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ABSTRACT

Traditional topology optimization methods often suffer from the “dimension curse” problem, wherein the com-
putation time increases exponentially with the degrees of freedom in the background grid. Overcoming this
challenge, we introduce a real-time topology optimization approach leveraging Conditional Generative Adversarial
Networks with Gradient Penalty (CGAN-GP). This innovative method allows for nearly instantaneous prediction
of optimized structures. Given a specific boundary condition, the network can produce a unique optimized
structure in a one-to-one manner. The process begins by establishing a dataset using simulation data generated
through the Solid Isotropic Material with Penalization (SIMP) method. Subsequently, we design a conditional
generative adversarial network and train it to generate optimized structures. To further enhance the quality of
the optimized structures produced by CGAN-GP, we incorporate Pix2pixGAN. This augmentation results in
sharper topologies, yielding structures with enhanced clarity, de-blurring, and edge smoothing. Our proposed
method yields a significant reduction in computational time when compared to traditional topology optimization
algorithms, all while maintaining an impressive accuracy rate of up to 85%, as demonstrated through numerical
examples.
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1 Introduction

The study of topology optimization has received significant attention since Bendsoe and Kikuchi’s
pioneering work. Several topology optimization methods have been proposed, including the Solid
Isotropic Material with Penalization method, the Level Set method, the Evolutionary Structural
Optimization method, the moving morphable components method and the independent continuous
mapping method [1–5]. These methods have been applied successfully to a wide range of physical
optimization problems, investigating structural, acoustic, electromagnetic, or optic performances.

In the field of topology optimization, a primary objective is to improve computational efficiency.
However, traditional topology optimization methods suffer from an inherent drawback known as
“the curse of dimensionality”. As the number of design variables and iteration steps increase, the
computational cost grows exponentially. Despite recent advancements in topology optimization,
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cumbersome iterations and finite element calculations still cannot be circumvented. Consequently,
real-time topology optimization remains an open problem.

In recent years, data-driven topology optimization methods have emerged as a research hotspot.
Current works for topology optimization using machine learning can be broadly categorized into
two groups depending on whether they are combined with finite element analysis (FEA). The first
approach involves initially obtaining a rough solution through a limited number of FEA iterations,
which is then used as input for a machine learning model to obtain a more accurate topology
optimization structure. This approach has been explored in several studies [6–8]. Another approach
is the deep learning-based noniterative topology optimization method, where initial conditions and
design variables directly serve as inputs to a machine learning model for predicting the topology
optimization outcomes. Commonly used machine learning models comprise Convolutional Neural
Networks, Generative Adversarial Networks (GAN), and U-Net [9–13]. This approach requires a
labeled training dataset and the construction and training of a corresponding neural network model,
which is then used to predict optimal configurations for cases within the same distribution as the
training set. Common methods for dataset generation involve employing conventional topology
optimization algorithms such as SIMP and density-based approach; however, some researchers have
utilized models like Wasserstein Generative Adversarial Nets (WGAN) and Variational Autoencoder
to produce the requisite topology optimization dataset for training [14–16]. For instance, Lei et al.
combined the Moving Morphable Components method with machine learning, enhancing the speed
and flexibility of real-time topology optimization [17]. Wang et al. introduced a data-driven structural
design optimization approach utilizing isogeometric analysis, which fully leverages the advantages of
NURBS to achieve more accurate and computationally efficient design solutions [18]. Yin et al. applied
the physical information neural network to the field of topology optimization, establishing two neural
networks to replace expensive ones by utilizing the similarity of pseudo-density fields [19]. Rawat et al.
proposed a topology optimization method based on conditional Wasserstein generative adversarial
networks, achieving structures similar to traditional methods but with lower computational costs
[9]. Rade et al. introduced a deep learning framework for three-dimensional topology optimization,
aligning closely with traditional algorithms while emphasizing high-resolution capabilities [20]. Xiang
et al. proposed a deep convolutional neural network for 3D structural topology optimization while
predicting structures close to optimal in a short time, achieving a significant reduction in compu-
tational costs [21]. Greminger used a generative adversarial network to create a generalized topology
optimization method with manufacturability constraints, broadening the applicability of optimization
techniques [22].

