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ABSTRACT

Foot-and-mouth disease (FMD) is a viral disease that affects cloven-hoofed animals including cattle, pigs, and
sheep, hence causing export bans among others, causing high economic losses due to reduced productivity. The
global effect of FMD is most felt where livestock rearing forms an important source of income. It is therefore
important to understand the modes of transmission of FMD to control its spread and prevent its occurrence.
This work intends to address these dynamics by including the efficacy of active migrant animals transporting the
disease from one area to another in a fuzzy mathematical modeling framework. Historical models of epidemics
are determinable with a set of deterministic parameters and this does not reflect on real-life scenarios as observed
in FMD. Fuzzy theory is used in this model as it permits the inclusion of uncertainties in the model; this makes
the model more of a reality regarding disease transmission. A time lag, in this case, denotes the incubation period
and other time-related factors affecting the spread of FMD and, therefore, is added to the current model for FMD.
To that purpose, the analysis of steady states and the basic reproduction number are performed and, in addition,
the stability checks are conveyed in the fuzzy environment. For the numerical solution of the model, we derive the
Forward Euler Method and the fuzzy delayed non-standard finite difference (FDNSFD) method. Analytical studies
of the FDNSFD scheme are performed for convergence, non-negativity, boundedness, and consistency analysis of
the numerical projection to guarantee that the numerical model is an accurate discretization of the continuous
dynamics of FMD transmission over time. In the following simulation study, we show that the FDNSFD method
preserves the characteristics of the constant model and still works if relatively large time steps are employed; this is a
bonus over the normal finite difference technique. The study shows how valuable it is to adopt fuzzy theory and time
delays when simulating the transmission of the epidemic, especially for such diseases as FMD where uncertainty and
migration have a defining role in transmission. This approach gives more sound and flexible grounds for analyzing
and controlling the outbreak of FMD in various situations.
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1 Introduction

Continuous modeling remains important for explaining the spread of infectious diseases and
factors that could be used to control them. Mathematical equations and simulation can be applied
by researchers to analyze several circumstances to gain increased knowledge of disease transmission
within the population. These models help to predict the trajectories of outbreaks based on some
factors such as the population density, their interactions, the time taken before symptoms of the
disease manifest themselves, and the methods of prevention that may be employed. For instance, the
Susceptible-Infectious-Recovered (SIR) and its offshoots offer a structured technique for studying
diseases like influenza, measles, or COVID-19. Another virtue that is inherent to mathematical
modeling is the capacity to predict epidemics and assess the effectiveness of measures that can be taken
to prevent them; this information is crucial for decision-making at the political level. The researchers,
for example, set up model parameters like vaccination rates or measures taken for social distancing
and then derive possible outcomes of the control systems. They are useful in organizing interventions
to prevent disease spread and using available resources most appropriately and effectively. Besides,
mathematical models help to reveal essential factors that influence the spread of diseases and estimate
the effects of specific measures, which can help to prevent epidemics.

Mathematical modeling in epidemiology has historical roots in 1760 when Daniel Bernoulli first
contributed toward modeling the illness smallpox in England [1]. Research by Ross in 1911 focusing
on the uncomfortable chain configurations of malaria transmission was the initial and valuable study
that contributed a lot to the development of epidemiological mathematical modeling [2]. Using Ross’s
model, Kermack and McKendrick added the deterministic compartmental epidemic model. This
model suggested that the probability of infection in a susceptible individual depended on the person to
infected persons and the rate of change in the number of newly infected persons from the susceptible
people [3–5]. What we had before this deterministic model was in 1889 when Enko was developed.
Disease-borne pathogens remain pertinent threats to global health despite being contained at different
levels with varying severities over the past century and a half, including influenza and hepatitis, Zika,
malaria, measles, tuberculosis, and COVID-19. As a result, numerous projects and programs and
relevant legislation have been implemented to respond to these health issues. Of those mentioned
above, mathematical epidemiology can be identified as being one of the most significant tools that
has been in development for quite a while and with a great deal of progress. For instance, the areal
modeling and analysis have been especially important in cases of infectious diseases. These methods
make it possible for researchers to identify epidemic characteristics and behavior patterns, accurately
simulate possible specific situations that may occur in the future, and implement successful disease
containment measures [6–8].

Further, in the past few decades, other epidemic models have been developed based on the
Kermack-McKendrick model. Such compartments that may be included in these models are found
based on the nature of the sickness under analysis as well as the purpose of the model [9]. Moreover,
more epidemic models have been studied including SI, SIR, SIER, and SIEVR, which consider the
possibility of the infected, recovered patients to be infected again. There are arguments that a person’s
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memory and awareness have pivotal roles in and regarding the illness [10]. Higher infection rates can
decrease the mixing of populations between compartments and this feature is illustrated in dengue
models like SIR-SI especially where infections are recurrent and rampant [11]. In models like SVEIR,
persons who have been vaccinated tend to demonstrate more knowledge of their previous outbreaks
compared to those who remain vulnerable. When making major decisions, experts should try to
extract as much relevant information as possible from accessible data using scientific approaches that
incorporate both models and empirical evidence.

