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ABSTRACT

This paper represents a detailed and systematic review of one of the most ongoing applications of computational
fluid dynamics (CFD) in biomedical applications. Beyond its various engineering applications, CFD has started
to establish a presence in the biomedical field. Cardiac abnormality, a familiar health issue, is an essential
point of investigation by research analysts. Diagnostic modalities provide cardiovascular structural information
but give insufficient information about the hemodynamics of blood. The study of hemodynamic parameters
can be a potential measure for determining cardiovascular abnormalities. Numerous studies have explored the
rheological behavior of blood experimentally and numerically. This paper provides insight into how researchers
have incorporated the pulsatile nature of the blood experimentally, numerically, or through various simulations over
the years. It focuses on how machine learning platforms derive outputs based on mass and momentum conservation
to predict the velocity and pressure profile, analyzing various cardiac diseases for clinical applications. This will
pave the way toward responsive AI in cardiac healthcare, improving productivity and quality in the healthcare
industry. The paper shows how CFD is a vital tool for efficiently studying the flow in arteries. The review indicates
this biomedical simulation and its applications in healthcare using machine learning and AI. Developing AI-based
CFD models can impact society and foster the advancement towards responsive AI.
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1 Introduction

The biomedical domain has extensively used engineering and technology in recent years. Tech-
nology has aided the medical industry in all possible ways for decades by providing accurate, cheaper,
and effective treatment methods for various diseases. Computational Fluid Dynamics (CFD) is the
latest technology widely used in cardiovascular disease studies [1]. The review analyzes the pulsating
blood flow in arteries using the latest technologies. This paper provides detailed insight into the recent
contribution and state-of-the-art developments in CFD for studying blood flow patterns in arteries.
Plaque and unwanted deposits on the walls of the arteries narrow the lumen of the arteries. This is
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termed stenosis. Stenosis blocks blood flow and exerts high stress on the artery walls. The geometry,
location, and size of the stenosis have a crucial role in diagnosing various cardiovascular diseases. Mild
stenosis (less than 25% reduction by flow area) is usually not noticeable as the blood flow is laminar.
Moderate stenosis (less than 50% reduction by flow area) can have symptoms during heavy exercise
as the blood flow increases, leading to disturbed flows. Severe stenosis (Over 50% reduction by flow
area) brings abnormal and turbulent blood flows. This causes an excessive pressure drop, impacting
the walls of the arteries. CFD simulations help in studying flow changes in case of such abnormalities.
Thus, the various uses of CFD in bio-medical engineering include:

• Simulation of Blood Flow in Vessels: The present review focuses on this bio-medical application
of CFD. It helps find out the flow properties of the blood, such as its velocity profiles, pressure drop,
and shear stress exerted, by replicating the geometry of arteries and providing appropriate boundary
conditions [2]. The shape, severity, length, location, and other characteristics of stenosis are altered to
study its effects. Wall shear stress increases at the stenosis region, which is quite uneven in irregular
stenosis. Irregular stenosis brings about more disturbed flows than uniform stenosis. Apart from the
severity and shape, the location of the stenosis also plays an important role. Stenosis in the coronary
artery affects the blood supply to the heart, whereas carotid artery stenosis affects the brain. These
parameters play a determining role in finding out the various vascular diseases at the initial stages
[3]. CFD provides functional information about the arteries and how flow properties affect some
rare diseases such as dyspnea [4]. The other uses of CFD in the bio-medical domain are discussed
in subsequent points.

• Flow simulation in different body vessels: The human body contains various shapes of blood
vessels where the flow patterns differ. Flow patterns change with the shape and size of blood vessels [5].
The flow behavior in capillaries, veins, and arteries also differs due to the wall structure and pressure
in the vessels [6]. Apart from blood, other flows of interstitial fluids are also studied.

• Precision Medicine: This is another challenging domain where the medicines prescribed are
specific to an individual [7]. Personalized models are tried and tested for this purpose. All the flow
patterns change from person to person; hence, medicines would also change, studying the individual
blood’s properties [8]. Also, the use of AI and its various machine learning algorithms, such as support
vector machines (SVM), deep learning, logistic regression, decision tree, random forest, K-nearest
neighbor (KNN), and others, helps to give the customized solution comparing the results with the
previous history [9].

• Artificial Organ Design: CFD has been successfully designing artificial organs [10]. It can design
and simulate the results to show how successfully a designed organ can work. This avoids the repeated
creation of a prototype that is expensive and cumbersome. Therefore, it is an excellent method for
testing and designing such organs. It is cost and time-efficient [11].

• Cancer Removal simulation: Cancer is also a widespread and dreadful disease, and research for
its study is another critical study in the biomedical field. It helps highlight how and where small tumors
alter flow properties [12].

Fig. 1 shows the various critical applications of CFD in the biomedical field. Among them,
the study of pulsatile blood flow in arteries has been quite prevalent among researchers. There are
various heart-related diseases in today’s world. Diseases such as Atherosclerosis [13], where the arteries
are hardened and the blood supply is reduced, and coronary artery disease (CAD), where plaque
formation occurs, are some of the common cardiovascular diseases [14]. Flow properties, such as
the shear stress on arteries’ walls and the blood’s velocity profile, among others, change whenever
an abnormality occurs [15]. Hence, hemodynamics can be a valuable aid to doctors in diagnosing
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diseases at an early stage. Though it has been a very widely employed research topic for decades,
the methodology to achieve this has been changing drastically with the advancement of technology.
Initially, researchers focused on replicating blood flow experimentally, but with the advancement
of computers, simulation results became more feasible and accurate. Computational fluid dynamics
has recently been used in the simulation and analysis of fluid flow [16,17]. It allows for solving
complex problems that are hard for experimental replications [18]. Performance improvements and
enhancements can be done by changing configurations and geometries.

Figure 1: Common applications of CFD in biomedical engineering

Thus, instead of conducting numerous tedious experiments, which are challenging to replicate,
efforts were made to model various artery sizes and stenosis using various software. Detailed meshing
was performed to incorporate it into a computational grid, preparing it for simulation and facilitating
the determination of flow properties. After successfully executing models, researchers emphasized
retrieving the patient images and putting them into the computational domain. The introduction of
Graphics Processing Units (GPU) and Artificial Intelligence (AI) in such simulations also provides a
more realistic approach to the study [19]. The use of CFD modeling in the cardiovascular field has not
only been restricted to the study of flow properties of blood but also in medicines, designing devices,
clinical investigations, and others [20]. Therefore, with the fast advancement of technology, simulation
methods have changed drastically from image acquisition to the development of CFD solvers [21].
This review aims to highlight the various research and methodologies involved to offer a clear insight
into various methods to study this biomedical application. Fig. 2 illustrates the various methods used
in the last few decades, from experimental to patient-specific modeling of blood. Experimental studies
investigate the flow properties of the blood by replicating them and analyzing the flow through various
visualization techniques. Then, models of the arteries are created and refined by providing proper
boundary conditions. Various post-processing tools facilitate these studies. Recently, images of the
diseased arteries have been segmented and processed for input into CFD software and solvers, yielding
more realistic results using actual geometries.

This paper’s Section 2 explains the Research Methodology used for data collection and extraction.
The Section 3 deals with the ‘Quantitative Analysis’, through tables, graphs, and pictorial representa-
tion. The Section 4 deals with the “Qualitative Analysis” which gives a broad overview of the growth
of the latest technologies utilized to investigate the flow patterns in arteries. Section 5 briefs about the
various results obtained from these simulations. It presents the conventional methods and the state-of-
the-art techniques available in this field. Section 6 discusses the challenges encountered, followed by
the advanced approach of CFD in Section 7. This section explains the role of AI in CFD for studying
cardiovascular diseases, followed by a conclusion and future scope in Section 8, respectively.
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Figure 2: Various methods used for CFD simulation over the years

2 Research Methodology

An extensive survey was conducted to provide a vivid idea about the ongoing research for
analyzing and quantifying the documents and literature. It is also a one-stop solution for getting
informed about the area of research, outstanding researchers, various collaborators, and others. To
be precise, it is first-hand information regarding a particular field of research.