In this paper, we proposed a data-driven structural topology optimization method by developing
a Conditional Wasserstein Generative Adversarial Network with Gradient Penalty (CWGAN-GP).
The dataset is generated by the FEM-based based SIMP method which includes over 20,000 samples.
Then, we set up a conditional Wasserstein generative adversarial network. Then, we train this network
using the dataset. The trained network receives the boundary and load conditions as the encoded
constraint conditions, and outputs the optimized structure. For given boundary and load conditions,
the network can obtain a unique optimization structure one-to-one. We also apply Pix2pixGAN to
optimize the boundary of the generated structures using CWGAN-GP. Compared with the structure
obtained by CWGAN-GP, Pix2pixGAN can enhance the clarity of the structure significantly.
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2 Conditional Wasserstein Generative Adversarial Networks with Gradient Penalty (CWGAN-GP)
2.1 Generative Adversarial Networks

The Generative Adversarial Network consists of a generator G and a discriminator D. The
generator G creates structures Gz by inputting random noise, aiming to generate structures that
satisfy the real sample distribution as much as possible. The generated image is then inputted to the
discriminator D, which determines whether the input data is from the real data set or from generated
data D. If it is determined to be real, D outputs 1; otherwise, D outputs 0. The loss function of
traditional GAN is defined as follows:

min
G

max
D

V(D, G) = Ex∼Pdata (x)
[log D(x)] + Ez∼Pz(z)

[log(1 − D(G(z)))] (1)

where x represents a true sample, Pdata(x) represents the real sample distribution, z is a random noise,
and Pz(z) represents the sample distribution of the noise. D(G(z)) indicates the probability of the sample
generated by G(Z) ultimately being judged as true or false by the discriminator D. The purpose of
GAN is to generate samples that are closer to real samples, with D(G(Z)) approaching 1. This is
achieved by minimizing the value of V(D, G). For the discriminator D, the aim is to get D(G(Z))

closer to 0 and make the real sample D(X) closer to 1, in order to maximize the value of V(D, G).

Traditional deep learning methods typically require a large number of training samples to effec-
tively handle complex image and sample distributions. In contrast, Generative Adversarial Networks
are able to generate samples with similar precision using fewer training samples compared to deep
convolutional neural networks. Despite these advantages, traditional GANs encounter challenges
when dealing with constrained problems because the input data is typically in the form of noise,
rather than pre-defined constrained data. This can make it difficult to ensure that the generated
samples satisfy specific constraints or specifications. Another challenge with traditional GANs is the
optimization of the generator’s objective function. This function is equivalent to solving the Jensen-
Shannon (JS) divergence under the optimal discriminant, which presents difficulties in effectively
optimizing the generator. Consequently, alternative approaches, such as Wasserstein GANs and Least
Squares GANs, have been proposed to address this issue and improve the stability of GAN training.

2.2 Conditional Generative Adversarial Networks and Pix2pix
In order to overcome the limitation that the generator G cannot handle conditional constrained

data, researchers proposed the use of Conditional Generative Adversarial Networks (CGANs) [23].
This involves adding conditional labels to both the generator and the discriminator. Specifically, the
input to the generator consists of both noise labels and constrained labels, which are combined and
used to generate the corresponding output G(z | y). The objective functions of CGANs are as follows:

The objective function of CGAN is:

min
G

max
D

V(D, G) = Ex∼Pdata (x)
[log D(x | y)] + Ez∼Pz(z)[log(1 − D(G(z | y)))] (2)

By making modifications to the conventional GAN loss function, it becomes possible to impose
constraints on the data generation process, taking into account both the distribution of the constrained
condition y and the noise z. This modification ensures that the generated samples conform to specific
constraints, eliminating the randomness of the output.

