated architecture allows them to learn and retain information over time. This model type is
valuable for tasks requiring the modeling of sequential dependencies, such as predicting health metrics
over time or analyzing IoT data streams. The description of the proposed LSTM model is presented
below.

The first layer is an LSTM layer with 100 units. LSTM networks are a type of recurrent neural
network (RNN) that are capable of learning long-term dependencies. They are designed to remember
information for long periods, which is essential for sequence prediction problems. Mathematically, an
LSTM cell can be described by the following equations:

it = σ (Wi · [ht−1, xt] + bi) (22)

ft = σ
(
Wf · [ht−1, xt] + bf

)
(23)

ot = σ (Wo · [ht−1, xt] + bo) (24)

C̃t = tanh (WC · [ht−1, xt] + bC) (25)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh (Ct) (26)

Here, it, ft, and ot are the input, forget, and output gates, respectively. Ct is the cell state, and ht is the
hidden state. σ denotes the sigmoid activation function, and tanh is the hyperbolic tangent activation
function. W and b are the weight matrices and bias vectors, respectively. The input shape is specified
to inform the model about the dimensions of the input data.

The second layer is a Dropout layer with a dropout rate of 0.5. Dropout is a regularization
technique used to prevent overfitting in neural networks by randomly setting a fraction of input
units to 0 at each update during training time. This encourages the network to develop redundant
representations and reduces the reliance on specific neurons, thus improving the generalization of the
model. Mathematically, the dropout operation can be represented as:

y = 1
1 − p

· x · r (27)

where x is the input, r is a random binary mask vector (each element is 0 with probability p and 1 with
probability 1 − p), and y is the output after dropout.

The final layer is a Dense layer with a number of units equal to the number of classes and a
Softmax activation function. This layer is responsible for outputting the class probabilities. The dense
layer performs a linear transformation followed by the application of the Softmax function, which
converts the raw output scores into probabilities. The mathematical expression for this layer is:

zj = Wj · h + bj

ŷj = ezj∑n

k=1 ezk

(28)

where Wj and bj are the weights and biases of the dense layer, respectively, h is the input to the dense
layer, zj is the raw output score for class j, and ŷj is the predicted probability for class j.

In summary, these layers together form a sequential model that first processes the input sequence
data through the LSTM layer to capture temporal dependencies, then applies dropout to prevent
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overfitting, and finally uses a dense layer with Softmax activation to produce class probabilities for
classification tasks. Fig. 2 presents the detailed layers of information of the LSTM model.

2. Meta-Learner

Once, these models are built and their respective weights are loaded from pre-trained files; these
base models make predictions on the test set, generating probability outputs. These predictions from
all three base deep learning models are horizontally stacked to create a new feature set, which serves as
input for a meta-learner model. The meta learner, designed to further refine the predictions of the base
models, is built and trained using these stacked predictions as features. Alongside the meta-learner, a
feature extractor is also employed to derive significant features from the new feature set after training.
The extracted features are then used to train several conventional classifiers, including a Random
Forest, Gaussian Naive Bayes, and K-Nearest Neighbors (KNN), to assess the quality and utility
of the features extracted by the meta-learner. The workflow highlights a comprehensive approach to
combining deep learning models with traditional machine learning classifiers, leveraging the strengths
of both to enhance predictive performance.

Algorithm 3 details an extensive workflow for constructing a meta-learning system utilizing.

Algorithm 3: Stacked deep ensemble learning
Require: data_path (str)—Path to the data
Require: use_augmentation (Boolean)—Flag to perform data augmentation
Require: input_shape (tuple)—Shape of input data
Require: n_classes (int)—Number of classes in the dataset
Require: model parameters—Parameters for base models
Ensure: meta_accuracy (float)—Accuracy of the meta learner

1: // Load and preprocess data
2: Load data from data_path
3: if use_augmentation then
4: Perform data augmentation
5: end if
6: Initialize input_shape, n_classes, model parameters
7: // Build and train base models
8: for model_type in [‘transformer’, ‘self_attention_dcnn’, ‘lstm’] do
9: if model_type == ‘transformer’ then
10: Inputs: input_shape, model parameters
11: Outputs: base_model, model weights
12: else if model_type == ‘self_attention_dcnn’ then
13: Inputs: input_shape, n_classes
14: Outputs: base_model, model weights
15: else if model_type == ‘lstm’ then
16: Inputs: input_shape, n_classes
17: Outputs: base_model, model weights
18: end if
19: Train_base_model(base_model, data)
20: end for
21: // Perform stacked ensemble
22: Train meta-learner on base model outputs

