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ABSTRACT

Heat transport has been significantly enhanced by the widespread usage of extended surfaces in various engi-
neering domains. Gas turbine blade cooling, refrigeration, and electronic equipment cooling are a few prevalent
applications. Thus, the thermal analysis of extended surfaces has been the subject of a significant assessment by
researchers. Motivated by this, the present study describes the unsteady thermal dispersal phenomena in a wavy fin
with the presence of convection heat transmission. This analysis also emphasizes a novel mathematical model in
accordance with transient thermal change in a wavy profiled fin resulting from convection using the finite difference
method (FDM) and physics informed neural network (PINN). The time and space-dependent governing partial
differential equation (PDE) for the suggested heat problem has been translated into a dimensionless form using the
relevant dimensionless terms. The graph depicts the effect of thermal parameters on the fin’s thermal profile. The
temperature dispersion in the fin decreases as the dimensionless convection-conduction variable rises. The heat
dispersion in the fin is decreased by increasing the aspect ratio, whereas the reverse behavior is seen with the time
change. Furthermore, FDM-PINN results are validated against the outcomes of the FDM.
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Nomenclature

β Thermal conductivity parameter (dimensionless)
m Exponent constant
ρ Density
Carea Fin cross-sectional area
�x Fin axial distance
Θ Temperature profile (dimensionless)
H Fin half height
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H0 Fin base half-height
ϒ Variable parameter (dimensionless)
�k Thermal conductivity
X Fin’s length (dimensionless)
cp Specific heat capacity
ϕ Surface wave phase shift
w Fin’s width
τ ∗ Dimensionless time
T Temperature
arL Fin profile aspect ratio
L Fin’s length
Nc Convection-conduction parameter (dimensionless)
n Number of surface waves per fin surface
Sarea Fin surface area�h Convective heat transfer coefficient
δ Surface wave dimensionless amplitude
�τ Time

1 Introduction

Thermal engineering is the study of the creation, conversion, and exchange of heat between
physical systems. Advanced electrical devices often overcome significant thermal obstacles caused
by high heat generation or reduced surface area for heat dissipation. Therefore, it is necessary to
employ heat transfer augmentation strategies. Heat transfer improvement technologies primarily aim
to boost heat transmission while reducing the size of equipment. Heat augmentation techniques are
utilised in many industrial processes, such as regulating temperature in evaporators, thermal power
plants, and air conditioning units. The advancement of electronic part incorporation and the future
improvement of the energy and miniaturisation level of microelectronic components are both governed
by the need for high-power dissipation. As a result, heat transfer surfaces are frequently utilised in
various engineering sectors, notably tube heat exchangers, and nuclear technologies. In the study of
heat transfer, fins are surfaces extending from an object to develop the heat transfer rate from its
surface to the environment. Several researchers studied heat transfer in extended surfaces with the
consideration of different conditions. Sarwe et al. [1] studied the thermal characteristics of the annular
convective fin using a semi-numerical scheme. Das et al. [2] estimated the heat generation and effect
of magnetic response in a permeable fin using the inverse methodology. Goud et al. [3] debriefed
temperature variance in a dovetail fin wetted with ternary hybrid nanofluid. The heat transmission
in convective-radiative longitudinal fin with heat source was elaborated by Gouran et al. [4] using the
least square method. Abdulrahman et al. [5] studied the temperature variance in permeable fin wetted
with nanofluid using the power series method. Many researchers studied the unsteady heat transfer
and convective mechanism of different profiled fins [6–9].