An extensive search on the topic was done in various databases. The most relevant papers were
found in Scopus and Web of Science databases. Also, the types of papers were similar to the intention of
the search. It can find the same papers reoccurring in both databases [20]. Therefore, this paper focused
on Scopus and Web of Science (WoS) databases for the search query. Hemodynamics is “the study of
the dynamics of blood” in arteries. Hence, the keyword “hemodynamics” was employed to see a huge
collection of documents in Scopus and WoS. 66,412 documents were found in WoS, whereas 257,526
documents were available in Scopus. However, since this search was quite comprehensive and will not
serve the actual purpose, the paper refined the search with the keywords “hemodynamics”, “CFD”and
“heart arteries.” The search has been conducted since 1991. The results dropped to 879 documents in
Scopus and 388 documents in WoS. Finally, “pulsat∗∗” was added to the search. The word pulsat∗∗
indicates that the database would include words starting with pulsat∗∗, such as pulsating, pulsatile,
and others. The number of documents reached 114 and 183 in WoS and Scopus, respectively. The
number of documents also gets refined as the search becomes more specific. Table 1 shows the result
as follows:

The Quantitative Analysis of both databases focuses primarily on

• Trends in the yearly publication of documents.
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• Country-wise publication of documents.

• Distribution based on research institution.

• Distribution based on subject categories.

• Network analysis.

• Citation analysis.

The Qualitative Analysis portrays the history of the study of the “pulsatile nature” of blood flow.
It shows the introduction of CFD in the last few decades for accurate simulation. It also highlights
how image processing has successfully incorporated patient-specific geometries into CFD simulation,
giving it a more realistic approach. The latest developments, such as GPU and AI, are introduced in
this study.

Table 1: Outcomes obtained from two databases

S. no. Keywords Search results

WoS Scopus
1 Hemodynamics 66,412 257,526
2 Hemodynamics and CFD and heart arteries 388 879
3 Hemodynamics and CFD and heart arteries and Pulsat∗∗ 114 183

3 Quantitative Analysis

The analysis is done on the refined search of the two databases, taking the second search result
out of the three searches (388 for WoS and 879 for Scopus). Before the detailed literature review, this
gives an overall idea of the developments carried out in the past years and the need for research in the
upcoming years.

3.1 Trends in the Yearly Publication of Documents
Fig. 3 depicts the importance of the research by showing the number of papers published every

year. Although the research started early in the early 70s, it gained momentum only a few decades ago.
The number of publications showed an increasing trend, showing a maximum number of documents
in 2020 for Scopus and 2021 for Web of Science. CFD in the biomedical domain is quite complex
and expensive due to the complex computational domain and realistic boundary problems such as
pulsating flow, moving boundaries, patient-specific geometry, and others. Hence, the integration of
Deep Learning in CFD helps accelerate CFD simulations. This makes the research more realistic from
the clinical point of view. This new technology in CFD gives the problem a multidisciplinary approach,
which also increases the number of papers published in the last ten years.
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Figure 3: Year-wise comparison of publications

3.2 Publication Based on Countries
Cardiovascular diseases are one of the most commonly occurring diseases throughout the world.

Due to an increasing death rate, extensive research has been done across the globe. A detailed analysis
was done for all the countries involved in this research area. Both the databases, Scopus and WoS,
were evaluated where. Scopus has publications from more than 70 countries, whereas WoS contains
publications from over 50 countries.

Fig. 4 shows the number of documents published by the top ten countries. Records show that the
maximum number of deaths in The United States is due to heart-related diseases.

High blood pressure, cholesterol, and smoking are some essential factors for heart strokes. Obesity
and type 2 diabetes are the culprits commonly observed in the United States. Hence, the research in this
area has also been highest in the U.S. for both databases. A sedentary lifestyle commonly seen in such
developed countries increases the risks of CAD. Research shows that the death rate in Eastern Europe
is 59%, whereas in Sub-Saharan Africa it is about 10% [22]. After the USA, other vital countries
included England, China, and Italy. Certain undefined publications were also observed in Scopus
that were not affiliated with any country. A satellite map showing the top 20 countries will help to
understand the actively involved countries. A world map in Fig. 5 gives a global overview of the 20
major countries in this research area.

Thus, the research has been seen as dominating in most developed countries. Recent studies also
show that modernization in low and middle-income countries has led to an increase in cardiovascular
diseases and deaths, too. The need is the mother of innovation. Hence, hemodynamics and cardiovas-
cular research have started to show their presence in developing countries such as India and Poland.
For this purpose, various research institutions across the globe have established adequate and world-
class research facilities. The details of such research institutes are discussed in the next section.
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Figure 4: Top 10 countries in Scopus and WoS with the highest number of publications

Figure 5: Satellite map of the top 20 publishing countries in both databases
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3.3 Distribution Based on Research Institutions
The analysis of publications related to countries and yearly publications gave knowledge about the

growth of this research domain across the globe. A similar analysis regarding the research institutes
was conducted and compared for both databases. Research institutes give researchers a platform to
perform basic and applied research. It has all the essential facilities required by a researcher. Hence,
surveying the research institutes will help researchers approach them and find the facilities essential for
their work. Fig. 6 shows that the US has great research funding institutions, such as the “University of
California (UC)” and “Georgia Institute of Technology (GIT)” where the research is funded not only
by the government but also by big corporations. Excellent facilities provided by the finest research
institutes in the United States, the United Kingdom, and others can be another possible reason for the
large number of publications in these areas. These institutions are equipped with the latest technical
specialties. Cardiovascular fluid mechanics (CFM) at Georgia Tech is one of the world’s greatest
laboratories, studying heart mechanisms and various cardiovascular defects.

Figure 6: Top ten affiliations: WoS and Scopus

The top ten affiliations of the research institutes were gathered from both databases. The United
Kingdom also has outstanding research institutions like the Imperial College of London and the
University of London. These premium institutes work extensively in science, engineering, business,
and medicine.

3.4 Distribution Based on Subject Categories
The study of flow in arteries is a multidisciplinary approach. Apart from CFD, it has significant

roles in medicine, bio-engineering, physics, and others. Hence, an analysis based on the subject area
will be conducted to determine the significant disciplines actively involved in this field of research.
Data from Scopus and WoS show that medicine and engineering are the top domains. This signifies
that engineers are actively involved in studying biomedical applications.
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Blood flow studies are an essential social factor and a critical research domain. The medical
industry goes hand in hand with engineering techniques to fight the problems related to cardiovascular
diseases. The pie chart in Fig. 7 also validates how engineering has supported the medical domain. It
shows maximum contribution in this field of research. Various fields of engineering have a significant
role in contributing to hemodynamics. Initially, CFD has successfully studied functional information
such as localized shear stress in the artery’s walls. Not only that, the study of CFD gives us an idea
of the underlying cause of the disease from the flow perspective of blood. Flow simulation was used
clinically in 2015 for the first time by Alberto Figueroa, professor of Biomedical Engineering and
Cardiovascular Surgery at the University of Michigan, for surgical intervention.

Figure 7: Top ten subject categories: (a) Scopus and (b) WoS
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Apart from CFD, mini sensors are designed that can be implanted in the bloodstream and
measure important cardiovascular indicators [23]. Philips is a global electronics company with a global
partnership with the “World Heart Federation” by providing personalized solutions for diagnosis and
treatment. Various machine learning algorithms work in many fields of cardiovascular diseases. Big
data analytics is beneficial in predicting abnormal conditions related to heart diseases. Deep learning
analysis is helpful in various diagnostic modalities, such as angiography and echocardiography. These
successfully identify diseases such as atherosclerosis and know the disease’s stage [24]. With these
studies, the graph justifies the role of engineering in studying cardiovascular diseases.

3.5 Network Analysis
Network analysis generally refers to the study of various visual patterns between various factors,

depending on the domain of survey and research. The main idea of the analysis is to get information
about the dimensional domain of research and its relevance. This can be very well found by visual
analysis. There are various tools for analyzing such scientific data analysis. Software tools such as
VOSviewer, Citeseer, and Pajek offer excellent data visualization. Statistical analysis software such as
Gephi also provides statistical data in CSV files. VOSviewer is employed to analyze the data network
due to its excellent visual distribution. Such visualization analysis highlights the relations based on
keywords, publications, citations, and author relationships. Hence, a network analysis was done using
VOSviewer software by taking data from the Scopus database. Since the database has massive data for
our area of research, two attributes were considered at a time and compared for better understanding.

Fig. 8 shows the relation between the co-authorship and countries. The nodes imply countries
with research articles that different scholars have co-authored in the same publication. It helps identify
global collaboration when working on a particular research area. The network is selected based on the
criteria of selecting five countries’ documents with at least one citation per country. It indicates that
out of 124 countries, 42 countries meet the threshold. The bigger the dot size, the greater the research
influence. The United States of America has the highest collaboration with other countries, followed
by China and UK.