Pix2pix is a variant of CGAN, where the generator G only receives the conditioning input y, rather
than a noise input z. On the other hand, the discriminator D can process both the conditioning and
noise inputs. In Pix2pix, the GAN loss is augmented with the L1 distance metric, which serves to
mitigate image blurring [24].
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The L1 loss function is:

LL1
(G) = Ex, y, z[‖y − G(x, z)‖1] (3)

The loss function of Pix2pix is:

G∗ = arg min
G

max
D

LcGAN(G, D) + λLL1(G) (4)

2.3 GAN Based on Wasserstein Distance and Gradient Patiently (WGAN-GP)
The generator in the original GAN usually uses JS divergence or KL divergence, but if the

generated sample distribution does not coincide with the original sample distribution, the gradient
will easily disappear. Martin et al. replaced JS or KL divergence with Wasserstein distance, which can
ensure that even if the two distributions do not overlap, Wasserstein distance can still reflect their
distance, avoiding the problem that the generator cannot be trained [25,26].

Wasserstein distance is defined as follows:

W
(
Pr, Pg

) = inf
γ∼�(Pr , Pg)

E(x, y)∼γ [‖x − y‖] (5)

where Pr is the distribution of true data and Pg is the distribution of generated data, �
(
Pr, Pg

)
is the

set of all possible distributions by combining Pr and Pg.

For each possible distribution, we withdraw the samples x and y, calculate the expectation distance
E(x, y)∼γ [‖x − y‖. Then in all possible distributions, we stipulate that the infimum of the expected value
infγ∼�(Pr , Pg) is Wasserstein distance. As it is difficult to solve infγ∼�(Pr , Pg), we change it into:

W
(
Pr, Pg

) = 1
K

sup
‖f ‖L≤K

Ex∼Pr [f (x)] − Ex∼Pg [f (x)] (6)

A Lipschitz function is characterized by the property that the difference in its output values is
bounded by a constant multiple of the difference in its input values. Based on the Lipschitz function
continuity, the upper formula can be turned into an approximate solution to the following equation:

K · W
(
Pr, Pg

) ≈ max
w:‖fw‖L≤K

Ex∼Pr [fw(x)] − Ex∼Pg [fw(x)] (7)

where fw(x) is a discriminator network with parameter w. K is the Lipschitz constant of the discrimi-
nator. The Lp-parameter of fw(x) gradient is not greater than K, ‖f ‖L ≤ K.

According to the aforementioned loss function, the generator and the discriminator will be
alternately trained, aiming to minimize the Wasserstein distance to narrow the distribution between
the real sample space and the generated sample space.

For WGAN, the weighted parameter values of fw(x) are limited in a certain range [−c, c] (in this
paper, the interval is [−0.01, 0.01]). In doing so, the derivative value during the derivative calculation
process will not exceed a certain range and the Lipschitz continuity condition will be satisfied. But in
the training process, the discriminator D hopes to be able to distinguish between true and false samples
as much as possible, and the weight parameter w will limit the range of the parameter values of each
network, then in this case, the optimal strategy will make all parameter values go to extremes. After
verification, we found that the network parameters of the discriminator D are usually distributed in
the two extremes of the maximum and minimum. In addition, weight clipping will cause the gradient
to disappear or explode. The reason is that after the two poles of the parameter are stacked if the
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clipping threshold value is small, the gradient will attenuate after multiple layers. If its value is large,
the gradient solution after multiple layers will explode.

This issue primarily arises from the Lipschitz constraint. During the training of the discriminator,
the gradient norms tend to converge around a value K. To address this issue, we introduce a gradient
penalty function given by:

L = [‖∇xD(x)‖p − K
]2

(8)

With K = 1 and the introduction of the weight parameter λ, the loss function for the WGAN-GP
network is formulated as follows:

L(D) = −Ex∼Pt [D(x)] + Ex∼Pg [D(x)] + λEx∼Px

[(‖∇xD(x)‖p − 1
)2

]
(9)

where x̂ = εxr + (1 − ε)xg.

The utilization of Wasserstein distance with gradient penalty as the loss function in WGAN
mitigates the issue of binary polarization and facilitates model training, thereby contributing to its
overall effectiveness.

3 Topology Optimization Using CWGAN-GP
3.1 Dataset

The dataset is generated using the SIMP topology optimization algorithm. In this case, we take
the surface force and Dirichlet boundary conditions as design variables. What’s more, the surface force
includes concentrated force and distributed force. The range of surface force is [0–1000], and the
Dirichlet boundary conditions randomly change. By taking different design variables, we obtained
16,525 topology optimization structures. As shown in Fig. 1, the left figure illustrates the force
conditions (blue bar) and Dirichlet boundary conditions (red bar), and the right figure depicts the
topology structure obtained by the SIMP algorithm [27,28]. Dirichlet boundary conditions are applied
at the domain’s boundaries, while the forces are represented by blue rectangles, indicating both the
magnitude and direction of the applied loads.