Heat transmission by convection is also crucial in cases where the convective heat transfer
coefficient plays a crucial role and cannot be ignored [10–14]. The best approach to enhance the
performance of fin-and-tube heat exchangers is to optimise the air-side fin design and increase heat
transmission. This is due to the fact that the air side of such heat exchangers experiences the majority
of the resistance to thermal energy. The usual approach to improving air-side heat transfer is to utilise
wavy or slot fins. There have been numerous research studies on the efficiency of wavy fin-and-tube
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heat exchangers for air-side heat transfer. Using novel compound designs, Sadeghianjahromi et al. [15]
researched strategies to increase heat transmission in wavy fin-and-tube heat exchangers. The heat
transport in a heat exchanger with wavy fins in a sand-dust environment was studied by Miao et al. [16].
A plate-fin heat exchanger with a wavy fin was the subject of substantial performance and optimisation
conducted by Cui et al. [17]. The numerical simulation was conducted by Okon et al. [18] to study
the thermal variation in a wavy-designed fin arrangement for a straight fin array. Using numerical
simulation, Xu et al. [19] investigated the heat transfer characteristics of wavy fins in plate-fin heat
exchangers for hydrogen liquefaction. The neural network (NN) has emerged as one of the artificial
intelligence methods evoked by the human brain conception for rendering computers and machines
resemble human beings. A NN comprises several neurons connected by the necessary number of
linkages. Neural network layouts can vary depending on the type of neuron or how the neurons are
interconnected. It is more sophisticated and advantageous than traditional regression and statistical
procedures and can simulate complicated correlations without prior assumptions. Numerous problems
involving classification, regression, and general estimation can be resolved with NN [20–24].

Physics-informed neural networks (PINNs) are a specific sort of neural network architecture
that uses independent data such as position and time as input to accurately predict dependent field
variables, such as temperature, in this particular case. The core of the system is founded around the
neural networks’ capacity to approximate universal functions, were explained by Hornik et al. [25]. By
employing automated differentiation, it is feasible to calculate the loss associated with the governing
equations effectively, as illustrated by Baydin et al. [26]. PINNs have the capability to reduce the
overall loss by evaluating it at specific locations within the domain, known as sparse collocation
points, without the need for meshes. The mathematical expression of PINNs in its most comprehensive
form combines a cost function that efficiently incorporates prior knowledge of the underlying physics.
Like any other neural network model, PINN has the ability to precisely reproduce the underlying
phenomena and, at the same time, reduce the cost. In this analysis, the Limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) method by Liu et al. [27] minimized the cost function. The L-
BFGS algorithm is a part of the Quasi-Newton techniques family and is a gradient-based second-order
optimisation algorithm. Wang et al. [28] addressed various forward and inverse problems that involve
partial differential equations (PDEs) but are limited in the understanding of how these constrained
neural networks function during training using gradient descent. Parisi et al. [29] proposed an unsu-
pervised neural network for a chemical engineering fixed-bed solid-gas reactor. Like Runge-Kutta, the
neural network delivered solutions throughout the integration domain with low error. Raissi et al. [30]
used data to study nonlinear PDEs. The brain networks obey physical principles in which data-
efficient discrete and continuous time models approximate spatiotemporal functions. These methods
enable perfect implicit Runge-Kutta time-stepping using data. Li et al. [31] estimated Fanning friction
and Nusselt numbers using completely connected layers to transform spatial coordinates and design
parameters into physical fields. Conservation rules are more loss function interpretable and mesh
construction flexible than convolutional neural network models. Merdasi et al. [32] examined pressure-
driven microchannel mixed electroosmotic flow using PINN.

The wavy fin was identified as one of the modified fins often utilised in many industrial purposes
owing to its efficient heat transmission and pressure-dropping capabilities, alongside its resistivity to
dust adherence, especially in a rigorous working situation. The wavy-structured fin surface can enhance
the heat exchangers’ operational efficiency. However, the study of thermal dissipation in the wavy fin is
rarely investigated, leading the current study to investigate heat transfer analysis in the convective wavy
fin. Even though designs for apparatus with extended surfaces depend on steady-state analysis and are
appropriate for many applications, consideration of the transient behaviour is sometimes essential.
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The unsteady response of fins is crucial in a variety of advanced devices, including heat exchangers,
automatic control equipment, and motors. So, investigating the unsteady heat transmission within a
wavy fin under the convective influence is the main objective of this scrutiny. Furthermore, the finite
difference method integrated with physics informed neural network (FDM-PINN) strategy has been
adopted to discuss the thermal model of the transient wavy fin. The governing PDE is converted into
dimensionless form via non-dimensional variables and solved numerically using the finite difference
scheme. Moreover, the numerically obtained FDM results are compared against novel FDM-PINN
outcomes using graphical illustrations to analyze the effectiveness of the data-independent neural
network technique. The results indicate that the data-independent FDM-PINN outcomes can capture
the intricate nature of the current problem effectively compared to numerical results. The versatility
of the proposed PINN model is observed to be an efficient procedure for studying the heat transfer
behaviour of wavy fins.