Delayed epidemic models are those epidemiological models that incorporate time delay into one
or several aspects of virus circulation or control measures. Misra et al. [12] studied different ways
of introducing delays and, alternatively, using exposed populations. They also analyzed their steady
solutions and stability and established the conditions under which the studied models predicted an
epidemic. In such cases, ordinary differential equation-based models are commonly used. Nonetheless,
the dynamics may be altered due to the existence of delays [13–15]. These alterations include the
appearance of oscillations, discontinuities in time derivatives, non-uniqueness, and swing instability.
There is a substantial amount of work devoted to epidemic or disease transmission models that use
delay differential equations (DDEs) [16]. These models frequently include multiple delays, such as the
time between a susceptible individual’s exposure to an infective agent and the onset of the disease,
maturation periods, the duration for a vaccine to become effective, and the recovery period following
infection, among other factors. Gosh et al. [17] used the average disease duration as a delay parameter
to introduce a time lag in recovery and mortality rates. They talked about the distribution and
calculated and generated a delay model from it. The epidemic characteristics of the delay model were
calculated, and a numerical comparison was conducted between the distributed model, delay model,
and standard SIR model. Meziane et al. [18] investigated epidemic models of either two viruses or
viral strain delays. Almuqati et al. [19] studied the mechanism of a multi-group epidemic model taking
into account the influences of logistic growth and delay time distribution. Furthermore, time delays
are classified into two types: discrete and distributed delays [20]. Several scholars have investigated
epidemic models that include temporal delays [21]. Tipsri et al. [22] investigated the local stability
of both endemic and disease-free equilibria in an SEIR epidemic model with a nonlinear incidence
rate and time delay. Hussien and Naji determined how disease dynamics within the prey population
were impacted by the delay time and how the presence of disease in the prey population influenced
the behavior of the model [23]. Numerous researchers have employed the NSFD technique to solve
systems of differential equations in delayed and stochastic contexts [24–26], for example.

As for epidemic models, the fuzzy mathematical epidemic models apply the fuzzy theory in the
understanding of simple epidemiological models since the data and the consequent parameters involve
uncertainties and impreciseness. These models use the parameters of fuzzy sets and fuzzy numbers to
describe the epidemiological characteristics such as the rate of infection and rate of recovery as the
actual fuzzy factors in real-life epidemic events. Fuzziness shows in a variety of areas of daily life,
including engineering, medicine, meteorology, manufacturing, and others where human judgment,
appraisal, reasoning, and decision-making are important [27–29]. The predominance of fuzziness is
primarily due to our reliance on natural languages in everyday communication, where word meanings
are frequently imprecise. For example, when referring to an illness inside a certain community, the
statement’s veracity is not always binary; it may be true to varied degrees, depending on an infected
individual’s affiliation with that population. As a result, such sentences are intrinsically ambiguous,
necessitating the use of the concept of vagueness to facilitate comprehension. The concept of vagueness
is solidified by the concept of fuzzy sets, which involve assigning a value to each prospective member
of a population indicating their degree of inclusion. For example, a fuzzy set expressing the concept of
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infection could have a membership degree of 1 for severe infection, 0.5 for moderate infection, and 0
for low infection. Linguistic concepts like low, moderate, and high are frequently defined using fuzzy
sets to specify the states of a variable called a fuzzy variable. Fuzzy sets and logic applied to modeling
have turned into an exciting area of study for academics across the several scientific and social science
disciplines including epidemiology. This is evidenced in works done by many researchers [30–34]; just to
mention a few. The fuzzy SEIR Amoebiasis model was introduced by Alqarni et al. [35] and fuzziness
was included in the equilibrium analysis and the reproduction number. It outlined how the numerical
method could be applied and validated the utility of a nonstandard finite difference approach for
modeling disease dynamics and assisting in control measures selection. The Susceptible-Infectious-
Recovered (SIR) model with fuzzy parameters was described by Dayan et al. [36] and concluded
that the parameters of the model were imprecise because the degree of susceptibility, infectivity, and
recovery of the individuals in the human population may also vary.

FMD is a highly contagious virus that affects cattle, pigs, sheep, goats, and deer and its impacts
are devastating the livestock. Some of the affected species are African buffalo, different antelopes,
and wild boars, which may become carriers of the virus threatening wild and domestic animals. An
example of a vivid representation of FMD is a highly contagious viral disease that affects cattle and
has an enormous negative economic impact [37,38]. Similarly, the migration of proactive immigrants
in search of better living standards in foreign countries challenges the transmission of diseases [39].
This introduction explores the problematic connection between FMD and active immigration, and
the need for mathematical modeling as a tool for assessing the missing links and effective disease
coping strategies. FMD exemplifies the complex relationship between animal welfare, economic
vigor, and worldwide disease propagation [40,41]. FMD affects cloven-hoofed animals such as cattle,
pigs, sheep, and goats, causing both physical pain and economic losses through mouth and hoof
blisters [42,43]. Given its fast propagation, quick action is to quickly suppress outbreaks, and large-
scale culling is often necessary [44]. Notably, the importance of animal mobility, particularly among
active immigrants, in aggravating disease spread has received extensive study attention. Immigrants,
motivated by ambitions for better lives and economic opportunities, unintentionally contribute to
disease transmission through close-knit community relationships and cross-border mobility [45,46].
Recognizing their critical function is essential for establishing effective disease prevention and control
techniques, such as FMD.