Figure 1: Force/Boundary conditions and corresponding topology optimization structure

Before using the dataset to train the CWGAN-GP model, we need to encode the design variables
to form 16,525 pairs of topology optimization structures. The coding rules are as follows, since every
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design variable acts in two directions, the x and y, so we set a one-dimensional channel for every design
variable in every direction. In this case, the one-dimensional channels include two force channels fx,
fy, and two Dirichlet boundary channels bx, by.

As shown in Fig. 2, the node number of the finite element mesh in this case is 80 × 80. Each mesh
can be looked upon as a pixel and the number of the pixels on the four boundaries is 79 × 4. So, the
length of each channel is 316. As there are four channels, the length of encoded design variables is
316 × 4.

Figure 2: Schematic diagram of finite element mesh nodes

3.2 Network Structure of CWGAN-GP for Topology Optimization
Fig. 3 shows the structure of the generative network G. Inspired by Pix2pixGAN, the initial

random noise vector z is abandoned. The encoded design variables mentioned above are used as
the initial input label of the generative network G. Firstly, we design a fully connected layer FC and
dropout layer to covert the label x into a vector with the dimension 5 × 5 × 8 × D. The D mentioned
in the figure refers to the depth of the deconvolution operation, which can be adjusted according to
the memory size of the GPU. Secondly, we designed four deconvolution layers to map the data from a
one-dimensional vector to a two-dimensional topology optimization structure. What’s more, in order
to avoid zero gradients, we abandon the pooling layer that usually follows the deconvolution layer. We
choose ReLU as the activation function. The output of the generator G is a matrix with a dimension
of [80, 80, 1], which is the two-dimensional fake topology optimized structure.

Fig. 4 shows the structure of the discriminator network D. The input of D is the combination
of design variables and fake/real topology-optimized structure. As the size of the unfolded topology
optimized structure matrix is 1 × 6400, the size of encoded design variables is 1 × 1264, those could be
merged into a vector of 1 × 7664. In order to facilitate the convolution operation, we need to reshape
the merged vector into a square matrix. However, the square of 7664 is not an integer, so we introduce
a zero-padding strategy which needs to pad zero after the merged vector. In this case, we extended the
merged vector to 1 × 7744, which could be reconstructed into a matrix with dimensions [88, 88, 1],
by the zero-padding strategy. We design four convolution layers for the discriminator D, which could
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map the data from merged vectors to high-dimensional information to low-dimensional features. We
choose LReLU as an activation function, the parameter value of LReLU is 0.2 [29]. The output of the
discriminator D is the number of 1/0, which corresponds to real and fake, respectively.

Figure 3: The structure of the generative network G

Figure 4: The structure of the discriminator network D

3.3 Pseudo Code
The flowchart of CWGAN-GP algorithm is as Algorithm 1.
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Algorithm 1: Require: the gradient penalty coefficient λ; the number of critic iteration per generator
iteration ncritic; the batch size m; Adam hyperparameters α, β1, β2

1: initial critic parameters w0, initial generator parameters θ0

2: while θ has not converged do
3: for t = 1, . . . , ncritic do
4: for i = 1, . . . , m do
5: Sample real data x ∼ Pr, conditional variable c ∼ p(c), a random
6: number ε ∼ U [0, 1]
7: x̃ ← G0(C)

8: x̂ ← εx + (1 − ε)x
9: L(i) ← Dw(x̃ + c) − Dw(x + c) + λ

(∥∥∇x̂Dw(x̂ + c)
∥∥

2
− 1

)2

10: end for

11: w ← Adam
(

∇w

1
m

∑m

i=1 L(i), w, α, β1, β2

)

12: end for
13: Sample a batch of conditional variables

{
c(i)

}m

i=1
∼ p(c)