2 Mathematical Formulation

Consider a wavy fin of width w and height 2H as revealed in Fig. 1. The time-dependent thermal
variation in a wavy-shaped rectangular fin is studied in this work with the surface heat dissipation to
the surrounding temperature Tamb. The wavy fin’s base is maintained at temperature Tb and the fin is of
a wavy structure along the �x-axis. In this scrutiny, convective heat transfer analysis is carried out in a
wavy fin, which is associated with the convective heat transfer coefficient �h (T) and can be denoted as

�h (T) = hb

(
T − Tamb

Tb − Tamb

)m

. (1)

Figure 1: Physical model of a wavy fin

In addition, thermal conductivity may be linearly related to temperature in many engineering
applications and is given as
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�k (T) = ka {1 + ϒ (T − Tamb)} . (2)

The unsteady energy equation for the wavy fin losing heat by convection can be stated as (see [6]
and [33]):

ρcp

∂T
∂�τ = ∂

∂�x
[
�k (T)

∂T
∂�x

]
−

[
∂Sarea

∂�x
] �h (T)

Carea

(T − Tamb) +
[�k (T)

Carea

∂Carea

∂�x

]
∂T
∂�x . (3)

The corresponding initial condition and boundary condition (IC and BC) are specified as follows:

T = 0 at �τ = 0, �x > 0,

T = Tb at �x = 0, �τ > 0,
∂T
∂�x = 0 at �x = L, �τ > 0. (4)

The cross-sectional area is given by

Carea = 2H0

∫ w

0

{
1 + δ sin

[
2πn

(�x
L

)
+ ϕ

]}
dz. (5)

and

H = H0

{
1 + δ sin

[
2πn

(�x
L

)
+ ϕ

]}
. (6)

Also, the fin surface area is presented by

Sarea = 2w
∫ L

0

√
1 +

(
dH
d�x

)2

d�x. (7)

From Eqs. (1) and (2), Eq. (3) can be expressed as

ρcp

∂T
∂�τ = ∂

∂�x
[

ka {1 + ϒ (T − Tamb)} ∂T
∂�x

]
−

[
∂Sarea

∂�x
]

hb (T − Tamb)
m+1

Carea (Tb − Tamb)
m

+ ka {1 + ϒ (T − Tamb)} ∂T
∂�x

[
1

Carea

∂Carea

∂�x
]

. (8)

For solving the corresponding heat equation numerically, Eq. (8) is required to be non-
dimensional. The subsequent non-dimensional variables are provided in this context:

X = �x
L

, τ ∗ = ka�τ
ρcpL2

, 
 = T − Tamb

Tb − Tamb

, β = ϒ (Tb − Tamb) , Nc = hbL2

kaH0

, arL = H0

L
. (9)

By using the above non-dimensional variables, the Eq. (8) will be transformed to

∂Θ

∂τ ∗ = ∂

∂X

[
{(1 + β Θ)} ∂Θ

∂X

]
+ (1 + β Θ)

[
2πδn cos (2πnX + ϕ)

1 + δ sin (2πnX + ϕ)

]
∂Θ

∂X

− Nc

[√
1 + 4 (πarLδn)

2 cos2 (2πnX + ϕ)

1 + δ sin (2πnX)

]
Θm+1 = 0, (10)
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and the modified IC and BC are


 = 0 at τ ∗ = 0, X > 0,


 = 1 at X = 0, τ ∗ > 0,
∂


∂X
= 0 at X = 1, τ ∗ > 0. (11)

The above equations are numerically solved using FDM, and the FDM results are used for
comparison purposes to check the reliability of the FDM-PINN. Thus, the FDM procedure described
in [34,35] is avoided here. In FDM, computational approximations commonly incorporate basic
arithmetic operations on adjacent grid points. This is computationally simpler and more robust
than approaches that might involve solving large, complicated equations or executing sophisticated
integrations.