The rest of the paper is as follows: Section 2 contains a formulation of the fuzzy parameterized
delayed mathematical model of FMD dynamics. Equilibrium analysis, calculation of reproduction
number, and stability analysis are also included in this section. In Section 3, the forward Euler and
FDNSFD numerical methods are constructed and mathematical analysis are performed. Section 4
outlines the quantitative evaluations, while Section 5 explains the conclusions that individuals can
analyze from the synthetic outcomes.

2 Fuzzy Parameterized Delayed Model Formulation

We considered the SEMIR model as introduced by Mfinanga et al. [47]. First, let’s mention some
basic definitions which will be useful for this study.

2.1 Fuzzy Subset
Let X be a nonempty crisp set. A fuzzy subset [48] F of X is denoted by F̃ and is defined as

F̃ = {(x, μF̃ : x ∈ X)} ,
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where μF̃ : X → [0, 1] is a membership function associated with a fuzzy set F̃ , which describes the
degree of belongingness of x with X .

2.2 Fuzzy Number
Let F̃ be a fuzzy set, any member of F̃ is called a fuzzy number [48] if the universal set X = R and

membership function μF̃ satisfies the following axioms:

• ∃ at least one x ∈ R such that F̃ is normalized fuzzy set (i.e., μF̃(x) = 1),

• μF̃ is convex,

• Membership function μF̃ is piecewise continuous,

• Support of μF̃ is bounded where support = {x : μF̃(x) > 0} ⊂ R.

2.3 Triangular Fuzzy Number (TFN)
A fuzzy number Ã = (a, b, c) is said to be triangular [48] if the membership function μÃ(x) is

defined as

μÃ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ a,
x − a
b − a

, a ≤ x ≤ b,

c − x
c − b

, b < x ≤ c,

0. c < x,

(1)

where a ≤ b ≤ c.

2.4 Expected Value of a TFN
The expected value of a TFN Ã is given by [49]

E
(

Ã
)

= a + 2b + c
4

. (2)

2.5 Fuzzy Parameterized Model
A system or model is said to be of fuzzy parameterized in consideration that the parameters could

be better expressed through the use of fuzzy sets and not numerical values. In this type of approach, the
parameter is in the form of a fuzzy set where all values of the parameter are defined by the membership
function. It is employed to measure the degree of ambiguity, vagueness, or irregularity in the system;
it is appropriate if empirical data is not available or if there exists inherent random error in the given
system. These fuzzy parameters are more fit in the probability model than the fixed parameters under
various conditions and situations.
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Fig. 1 shows the associated flow diagram, and the corresponding differential equations for the
model are provided below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= η − ΩS + ψR − μS,

dE
dt

= ΩS − (μ + ρ + σ) E,

dM
dt

= σE + π1 − (μ + α) M,

dI
dt

= ρE + π2 − (μ + δ + ω) I ,

dR
dt

= ωI + αM − (μ + ψ) R.

(3)

The fuzzy model corresponding to the above model is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= η − ΩS + ψR − μS,

dE
dt

= ΩS − (μ + ρ + σ) E,

dM
dt

= σE + π1 − (μ + α) M,

dI
dt

= ρE + π2 − (μ + δ (x) + ω (x)) I ,

dR
dt

= ω (x) I + αM − (μ + ψ) R.

(4)

The susceptible animals (S) are recruited at a constant rate η and are subject to natural mortality
at rate μ. Exposed animals (E) progress to symptomatic (I) or asymptomatic (M) infectious states
at rates σ and ρ, respectively. The recovery rates for asymptomatic animals are α. α precisely can
accurately simulate and predict the impact of asymptomatic individuals on disease transmission and
recovery dynamics This parameter measures the proportion of infected people who do not show any
symptoms of the disease and are recovering from the infection. The influx rates of asymptomatic and
symptomatic animals from other regions are π1 and π2, respectively. The rate of disease transmission
modified by φ, death due to the disease among infected animals, and recovery rate from the disease,
are treated as fuzzy numbers owing to their uncertain nature. These parameters are represented by
β (x), δ (x), and ω (x), respectively. The force of infection Ω is calculated based on transmission rate as
Ω = β(x)(M + ϕI). Fuzzy variables like β (x), δ (x), and ω (x) embody uncertainty in mathematical
simulations through the use of fuzzy models from the deterministic models. These variables are defined
by the fuzzy numbers and their effect is described using the fuzzy differential equations and numerical
solutions for the fuzzy systems. The result is a model that generates outcomes that can include
several different values, as a result of the variability of the parameters involved. The fuzzy parameters
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mentioned in [48] and their definitions are provided below:

β (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ xmin,
x − xmin

xmax − xmin

, xmin < x ≤ xmax,

1, xmax ≤ x,

(5)

where xmin is the minimum value of the variable x where the function β (x), δ (x), and ω (x) transition.
xmax is the maximum value of the variable x where the function β (x) transitions to a constant value.