Figure 8: Network analysis based on co-authorships with other nations

Bibliometric Coupling tells us about the overlap or the intersection of the references. It is an
excellent way of identifying clusters in a particular research area. Bibliographic Coupling is possible
when two works point to the same third work in their references. When two research papers share
many references, it implies that they have a strong relationship and work on similar aspects. The more
meshing in the network, the more the coupling. Fig. 9 indicates that the nodes refer to the research
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papers of a country, and the connecting lines are the links they share. The United States, China, and
the United Kingdom have maximum coupling with other countries, as shown in Fig. 9.

Figure 9: Network analysis based on bibliometric coupling

3.6 Citation Analysis
Citations refer to authentic sources that are utilized to support research. Citation analysis validates

and authenticates a document. More citations refer to good quality work, which would benefit the
researcher. It is an excellent way of tracking the research trends. An increasing trend in the graph
states that the research area has become increasingly recognized and impactful in society.

Fig. 10 shows the citation of the total number of documents in the particular research area from
2018 to mid-2022 for both Scopus and WoS. The increasing trend in the citation index represents
that research is of interest in the present field of research. The increasing trend in the citation index
represents the activeness in the present field of research.
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Figure 10: Citation analysis (Scopus and WoS)

Tables 2 and 3 communicate the top ten cited publications from the two databases in the last five
years.

Table 2: Top 10 cited documents from Scopus

Year Document title Authors Journal title 2018 2019 2020 2021 2022 Total

2012 “4D flow MRI” [25] Markl et al. Journal of Magnetic
Resonance Imaging

38 51 68 85 52 294

2011 “Coronary artery wall shear stress is
associated with progression and
transformation of atherosclerotic
plaque and arterial remodeling in
patients with coronary artery
disease” [26]

Samady et al. Circulation 42 39 59 54 37 231

2007 “Complex hemodynamics at the
apex of an arterial bifurcation
induces vascular remodeling
resembling cerebral aneurysm
initiation” [27]

Meng et al. Stroke 27 38 25 30 27 147

2008 “Geometry of the carotid
bifurcation predicts its exposure to
disturbed flow” [28]

Lee et al. Stroke 10 27 25 24 12 98

2008 “Intracranial and abdominal aortic
aneurysms: Similarities, differences,
and need for a new class of
computational models” [29]

Humphrey
and Taylor

Annual Review of
Biomedical
Engineering

20 16 10 9 7 62

(Continued)
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Table 2 (continued)

Year Document title Authors Journal title 2018 2019 2020 2021 2022 Total

2004 “Effects of arterial geometry on
aneurysm growth:
Three-dimensional computational
fluid dynamics study” [30]

Hoi et al. Journal of
Neurosurgery

13 8 9 9 8 47

1996 “Use of computational fluid
dynamics in the design of surgical
procedures: Application to the study
of competitive flows in
cavopulmonary connections” [31]

De Leval et al. Journal of Thoracic
and Cardiovascular
Surgery

10 3 8 7 5 33

2005 “Strut position, blood flow, and
drug deposition: Implications for
single and overlapping drug-eluting
stents” [20]

Balakrishnan
et al.

Circulation 4 8 2 7 5 26

1997 “Validated computation of
physiologic flow in a realistic
coronary artery branch” [32]

Perktold et al. Journal of
Biomechanics

3 4 2 5 0 14

Table 3: Top 10 highest cited documents from WoS

Year Document title Authors Journal title 2018 2019 2020 2021 2022 Total

2017 “SimVascular: An open source
pipeline for cardiovascular
simulation” [33]

Updegrove
et al.

Annals of Biomedical
Engineering

21 30 46 54 28 179

2018 “Diagnostic accuracy of a
machine-learning approach to
coronary computed tomographic
angiography-based fractional flow
reserve result from the machine
consortium” [34]

Coenen et al. Circulation-
Cardiovascular
Imaging

4 27 48 47 33 159

2004 “Spatial comparison between wall
shear stress measures and porcine
arterial endothelial permeability”
[35]

Himburg et al. American Journal of
Physiology-heart and
Circulatory
Physiology

19 20 25 30 16 110

2009 “Hemodynamics of cerebral
aneurysms” [36]

Sforza et al. Annual Review of
Fluid Mechanics

13 23 19 21 17 93

2009 “Evaluation of a novel Y-shaped
extracardiac Fontan baffle using
computational fluid dynamics” [37]

Marsden et al. Journal of Thoracic
and Cardiovascular
Surgery

14 8 9 7 7 45

2005 “Alterations in wall shear stress
predict sites of neointimal
hyperplasia after stent implantation
in rabbit iliac arteries” [38]

LaDisa et al. American Journal of
Physiology-heart and
Circulatory
Physiology

9 9 7 11 3 39

2007 “Nonlinear power loss during
exercise in single-ventricle patients
after the Fontan-Insights from
computational fluid dynamics” [39]

Whitehead
et al.

Circulation 7 5 7 5 4 28

(Continued)
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Table 3 (continued)

Year Document title Authors Journal title 2018 2019 2020 2021 2022 Total

2003 “Three-dimensional computational
fluid dynamics modeling of
alterations in coronary wall shear
stress produced by stent
implantation” [40]

LaDisa et al. Annals of Biomedical
Engineering

5 3 6 5 1 20

2005 “Strut position, blood flow, and
drug deposition-implications for
single and overlapping drug-eluting
stents” [20]

Balakrishnan
et al.

Circulation 1 7 4 6 2 20

2004 “Hemodynamics and wall
mechanics in human carotid
bifurcation and its consequences for
atherogenesis: Investigation of
inter-individual variation” [41]

Younis et al. Biomechanics and
Modeling in
Mechanobiology

3 5 5 5 0 18

4 Qualitative Analysis

This section describes the detailed journey of the study of pulsatile flow in arteries. Apart from
experimental and numerical studies, it highlights other aspects, such as the introduction of patient-
specific modeling and the use of parallel computing in CFD simulations. The non-Newtonian nature
of blood [42], as well as the elastic walls of the arteries, is taken into account while doing the CFD
simulations. These help to bring more realistic and faster results. Non-Newtonian models successfully
record the variable viscosity, and the elastic walls show the changes in structure due to the pulsatile
nature of the flow. Researchers have observed that non-Newtonian behavior is seen prominently in
the region of stenosis [43]. The addition of responsive AI in recent years has helped adapt real-time
monitoring and accurate diagnosis.

4.1 History or Conventional Method to Study the Pulsatile Flow
Cardiovascular diseases have been a crucial problem in society for decades. Scientists have always

tried to replicate the heart’s blood flow. Many experimental setups [44] have been conducted for
decades when computer-based simulations were relatively rare. Various methodologies and assump-
tions were considered while studying the pulsatile flow of the artery. Most of the experimental inves-
tigations studied this unsteady flow and its effects by considering the artery as a pipe, neglecting its
flexibility [45]. Experiments were conducted for channels, ducts, and pipes to analyze flow properties
such as pressure drop, velocity profiles, and wall shear stress [46]. Researchers also considered various
geometries such as curved, straight, bent, and constricted tubes by providing a pulsating inlet [47–49].
A non-dimensional parameter called the Dean number helped study the flow in curved pipes [50]. It
helps determine whether the flow is unidirectional, laminar, or turbulent. Dean Number also helped
study the secondary flow developed due to curvature in the bend [51]. The Green Function method
also effectively studies pulsating and laminar flow in ducts and microchannels [52].
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Figure 11: Experimental study of flow through stenosis [53]

Initially, various non-dimensional quantities, velocities, flow rates, and viscous drag were calcu-
lated for rabbits and dogs, similar to humans’ arterial flow [54]. The blood was also regarded as New-
tonian. The pressure gradient and velocity gradient were a function of time only. Pressure variations
and velocity gradient, measured at different points from the stenosis (constriction), clearly understood
the phase lag conditions, which were prominent at fast oscillations [55]. Various experiments were
evaluated for rigid and elastic walls and were compared to their wall stress, flow separation layer,
velocity profiles, and others [56].

Experimental investigations included single stenosis and tried to evaluate the changes in hemo-
dynamic parameters by increasing the severity and number of stenosis. The pressure drop rises
exponentially with the increase in severity.