3 Physics-Informed Neural Network-Integrated with Finite Difference Method

In designing physics-guided networks, automatic differentiation is an essential technique that sig-
nificantly facilitates the computation of residuals for the loss term. This is accomplished by processing
derivatives of outputs concerning inputs. This strategy eliminates the requirement for a manual back-
propagation rule because the chain rule is utilised in solving derivatives. To compute derivatives across
space-time orders, contemporary deep learning systems readily include automated differentiation as
an alternative to complicated derivations or numerical discretisation. This section concisely explains
the governing equations and loss functions that act as inputs for PINN training specific to the current
study. Integrating PINN with the FDM provides a novel approach for solving PDEs. This method
combines the computational efficiency of FDM with the data-independent capabilities of PINN.
PDEs are discretised, and the applications of finite difference approximations and scaling to high-
dimensional problems are used to estimate the derivatives. The PINNs can learn the underlying physics
from the PDEs and use neural networks to impose on the differential equation. They are adaptive
and have the ability to adjust to high-dimensional problems. In addition, incorporating physics-based
restrictions from FDM into the construction of the PINN, a hybrid technique, improves the neural
network’s interpretability and generalisation capabilities. This hybrid technique offers opportunities
to increase scalability, accuracy, and efficiency for handling real-world issues by combining machine
learning and numerical methodologies. The combination of these two methodologies may achieve the
stated improvements. The non-dimensional heat equation for a wavy fin with a convective effect from
Eq. (10) is considered for the PINN training, and Fig. 2 gives a schematic illustration of the FDM-
PINN framework.

EqFDM−PINN = Θi,j+1 − Θi,j

�τ ∗ − β

(
Θi+1,j − Θi−1,j

2�X

)2

− {(
1 + β Θi,j

)} Θi+1,j − 2Θi,j + Θi−1,j

�X 2

− (
1 + β Θi,j

) [
2πδn cos (2πnX + ϕ)

1 + δ sin (2πnX + ϕ)

]
Θi+1,j − Θi−1,j

2�X

+ Nc

[√
1 + 4 (πarLδn)

2 cos2 (2πnX + ϕ)

1 + δ sin (2πnX)

]
Θi,j

m+1 (12)

LossEq = 1
Nr

Nr∑
j=1

∥∥EqFDM−PINN

(
Xj

r, τ ∗
j

r)∥∥2
. (13)
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Loss0a = 1
Na

Na∑
j=1

∥∥
η

(
X 0

j , τ ∗
j

0
) − 
0a

(
X 0

j

)∥∥2
. (14)

Lossb1 = 1
Nb1

Nb1∑
j=1

∥∥
η

(
X b1

j , τ ∗
j

b1
) − 
b1

(
X b1

j , τ ∗
j

b1
)∥∥2

Lossb2 = 1
Nb2

Nb2∑
j=1

∥∥∂X
η

(
X b2

j , τ ∗
j

b2
) − 
b2

(
X b2

j , τ ∗
j

b2
)∥∥2

. (15)

Losstotal = LossEq + Loss0a + Lossb1 + Lossb2. (16)

Figure 2: Pictorial design of applied FDM-PINN

The finite discretisation of the heat transfer equation is represented by Eq. (12), and the losses for
the conditions are calculated using Eqs. (13)–(16). The working algorithm for the proposed method is
given as below:

Step 1: Build the PINN model using a fully connected neural network architecture.

Step 2: Choose the collocation points inside the domain and generate the background mesh.

Step 3: Rearrange the governing equations into equations with finite differences that are appro-
priate for the implementation.

Step 4: The finite difference loss term will indicate the difference between the computed and real
values based on the discretised equations.

Step 5: Choose the boundary condition points on the domain randomly.

Step 6: Define the boundary loss term, which takes into account the difference between the model’s
predictions and the observed boundary conditions.

Step 7: Define the model’s parameters, including the weights and biases of the neural network.

Step 8: Adjust the network’s parameters using G gradient descent iterations.

Step 9: To efficiently change the model parameters to reduce the loss function and to update the
parameters for each iteration (g = 1 to G), use optimisation techniques like Adam and L-BFGS.