δ (x) =

⎧⎪⎨
⎪⎩

(1 − ξ) − a0

xmin

x + a0, 0 ≤ x ≤ xmin,

1 − ξ , xmin < x,
(6)

where a0 is a constant parameter in the function δ (x) that helps define the linear relationship for x
in the interval 0 ≤ x ≤ xmin and ξ is a constant parameter in δ (x) representing a fixed value that the
function attains when xmin < x.

and

ω (x) = (ω0 − 1)

xmax

x + 1. 0 ≤ x ≤ xmin. (7)

where ω0 is a constant parameter in δ (x) that determines the slope of the linear function in the interval
0 ≤ x ≤ xmin.

Figure 1: Flowchart of the model

2.6 Fuzzy Delayed Model
Delayed epidemic models are critical for understanding and forecasting the dynamics of infectious

illnesses when there is a considerable latency interval between infection and the commencement of
infectiousness. The symbol τ denotes the latency period, which represents the time it takes for infected
individuals to become contagious. The inclusion of e−μτ assumes a linear decrease in population over
that specific duration, reflecting factors such as mortality or recovery, governed by μτ . The respective
fuzzy epidemic model becomes the fuzzy delayed epidemic model by incorporating the (t − τ)e−μτ

factor within susceptible and exposed animals’ compartments. The proposed fuzzy delayed epidemic
model of FMD is given below:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= η − ΩS (t − τ) e−μτ + ψR − μS,

dE
dt

= ΩS (t − τ) e−μτ − (μ + ρ + σ) E,

dM
dt

= σE + π1 − (μ + α) M,

dI
dt

= ρE + π2 − (μ + δ(x) + ω(x)) I ,

dR
dt

= ωI + αM − (μ + ψ) R.

(8)

2.7 Equilibrium Analysis
Case 1: If x ≤ xmin we obtain

E0
p

(
S0, E0, M0, I 0, R0

) =
(

η

μ
, 0, 0, 0, 0

)
.

Case 2: If xmin < x ≤ xmax, we have β (x) = x − xmin

xmax − xmin

and E∗
p (S∗, E∗, M∗, I ∗, R∗) we obtain

S∗ = η + ψR
β (x) Ω∗e−μτ + μ

,

E∗ = β (x)Ω∗e−μτ S∗

k1

,

M∗ = σE∗ + π1

k2

,

I ∗ = ρE∗ + π2

k3

,

R∗ = ω (x) I ∗ + αM∗

k4

.

Case 3: If xmax ≤ x we have β (x) = 1 and E∗∗
p (S∗∗, E∗∗, M∗∗, I ∗∗, R∗∗) we obtain

S∗∗ = η + ψR
Ω∗∗e−μτ + μ

,

E∗∗ = Ω∗∗e−μτ S∗∗

k1

,

M∗∗ = σE∗∗ + π1

k2

,

I ∗∗ = ρE∗∗ + π2

k3

,
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R∗∗ = ω (x) I ∗∗ + αM∗∗

k4

.

where Ω = β(x)(M + ϕI), k1 = (μ + ρ + σ), k2 = (μ + α), k3 = (μ + δ (x) + ω (x))

k4 = (μ + ψ).

2.8 The Fuzzy Basic Reproductive Number (FBRN) R0
f

The FBRN number R0 is calculated by utilizing a next-generation approach

R0 = β (x) ηe−μτ (δ(x)σ + αϕρ + μϕρ + ω(x)σ + μσ)

μk1k2k3

. (9)

The FBRN number R0 can be analyzed as below:

Case 1: If x < xmin, then β (x) = 0 we obtain

R0(x) = 0.

Case 2: If xmin < x ≤ xmax,we have β (x) = x − xmin

xmax − xmin

we obtain

R0(x) = β (x) ηe−μτ (δ(x)σ + αϕρ + μϕρ + ω(x)σ + μσ)

μk1k2k3

.

Case 3: xmax ≤ x we have β (x) = 1 we obtain

R0 (x) = ηe−μτ (δ (x) σ + αϕρ + μϕρ + ω (x) σ + μσ)

μk1k2k3

.

R0(x) can be written as

R0 (x) =
(

0,
β (x) ηe−μτ (δ(x)σ + αϕρ + μϕρ + ω(x)σ + μσ)

μk1k2k3

,

ηe−μτ (δ(x)σ + αϕρ + μϕρ + ω(x)σ + μσ)

μk1k2k3

)
.

The fuzzy reproductive number can be written as [49]

Rf
0 = E [R0 (x)] ,

where E [R0 (x)] = a + 2b + c
4

,

and a = R0 (x) at Case 1, b = R0 (x) at Case 2, and c = R0 (x) at Case 3

Rf
0 = E [R0 (x)]

=

(
0 + 2

(
β (x) ηe−μτ (δ(x)σ + αϕρ + μϕρ + ω(x)σ + μσ)

μk1k2k3

)
+

(
ηe−μτ (δ(x)σ + αϕρ + μϕρ + ω(x)σ + μσ)

μk1k2k3

))

4
,

Rf
0 = ηe−μτ (δ(x)σ + αϕρ + μϕρ + ω(x)σ + μσ)(2β (x) + 1)

4μk1k2k3

. (10)
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2.9 Stability Analysis
The Jacobian matrix of system (6) at disease free equilibrium (DFE) is given by

J(E0
p) =

⎡
⎢⎢⎢⎢⎣

−μ 0 0 0 0
0 −k1 0 0 0
0 σ −k2 0 0
0 ρ 0 −k3 0
0 0 α ω(x) −k4

⎤
⎥⎥⎥⎥⎦ .