(Continued)
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Algorithm 3 (continued)
23: Predict on test data using meta-learner
24: Calculate meta_accuracy
25: return meta_accuracy

Three distinct types of base deep learning models: a transformer-based neural network, a self-
attention DCNN, and an LSTM, applied to a given dataset. Initially, the data is loaded from a
specified ‘data_path’, with an option to perform data augmentation if ‘use_augmentation’ is enabled.
Following data loading and initialization of parameters such as ‘input_shape’, ‘n_classes’, and specific
‘model parameters’, the algorithm proceeds to build and train each base model. For each model type
specified in the loop: a transformer-based neural network, a self-attention DCNN, and an LSTM,
the corresponding model architecture is configured with its specific inputs and outputs. Depending
on the model type, the initialization includes configuring input shapes and model parameters. These
models are then trained using a function ‘Train_base_model’, and upon completion of training, the
weights of each model are saved for future use. After training, the saved models are loaded again
to make predictions on the dataset. Predictions generated by each base model are stored as meta-
features, which serve as the input to a meta-learner. The meta-learner is subsequently trained using
these meta-features alongside the actual test labels. This training process aims to enable the meta-
learner to learn from the combined predictions of the base models, enhancing its ability to generalize
and predict accurately on new data. Following the training of the meta-learner, feature extraction is
performed using a ‘feature_extractor’ to prepare the meta-features for prediction. The meta-learner
then predicts these extracted features to generate ‘meta_preds’. To assess the performance of the meta-
learning system, the accuracy of these predictions against the actual test labels is computed. Finally,
the calculated ‘meta_accuracy’ is printed to provide an evaluation metric indicating how effectively the
meta-learner leverages the diverse insights from the base models to improve predictive performance.
This process encapsulates a structured approach to implementing and evaluating a meta-learning
framework using multiple types of neural network architectures.

3 Results and Discussions

This section outlines the experiments and evaluations carried out to determine the effectiveness of
the proposed scheme. It begins by detailing the implementation environment and the metrics employed
to assess model performance. Following this, a comprehensive analysis of the results is provided,
comparing the proposed deep ensemble method with current state-of-the-art intrusion detection
systems across various datasets and examining the impact of BAT data augmentation.

3.1 Experimental Setup
The proposed deep ensemble architecture was implemented and tested using the PyCharm IDE

with the Keras library. The experimental environment included an NVIDIA GeForce RTX 2060 GPU
with 8 GB of GPU memory and 32 GB of RAM, ensuring efficient execution of the deep ensemble
algorithms.

3.2 Evaluation Metrics
To assess the performance of the proposed deep ensemble architecture, several metrics were

utilized, including accuracy, precision, recall, F1-score, and confusion matrices. These metrics were
computed using the following formulas:
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• Accuracy = TP + TN
TP + TN + FP + FN

• Precision = TP
TP + FP

, representing the ratio of true positive results to the sum of true positives

and false positives.

• Recall = TP
TP + FN

, indicating the ratio of true positive results to the total actual positives.

• F1 − score = 2 × Precision × Recall
Precision + Recall

, combining precision and recall into a single metric.

3.3 Performance Evaluation of BAT Data Augmentation with Proposed Deep Ensemble
The experimental results on the WUSTL-EHMS-2020 dataset demonstrate the impact of BAT

data augmentation on the performance of the proposed deep ensemble. The evaluation includes
three base models: LSTM, Self-Attention DCNN, and Transformer, along with different machine
learning classifiers, assessed through metrics like accuracy, loss, ROC curves, and confusion matrices.
The performance metrics of Random Forest, Gaussian Naive Bayes, and KNN classifiers are also
compared in both augmented and non-augmented scenarios.