Step 10: As the best-fit solution discovered throughout the iterative optimisation process, return
the optimised settings.
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Comprehensive information is provided regarding the model’s network architecture and training
procedure by utilising deep neural networks (DNNs) to automatically differentiate and approximate
functional relationships. Using the loss function, the PINN model offers a physically robust framework
for predicting periodic heat transport in wavy fin structures. Although the framework offers a viable
method of simulating both linear and nonlinear PDEs, it is important to note that implementing
these models requires carefully modifying critical hyperparameters during the first training cycle. The
model’s loss function, in contrast to techniques that are only driven by data, incisively combines the
capabilities of DNN with physical constraints. This significantly improves the model’s ability to adhere
to the physical constraints that govern heat transport behaviour and reduces the challenges associated
with limited data availability. The learning rate is crucial in optimising the progress based on the
total number of training epochs. The number of neurons in the hidden layers is a crucial determinant
of the model’s ability to recognize intricate patterns in the input accurately. Regularisation affects
dropout rates and regularisation weight, decreasing overfitting by either penalising complex models
or randomly eliminating connections during training. Additionally, the convergence and performance
of the model are significantly impacted by the total number of training epochs allotted to the dataset
analysis. Iterative testing and validation using a range of datasets are frequently performed to find the
optimal values for these hyperparameters. This study uses a four-layered network with 500 neurons
per layer, a learning rate of 1E−08, and 100,000 training epochs to solve the heat equation using a
self-updating weights and bias technique. To obtain the optimal output values, various optimisers
are investigated, including gradient descent, Adam, and L-BFGS. L-BFGS shows faster convergence
with less iterations than Adam. However, when L-BFGS alone is insufficient to achieve convergence,
a combination of L-BFGS and Adam is required due to the vulnerability to local minima with high
instability, ascribed to second-order derivatives in the loss function. In order to successfully mitigate
loss, a combination of L-BFGS and Adam is used in this study after a predefined number of loops.
Also, the proposed FDM-PINN has several advantages compared to traditional FDM, such as:

• Traditional FDM requires time steps and grid spacing to avoid numerical diffusion and
instability. Whereas, the FDM-PINN’s can estimate the solution smoothly even with coarse
discretisation reducing numerical instability and strengthening solutions.

• FDM-PINN uses collocation points to discretise but instead requires less grid fineness than
standard FDM. As the neural network in FDM-PINN learns the physical principles to
interpolate and approximate the solution, the grid points are less significant since the network
may reflect the solution’s behaviour with fewer discretisation points.

• By choosing regions with quick solution changes, FDM-PINN optimises processing resources.
Instead of increasing grid density everywhere, like FDM, FDM-PINN can focus collocation
points or training on critical areas while keeping a coarser grid in less sensitive areas. This
flexibility reduces discretisation without compromising precision.

4 Validation of FDM-PINN Results

This section examines the verification of the FDM-PINN’s computational results under different
conditions. For this purpose, the results are displayed in tables and graphical form.

Table 1 presents the validation of FDM-PINN results against numerical outcomes at different
time instants represented by τ ∗ = 0.5 and τ ∗ = 0.8 for Nc = 2. The table compares the numerical values
with those obtained from FDM-based PINN predictions, showcasing the absolute error between the
two, where each row corresponds to a different spatial location. The numerical column represents
the reference values obtained through the numerical technique, and the FDM-PINN column displays
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the predictions generated by the deep learning model. The absolute error column quantifies the
discrepancy between the numerical and FDM-PINN results, notably the absolute errors for all spatial
locations are relatively small indicating a high level of agreement between the FDM-PINN predictions
and the numerical results. This validation underscores the efficacy of the PINN approach in accurately
capturing the underlying physics and providing reliable predictions, demonstrating its potential as a
valuable tool for solving complex scientific and engineering problems.