The eigen values of the matrix are; λ1 = −k2, λ2 = −k4 , λ3 = −k3, λ4 = −k1, λ5 = −μ. As all the
eigenvalues are less than zero, therefore, we concluded that the system of differential equations of the
SEMIR model is locally asymptotically stable at E0

p.

3 Numerical Modelling

Numerical modeling is the application of mathematical equations and computing tools to simulate
and analyze complicated systems or processes, resulting in predictions and insights that are frequently
impossible to achieve from direct investigation. To solve the discretized governing equations of a
system, computational techniques and algorithms like finite difference and finite element approaches
are used. In this section, we can employ the forward Euler scheme and nonstandard finite difference
methods for a given model.

3.1 Forward Euler Scheme
The Forward Euler method is an easily recognizable numerical method belonging to the first-order

category and limited to the explicit class of method that operates in ordinary differential equations.
Indeed, we present a forward Euler scheme for the described above system (8) as follows:

Sn+1 = Sn + h(η − ΩSne−μτ + ψRn − μSn), (11)

En+1 = En + h(ΩSne−μτ − (μ + ρ + σ) En), (12)

Mn+1 = Mn + h(σEn + π1 − (μ + α) Mn), (13)

In+1 = In + h(ρEn + π2 − (μ + δ(x) + ω(x)) In), (14)

Rn+1 = Rn + h(ω(x)In + αMn − (μ + ψ) Rn). (15)

3.2 NSFD Scheme
The NSFD method is used in epidemic models to solve differential equations numerically with

high efficiency while preserving essential features of the continuous model. According to [50], NSFD
schemes maintain the positivity and stability of solutions and converge numerically, making them
suitable for epidemic studies. In general, NSFD schemes are cheaper in terms of computational cost
than other approaches such as the forward Euler approach, and possess structural stability about the
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continuous model. The proposed fuzzy delayed nonstandard finite difference (FDNSFD) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 = Sn + h(η + ψRn)

1 + h(Ωe−μτ + μ)
,

En+1 = En + h(ΩSne−μτ )

1 + hk1

,

Mn+1 = Mn + h(σEn + π1)

1 + hk2

,

In+1 = In + h(ρEn + π2)

1 + hk3

,

Rn+1 = Rn + h(ω (x) In + αMn)

1 + hk4

.

(16)

3.3 Positivity of FDNSFD
Considering the numerical methods to solve epidemic model equations, it’s important to preserve

this positivity to get accurate and relevant results. In compartmental epidemic models, all state
variables that represent population segments must have at least one positive value concerning other
state variables that are non-negative throughout the analysis. It is important to keep these variables
positive. This fundamental property is proved using the mathematical induction principle for an
implicit numerical integration. The following theorem is useful:

Theorem: Let S, E, M, I and R are positive at t = 0; furthermore, if ∝ ≥ 0, δ(x) ≥ 0, μ ≥ 0, ω(x) ≥
0, σ ≥ 0, ϕ ≥ 0, τ ≥ 0 and β(x) ≥ 0 then S(n+1) ≥ 0, E(n+1) ≥ 0, M (n+1) ≥ 0, I (n+1) ≥ 0 and R(n+1) ≥ 0, for
all n ∈ Z+.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 = Sn + h(η + ψRn)

1 + h(Ωe−μτ + μ)
,

En+1 = En + h(ΩSne−μτ )

1 + hk1

,

Mn+1 = Mn + h(σEn + π1)

1 + hk2

,

In+1 = In + h(ρEn + π2)

1 + hk3

,

Rn+1 = Rn + h(ω (x) In + αMn)

1 + hk4

.

(17)
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Proof: For n = 0 system (17) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 = S0 + h(η + ψR0)

1 + h(Ωe−μτ + μ)
≥ 0,

E1 = E0 + h(ΩS0e−μτ )

1 + hk1

≥ 0,

M1 = M0 + h(σE0 + π1)

1 + hk2

≥ 0,

I 1 = I 0 + h(ρE0 + π2)

1 + hk3

≥ 0,

R1 = R0 + h(ω (x) I 0 + αM0)

1 + hk4

≥ 0.

(18)

Now for n = 1 system (17) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S2 = S1 + h(η + ψR1)

1 + h(Ωe−μτ + μ)
≥ 0,

E2 = E1 + h(ΩS1e−μτ )

1 + hk3

≥ 0,

M2 = M1 + h(σE1 + π1)

1 + hk1

≥ 0,

I 2 = I 1 + h(ρE1 + π2)

1 + hk2

≥ 0,

R2 = R1 + h(ω (x) I 1 + αM1)

1 + hk4

≥ 0.