Fig. 11 shows the experimental set-up of stenosis with 75% constriction to investigate the flow
properties. It indicates the tube has a mechanical property similar to the stenosed artery and a pump
to provide the pulsatile flow. The data acquisition system is attached to the setup and provides the
hemodynamic parameters as output. Table 4 lists the pressure drop of single and double stenosis
at different severity percentages [57]. It highlights the increase in pressure drop when the blockage
increases. Double stenosis has a greater pressure drop than single stenosis. Table 4 indicates that the
pressure drop is almost the same when the stenosis percentage is 45%, but for 82% stenosis, the pressure
drop in double stenosis is much more than in single stenosis. Thus, multiple stenosis with a lesser
percentage poses less danger than single stenosis of higher severity. The experimental investigation
became a crucial breakthrough to validate the theories and replicate the flow properties of blood in
arteries. Table 5 lists various experiments conducted and the outcomes achieved.
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Table 4: Pressure drop for one and two stenoses with varying blockage [57] (Experimental)

Blockage percentage Pressure drop single stenosis (mm Hg) Pressure drop double stenosis
(mm Hg)

45 7.5 7.56
62 7.67 8.31
70 7.71 8.36
76 8.16 9.87
82 9.64 12.13

Table 5: Experimental investigation—an initial research

Document Authors Purpose Outcomes

“Experimental analysis of
unsteady flows through a
stenosis” [53]

Siouffi et al. Post stenotic velocity
and WSS

WSS values have both
positive and negative
values, possibility of
lesions

“Pulsatile flow through
constricted tubes: An
experimental investigation
using photochromic tracer
methods” [47]

Ojha et al. Velocity profiles at three
different positions
along the tube

Mild constriction had
helical structures,
whereas a transition
was observed in the
case of constriction of
50%–80%

“An experimental study of
pulsatile flow in a curved
tube” [58]

Chandran et al. Study of axial velocity
at different
cross-sections

The curved tube’s outer
walls have showed
recirculation

“Experimental study of
laminar blood flow through
an artery treated by a stent
implantation:
Characterization of intra-stent
wall shear stress” [59]

Benard et al. An in vitro model of the
strut was designed
along with a
programmable pump

A stagnation zone was
observed, indicating a
greater possibility of
recurring stenosis

“Experimental investigation
of the effects of arterial
geometries in different
severities of symmetrical
stenosis on pressure drop and
pump power” [44]

Sonmez et al. To study the effect of
different stenosis on
pressure drop and outlet
pressure using a
peristaltic pump

The pulse wave is
directly proportional to
the pressure drop

4.2 Numerical Analysis in Cardiovascular Studies
Due to the advancement of technology, the research mode shifted from experimental to numerical

and then computational by the early 90s. From mathematical models to computational methods, the
change has been drastic. The introduction of CFD was a significant breakthrough in fluid dynamics.
Computers began calculating the flow properties efficiently [60,61]. The early 2000s was the era
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when CFD techniques took over mathematical models. Various finite volume-based algorithms and
software, such as ANSYS Fluent, CFX, and others, were introduced for simulation purposes [62–64].
It involved pre-processing, i.e., geometry definition and mesh generation. Once the mesh is generated,
fluid properties are considered. Flow physics is then modeled using appropriate boundary conditions.
Finally, the results are validated [65–68]. Fig. 12 depicts the step-wise process for the numerical
simulation for a clear understanding. Numerical simulation has become highly beneficial, as it can
avoid the experimental replication of the heart’s blood flow, which is quite complex in nature.

Figure 12: Steps involved in numerical simulation

Defining the geometry and appropriate mesh creation are the initial steps to numerical simulation.
Inappropriate mesh creation would lead to erroneous results. Mesh elements and nodes of the
mesh should be appropriately utilized to extract information and validate flow properties. Mesh
discretizes the flow domain into an appropriate number of cells for optimum prediction. Researchers
have tried discretizing their models for different grid densities and time steps to evaluate the flow
properties. Grids are refined, time steps are altered till stable solutions are attained, and the solution
is grid-independent. Lee et al. [56] tested three different grid densities and numerous time steps to
bring about the stability of a solution. He finalized his meshing with 30,750 nodes and 50 time
steps for optimum results. The following steps in numerical simulation are implementing governing
equations and selecting appropriate models, such as the turbulence model, based on the problem.
The selected mathematical models are now solved by defining appropriate boundary conditions and
flow properties, followed by results and validation [69]. The geometry and meshing can also be axis-
symmetric in cases of uniform stenosis. The purpose of making an axis-symmetric geometry is that
the simulation can be done for only one-half of the geometry, saving computation time. The geometry
and meshing of a stenotic model are shown in Fig. 13.

Figure 13: (a) Structural model of the stenosed artery for computational purposes; (b) Closer view of
the mesh

Various image-based modeling techniques were introduced to simulate pulsating flow in arteries
and give a realistic view [70]. The major hindrance that came in the way was the simulation time.
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Due to complex geometry and complex codes, calculations took much time. Parallel computing was
introduced to handle such complexities. The problem was broken down and solved in multiple cores
using multicore processors to reduce time and money. Independent blocks of codes were written, which
can be solved simultaneously. CUDA, OpenACC, and Open MP are beneficial for this purpose [71–
74]. Such platforms significantly reduced the time for complex numerical simulations [75–79].

4.3 Medical Image Segmentation for Patient-Specific Modeling of Blood Flow
In the last decade, patient-specific models took over geometric models. Fig. 14 illustrates the

basic steps involved in analyzing a patient-specific blood flow in the heart. Patient-specific models
give more realistic results in studying the pulsating flow of arteries [80]. The images were taken from
various modalities such as CT, cardiac MRI, and 3D/4D echo. These images need processing, such
as reconstruction, denoising, mapping, and others. Echocardiography is usually utilized to diagnose
many heart diseases as it is readily employed to calculate cardiac output, ejection fraction, diastolic
function, and others. These images need processing, such as reconstruction, denoising, and mapping.
In addition, Cardiac CT is also used as it provides spatial resolution, but it has a higher risk of
radiation.

Figure 14: Steps for patient-specific simulation of blood in the heart

Hence, images covering a few cycles can be taken depending on the requirements and availability.
CT images are stored in digital imaging and communication in medicine (DICOM) format. These
can be segmented using various segmentation software such as “Mimics”, ITK-SNAP, Seg-3D,
TurtleSeg (www.turtleseg.org) (accessed on 07 October 2024), 3D-Doctor, MITK, and GIMIAS.
These methods involve generating 3-D models from images [81]. In segmentation, one needs to focus
on a particular region of interest. However, one should be careful when matching the topology,
connectivity, and mesh properties, which many software tools generally do not provide. From the
medical images, effective segmentation is done by extracting the wall boundaries to reconstruct the
geometry. After reconstruction of surfaces, these models are converted into solid models, which
are stored in “STL (STereoLithography) format” [82]. STL format is a widespread file format that
supports many modeling software. An efficient computational mesh is generated to fit into CFD
solvers and software effectively. Hence, an effective segmentation capable of CFD simulation is quite

https://www.turtleseg.org
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cumbersome. Therefore, researchers have tried to find efficient image processing algorithms, such as
anisotropic diffusion, active contour, and Neural convolutional network, for efficient segmentation
and reconstruction [24]. Level set Methods also work efficiently in connecting and matching the mesh
properties, discarding the complicated surface mesh generation [83].

Lattice Boltzmann Method (LBM) is another simple and efficient framework used in fluid
dynamics and image processing where level set methods work well for segmentation [84]. Its inherent
parallelism provides an efficient pathway for parallel programming in GPU and CUDA, among others
[85–88]. The segmented results achieved can be used directly to give the much-needed boundary
information required for hemodynamic simulation. Researchers have simulated the formation of a
thrombus with an onion skin-like structure in the cavity of the cerebral aneurysm using LBM. It used
the same lattice or network of image processing, which was then applied to the images in DICOM
format for simulating the mechanics of thrombosis and then coupling it to hemodynamics [89].

A schematic diagram is shown in Fig. 15, clearly connecting how the LBM network can be
utilized as a unified model to perform image processing operations, flow dynamics, and biological
modeling. Table 6 summarizes various segmentation procedures that can be used for medical image
segmentation. Mapping patient-specific hemodynamics models is the initial and crucial step toward
CFD simulation. The surface of the images from any modalities can be mapped using many surface-
matching algorithms.

Figure 15: Schematic representation of different layers

Different algorithms suit different deformations. Algorithms such as Iterative Closest Point and
Elastic Deformation can be used for smaller deformations. In contrast, for larger deformation, Large
Deformation Diffeomorphic Metric Mapping (LDDMM) can be implemented [83,90,91].
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Table 6: Commonly used segmentation procedures for image segmentation

Image processing Authors Purpose Outcomes

Anisotropic
diffusion

Köhler et al. [92] Image segmentation and
filtering

Noise compression by
conserving edges

Jia et al. [93] Semi-automatic
segmentation

Converts CT images into 3D
mesh ready

Clustering Varshney et al. [94] Partitioning images into
clusters based on pixel
color, intensity, and texture

Minimizes the variances and
generates excellent clusters

Gradient descent
method

Balla-Arabé et al. [95] Image segmentation Fast, robust to noise, did not
depend upon initial contour

Level set method Jiang et al. [96] Image segmentation Curve evolution was handled
quite efficiently

Therefore, level-set methods can be instrumental in image segmentation, specifically when con-
centrating on a particular section of the heart, such as the arteries, where very complex geometries are
not considered [97].