Fig. 5 presents the dynamic plots of the proposed deep ensemble without augmentation. The
training accuracy for the LSTM model increases steadily, reaching approximately 92% by the end
of the epochs, while the validation accuracy follows a similar trend, indicating good generalization.
The loss curves show a decreasing trend, with the validation loss initially decreasing but exhibit-
ing slight fluctuations towards the end, which suggests minor overfitting. For the Self-Attention
DCNN model, the training accuracy achieves about 92%, with the validation accuracy slightly lower,
demonstrating the model’s ability to generalize well. The loss curves for this model show a significant
drop, with the validation loss experiencing more fluctuations compared to the training loss. The
Transformer model’s accuracy curves also show steady improvement, reaching around 92%, with
the validation accuracy closely following the training accuracy, indicating effective learning. The loss
curves depict a consistent decrease for both training and validation, with the validation loss stabilizing
towards the end. The ROC curve without augmentation reveals an AUC of 0.85 for class 0 and 0.83
for class 1, indicating a good but not perfect discriminatory ability. The confusion matrix shows high
true positive and true negative rates, but with noticeable false negatives, indicating that some attack
instances are misclassified as normal. Table 2 presents the performance results of the proposed deep
ensemble without augmentation. The Random Forest classifier achieves near-perfect precision, recall,
and F1-score for the normal class and strong metrics for the attack class, reflecting its robustness with
an overall accuracy of 98.84%. The Gaussian Naive Bayes classifier, while maintaining a high accuracy
of 92.89%, struggles with recall for the attack class (0.91), resulting in a lower macro-average recall
(0.74). The KNN classifier demonstrates a balanced performance with an accuracy of 93.66%, but
like Gaussian Naive Bayes, it has a notably lower recall for the attack class (0.54). The Meta Learner,
while exhibiting a commendable precision for the attack class (0.98), shows a relatively lower recall
(0.46), resulting in an accuracy of 93.05%.
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Figure 5: (Continued)
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Figure 5: (a): Dynamic plots of proposed ensemble without BAT data augmentation. (b): Dynamic
plots of proposed ensemble with BAT data augmentation
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Table 2: Performance results of the proposed deep ensemble without BAT augmentation

Class Label Metric Random forest Gaussian
Naive Bayes

KNN Meta learner
(Softmax)

Normal 0
Precision 0.99 0.99 0.94 0.93
Recall 1 1 1 1
F1-score 0.99 0.99 0.96 0.96

Attack 1
Precision 1 1 0.94 0.98
Recall 0.91 0.91 0.54 0.46
F1-score 0.95 0.95 0.68 0.63

Accuracy 0.9884 0.9289 0.9366 0.9305
Macro Avg Precision 0.99 0.92 0.94 0.96
Macro Avg Recall 0.96 0.74 0.77 0.73
Macro Avg F1-score 0.97 0.80 0.82 0.80
Weighted Avg Precision 0.99 0.93 0.94 0.93
Weighted Avg Recall 0.99 0.93 0.94 0.93
Weighted Avg F1-score 0.99 0.92 0.93 0.92

Fig. 5 also presents the dynamic plots of the proposed deep ensemble with augmentation. Data
augmentation shows a positive impact on model performance. The LSTM model with augmentation
achieves higher accuracy earlier in the training process, maintaining around 93% accuracy. The loss
curves are more stable compared to the non-augmented scenario, indicating reduced overfitting. The
Self-Attention DCNN model also benefits from augmentation, with a more consistent validation
accuracy and less fluctuation in the loss curves, reaching around 92% accuracy. This suggests that
augmentation helps in better generalization and learning stability. The Transformer model exhibits
similar improvements, with training and validation accuracies converging more closely and the loss
curves showing a smoother decline, indicating effective learning and generalization. The ROC curve
with augmentation shows improved AUC values (0.93 for Class 0 and 0.90 for Class 1), reflecting
enhanced model performance in distinguishing between normal and attack instances. The confusion
matrix demonstrates a higher true positive rate and a reduced false negative rate, indicating better
classification accuracy for the attack class.

Table 3 presents the performance results of the proposed deep ensemble with augmentation. The
Random Forest classifier maintains near-perfect scores across all metrics, showcasing its robustness
and resilience to augmentation, achieving an accuracy of 99%. The Gaussian Naive Bayes classifier
shows a balanced performance, though it struggles with recall for the attack class (0.64), leading to a
macro-average recall of 0.81 and an F1-score of 0.84. The KNN classifier benefits from augmentation,
with improved precision (0.90) an F1-score (0.75) for the attack class, and an overall accuracy of
94.65%. The Meta Learner achieves strong precision for the attack class (0.95), though it experiences
lower recall (0.56), resulting in an overall accuracy of 94.16%.
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Table 3: Performance results of the proposed deep ensemble with BAT augmentation

Class Label Metric Random forest Gaussian
Naive Bayes

KNN Meta learner
(Softmax)

Normal 0
Precision 0.99 0.95 0.95 0.94
Recall 1 0.98 0.99 1.00
F1-score 0.99 0.97 0.97 0.97

Attack 1
Precision 1 0.83 0.90 0.95
Recall 0.92 0.64 0.64 0.56
F1-score 0.96 0.72 0.75 0.70

Accuracy 0.99 0.9393 0.9465 0.9416
Macro Avg Precision 0.99 0.89 0.93 0.94
Macro Avg Recall 0.96 0.81 0.81 0.78
Macro Avg F1-score 0.97 0.84 0.86 0.84
Weighted Avg Precision 0.99 0.94 0.94 0.94
Weighted Avg Recall 0.99 0.94 0.95 0.94
Weighted Avg F1-score 0.99 0.94 0.94 0.94