(19)

Assume that the preceding set of equations guarantees that the values of S, E, M, I , and R have
the property of positivity for n = 2, 3, 4, . . . , n − 1. In other words, for n = 2, 3, 4, . . . , n − 1, Sn+1 ≥
0, En+1 ≥ 0, Mn+1 ≥ 0, In+1 ≥ 0 and Rn+1 ≥ 0. The positivity will now be investigated for a random
positive integer n, and we find that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 = Sn + h(η + ψRn)

1 + h(Ωe−μτ + μ)
≥ 0,

En+1 = En + h(ΩSne−μτ )

1 + hk1

≥ 0,

Mn+1 = Mn + h(σEn + π1)

1 + hk2

≥ 0,

In+1 = In + h(ρEn + π2)

1 + hk3

≥ 0,

Rn+1 = Rn + h(ω (x) In + αMn)

1 + hk4

≥ 0.

(20)
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Obviously, Sn+1 ≥ 0, En+1 ≥ 0, Mn+1 ≥ 0, In+1 ≥ 0, and Rn+1 ≥ 0, hence the proof.

3.4 Boundedness of the FDNSFD Scheme
Given that the model is about the human population, it is critical to ensure that at any given time

‘t’, the sum of populations in all compartments does not exceed the overall population. The following
theorem addresses this condition effectively:

Theorem: Let S, E, M, I, and R ≥ 0 be finite S + E + M + I + R ≤ N; furthermore, ∝ ≥ 0,
δ(x) ≥ 0, μ ≥ 0, ω(x) ≥ 0, σ ≥ 0, ϕ ≥ 0, τ ≥ 0, and β(x) ≥ 0 and then there is a constant such that
Sn+1 + En+1 + In+1 + Mn+1 + Rn+1 ≤ Nn for all n ∈ Z+.

Proof: For bondedness of the proposed FDNSFD scheme from the above system (16) we have

Sn+1
(
1 + h

(
Ωe−μτ + μ

)) + En+1 (1 + h(μ + ρ + σ)) + Mn+1 (1 + h(μ + α))

+ In+1 (1 + h(μ + δ (x) + ω (x))) + Rn+1 (1 + h (μ + ψ))

= Sn + h (η + ψRn) + En + h
(
ΩSne−μτ

) + Mn + h (σEn + π1) + In + h (ρEn + π2) + Rn

+ h (ω (x) In + αMn) . (21)

(Sn+1 + In+1 + En+1 + Rn+1) (1 + hμ) + hΩe−μτ + h (ρ + σ + α + δ (x) + ω (x) + ψ)

= (Sn + In + En + Rn) + h
(
η + ψRn + ΩSne−μτ + σEn + π1 + ρEn + π2 + ω (x) In + αMn

)
. (22)

(Sn+1 + En+1 + Mn+1 + In+1 + Rn+1) + C

= (Sn + En + Mn + In + Rn) + h (η + ψRn + ΩSne−μτ + σEn + π1 + ρEn + π2 + ω (x) In + αMn)

(1 + hμ)
.

(23)

Now for n = 0 system (23) becomes

(S1 + E1 + M1 + I 1 + R1) + C

= (S0 + E0 + M0 + I 0 + R0) + h
(
η + ψR0 + ΩS0e−μτ + σE0 + π1 + ρE0 + π2 + ω (x) I 0 + αM0

)
(1 + hμ)

.

Since N1 = S0 + E0 + M0 + I 0 + R0, S1 + E1 + M1 + I 1 + R1 ≤ N1.

Similarly, for nεZ+, the system (23) becomes

(Sn+1 + En+1 + Mn+1 + In+1 + Rn+1) + C

= (Sn + En + Mn + In + Rn) + h (η + ψRn + ΩSne−μτ + σEn + π1 + ρEn + π2 + ω (x) In + αMn)

(1 + hμ)
.

Consequently, Sn+1 ≤ Nn, En+1 ≤ Nn, Mn+1 ≤ NnIn+1 ≤ Nn and Rn+1 ≤ Nn, hence the proof.
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3.5 Convergence Analysis
Convergence analysis in epidemic models determines the stability and accuracy of numerical

approaches for solving disease spread differential equations. It determines if the numerical solution
approaches the genuine solution when the computational parameters drop, assuring simulation
reliability and accuracy while preserving the continuous model’s characteristics.

To prove this, assume that

F1 = S + h(η + ψR)

1 + h(Ωe−μτ + μ)
,

F2 = E + h(ΩSe−μτ )

1 + hk1

,

F3 = M + h(σE + π1)

1 + hk2

,

F4 = I + h(ρE + π2)

1 + hk3

,

F5 = R + h (ω (x) I + αM)

1 + hk4

.

The Jacobean matrix corresponding to the above system at E0
p is

J
(
E0

p

) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 + hμ

0 0 0
hω (x)

1 + hμ

0 0
1

1 + hk1

0 0

0
hσ

1 + hk2

0
1

1 + hk2

0

0
hρ

1 + hk3

1
1 + hk3

0 0

0 0
hω (x)

1 + hk4

hα

1 + hk4

1
1 + hk4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Eigen values of above Jacobian matrix, λ1 = 0.83333333 < 1, λ2 = 0.58823529 < 1, λ3 =
0.79835766 < 1, λ4 = 0.7167745 < 1 and λ5 = 0.08158315 < 1. All of the Jacobian matrix’s
eigenvalues will be inside a unit circle, ensuring that the proposed FDNSFD scheme converges at
point E0

p.