Being a boundary-tracking technique, it is quite beneficial in handling topological changes. The
marching cube algorithm is another classical method that effectively generates the surface mesh and
highlights the area of interest. A detailed segmentation procedure where the level set method is quite
beneficial to map onto a CFD mesh for simulation of the pulsatile flow in arteries is shown in Fig. 16.

Figure 16: Segmentation procedure for CFD mapping [97]
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4.4 CFD Simulation of the Pulsatile Flow in Arteries
After the segmentation and reconstruction of artery images, an efficient solution method should

be incorporated to explore the pulsatile flow of the arteries. Navier-Stokes equation was utilized to
describe the flow properties of incompressible flow. The artificial compressibility method (ACM)
is another method for computing steady-state incompressible flows that give time-accurate com-
putations. In ACM, the Navier-Stokes Equation is modified by adding a fictitious time derivative
of pressure to the continuity equation. Once the steady state is reached, the original equations are
recovered. Hence, the governing equations are solved at each time level. The dual time-stepping method
is also implemented for better time accuracy [98]. Various finite-volume methods are utilized to
discretize these equations [99]. Researchers have employed the HLLC-AC Riemann Solver to calculate
convective fluxes at the cell interface [100]. The HLLC method is a highly accurate method widely used
for compressible gas equations. This method can be utilized in incompressible flows using artificial
compressibility. Thus, this technique can achieve better time-accurate solutions. Fig. 17 depicts various
methods of solving incompressible flows in CFD.

Figure 17: Various solution methods for incompressible flows

Arteries are complex structures that show elastic deformations. Hence, the constitutive rela-
tionship is essential to understanding the response of the walls to the mechanical forces. Various
constitutive models are useful in studying the material properties of arterial walls. It explains how
shear stresses and strain (wall deformation) are related. The material of the walls also changes with
time and temperature. Hyper-elastic models such as the Ogden model study the tissues’ behavior by
studying the stress-strain relationship under various flow conditions. As the walls are made of various
fibers and collagens, the mechanical behavior along the arteries is also not uniform. Various non-
linear orthotropic models help to study the wall’s behavior in different directions [101]. Similarly,
time-dependent models such as the Standard Linear Solid Model beautifully explain how the walls
of the arteries respond over the pulsating period. Coupled simulations are widely considered when
exploring the walls’ hyperelastic properties and blood flow dynamics. Various methods cater to such
moving boundaries and their coupled effect on the blood flow dynamics. The immersed boundary
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method (IBM) is a finite element method for determining the incompressible Navier-Stokes Equations
for such realistic issues [102]. The boundary conditions are satisfied efficiently using pressure and
velocity correction techniques and give accurate results for internal flows [103]. This method ensures
the local refinement of the mesh so that the creation of new mesh at each step is avoided. This is an
efficient method for handling moving boundaries [104]. Smoothed Particle Hydrodynamics (SPH) is
another method to investigate surface deformations and fluid wall interactions. This method is simple
as it does not require a grid and efficiently tracks larger deformation and fluid-structure interactions
[105]. The fluid is regarded as discrete particles, and the greater the particles, the greater the efficiency.
However, the greatest drawback of this method is that it requires high computational costs to achieve
such an accuracy. Another method to handle fluid-structure interaction and moving boundaries is
the arbitrary lagrangian-eulerian (ALE) formulation for simulating blood flow in vessels. The mesh
will proceed with the deformation. It is based on both Lagrangian and Eulerian approaches [52]. As
discussed earlier, the Lattice Boltzmann Method (LBM) is another explicit scheme that studies the
fluid flow using a mesoscopic approach that uses a discrete collection of particles using a probability
distribution function (PDF). Using a statistical method, this PDF dictates the particle’s behavior [106].
Table 7 briefly explains the basic CFD simulation and hemodynamics in arteries, considering various
solution approaches and their outputs.

Table 7: Hemodynamics considering the various parameters and their outputs

Geom. Solution
method

Approach Fluid
properties

Boundary
conditions

Output Authors

Ideal Numerical Penalty method and
mixed model method

Laminar,
Newtonian

No slip at the walls
with a
time-dependent
velocity profile at
the inlet

Velocity profile
and wall shear
stress

Sousa et al. [69]

Ideal Experimental
and numerical

Finite element and
polynomial method

Laminar,
Newtonian

No slip at walls,
Time-dependent
velocity profile at
the inlet

Wall Shear Stress
(WSS)

Deplano
et al. [107]

Ideal Numerical Finite volume method Laminar, non-
Newtonian

No slip at the walls,
Womersley profile
at the inlet,
time-varying
pressure at the
outlet

Velocity profiles
at different points
from stenosis

Roy et al. [108]

Patient-
specific

Numerical Finite volume using
ANSYS fluent

Newtonian Womersley flow,
parabolic flow at
the inlet.
Windkessel models
at the outlet

Axial and in-plane
velocities for
different inlet
velocities

Madhavan
et al. [109]

Ideal Numerical Finite element method
with ALE

Newtonian Unsteady velocity
profile at the inlet.
4140 Pa at the
outlet

WSS, OSI,
TAWSS

Kelidis
et al. [110]

Ideal Numerical Finite volume method Newtonian Constant parabolic
profile at the inlet,
13 KPa-outlet
pressure

WSS, characteristic
filtration velocity,
and LDL
concentration

Kenjereš
et al. [111]

(Continued)
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Table 7 (continued)

Geom. Solution
method

Approach Fluid
properties

Boundary
conditions

Output Authors

Ideal Numerical Finite volume method Newtonian Mass flow profile
at the inlet, zero
surface tension at
the outlet

Normalized wall
shear stress for
different stenosis

Biglarian
et al. [112]

Patient-
specific

Numerical Volumetric lattice
boltzmann method
(GPU accelerated)

Newtonian No-slip boundary
condition is
integrated with the
streaming function

Velocity skewness
and wall shear
stress

Wang
et al. [113]

Ideal Numerical OPENFOAM Newtonian Womersley velocity
profile at the inlet,
0 Pa at the outlet

Velocity profile
comparison at
different time
steps

Impiombato
et al. [114]

Ideal Numerical Finite volume method
for fluid and finite
element method for
structural analysis

Newtonian
and Non-
Newtonian

Pulsating flow rate
at the inlet,
outflow boundary
conditions at the
outlet

Time-averaged
wall shear stress
and centreline
velocity

Sandeep
et al. [115]

4.5 Accelerating by GPU
As discussed before, simulations of real-life CFD problems involve a lot of mathematical cal-

culations and, hence, are often time-consuming. Therefore, high-performance computing helps to
solve these numerical models faster [116]. Using GPUs helps speed up the calculations, increasing
the performance. GPU can be used in image segmentation and CFD simulations [117].

GPU has massive processing cores that divide the computational work among the cores, efficiently
solving high floating-point calculations in no time.

NVIDIA graphics processing units can be utilized to speed up the computation. However, one
must be careful when implementing GPUs. Efficient simulation speed-up is possible only when the
data is parallelizable. Hence, the code must be optimized so that it is not serial or interdependent.
Discretizing the governing equations to a set of algebraic solutions and finding the solution is
pretty time-consuming. Hence, special GPU-based solvers have been designed for this purpose.
Parallel programs, such as Open MP and MPI (Message Passing Interface), are various programming
interfaces that help faster computation. CUDA is a similar programming platform that supports GPU
and supports the programming frameworks such as OpenMP. Lattice Boltzmann’s method is quite
efficient for parallel programming as it can be coded for parallel machines directly [118–120]. Fig. 18
shows a simulation using the Lattice Boltzmann Method using CPU and GPU with different mesh
elements. With smaller mesh elements (less than 30,000 mesh elements), GPU is not that efficient, but
with substantial mesh sizes, GPU saves a considerable amount of time. As the mess size increases to 40
lakhs, CPU time increases to 250 s, whereas it takes hardly 15 s when implemented in GPU. The present
work noted that GPU implementation was about 16 times faster than CPU implementation [121].
Table 8 lists the work where parallel programming is utilized to study complex flow simulations of the
heart, either for flow simulation or patient-specific segmentation. Parallel programming in cardiac
simulation helps acquire faster convergence, making it more realistic.
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Figure 18: GPU and CPU comparison for computation time