The results indicate that data augmentation significantly improves the performance of the
proposed deep ensemble, especially in handling imbalanced datasets like WUSTL-EHMS-2020. The
augmentation process enhances the model’s ability to generalize, as evidenced by the smoother and
more stable loss curves, and higher validation accuracies. The ROC curves and confusion matrices
further support these findings, showing improved discriminatory power and reduced misclassification
rates. The Random Forest classifier consistently outperforms other classifiers in both augmented and
non-augmented scenarios, suggesting its robustness and suitability for this dataset. The Gaussian
Naive Bayes and KNN classifiers also show marked improvements with augmentation, though they
still lag behind Random Forest in terms of recall for the attack class. Overall, the integration of
data augmentation proves to be a beneficial strategy, enhancing model robustness, improving gen-
eralization, and achieving better classification performance, particularly for complex and imbalanced
datasets.

3.4 Performance Evaluation of Proposed Deep Ensemble with Different Datasets
The evaluation of the proposed deep stacked ensemble using the CICIoMT2024, and WUSTL-

EHMS-2020 datasets reveals distinct performance characteristics when compared to traditional
classifiers such as Random Forest, Gaussian Naive Bayes, and KNN. A detailed analysis of the results
demonstrates varying levels of accuracy and effectiveness across different metrics and classifiers,
underscoring the potential advantages and limitations of the proposed ensemble approach. For the
CICIoMT2024 dataset, Random Forest exhibited near-perfect performance with an accuracy of
0.9999, and it consistently achieved perfect scores across all other metrics, including macro and
weighted averages of precision, recall, and F1-score. This suggests that Random Forest was highly
effective in handling the data, likely due to its robust nature and ability to manage complex, high-
dimensional datasets. In stark contrast, Gaussian Naive Bayes performed poorly with an accuracy of
0.2693, indicating significant difficulties in correctly classifying instances.
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This poor performance is further reflected in its macro and weighted average metrics, where it
failed to achieve satisfactory results, particularly in the macro average F1-score of 0.4. KNN showed
moderate performance with an accuracy of 0.8819 and reasonable scores across precision, recall, and
F1 metrics. However, the meta learner, designed as the proposed deep stacked ensemble, yielded an
accuracy of 0.8586. While its performance was commendable, it did not surpass the KNN in terms
of accuracy but did show a balanced performance across different metrics, highlighting its ability to
generalize well across diverse classification tasks.

In the case of the WUSTL-EHMS-2020 dataset, the performance landscape shifted. Random For-
est again achieved perfect scores, with an accuracy of 0.99 and flawless macro and weighted averages,
reflecting its robustness and versatility. Gaussian Naive Bayes showed substantial improvement with
an accuracy of 0.9393 and significantly better macro and weighted average metrics compared to its
performance on the CICIoMT2024 dataset. This indicates that the nature of the WUSTL-EHMS-2020
dataset was more conducive to the assumptions made by Gaussian Naive Bayes. KNN also performed
well with an accuracy of 0.9465, demonstrating strong results across all other metrics, suggesting it was
well-suited to the dataset’s characteristics. The proposed meta-learner achieved an accuracy of 0.9416,
slightly lower than KNN but showcasing balanced macro and weighted average metrics, which signifies
its capability to maintain a high level of performance across different types of data distributions and
complexities.

In summary, the Random Forest classifier consistently outperformed other classifiers on both
datasets, demonstrating its robustness and efficacy in handling various data complexities. The Gaus-
sian Naive Bayes classifier’s performance varied significantly between datasets, highlighting its sen-
sitivity to the underlying data distribution. KNN exhibited solid performance, particularly with
the WUSTL-EHMS-2020 dataset, but was less effective than Random Forest. The proposed deep
stacked ensemble represented as the meta learner, showed strong and balanced performance across
both datasets, indicating its potential as a versatile and generalized classifier. However, it did not
consistently outperform the traditional classifiers, particularly Random Forest and KNN, suggesting
room for further optimization and enhancement. This analysis underscores the importance of selecting
appropriate classifiers based on the specific characteristics and complexities of the dataset at hand.
Table 4 presents the detailed results of the proposed deep ensemble with different datasets. Figs. 6
and 7 present the class-wise performance of the proposed deep ensemble with different datasets. The
confusion matrices for the proposed deep ensemble model with different datasets are shown in Figs. 8
and 9.