3.6 Consistency of the FDNSFD Scheme
Consistency refers to the numerical method’s ability to properly estimate the underlying continu-

ous model when computing factors, such as step size, decrease. The findings of the search emphasize
how crucial it is to preserve consistency in FDNSFD schemes to guarantee the dependability and
precision of numerical solutions.
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Beginning with the first equation in the system (16), we get

Sn+1
(
1 + h

(
Ωe−μτ + μ

)) = Sn + h (η + ψRn) . (24)

The Taylor’s series expansion of the Sn+1 is as follows:

Sn+1 =
(

Sn + h
dS
dt

+ h2

2!
d2S
dt2

+ h3

3!
d3S
dt3

+ . . .

)
. (25)

Substituting the value of Sn+1 in (24) we obtain(
Sn + h

dS
dt

+ h2

2!
d2S
dt2

+ h3

3!
d3S
dt3

+ . . .

)
(1 + h

(
Ωe−μτ + μ

) = Sn + h (η + ψRn) .

After some simplification and apply h → 0, we get

Sn
(
Ωe−μτ + μ

) + dS
dt

= η + ψRn,

dS
dt

= η + ψRn − ΩSne−μτ − μSn,


⇒ dS
dt

= η + ψR − ΩSe−μτ − μS.

From the second equation of the FDNSFD scheme, we have

En+1 (1 + hk1) = En + h
(
ΩSne−μτ

)
. (26)

The Taylor’s series expansion of the En+1 is as follows:

En+1 =
(

En + h
dE
dt

+ h2

2!
d2E
dt2

+ h3

3!
d3E
dt3

+ . . .

)
. (27)

Substituting the value of En+1 in (26), we obtain(
En + h

dE
dt

+ h2

2!
d2E
dt2

+ h3

3!
d3E
dt3

+ . . .

)
(1 + hk1) = En + h

(
ΩSne−μτ

)
.

Apply h → 0, we get

k1En + dE
dt

= ΩSne−μτ ,

dE
dt

= ΩSne−μτ − k1En,


⇒ dE
dt

= ΩSe−μτ − k1E.

From the third equation of the FDNSFD scheme, we have

Mn+1(1 + hk2) = Mn + h(σEn + π1), (28)
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The Taylor’s series expansion of the Mn+1 is as follows:

Mn+1 =
(

Mn + h
dM
dt

+ h2

2!
d2M
dt2

+ h3

3!
d3M
dt3

+ . . .

)
. (29)

Substituting the value of Mn+1 in (28), we obtain(
Mn + h

dM
dt

+ h2

2!
d2M
dt2

+ h3

3!
d3M
dt3

+ . . .

)
(1 + hk2) = Mn + h(σEn + π1).

Apply h → 0, we get

Mnk2 + dM
dt

= σEn + π1,

dM
dt

= σEn + π1 − k2Mn,


⇒ dM
dt

= σE − M (σ + δ + μ) .

From the fourth equation of the FDNSFD scheme, we have

In+1(1 + hk3) = In + h(ρEn + π2). (30)

The Taylor’s series expansion of the In+1 is as follows:

In+1 =
(

In + h
dI
dt

+ h2

2!
d2I
dt2

+ h3

3!
d3I
dt3

+ . . .

)
. (31)

Substituting the value of In+1 in (30), we obtain(
In + h

dI
dt

+ h2

2!
d2I
dt2

+ h3

3!
d3I
dt3

+ . . .

)
(1 + hk3) = In + h(ρEn + π2),

Apply h → 0, we get

k3In + dI
dt

= ρEn + π2,

dI
dt

= ρEn + π2 − k3In,


⇒ dI
dt

= ρE + π2 − k3I .

From the fourth equation of the FDNSFD scheme, we have

Rn+1(1 + hk4) = Rn + h(ω (x) In + αMn). (32)

The Taylor’s series expansion of the Rn+1 is as follows:

Rn+1 =
(

Rn + h
dR
dt

+ h2

2!
d2R
dt2

+ h3

3!
d3R
dt3

+ . . .

)
. (33)
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Substituting the value of Rn+1 in (32), we obtain(
Rn + h

dR
dt

+ h2

2!
d2R
dt2

+ h3

3!
d3R
dt3

+ . . .

)
(1 + hk4) = Rn + h(ω (x) In + αMn).

Apply h → 0, we get

k4Rn + dR
dt

= ω (x) In + αMn,

dR
dt

= ω (x) In + αMn − k4Rn,


⇒ dR
dt

= ω (x) I + αM − k4R.

which shows that our proposed scheme is consistent with Order 1.

4 Mathematical Simulations

Table 1 outlines the parameters employed in numerical simulations.

Table 1: Values of parameters

Parameters Values Parameters Values

η 5 π1 0.1
ψ 0.2 π2 0.5
σ 0.4 τ ≥0
μ 0.5 β (x) Fuzzy variable
ρ 0.2 δ (x) Fuzzy variable
α 0.2 ω (x) Fuzzy variable

In Fig. 2, the exposed population using the forward approach at different step sizes gives rise to
non-physical oscillations, and negative values are not physically meaningful for compartments of the
population.