14: θ ← Adam
(

∇θ

1
m

∑m

i=1 −Dw (Gθ (z)) , 	θ , α, β1, β2

)

15: end while

Traditional GAN will introduce noising z, in this paper, the noising z is abandoned and only the
condition c is input into G. The discriminator D is trained one time and corresponding, the generator
G is trained four times. In Step 5, the generator G generates faked data x. As shown in the following
equation, the sum of x and c is equivalent to the weighted sum of real data εx and generated data
(1 − ε)x.

x + c ← ε(x + c) + (1 − ε)(x + c) = εx + (1 − ε)x + c (10)

4 Enhancing the Clearance of Topology Structures Using Pix2pixGAN

Compared with the structures generated by SIMP, a few structures generated by CWGAN-GP
are not accurate. For example, some complex topology optimization structures have many subtle
structures, which are difficult to generate accurately based on the CWGAN-GP alone. In order to
solve the problem of low precision in complex structures, the image enhancement method based on
Pix2pixGAN is developed.

Fig. 5 illustrates the structure of Pix2pixGAN. The Pix2pixGAN takes the complex topology
optimization structure generated by CWGAN-GP as the input of generator G. Firstly, the generator
outputs the G(x) as a fake complex structure. Then, the complex topology optimization structure
generated by CWGAN-GP is merged with the G(x) or the structure generated by SIMP to as the input
of discriminator D. In this paper, we adopted the U-Net network structure in generator G and adopted
the PatchGAN in discriminator D, in which the receptive field is set as 70 × 70 [30]. The complete
methodology proposed in this paper is illustrated in Fig. 6 for a comprehensive understanding.
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Figure 5: Pix2pix model structure

5 Numerical Examples
5.1 Real-Time Topology Optimization Using CWGAN-GP

There are 16,525 pairs of topology optimization structures in the dataset, and the sample ratio
between the training set and the testing set is 0.89:0.11, namely 14,708 samples are used for training
and 1817 samples are used for testing. We choose the ADAM optimizer to train CGWAN-GP and the
number of iterations is set to 150. The experiment is based on NVIDIA RTX2080Ti GPU, Tensorflow
platform, and Python3.

The trained CWGAN-GP model is verified by the testing set. Table 1 shows some high-quality
topology structures generated by CWGAN-GP and the comparison with SIMP. To quantitatively
illustrate structural similarity and verify the effectiveness of CWGAN-GP, two evaluation indicators
for evaluating image quality are employed: one is Peak Signal to Noise Ratio (PSNR), another one is
Structural Similarity Index Measure (SSIM) [31,32]. The PSNR and SSIM values are calculated every
10 iteration steps by testing set. As shown in Figs. 7 and 8, after 100 iterations, the curve is relatively
stable and the algorithm tends to converge. As shown in Table 2, for the testing set data, the maximum
value of SSIM is 0.847, and the maximum value of PSNR is 19.64 dB. The above experimental results
prove that the CWGAN-GP algorithm can effectively generate topology optimization structures.
However, when CWGAN-GP faces complex structures, the results will be fuzzy. We hope to obtain
accurate complex topology optimization structures through CWGAN-GP, so the next work is to
improve the precision of complex topology optimization structures.
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Figure 6: Process of CWGAN-GP and Pix2pixGAN
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Table 1: The comparison of the SIMP and CWGAN-GP

Example 1 Example 2 Example 3 Example 4

CWGAN-GP

SIMP

Figure 7: Structural similarity SSIM with iteration number curve
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Figure 8: The maximum peak signal-to-noise ratio PSNR varies with the number of iterations

Table 2: SSIM and PSNR value in CWGAN-GP experiments

EPOCH 30 80 120 150

SSIM 0.747 0.823 0.839 0.847
PSNR 15.40 dB 18.37 dB 18.94 dB 19.64 dB

5.2 Transfer Learning Using Pix2pix Based on CWGAN-GP
As shown in Table 3, some complex structures generated by CWGAN-GP have low precision.

Two reasons cause this result. The first is the uneven distribution of samples in the training dataset, as
the number of samples with complex structures is small, which makes the model can’t fully learn its
structural features. The second is that there are too many details features in some complex structures,
and the generator sometimes can not effectively reflect these details features, resulting in fuzzy results.