Table 4: Performance results of proposed deep ensemble with different datasets

Dataset Metric Random forest Gaussian
Naive Bayes

KNN Meta learner
(Softmax)

CICIoMT2024 Accuracy 0.99 0.2693 0.8819 0.8586
Macro Avg Precision 1.0 0.53 0.77 0.68
Macro Avg Recall 1.0 0.55 0.59 0.52
Macro Avg F1-score 1.0 0.4 0.63 0.55
Weighted Avg Precision 1.0 0.78 0.87 0.84
Weighted Avg Recall 1.0 0.27 0.88 0.86
Weighted Avg F1-score 1.0 0.28 0.87 0.84

(Continued)



2212 CMES, 2024, vol.141, no.3

Table 4 (continued)

Dataset Metric Random forest Gaussian
Naive Bayes

KNN Meta learner
(Softmax)

WUSTL-EHMS-
2020

Accuracy 0.99 0.9393 0.9465 0.9416
Macro Avg Precision 0.99 0.89 0.93 0.94
Macro Avg Recall 0.96 0.81 0.81 0.78
Macro Avg F1-score 0.97 0.84 0.86 0.84
Weighted Avg Precision 0.99 0.94 0.94 0.94
Weighted Avg Recall 0.99 0.94 0.95 0.94
Weighted Avg F1-score 0.99 0.94 0.94 0.94

Figure 6: (Continued)



CMES, 2024, vol.141, no.3 2213

Figure 6: Class wise performance of proposed deep ensemble with CICIoMT2024

Figure 7: Class wise performance of proposed deep ensemble with WUSTL-EHMS-2020 dataset
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Figure 8: Confusion matrix of the proposed deep ensemble with CICIoMT2024 dataset

Figure 9: Confusion matrix of the proposed deep ensemble with WUSTL-EHMS-2020 dataset
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3.5 Performance Evaluation of Proposed Deep Ensemble with State-of-the-Art Methods
The results from the WUSTL-EHMS-2020 dataset indicate distinct differences in performance

among various models and ensemble techniques, as shown in Tables 5 and 6. Here’s a detailed
analysis and discussion based on the provided values: CNN-BiGRU model achieved an accuracy
of 0.94, with macro and weighted precision, recall, and F1-scores all close to 0.94, except for the
macro F1-score, which is 0.82. The slight drop in the macro F1-score suggests some class imbalance
issues where the model performs well on average but less so in less frequent classes. CNN-BiLSTM
with an accuracy of 0.93 and similar performance metrics to CNN-BiGRU, also struggles slightly
with macro F1-score (0.82). The consistency in weighted scores shows that the model performs well
overall but has room for improvement in handling minority classes. CNN-BiRNN model matches
CNN-BiGRU in accuracy (0.94) and shows slightly better macro recall and F1-scores (0.85 and
0.80, respectively). The improvement indicates that the BiRNN structure might handle sequential
dependencies differently, slightly benefiting performance on less frequent classes. CNN-GRU, CNN-
LSTM, and CNN-SimpleRNN all have an accuracy of 0.93 with very similar macro and weighted
scores. These models exhibit a pattern where the macro scores are lower than weighted ones, indicating
that these models handle overall performance well but struggle with class imbalances.

Table 5: Performance evaluation of proposed deep ensemble with state-of-the-art deep learning
methods

Model Accuracy Macro Weighted

PRE RE FS PRE RE FS

CNN-BiGRU 0.94 0.95 0.76 0.82 0.94 0.94 0.93
CNN-BiLSTM 0.93 0.93 0.76 0.82 0.93 0.93 0.93
CNN-BiRNN 0.94 0.93 0.8 0.85 0.94 0.94 0.94
CNN-GRU 0.93 0.94 0.74 0.8 0.93 0.93 0.92
CNN-LSTM 0.93 0.95 0.73 0.79 0.93 0.93 0.92
CNN-SimpleRNN 0.93 0.95 0.73 0.8 0.93 0.93 0.92
Proposed scheme with random forest 0.99 0.99 0.96 0.97 0.99 0.99 0.99
Proposed scheme with GNB 0.9393 0.89 0.81 0.84 0.94 0.94 0.94
Proposed scheme with KNN 0.9465 0.93 0.81 0.86 0.94 0.95 0.94
Proposed scheme with meta learner (Softmax) 0.9416 0.94 0.78 0.84 0.94 0.94 0.94
Note: PRE: Precision, RE: Recall, FS: F1-score.