Table 1: Validation of FDM-PINN results with FDM results for Nc = 2

X τ ∗ = 0.5 τ ∗ = 0.8

FDM FDM-PINN Error FDM FDM-PINN Error

0 1.000000000 0.999994800 5.2E−06 1.000000000 0.999996660 3.34E−06
0.2 0.635478440 0.635477928 5.12189E−07 0.680966773 0.680966639 1.34118E−07
0.4 0.364927680 0.364927259 4.21064E−07 0.442580328 0.442579532 7.95503E−07
0.6 0.170131664 0.170131110 5.54182E−07 0.259406787 0.259407392 6.05227E−07
0.8 0.068817193 0.068816369 8.24053E−07 0.151077944 0.151078105 1.60659E−07
1 0.045163296 0.045163647 3.51195E−07 0.123092824 0.123093044 2.20298E−07

Table 2 presents a comparative analysis between FDM and FDM-PINN solutions, focusing on
their performance when β = 0.5 at time instance τ ∗ = 0.5 and τ ∗ = 0.8 and compares the
predictions at various X positions. Each model’s prediction is accompanied by its corresponding
absolute error, measuring the difference between the model’s output and the numerical values. Notably,
the results highlight the excellent correlation of FDM-PINN with FDM by generating minimal errors.
Both achieve consistently lower absolute errors across all spatial locations. However, this observation
underscores the efficacy of FDM-PINN as a robust and reliable approach for solving unsteady heat
transfer problem.

Table 2: Validation of FDM-PINN results with FDM results for β = 0.5

X τ ∗ = 0.5 τ ∗ = 0.8

FDM FDM-PINN Error FDM FDM-PINN Error

0 1.000000000 0.999992090 7.91E−06 1.000000000 0.999994720 5.28E−06
0.2 0.731915742 0.731916155 4.13E−07 0.777280494 0.777280915 4.21E−07
0.4 0.494235655 0.494235953 2.98E−07 0.582801095 0.582801188 9.21E−08
0.6 0.254069091 0.254069858 7.67E−07 0.379296741 0.379297295 5.54E−07
0.8 0.103910848 0.103911072 2.24E−07 0.234542808 0.234543305 4.97E−07
1 0.071879322 0.071879686 3.64E−07 0.200504875 0.200503999 8.76E−07

Table 3 provides a comprehensive illustration of traditional FDM and FDM-PINN outcomes, by
comparing the results with the published work of Khaled [33]. The computational values of Θ (1) are
listed in the table for different values of Nc and the significance of the considered methods are assessed
by providing the absolute error results. In precise, the absolute error produced by comparing the results
of [33] and FDM is indicated by ErrorFDM whereas ErrorFDM−PINN denotes the absolute error between
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[33] and FDM-PINN outcomes. It can be observed that both methodologies display minimal absolute
error rates, representing good agreement with the reference values. FDM-PINN’s neural network is
trained to understand the fundamental physical rules controlling the problem, therefore enabling it to
interpolate and approximatively estimate the response more freely throughout the whole domain. The
network can capture the behaviour of the solution even with fewer discretisation points, hence reducing
the reliance on the number of grid points. By efficiently generalising the solution over the domain, the
network lowers the necessity for significant discretisation. By allowing FDM-PINN to dynamically
concentrate on regions of interest where the solution changes rapidly, allowing for more effective use
of computing resources becomes feasible. FDM requires the grid density to be consistently increasing
across, whereas the FDM-PINN can devote additional collocation points or training emphasis on
critical areas while maintaining a coarser grid in less sensitive regions. Although it still employs some
discretisation through collocation points, the FDM-PINN method lacks the fine grid necessary in
conventional FDM. This flexibility lowers the total discretisation need while yet maintaining great
accuracy. Thus, FDM requires more extensive discretization to achieve accurate results because it
depends heavily on the density of the grid and time steps. In contrast, FDM-PINN reduces this
requirement by leveraging the neural network’s ability to learn and generalize the solution across the
domain, making it a more efficient method for solving complex thermal distribution problems with
fewer discretization points. FDM-PINN indeed involves hyperparameter tuning, which can consume
additional time. However, this investment should be weighed against the long-term benefits of the
model. For instance, once the hyperparameters are optimized, the FDM-PINN model can be applied
to a wide range of similar problems with minimal additional tuning.