Table 8: Parallel programming used in CFD for biomedical applications

Year Parallel
programming

Authors Purpose Solver used

2021 GPU Sadrehaghighi [3] Complex interaction
between blood cells and
platelets

Palabos for blood plasma
simulation. Immersed
boundary method for
coupling

2019 GPU Wang et al. [119] 2D and 3D segmentation
of medical images

Lattice boltzmann
method

2021 MPI-CUDA Zolfaghari et al. [122] Grid size is over 1 Billion Immersed boundary
method

2021 Cuda Fortran Viola et al. [123] Fluid-structure
interaction, Finer grids,
and smaller time steps

Second-order
finite-difference DNS,
N-S equations, IBM for
interfacial boundary
conditions

2015 MRISIMUL Kantasis et al. [124] Study of MR simulations MapReduce algorithm
2011 GPU accelerated Malech et al. [125] Large systems of Sparse

Linear equations
OpenFOAM

5 Results and Discussions

This section deals with the various results of CFD simulations that help to understand the
hemodynamic parameters. Whether experimental or numerical, the replication of blood flow in
arteries considers input parameters such as pulsatile flow, non-Newtonian nature of blood, shape,
and size of the stenosis, and others. The output results, such as pressure drop, wall shear stress, flow
reversal, vortex formation, and others, play an essential role in detecting various diseases.
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Excessive WSS is an indication of endothelial dysfunction. Vortex formation also leads to high
shear stress, indicating plaque formation or aneurysms. Blood flow in arteries is laminar. Flow
reversal would indicate that there is some abnormality in the arteries. This section thus highlights how
abnormalities in the arteries can be detected through various output parameters. Fig. 19 depicts the
general input parameters and the outputs considered for predicting cardiovascular diseases with the
help of CFD. Cardiovascular hemodynamics is a vast field to investigate. It is challenging to analyze
the blood flow of the whole heart. Hence, researchers have concentrated their research on vascular
hemodynamics. The arteries’ blood flow can prove a determining factor for many cardiovascular
diseases. Prominent researchers thus have considered parameters such as sinusoidal mass flow rate
as an input to study pulsating laminar fully developed flows [126].

Figure 19: Commonly used input and outputs for flow simulation of blood in arteries

Analytical and experimental results were validated through these studies. Different normalized
parameters for amplitude and frequency were taken for the analytical investigation to match the
experimental results. These results provide an understanding of the flow patterns, flow reversals, and
secondary flows, if any [127]. The axial velocity profiles change at different time steps in a cycle in a
stenosed artery at different positions from the stenosis. A clear understanding of plaque formation
and its effects on blood flow patterns can be analyzed from such numerical simulation. Initially, flow
simulations were considered to be Newtonian. Later, various non-Newtonian models were proposed,
as the non-Newtonian behavior of blood cannot be ignored in arteries of smaller dimensions. The
Power Law, the Casson, the Carreau, and the Generalised Power Law model are a few utilized to study
the non-Newtonian nature of blood [128]. These results were validated for different arterial diameters
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with the theories of pulsating flow proposed by Womersley [129]. Thus, analysis of the flow patterns
in the blood vessels can help determine the cause of diseases.

Wall shear stress is an important indicator to be considered when studying the flow in arteries.
It serves as an essential parameter for studying the start and growth of plaque. Wall Shear stress also
depends on the diameter of the arteries. The fluid’s viscous force exerts tangential stress on the walls of
the arteries. Three essential parameters, namely oscillatory shear index (OSI), time-averaged wall shear
stress (TAWSS), and relative residence time (RRT), are highly beneficial in indicating common diseases
such as Atherosclerosis. OSI changes the direction of wall shear stress in a cardiac cycle, TAWSS
indicates the total shear stress exerted on the walls in a cardiac cycle, and RRT indicates disturbed flow
regions. In order to find out the wall shear stress over the whole cycle, it is time-averaged and hence
known as time-averaged wall shear stress (TAWSS). Wall shear stress is directly proportional to blood
viscosity and velocity. Wall shear stress gradient (WSSG) determines the changes in the flow direction
in space [130]. This is calculated as the rate of change of wall shear stress for space. It is measured
in Pa/mm. The OSI is a non-dimensional parameter whose values range from 0 to 0.5. The value of
0 refers to a steady flow, whereas 0.5 specifies extreme oscillations. This dimensionless parameter is
a measure to indicate tangential oscillation, which is high near the plaque region. RRT explains how
blood flow gets distributed in the abnormality region (aneurysm). RRT incorporates both TAWSS
and OSI [131]. Circulation of blood for a larger amount of time near the diseased areas of the artery
can also cause rupture, leading to blockage. A value of less than 0.4 Pa of TAWSS can lead to plaque
formation, whereas an unusual increase in the TAWSS can lead to a clot in the arteries. All these
parameters also depend upon the arteries’ geometry and branching.

Research shows that lower values of TAWSS and higher values of OSI can lead to the thickening
of the arteries. RRT values are also high in such regions. With the decrease of TAWSS, OSI also
increases in such regions [132]. The relation between OSI and TAWSS thus portrays an inverse
relationship. These parameters are beneficial in the pre-analysis of diseases. It can signal the beginning
and development of plaque in specific regions of arteries. A new parameter that combines time-
averaged shear stress and the oscillatory shear index named “HOLMES” was introduced, which
combines the mean value of wall shear stress with the oscillatory characteristics. This low-magnitude
shear stress indicator enhanced the predictions of diseases more accurately [133]. The following offers
the calculation for the above-discussed indicators:
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where T is the total period of the cardiac cycle, and τ w is the shear stress at any instant. x, y, and z are
the three spatial directions. Plaque formation is quite dominant in the regions with low TAWSS and
high RRT. Hence, input parameters considerations to study the flow properties in diseased arteries
include factors such as pulsating inlet, Womersley number, Newtonian or Non-Newtonian, the height
of stenosis, the shape of stenosis, the curvature of stenosis, moving boundaries of the blood vessels,
and others.

A few output parameters that decide the prediction of heart-related diseases are pressure drop,
velocity profile, shear stress on the walls of the vessels, vortex formation, and others. Literature
shows that wall shear stress increases with the height of stenosis, flow amplitude, and Womersley
number. Stenosis morphology also affects the hemodynamic parameters. Various morphologies in
stenosis, such as bell-shaped stenosis, trapezoidal stenosis, and others. Results have shown that the
axial stretch of the stenosis also impacts the shear stress. It brings about turbulence and disturbed
flows. In atherosclerosis, plaque changes its morphology; hence, this study is valuable in identifying
the risk factors.

6 Challenges and Opportunities for the Study of Blood Flow in Arteries

After a thorough evaluation of the study of the pulsatile flow in arteries, a brief description of
the few challenges encountered in the different stages of its research and its possible opportunities has
been mentioned in this section. Table 9 lists the challenges and opportunities that come across during
the study. From data acquisition to clinical decisions, various challenges were encountered. Cardiac
MR was collected from different sources. These data can be fragmented or noisy. To process such
data, data integration software such as Mimics, 3DSlicer, and ITKSnap can be utilized to preprocess
the images compatible with CFD simulations.

Table 9: Challenges and opportunities in patient-specific cardiac simulation

Method Challenges Opportunities

Cardiac MR acquisition Huge-sized datasets for
time-effective image interpretation

Proper software solutions are used
for the post-processing of the data

Segmentation and
model reconstruction

Due to the cardiac motion of
images, noise removal can pose a
problem

Concentrating on a particular
section, such as an artery, can give
better results. Automatic
segmentation can be another option

CFD simulation Mesh generation from the images
for accurate simulation can be
challenging

One can opt for meshless methods
that avoid the explicit connection of
meshes [134]

CFD softwares Commercial CFD software can not
give very accurate solutions

Solvers focusing on explicit methods
and efficient mathematical models
can bring about better accuracy

Fluid-structure
interaction

Methods such as ALE to handle
moving boundaries require high
computational costs

Coupled momentum methods and
immersed boundary methods can
reduce such issues

GPU accelerated for
time acceleration

For solvers to enable GPU, the code
must be independent of each other

The use of LBM for simulation and
advanced programming platforms
such as CUDA can be useful
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Once the image is cleaned and segmented, mesh generation is the next crucial part of CFD
simulation. Course mesh or inconsistent mesh can bring about inaccurate results. A refined mesh will
bring accuracy but increase computational time. The use of parallel programming can be a solution
to decrease the computational time. Adaptive mesh generation and meshless methods are some of the
recent techniques that can help change mesh refinements wherever required. For example, COMSOL
software has the provision for automatic mesh generation. CFD software studies the behavior of the
fluids by setting the initial and boundary conditions. They have pre-built models that cater to a wide
range of simulations, but solvers cannot provide accurate solutions for patient-specific simulations.
Hence, CFD solvers can be used as they are quite flexible and can be designed to solve the problem
individually. FSI models in CFD study the interaction of blood and artery walls, giving realistic results
but are computationally expensive. Reduced order models and coupled momentum equations can
simplify complex systems and enhance efficiency.