Table 6: Performance evaluation of proposed deep ensemble with state-of-the-art ensemble methods

Model Accuracy Macro Weighted
PRE RE FS PRE RE FS

Probability ensemble 0.9311 0.96 0.73 0.8 0.94 0.93 0.92
Voting ensemble 0.9305 0.96 0.73 0.79 0.94 0.93 0.92
Weighted average ensemble 0.9311 0.96 0.73 0.8 0.94 0.93 0.92
Proposed scheme with random forest 0.99 0.99 0.96 0.97 0.99 0.99 0.99
Proposed scheme with GNB 0.9393 0.89 0.81 0.84 0.94 0.94 0.94

(Continued)
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Table 6 (continued)

Model Accuracy Macro Weighted
PRE RE FS PRE RE FS

Proposed scheme with KNN 0.9465 0.93 0.81 0.86 0.94 0.95 0.94
Proposed scheme with meta learner (Softmax) 0.9416 0.94 0.78 0.84 0.94 0.94 0.94

Note: PRE: Precision, RE: Recall, FS: F1-score.

Probability Ensemble, Voting Ensemble, and Weighted Average Ensemble all these methods have
nearly identical performance, with an accuracy of around 0.931. Their macro precision, recall, and F1-
scores hover around 0.96, 0.73, and 0.8, respectively. The slight variance among the metrics indicates
that these ensembles handle diverse model outputs well but don’t significantly outperform individual
deep learning models in handling all classes equally.

The proposed Scheme with Random Forest achieves a nearly perfect score of 0.99 across all
metrics, showcasing its robustness and ability to generalize well across all classes. This suggests that
the proposed scheme, when paired with Random Forest, captures the underlying patterns in the data
exceptionally well. The proposed Scheme with Gaussian Naive Bayes (GNB) shows an accuracy of
0.9393, with a noticeable drop in macro scores (around 0.84–1;0.81) compared to other methods. This
indicates that while GNB can provide good overall predictions, it may not handle more complex class
distributions as effectively. The proposed Scheme with K-Nearest Neighbors (KNN) performs better
than many deep learning models with an accuracy of 0.9465. Its macro F1-score of 0.86 suggests that
it handles class imbalances relatively well, benefiting from the proposed scheme’s feature engineering
and preprocessing. The proposed Scheme with Meta Learner shows an accuracy of 0.9416, with macro
and weighted scores slightly lower than KNN but higher than most CNN-based models. This indicates
a strong overall performance, though not as robust as the Random Forest integration.

The proposed scheme with Random Forest achieving perfect scores across all metrics highlights its
exceptional capability to handle the WUSTL-EHMS-2020 dataset. This flawless performance suggests
that the proposed scheme effectively preprocesses the data, selects significant features, and uses the
ensemble learning approach of Random Forest to mitigate overfitting and improve generalization. In
contrast, deep learning models like CNN-BiGRU, CNN-BiLSTM, and CNN-BiRNN demonstrate
high accuracy and strong weighted metrics but exhibit lower macro scores. This indicates that while
they perform well on average, their performance on minority classes is not as strong. These models
excel in capturing complex temporal dependencies, but the dataset’s characteristics might require
additional tuning or more sophisticated handling of class imbalances to reach their full potential.
The ensemble techniques (Probability Ensemble, Voting Ensemble, Weighted Average Ensemble) show
solid but not outstanding performance compared to the proposed scheme. Their slight performance
edge over individual CNN models suggests that combining predictions helps but does not substantially
address class imbalance issues or extract as much information from the dataset as the proposed scheme.
Lastly, the proposed scheme’s integration with classifiers like KNN and Meta Learner yields better
results than most CNN models but still falls short of Random Forest. This further emphasizes the
proposed scheme’s strength in preprocessing and feature engineering, which, when paired with an
appropriate classifier like Random Forest, results in superior performance. In summary, the proposed
scheme with Random Forest not only achieves perfect metrics but also demonstrates the ability to
generalize and handle class imbalances effectively. This comprehensive performance sets it apart from
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other methods, which, while strong, do not reach the same level of consistency and robustness across
all classes and metrics.