The behavior of the infected population is depicted in Fig. 3, which also includes signs of non-
physical oscillations and negative values for the number of infected individuals, similar to the number
of exposed individuals using the forward Euler approach.

The graphical representation of the behavior of all compartments of the FMD virus model is
presented in Fig. 4.

In this case, Fig. 5 illustrates the behavior of the exposed population using the FDNSFD scheme
approach employing different step sizes. This method prevents negativities and yields the expected
outcomes.
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Figure 2: Exposed population at varying step sizes using the forward Euler approach
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Figure 3: Infected populations at varying step sizes using the forward Euler approach
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Figure 4: Compartmental analysis of the SEMIR model using the forward Euler approach

Figure 5: (Continued)
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Figure 5: Exposed population at varying step sizes using the FDNSFD approach

Fig. 6 portrays the infected population at different step sizes with the FDNSFD method that gives
mainly positive values and outcomes, as the infected population does.

Fig. 7 shows the state of all compartments of the SEIMR model under consideration using the
FDNSFD method.
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Figure 6: Infected population at varying step sizes using the FDNSFD approach
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Figure 7: Compartmental analysis of the SEMIR model using the FDNSFD approach

In the case of the FDNSFD approach, the behavior of the exposed and infected population is
explained for each case in Fig. 8. The exposed and infected population for each scenario based on the
FDNSFD approach is represented. Which shows an escalating infection rate in all cases. As for Case
1, it is possible to observe almost the complete absence of disease, whereas Cases 2 and 3 describe an
endemic equilibrium, although with a higher infection rate in Case 3 compared to Case 2.

Figure 8: Exposed and Infected population in each case using the FDNSFD approach
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The exposed and infected population for a detailed fuzzy delayed NSFD model with/without a
delay factor is presented in the form of Fig. 9. The graph helps to show that, the introduction of a
delay factor reduces the spread of the disease and thus, the number of people affected by FMD.

Figure 9: Effect of time delay on infected population using FDNSFD approach

Fig. 10 illustrates the effect of τ on the exposed and infected population while using the FDNSFD
approach. This simulation illustrates that increasing the value of results significantly in slowing down
the process of spread.

Figure 10: Effect of time delay τ on exposed and infected population

Overall, the NSFD approach excels in modeling population dynamics, delivering realistic and
reliable results while avoiding the non-physical outcomes linked to the forward approach.
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5 Conclusion

This paper investigates FMD transmission by including the contribution of efficient active
migrants in its mathematical model. Based on the improved SEMIR model, which has incorporated
the time delays into the analysis while adopting the forward Euler method and the FDNSFD approach
to study disease spread. From the discoveries made in the chapter, there is more information that we
can use. Still, at the same time, the forward Euler method has drawbacks: the non-physical oscillations
and negative values, which are irrelevant to the population compartments. The FDNSFD method
as compared to the Euler method cumulatively integrates fuzzy logic for uncertainty and time delay
for delayed reactions in a system. The FDNSFD is well applicable in complicated and stochastic
situations, while the Euler method, despite its simplicity and popularity, can fail erratically and
inaccurately in such cases.

On the other hand, the approach used in the formalization of a problem coping with such
challenges is positive and provides realistic solutions. This is supported by the graphical analyses
provided in this work, where it was established that FDNSFD arrests the issue of negativity and gives
an exponential-like behavior for exposed and infected populations under different scenarios and step
sizes. One is to note that adding a delay factor within the FDNSFD improves the result by greatly
decreasing the spreading of FMD, indicating the effect of the time delays in the epidemiological model.
The current paper outlines that in enhancing the FDNSFD method, the most important properties
that define the continuous model are all captured, producing a reliable model for disease dynamics. In
conclusion, the FDNSFD approach turns out to be a better method of modeling the spread of FMD
than the traditional techniques, which give more confident and precise results. This has a variety of
implications for FMD management and possibly the development of better interventions to control
the incidence. Further research should expand on the development and refinement of the fuzzy logic
and numerical algorithms used in the models of other infectious diseases so that the application of
such models for increasing disease knowledge and control may be enhanced.

Limitation of study: The model has some assumptions that may not capture the true nature of
FMD transmission, such as the equal distribution of people. From experience, the more data that
is available, the more credible a model will be; if there is inaccuracy in the data collected or acts of
omission in the same, then the model will yield an inaccurate result. Nevertheless, the FDNSFD is
beneficial for use, and the method is computationally more intensive than the conventional methods,
which may become a limitation in today’s world of limited resources. The generalizability of the results
and the potential of applying the given model to other areas or cultures is also somewhat limited by
the fact that they have to be fine-tuned and recalibrated if tested on local data. The values of model
parameters may be uncertain, and if this is the case, then the stability and the accuracy of the model
may be compromised. Future works should extend the development and analysis of the fuzzy logic
and the numerical formulas used in the models of other forms of infectious disease so that the benefit
of such models for the development of disease information as well as the prevention of diseases could
be improved.
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