7 Advanced Approach

Technology has been the key to modernization. CFD has successfully studied cardiovascular flows
efficiently using the latest technologies, such as image processing and parallel programming. Recently,
CFD has incorporated AI into its world too.

7.1 Artificial Intelligence in CFD
Various predictive models of AI have been implemented in the study of cardiovascular diseases.

AI-accelerated CFD simulations work more time effectively than the traditional workflow. Fig. 20
shows the difference in simulation procedure between the conventional CFD simulation and the AI-
accelerated CFD solution. Various neural networks are trained on vast sets of CFD-simulated data.
Thus, the trained neural networks can predict the outcomes for the new cases instead of running
computationally expensive CFD simulations. It reduces the number of iterations and the simulation
time from hours to minutes. A detailed flowchart in Fig. 21 shows how CFD data can give real-time
results in minutes when fed into a machine learning algorithm. The neural networks are trained on the
vast CFD simulations data where the inputs such as waveform, initial conditions, boundary conditions,
and various geometries are mapped to the outputs such as WSS, pressure drop, velocity profiles, and
others. The results from these AI models are validated with real-time results. These trained AI models
can predict abnormalities whenever a new case comes without undergoing actual CFD simulations.
Not only that, these neural networks can identify deviations from the normal results and suggest the
areas that need special attention. Thus, training the AI models with the CFD simulated data helps to
give faster results than the actual CFD simulations. For example, a neural network trained on blood
flow in coronary arteries can predict flow patterns such as recirculations, vortex formation, and wall
shear stress and suggest desired solutions.

CFD simulation starts by acquiring MRI images, calculating the flow properties, and predicting
the outputs. For this purpose, hospitals provide scans of patients to researchers for such simulations.
The images available from hospitals cannot always meet the requirements. Such noisy data must be
interpreted correctly. Various neural network models, such as the “Physics-informed Neural Networks
(PiNN)” model, can accurately denoise such medical images. Trained PiNN models also led to
successful automatic segmentation of the arterial geometry [135].
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Figure 20: Difference in conventional CFD and AI-Accelerated CFD

Figure 21: Steps to simulate patient-specific modeling with AI validation

In this method, parameters are introduced in the partial differential equations with the help of
neural networks, which are trained to explore the system efficiently. Apart from PiNN models, Support
Vector Machines (SVM) and Random Forests (RF) algorithms identify the noisy signals of medical
images. SVM is also proficient in finding artifact data. Such algorithms benefit studies related to
myocardial blood flow. Multi-GPUs have also been implemented to reduce training time.
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These segmented images are then meshed into grids. This gridded geometry is ready for CFD
simulation. The CFD solver solves the Navier-Stokes equation for thousands of time steps for all
the grids. Therefore, solving such non-linear partial differential equations millions of times is time-
consuming. Hence, deep learning algorithms such as FCN, CNN, and geometric deep learning help
reduce computational time. These networks study the results from complete simulations using various
activation functions of various pre-available CFD simulations of patients [136]. Activation functions
introduce non-linearity and enable complex mapping between inputs and outputs. ReLU can be used
for hidden layers, and functions such as sigmoid can be used for outer layers of neural networks to
investigate the abnormal flow patterns of blood. Error statistics play a crucial role in validating the
performance of such models and algorithms. Error statistics are chosen depending on the problem’s
scenario and the analysis output. Absolute errors are useful for regression problems where error
magnitude is crucial. Loss functions such as Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) can be utilized to determine the accuracy and measure the difference between the
predicted and actual values. For instance, RMSE can be studied to minimize the deviations between
true and predicted flow patterns. These convolutional neural networks (CNN) were first utilized
to study the flow around objects with simple geometry [137]. Li et al. [138] tried to compare the
CFD simulations with Fluid-Structure Interactions (FSI) simulations to study the blood flow in a
stenosed artery. The peak velocity and wall shear stress had similar results, but their computational
costs and time were quite high. An artificial neural network (ANN) was designed to decrease the
computational time. ANN helped predict faster prediction by learning through the results of CFD
and FSI simulations. A ten-fold cross-validation method was employed to enhance its prediction and
make the model robust. The data set is divided into ten subsets. Nine are used for training, and the
tenth is employed for validation. The selection of such hyperparameters is based on practice and
understanding. Hyperparameters such as determining the depth of the neural network and selecting
the kernel are essential to increase the performance. Performance metrics are now required to check the
model’s quality. Error statistics are one of the performance metrics utilized to check the authenticity
of the model. The Mean Squared Error (MSE) was utilized to assess the effectiveness and variance
of the model. The R2 value for peak WSS and velocity is around 0.9991, which shows that the ANN
model successfully determines the blood flow in stenosed arteries and indicates probable diseases.
The computation time for such algorithms is negligible. Hence, training of datasets derived from
conventional CFD simulations can develop a time-saving model that can help physicians respond
quickly by decreasing repeated calculations [139]. Deep learning techniques can also be employed
to study the blood flow in arteries and the pressure and velocity distribution from the MRI images.
Internal forces, material properties of the walls, and flexibility also affect the flow, pressure, and
velocity variations. The use of autoencoders can be an important tool for investigating the variation
in wall properties and warning of any abnormality. Cases such as plaque deposition or aneurysms can
be diagnosed in an early stage by extracting features related to wall stiffness. Such deep-learning study
solves the inverse problems in biomechanics and suggests personalized medicines or solutions for an
individual [140]. The data augmentation technique is another time-efficient technique [141]. Multiple
duplicate samples from the original CFD results are created in this paper. This increases the number
of datasets, enhancing the learning process. Abucide-Armas et al. [142] made 549 duplicate samples
from 61 original CFD simulations, which took 4 h instead of 183 h for generating 61 actual CFD
samples [142]. Vigorous training of DeepCFD results with these augmented data minimizes errors.
In this paper, real CFD simulations are fed to DeepCFD to produce more similar cases in much
less time, lessening the real simulation time. Table 10 details the simulation features under different
experimental conditions. This experiment indicates that despite a maximum number of epochs, the
CNN algorithm does not provide accurate results, whereas as the number of samples increases, the
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results get accurate. A multiplying constant of 0.01 is provided to maximize the results for velocity,
which shows a considerable reduction of error in the x component of velocity. This method is adopted
to adjust the scale and improve the model’s performance. For further enhancement of the models,
norms are used for error regularization. The selection of norms depends on the problem and the output
required. L1-norm efficiently handles outliers and sparsity, whereas L2-norm focuses on smooth and
larger deviation. Experimental results indicate better convergence when the L1-norm is introduced for
pressure and the L2-norm for velocity. The error reduces as the number of samples increases. The use
of a multiplier reduces error for x-velocity. The mean and variance error also significantly decreased
after using the L1-norm.

Table 10: Simulation parameters [142]

Feature 61 cases 305 cases 610 cases k = 0.01 L1-norm

No. of samples 61 (No
augmentation)

305 610 610 60

Epochs 10,000 1000 1000 1000 1000

Loss function
L2-norm for ux L2-norm-ux L2-norm for ux L2-norm for ux∗k L2-norm for ux

L2-norm for uy L2-norm for uy L2-norm for uy L2-norm for uy L2-norm for uy

L1-norm for p L1-norm for p L1-norm for p L1-norm for p ∗ k L1-norm for p

Results Large number of
epochs but no
quality results

Gave better
quality results
than the first case

Decent learning
pattern for
pressure field

Error decreased
for x component
of velocity also

Error for all
three outputs
was almost zero

Hence, AI-based CNN architecture can quickly train such time-consuming simulations. Table 10
shows the results for the simulation parameters and how data augmentation gives better results,
reducing the mean and variance of error.

7.2 Role of Responsive AI in Cardiovascular Diseases
Apart from deep learning algorithms, various medical devices based on Deep Learning (DL)

are implemented by various researchers. Such DL-based medical devices are much more prevalent in
Japan’s clinical implementation [143]. For example, DEEPVESSEL-FFR is a platform that uses deep
learning techniques to predict diseases in stenosed arteries using non-invasive methods. The report is
generated in PDF format and sent to physicians for further analysis.