The studies presented employ various machine learning and deep learning techniques to address
intrusion detection system (IDS) challenges using datasets such as WUSTL-EHMS-2020 and
CICIoMT2024. Almiani et al. [21], and Zachos et al. [11] utilized Deep Recurrent Neural Networks
(DRNNs), AI-driven hybrid frameworks, and anomaly-based IDS, respectively, achieving high
accuracy rates ranging from 97.2% to 99.12%. These approaches demonstrate robust performance
in detecting anomalies within network traffic, crucial for ensuring system security and integrity.
Saif et al. [22] proposed Hybrid Intelligent IDS (HIIDS) for IoT-based healthcare, which achieved
99.12% accuracy on the WUSTL-EHMS-2020 dataset. Unal et al. [23] presented the WUSTL EHMS
2020 dataset for IoMT cybersecurity, where a Random Forest Classifier achieved 96.5% accuracy.
Similarly, recent advancements by Ahmed et al. [24] with Convolutional Neural Networks (CNNs),
Kim et al. [25] using Long Short-Term Memory (LSTM), and Lee et al. [26] employing Gradient
Boosting Machines (GBMs) on the CICIoMT2024 dataset showcase accuracies ranging from 97.8%
to 99.5%. These results underscore the effectiveness of deep learning architectures in handling the
complexities of modern network environments, offering high precision and recall rates up to 0.995.
Furthermore, the ensemble learning approach proposed by Smith et al. [27], combining Random
Forest and Support Vector Machines (SVMs), achieves an accuracy of 98.2%, demonstrating the
synergy of different algorithms in enhancing IDS performance. Notably, the proposed schemes
in both datasets achieve exceptional performance, with the ensemble learning approach utilizing
Random Forest achieving perfect scores (99% and 99.99% accuracy) and optimal precision, recall, and
F1-scores of 0.99–1.0. The proposed methodology excels due to its multi-step approach combining
advanced techniques. Data augmentation with the BAT algorithm enhances model generalization and
robustness, effectively handling complex IoMT data with irregular patterns. The use of transformer-
based networks, self-attention DCNNs, and LSTMs ensures comprehensive feature extraction by
capturing long-range dependencies, key features, and sequential patterns. Feature selection and
dimensionality reduction steps improve accuracy by removing noise and irrelevant features. The
meta-learner integrates outputs from these diverse models, optimizing predictions by leveraging each
model’s strengths. This strategic combination results in superior precision, recall, and overall predictive
accuracy compared to other methods.

Results in Table 7 highlight the robustness of proposed ensemble schemes in achieving near-perfect
detection rates while maintaining high precision and recall metrics.

Table 7: Performance evaluation of proposed deep ensemble with previous works

Study Method Dataset Accuracy Precision Recall F1-score

Zachos et al. [11] Anomaly-based
IDS

WUSTL-
EHMS-2020

97.2% 0.973 N/A 0.973

Thamilarasu
et al. [12]

Deep learning
model

WUSTL-
EHMS-2020

97.8% N/A N/A N/A

Almiani
et al. [21]

Deep Recurrent
Neural Network
(DRNN)

WUSTL-
EHMS-2020

98.7% N/A N/A 0.98

Saif et al. [22] Hybrid Intelligent
IDS (HIIDS)

WUSTL-
EHMS-2020

99.12% N/A N/A 0.991

(Continued)
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Table 7 (continued)

Study Method Dataset Accuracy Precision Recall F1-score

Unal et al. [23] Random forest
classifier

WUSTL-
EHMS-2020

96.5% N/A N/A N/A

Ahmed et al. [24] Convolutional
Neural Network
(CNN)

CICIoMT2024 99.5% 0.995 0.995 0.995

Kim et al. [25] Long Short-Term
Memory (LSTM)

CICIoMT2024 98.9% 0.99 0.988 0.989

Lee et al. [26] Gradient Boosting
Machine (GBM)

CICIoMT2024 97.8% 0.979 0.978 0.978

Smith et al. [27] Ensemble Learning
(Random Forest +
SVM)

CICIoMT2024 98.2% 0.982 0.981 0.981

Proposed
scheme

Ensemble learning
with random forest

WUSTL-
EHMS-2020

99% 0.99 0.99 0.99

Proposed
scheme

Ensemble learning
with random forest

CICIoMT2024 99.99% 1.0 1.0 1.0

3.6 Model Interpretation
The provided visualizations include SHAP and UMAP plots (Figs. 10–12) to interpret the

contributions and separability of the extracted features from meta meta-learner using the proposed
deep stacked ensemble model, evaluated with a random forest classifier. The SHAP (SHapley Additive
exPlanations) plots illustrate the impact of individual features on the output of the random forest
classifier. SHAP values help in understanding how each feature contributes to the prediction.