Table 3: Validation of the FDM and FDM-PINN results with previously published work for β = 0,
arL = 0, δ = 0, n = 2, m = 0

Nc2 Khaled [33] FDM ErrorFDM FDM-PINN ErrorFDM−PINN

0.5 0.886819 0.886818903534562 9.65E–08 0.8868189303037 6.97E–08
1.0 0.648054 0.648054498479555 4.98E–07 0.648053639849 3.61E–07
1.5 0.425096 0.425096032263199 3.23E–08 0.4250959766898 2.33E–08
2.0 0.265802 0.265802207758634 2.08E–07 0.265801849894 1.51E–07

In scenarios where data independence and physics-informed constraints play a crucial role by
incorporating domain-specific knowledge through the finite difference method, FDM-PINN offers
enhanced predictive capabilities, making it a preferred choice over traditional data-driven methods
like artificial neural networks. To further comprehend the effectiveness of the utilised FDM-PINN,
temperature results are assessed for several values of thermal parameters considering the various
time instances, as displayed in Figs. 3–6. The assessment of FDM and FDM-PINN findings for
Nc (2, 4, 6, 8) at τ ∗ = 0.5 and τ ∗ = 0.8 is given in Figs. 3 and 4, respectively. Also, Figs. 5 and 6
are presented to divulge the association of the FDM and FDM-PINN results with τ ∗ = 0.5 and
τ ∗ = 0.8 for β (−0.5, 0, 0.5, 0.7). The implemented FDM-PINN procedure is effective, as evidenced
by the strong concordance in all these figures.
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Figure 3: Comparison of FDM and FDM-PINN results for various Nc values at τ ∗ = 0.5

Figure 4: Comparison of FDM and FDM-PINN results for various Nc values at τ ∗ = 0.8
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Figure 5: Comparison of FDM and FDM-PINN results for various β values at τ ∗ = 0.5

Figure 6: Comparison of FDM and FDM-PINN results for various β values at τ ∗ = 0.8
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5 Results and Discussion

The temperature distribution for the unsteady state is analyzed, and the influence of time is
assessed using PINN analysis. The unsteady temperature variance in a wavy fin is considered in
this present research. A dimensional transient temperature equation for the wavy fin is developed
and Eq. (10) is the non-dimensional form of Eq. (3), obtained using suitable dimensionless variables.
Further, the obtained non-dimensional equation is solved using FDM-PINN. This section investigates
the dynamic temperature distribution in a fin with a wavy shape, considering several factors such as
thermal conductivity, time, convective-conductive properties, and the fin’s aspect ratio. The graphical
representation illustrates these factor’s impact on the wavy fin’s temperature profile. The wavy fin’s
thermal distribution varies as time changes. In Figs. 7 to 9, differences in the time τ ∗ show the deflection
in the temperature profile of the wavy fin. The temperature curve for time τ ∗ = 0.3 and τ ∗ = 0.5
is indicated by solid lines and dashed lines respectively. Variation of temperature distribution in a
wavy fin with different values of the fin’s aspect ratio is exhibited in Fig. 7a. Wavy fins temperature
profile shows the decrement nature as the values of a rL (0.1, 0.3, 0.5, 0.7) increase. Fig. 7b illustrates
the characteristics of Θ for various scales of convective-conductive parameter. It is seen that the
temperature in a wavy fin escalates for the decrease in the values of Nc. Physically, an increase in
Nc (1, 2, 3, 4) values supports the intensification, and simultaneously effective cooling takes place.
Thus, the temperature of wavy fin decreases. The upshot of the thermal conductivity parameter on the
temperature profile of the wavy fin is displayed in Fig. 8a. As the thermal conductivity parameter rises,
the temperature distribution in the wavy fin increases simultaneously. In particular, when the values of
β becomes higher (0.1, 0.3, 0.5, 0.7), the heat conduction through fin length amplifies, enhancing the
wavy fin’s temperature variation. Fig. 8b shows the temperature fluctuation in a wavy fin with respect
to time. As the values of τ ∗ upsurges, i.e., τ ∗ = (0.05, 0.1, 0.2, 0.3), thermal distribution in a wavy fin
also increases. The transient temperature distribution in a wavy fin rises gradually as time escalates.
Also, the temperature dispersion in the fin with the time variation is shown in Fig. 9 as a contour graph.
In precise, Fig. 9a–d demonstrates the variation in transient temperature with the time scales τ ∗ = 0.01,
τ ∗ = 0.2, τ ∗ = 0.8, and τ ∗ = 2, respectively. These figures indicate that the temperature increases with
increasing changes in time. Fig. 10a–d illustrates the thermal dispersion in the fin for dimensionless
time τ ∗ = 0.2, and τ ∗ = 0.3 with different values of Nc. In particular, Fig. 10a,b indicates the thermal
variation in the fin for τ ∗ = 0.2, and τ ∗ = 0.3 with Nc = 1. The variation in the temperature of
the fin with the change in time τ ∗ = 0.2, and τ ∗ = 0.3 is represented in Fig. 10c,d for Nc = 2. The
thermal variation in the fin is analyzed by considering the non-dimensional X and τ ∗coordinate. It is
observed from these figures that the thermal dispersion varies dynamically with the change in time.
From all these figures, it is obvious that the temperature is found to be high at the fin’s base (X = 0)