Table 3: The comparison of the SIMP and CWGAN-GP

Example 1 Example 2 Example 3 Example 4

CWGAN-GP

(Continued)
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Table 3 (continued)

Example 1 Example 2 Example 3 Example 4

SIMP

We use the Pix2pix model to further improve the precision of the complex topology optimization
structures generated by CWGAN-GP. Based on the previous work, we prepared about 1800 pairs of
experimental data for training Pix2pix model. The input and output are grayscale pictures with size
80 × 80 and pixel value range (0, 1).

The experiment is carried out on the grayscale pictures dataset obtained by CWGAN-GP and
SIMP methods. The ratio of the training set to the testing set is 0.7:0.3, there are about 500 samples
in the testing set. The experiment is based on NVIDIA RTX2080Ti GPU, Tensorflow platform, and
Python3. We use the ADAM optimizer to train the model, the learning rate is set to 0.0002, the value
of the first momentum parameter is set to 0.5, the batch size value is set to 1, the 1-norm loss function
weight is set to 100, the iterations is set to 200. The trained CWGAN-GP model is verified by the
testing set. The comparison of results is shown in Table 4, compared with single CWGAN-GP, the
combination of CWGAN-GP and Pix2pix eliminates fuzzy phenomenon effectively.

Table 4: Pix2pix experimental chart comparison. The predictive topology optimization structure of the
CWGAN-GP method, the topology optimization structure predicted by the CWGAN-GP+Pix2pix
model, and the topology optimization structure generated by the SIMP method simulation are listed

Example 1 Example 2 Example 3

CWGAN-GP

(Continued)
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Table 4 (continued)

Example 1 Example 2 Example 3

GWGAN-GP+Pix2pix

SIMP

To quantitatively illustrate the improvement of results, we calculate the PSNR and SSIM values
of the single CWGAN-GP model and the combined model on the testing set. However, although the
combination of Pix2pix improves the precision, the accuracy of some structures decreases, and we
cannot quantify this impact at present. Table 5 shows that the max values of SSIM and PSNR are
0.85 and 19.8 dB, which are lower than the corresponding values of 0.87 and 20.14 dB obtained by
CWGAN-GP. However, the values of SIMP and PSNR are decreased, as shown in Table 6, topology
optimization structures become clearer than those obtained by CWGAN-GP. The reason for this
phenomenon is that some of the pictures processed by Pix2pix have some subtle structures deleted
by mistake, which is hard to control.

Table 5: Comparison of SSIM and PSNR values between CWGAN-GP and CWGAN-GP+Pix2pix

CWGAN-GP CWGAN-GP+Pix2pix

SSIM 0.872 0.85
PSNR 20.14 dB 19.8 dB
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Table 6: The evaluation value of samples is reduced after the Pix2pix model improved

Example 1 Example 2

CWGAN-GP

GWGAN-GP+Pix2pix

SIMP

In this experiment, we also found that the values of PNSR and SSIM do not always go low.
Sometimes, the values increase and the topology structures are approaching the true structures
obtained by the SIMP method. Table 7 compares another group of structures generated by CWGAN-
GP, CWGAN-GP+Pix2pix and SIMP method, which significantly improved accuracy by Pix2pix.

Table 7: The evaluation value of samples is increased after the Pix2pix model improved

Example 1 Example 2

CWGAN-GP

(Continued)
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Table 7 (continued)

Example 1 Example 2

GWGAN-GP+Pix2pix

SIMP

To further evaluate the effectiveness of the Pix2pix method, as shown in Figs. 9 and 10, we
randomly select 0–100 samples on the testing set to compare the values of PSNR and SSIM by
CWGAN-GP and CWGAN-GP+Pix2pix, respectively. The red curves are the interpolated curves
by CWGAN-GP+Pix2pix and the blue dotted curves are generated by CWGAN-GP. There is
little difference between the two curves in each figure. Considering all aspects, after the process of
Pix2pix, although the evaluation value sometimes decreases, we actually get more accurate topology
optimization structures.