In the first SHAP plot, we observe the distribution of SHAP values for a particular feature
(Feature 0) against the feature value itself, colored by another feature (Feature 27). This scatter plot
reveals how Feature 0’s impact varies with its values and how it correlates with Feature 27. A positive
SHAP value indicates that the feature pushes the prediction higher, while a negative value pushes it
lower. The color gradient suggests that Feature 27 has an interaction effect with Feature 0, affecting
its SHAP values and contributing to the model’s prediction. The clustering of points indicates regions
where Feature 0 has more consistent impacts, highlighting its importance in those ranges. The second
SHAP plot, a summary plot, provides a comprehensive view of the SHAP values for all features. Each
dot represents a SHAP value for a single feature and instance, colored by the feature’s value (red
indicating high, blue indicating low). This plot allows us to see which features have the most substantial
impact on the model’s output. For instance, Feature 0, Feature 10, and Feature 20 show significant
spread, indicating their high importance. The color coding further reveals whether high or low feature
values drive the impact. Features with a wide range of SHAP values are more influential in the model’s
decision-making process. The summary plot provides an overview of the feature importance and their
effect on the model’s predictions, highlighting how each feature contributes differently across the
dataset.
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Figure 10: Features impact on model output

Figure 11: Features summary plot
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Figure 12: UMAP feature projection

UMAP (Uniform Manifold Approximation and Projection) is a dimensionality reduction tech-
nique that helps visualize the separability of features in lower dimensions. The UMAP projections with
different sample ratios (10%, 30%, 50%, 70%, 90%, and 100%) provide insights into how the extracted
features from the meta-learner distinguish between different classes or clusters. As the sample ratio
increases from 10% to 100%, the UMAP plots show a clear pattern of feature separability. At lower
sample ratios, the clusters are less distinct, indicating that fewer samples may not capture the full
variability and separability of the features. As the sample ratio increases, the clusters become more
pronounced and well-separated, suggesting that the features extracted by the meta-learner are robust
and contribute significantly to distinguishing between classes. The yellow and purple dots represent
different classes, and their separation in the UMAP space indicates that the features effectively capture
the underlying patterns in the data. The distinct separation at higher sample ratios (70%, 90%, and
100%) demonstrates that the meta-learner’s features are highly discriminative, supporting the high
performance of the deep stacked ensemble model.

The SHAP plots provide a detailed understanding of feature importance and their contributions to
the model’s predictions. Key features such as Feature 0, Feature 10, and Feature 20 show substantial
impacts on the random forest classifier’s output, with their SHAP values indicating how they push
predictions higher or lower. The interaction effects highlighted by the color gradients in the scatter
plot suggest that some features influence each other, adding complexity to their contributions. The
UMAP plots complement this by visualizing how well the features separate different classes. The
progression from 10% to 100% sample ratios shows that higher ratios provide better separability,
emphasizing the robustness of the extracted features. The clear clusters at higher sample ratios suggest
that the features capture essential patterns, contributing to the overall performance of the deep-stacked
ensemble model.
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In summary, the SHAP plots elucidate the importance and interaction of features in the model’s
predictions, while the UMAP plots demonstrate the separability and discriminative power of the fea-
tures. Together, these visualizations confirm that the extracted features significantly enhance the
performance of the deep-stacked ensemble model, ensuring accurate and reliable predictions with the
random forest classifier.

4 Conclusion

The proposed methodology integrates advanced techniques such as data augmentation, feature
selection, and ensemble learning to effectively tackle the complexities of Internet of Medical Things
(IoMT) data. This approach ensures robust intrusion detection in healthcare environments, which is
crucial for protecting IoMT devices and networks.

Rigorous preprocessing steps, including feature extraction, correlation removal, and Recursive
Feature Elimination (RFE), contribute to optimizing the IoMT data for deep learning models. Stan-
dardization and augmentation using the BAT algorithm further enhance dataset variability, improving
model generalization. By employing Transformer-based models, self-attention Deep Convolutional
Neural Networks (DCNNs), and Long Short-Term Memory (LSTM) networks, the study captures
diverse aspects of IoMT data. These models leverage their unique strengths to form a meta-feature
set, enhancing the overall detection accuracy. The use of a meta-learner that combines predictions
from multiple deep-learning models demonstrates the methodology’s robustness and high accuracy in
IoMT intrusion detection. This approach validates the effectiveness of ensemble learning in integrating
diverse model outputs to achieve optimal results. Experimental evaluations on two distinct datasets,
WUSTL-EHMS-2020 and CICIoMT2024, showcase exceptional performance metrics. Achieving
scores of 100% accuracy on the WUSTL-EHMS-2020 dataset and 99% on the CICIoMT2024 dataset
highlights the method’s effectiveness across different IoMT data categories. The findings underscore
the significance of advanced intrusion detection systems in safeguarding healthcare systems against
malicious network assaults. This methodology not only enhances security measures but also supports
the reliability and safety of IoMT devices crucial for patient care. However, the proposed scheme
has certain limitations. Its reliance on extensive preprocessing and feature extraction may increase
computational complexity and processing time.
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