Thus, due to the advancement of technology, the diagnosis of diseases is not entirely physician-
dependent. The use of various trained algorithms also helps in the prediction of diseases. However,
these predictions are not sufficient from the patient’s perspective. AI algorithms are often called “black
box” decisions, where they reach a final decision based on the available pre-data sets. It fails to explain
why AI has reached a particular conclusion. The role of explainability in AI, also termed explainable
AI (XAI), has become a significant requirement predominantly in healthcare. An explanation is
inevitable when implementing the prediction in healthcare. For instance, “CART” is a predictive
model where the algorithms are trained based on the training and testing datasets to conclude with
an explanation. When given to a biomedical expert, such explainable reports can come up with the
underlying cause and solution. This explanation also brings about trust and transparency in a patient’s
decision in the report.
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Interpretability is another vital aspect that should be considered in XAI. Information dispersion
from input to output is another challenge. AI models must be interpretable by design and adhere to
different types of inputs. For this purpose, transparent models such as post-hoc XAI take a trained
model as input, study the model, and create a surrogate model [144]. This method takes a trained
complex model, and the dataset is worked on, which requires an explanation. The surrogate model
that was created uses simpler models such as linear regression, decision trees, and others. This model
is now trained on the results of the complex models. Thus, the surrogate model explains the original
model. The simplicity of the surrogate model makes it easy for us to interpret. The explainability can
be value-based, visual explanation, explanation by example, and others. Examples of such popularly
used XAI models are LIME and SHAP. SHAP has been observed to provide “human-interpretable”
insights into fluid dynamics, such as the relaminarization of parallel shear flows [145]. In this paper,
SHAP tries to discover the features that contribute to maximum relaminatization. They try to interpret
and explain the results obtained from the machine learning models. Such XAI models can be extended
to perceive biomedical flows as well. Fig. 22 shows an overview of an XAI model.

Figure 22: Explainable AI model overview

Domain knowledge is also vital for explainable AI to give reliable outcomes. Lack of domain
knowledge is one of the greatest hindrances to explainable AI. For example, using CFD knowledge
to understand the flow properties and biomedical knowledge for disease prediction is essential for a
scientific outcome consistent with scientific principles. One example is “FLUIDDA,” a service-based
company optimized for engineering and AI. This uses CT scans, CFD, and AI, making clinical trials
cost-and time-effective [146]. The company has a multidisciplinary team working on the improvement
of respiratory diseases. A domain expert thus brings about the crucial parts that help the AI system
perform efficiently and accurately. The healthcare domain is crucial as it deals with the well-being of
people. Preserving privacy in accessing medical data is quite challenging due to ethical constraints.
Ethical practices also include data processing restrictions. Diverse data sets must be available to the
researchers to avoid skewed results. Although medical data and its related metadata are plentiful,
they are challenging to find available for research purposes. Hospitals cannot release patients’ health
information due to ethical concerns.

These prevent such models from being included in clinical practice. Therefore, various privacy-
preventing techniques have been introduced, such as “Homographic Encryption,” where the encrypted
data is used as input. Puiu et al. [147] utilized Matrix Operation for Randomization or Encryption
(MORE), an encryption scheme with a classical neural network applied to encrypted data. The training



CMES, 2024, vol.141, no.3 2053

model works on the encrypted data with the help of floating-point computation. The outputs in this
paper can be obtained by having a secret key and protecting privacy [147]. Hence, various privacy-
preserving techniques help get massive datasets, making it feasible for clinical intervention.

Explainable AI in healthcare requires fair results. Machine Learning models should result in a fair
and ethical analysis. Predictions should be free from sensitive features to include fairness. Artificial
Intelligence is also known as a black box model because its decision can sometimes create unfair
decisions based on factors such as age, race, gender, and others. Hence, algorithms should match
the sensitive and non-sensitive variables to bring a bias-free conclusion. Various regulatory acts, such
as the General Data Protection Regulation (GDPR), are designed for data protection and privacy.
Explainable AI systems must adhere to and comply with such regulations.

Accordingly, a new word can be coined by overcoming the problems of explainability, inter-
pretability, protecting privacy, and others, such as “Responsive AI” [148]. Considering the above
factors, the AI model thus becomes ready for practical implementation [149]. Fig. 23 shows the
transformation from explainable AI to Responsible AI. It will serve the organization with solutions
that explain fairness. Responsible AI is, therefore, a practical implementation of explainable AI that
considers fairness, privacy, security, and transparency with some measures of uncertainty to bring
trust in the model in large-scale organizations. Responsible AI thus intends to develop AI models
that would learn from the explainable models and adapt to the situation. It can build a business
and positively influence society. XAI makes the system transparent by providing explanations that
the ordinary person can understand, whereas responsive AI provides real-time responses in practical
situations.

Figure 23: Factors considered for responsive AI

Accordingly, one can use responsive AI as a real-time monitoring system by using explainable AI.
For example, hand bands can be worn on the wrists to track abnormalities and send alerts for medical
intervention. Further, for chronic and old-aged patients, systems such as VitalConnect ensure that their
health is monitored at home. Like other engineering research [150], responsive AI is a revolutionary
step that caters to the cardiovascular healthcare system economically and conveniently.

8 Conclusion and Future Scope

This paper focuses on society’s most common health issue, which researchers have concentrated
on for many decades. From simulating pulsating flow in pipes to studying the flow in patient-specific
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geometry, continuous changes are observed in the methodology. Hence, numerical simulation focuses
more on the stenosis arteries where the flow patterns are investigated. From the detailed review, the
following can be drawn:

• CFD simulations deal with recognizing complexities in the flow dynamics by providing infor-
mation such as velocity profiles, pressure drop, wall shear stress, recirculation, and vorticity,
which can predict the initiation of coronary artery diseases. It will help in taking necessary
preventive action and timely treatment.

• Accuracy is improved with models using Fluid-Structure Interactions (FSI). FSI helps to
capture moving boundaries quite efficiently.

• Parallel computing has also been introduced for faster simulations. Patient-specific geometries
and their segmentation in the CFD domain seem challenging, but they provide a more realistic
approach to the problem.

• Recent advances in AI and deep learning modules help predict diseases based on the various
data sets available from the CFD simulations. The flow patterns occurring during stenosis,
plaque, thrombosis, aneurysm, and others can be studied, and different AI apps can be
developed to give detailed information and warn them about the start of diseases at the initial
stage.

• Responsive AI helps develop AI models to build a business and positively influence society.
For example, medical AI-based podcasts are excellent methods for learning about health issues
and their preliminary care. Such podcasts are trained well by various simulation data of CFD.
This will help the clinicians predict and diagnose stenosis and other related heart issues time-
efficiently.

The study shows that Artificial Intelligence is one of the most emerging uses in healthcare.
Responsive AI can be useful in cardiovascular disease detection by analyzing the CFD simulations
under various conditions. Such integrated systems can give signals or suggest possible tests for various
disease detections. However, specific challenges can come while inheriting both fields. AI models
from such CFD simulations must be validated to ensure their reliability and accuracy. Clinical trials
can help to validate such models. Clinicians can then give feedback as to how accurately the model
predicts. It is advisable to have experts along with the model prediction at the initial stages to use it
on a commercial scale. High computational requirements are needed for both CFD and AI. Hence,
optimized and efficient models can be developed to overcome this challenge. AI models can also lead
to erroneous results; hence, regular validation of such models with actual data is advisable to overcome
such discrepancies. Scalability of this integration among various populations and finding a generalized
solution is also difficult. These models should be trained on diverse patients of different ages, genders,
comorbidities, and cardiac conditions. Integration of such domains also requires personal expertise in
CFD, AI, and medicine. Such expertise is hard to find. Hence, multidisciplinary collaborations through
research projects and partnerships can be beneficial. Thus, a robust platform can be built to help
clinicians predict and prevent cardiovascular diseases by combining these domains of science. Various
government bodies, such as the Food and Drug Administration (FDA), World Health Organization
(WHO), and others, are trying to ensure that such diagnostic tools meet the required standards
and positively help society. For example, Medtronic, a leader in medical technology, uses CFD
simulations to detect diseases such as aneurysms at an early stage. Other upcoming companies, Seimens
and Edwards Lifesciences, work on diagnosis and decision-making in the cardiovascular domain.
These practical examples show how the symbiotic relationship between AI and CFD leads towards
“Responsive AI” and how it can be an excellent boon to society and the commoner.
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The main motive for integrating CFD with responsive AI is to bring out personalized solutions.
Remote monitoring and wearable devices can be the most common utility of this integration that can
be useful to society. It can act as a preventive measure, reducing the risks of cardiovascular deaths.
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