Figure 9: Structural similarity curves of CWGAN-GP and CWGAN-GP+Pix2pix models
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Figure 10: Peak signal to noise ratio curves of CWGAN-GP and CWGAN-GP+Pix2pix models

5.3 3D Real-Time Topology Optimization Using CWGAN-GP
The CWGAN-GP method proposed above can also be applied to the topology optimization of

three-dimensional structures. This section gives the following cases: using the CWGAN-GP method
to predict the structural topology optimization of a 3D design domain with a size of 4 × 20 × 60. In
this design domain, the displacement boundary conditions are fixed, and the design variables are the
number of loads, the position of the load, and the volume retention rate. We have obtained a total
of 391 topology optimization samples under this working condition by 3D SIMP algorithm [33]. The
ratio of the training set to the testing set is 0.9:0.1, that is, 352 pairs of samples are used for training and
39 pairs of samples are used for testing. The result of structural topology optimization is represented
by the unit material density value with a value range of [0, 1].

The design variables can be looked upon as a one-dimensional channel which consists of two parts:
displacement/load variables and volume retention fraction condition. The specific condition rules are
as follows:

(1) Displacement/load variables: Only consider the surface where with constraints or force load,
set the value of the node with displacement boundary constraint to 1, set the value of the node with
load to 10, and set the other free nodes values to 0. If the design variables include the load size, we can
also set the value of the load node to the actual size.

(2) Volume retention fraction variables: A one-dimensional vector with a length of 20 is set. In
order to effectively identify the characteristics of different volume retention scores, the node value of
the vector is set to ten times the actual volume retention score.

In this case, the load condition is located on the upper surface of the beam, and the displacement
constraint is located on the lower surface of the beam. The other surfaces have no boundary conditions,
so only the upper and lower surfaces be coded. In this experiment, the size of the upper and lower
surfaces is 4 × 60, so the conditions size of the displacement/load conditions part is 2 × 4 × 60; the
conditions size of the volume retention rate conditions part is 1 × 20, and the two parts are expanded
and spliced to form a total length. It is a 1 × 500 conditions vector.

This case uses the same model network structure as above, we only adjust the input and
output sizes of each layer network in the generator and discriminator for the design domain and
conditions vector size and use the same training method as above to train the three-dimensional
case. The prediction results of part of the test set are shown in Table 8. The experiment results
prove that CWGAN-GP shows potential for real-time topology optimization of certain 3D structures.
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However, further data and additional experiments are necessary to demonstrate its full generalization
capabilities.

Table 8: The 3D topology optimization results of CWGAN-GP and SIMP

CWGAN-GP SIMP

6 Conclusion

We proposed a real-time structural topology optimization method using Conditional Generative
Adversarial Networks with Gradient Penalty. The dataset is generated by the SIMP topology opti-
mization algorithm. The first part of the work uses the denoising CWGAN-GP method, removes
the noise, combines CGAN and WGAN’s improved version of WGAN-GP, generates a topology
optimization structure corresponding to the constraint conditions, and uses the evaluation criteria
of SSIM and PSNR. Preliminary evaluation proves the feasibility of this method in the field of
topology optimization. In the second part of the work, the Pix2pix method is used to remove the
blur, and a clearer image is generated, a better structure pattern is obtained. Some complex structures
can also be better predicted. Judging from the pictures synthesized at the end of the two works,
our experimental method compared with the real structure, the peak signal-to-noise ratio reached
19.79 dB, and the structural similarity reached 0.85. It is also worth mentioning that the total time
taken to make predictions for the two models using the research methodology employed in this paper
is approximately 1 s, which is a significant improvement in time efficiency compared to the 1800 s
of computation time consumed by the traditional SIMP method. In addition, this paper also tries to
apply the CWGAN-GP algorithm to the three-dimensional structure and obtains accurate topology
optimization results. What’s more, the CWGAN-GP can be applied to both 2D structures and 3D
structures. The above experimental results show that the algorithm in this paper can better realize real-
time topology optimization, and provides a reference idea for deep learning and generative adversarial
networks in the field of topology optimization or mechanics.

However, the method proposed in this article still has limitations. For example, the trained model
can only be applied to the design domain of the same size, and the encoding rules of design variables are
not generic. In the future, we will further develop more versatile real-time methods to handle topology
optimization tasks under other complex conditions.
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