and it decreases along the non-dimensional X to accomplish the minimum temperature at the fin’s tip
(X = 1). Moreover, the thermal distribution increases with increase in time as denoted by the upper
surface deviation in Fig. 10b,d.
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Figure 7: (a) Nature of Θ for variation in arL (b) Nature of Θ for variation in Nc
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Figure 8: (a) Nature of Θ for variation in β (b) Nature of Θ for variation in τ ∗
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Figure 9: Thermal distribution in a wavy fin for variation in X with different τ ∗ (a) Non-dimensional
time τ ∗ = 0.01 (b) Non-dimensional time τ ∗ = 0.2 (c) Non-dimensional time τ ∗ = 0.8 (d) Non-
dimensional time τ ∗ = 2
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Figure 10: Three-dimensional representation of FDM-PINN results for with different τ ∗ and Nc (a)
Non-dimensional time τ ∗ = 0.2 with Nc = 1 (b) Non-dimensional time τ ∗ = 0.3 with Nc = 1 (c)
Non-dimensional time τ ∗ = 0.2 with Nc = 2 (d) Non-dimensional time τ ∗ = 0.3 with Nc = 2

6 Conclusions

A mathematical representation of the unsteady heat transmission of a wavy fin is presented in the
current analysis. Additionally, the wavy fin is subjected to the impact of convective heat dissipation.
Also, the present investigation is designed to employ FDM-PINN in developing an unsteady thermal
model of the wavy fin. Solutions to transient heat transfer problems alter with time, and when
temperatures drop sharply, the discretization process might add stiffness to the system. In this case,
PINNs might not be able to capture the dynamic changes with a moderate number of collocation
points concerning the behaviour of the temperature distribution. The increase in collocation points
leads to increased computational cost, which affects the overall performance of the procedure is one
of the limitation of the study. This limitation can be resolved in future using different optimization
techniques. The results of the current comprehensive examination are laid out below:
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• The wavy fin’s temperature distribution is strongly influenced by the associated parameters. The
reduction in the temperature dispersion of the fin is caused by an elevation in the convective-
conductive variable.

• Thermal variance rises with higher non-dimensional time values. Further, enhanced variation
is observed in the thermal curves with an increase in the time for all considered parameters.

• Developments in the thermal conductivity parameter induce a decrease in the heat transmission
rate and an increase in thermal dissipation.

• The thermal effectiveness of wavy fins has been determined to be improved due to increased
surface area and improved heat transfer mechanisms, relying on the fin operational conditions.

• The FDM-PINN model’s ability to capture and depict the complex dynamics of heat transfer
is demonstrated by the absolute errors ranging from 10−6 to 10−7.

• The outcomes of numerical methods closely match the FDM-PINN outcomes, indicating a
convergence of numerical solutions.

• In contrast to conventional machine learning methods, the PINN methodology does not rely
on training data and is not susceptible to generalisability constraints.

• The FDM-PINN exhibits proficiency in effectively solving nonlinear thermal equations, setting
itself apart from data-driven methods that depend on data dependencies.

• The results accomplished from the proposed FDM-PINN technique were compared to the
findings of the available work, and a stronger agreement in outcomes was observed due to
minimal errors attributable to the influence of thermal factors.
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