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ABSTRACT

With the rapid advancement in artificial intelligence (AI) and its application in the Internet of Things (IoT),
intelligent technologies are being introduced in the medical field, giving rise to smart healthcare systems. The
medical imaging data contains sensitive information, which can easily be stolen or tampered with, necessitating
secure encryption schemes designed specifically to protect these images. This paper introduces an artificial
intelligence-driven novel encryption scheme tailored for the secure transmission and storage of high-resolution
medical images. The proposed scheme utilizes an artificial intelligence-based autoencoder to compress high-
resolution medical images and to facilitate fast encryption and decryption. The proposed autoencoder retains
important diagnostic information even after reducing the image dimensions. The low-resolution images then
undergo a four-stage encryption process. The first two encryption stages involve permutation and the next two
stages involve confusion. The first two stages ensure the disruption of the structure of the image, making it secure
against statistical attacks. Whereas the two stages of confusion ensure the effective concealment of the pixel values
making it difficult to decrypt without secret keys. This encrypted image is then safe for storage or transmission.
The proposed scheme has been extensively evaluated against various attacks and statistical security parameters
confirming its effectiveness in securing medical image data.

KEYWORDS
Artificial Intelligence; image encryption; chaos; medical image encryption

1 Introduction

In this digital age, with the widespread use of smart healthcare and electronic health record
systems, securing medical images has become critically important. Medical images that contain private
information about patients can be attacked, modified, and tampered with [1]. To protect the privacy
of the patients, the information in these images should be effectively secured [2]. Image encryption
algorithms can come in handy in this regard. Image encryption converts the images into a format
that conceals the information and protects it from cyber-attacks and unauthorized access [3,4]. An
efficient image encryption algorithm should have two most important properties, i.e., confusion and
permutation [5,6]. The confusion part of the encryption scheme focuses on changing the values of
the pixels and the permutation part of the scheme focuses on mixing the positions of the pixels. A
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carefully designed encryption scheme consisting of these two properties can effectively secure medical
images [7,8].

Recently, artificial intelligence has been used in cryptography in many ways. Artificial intelligence-
based autoencoders are extensively being used in image encryption applications. One of the important
applications of autoencoders is using them as a dimensionality reduction tool [9]. Autoencoders are
type of neural network that encode the large-size input images to their low-size equivalent images.
By design, these networks learn to compress data (encode) into a lower-dimensional space and
then reconstruct it back (decode) to its original form, with as little loss of information as possible.
This process of encoding followed by decoding helps to discover and preserve the most important
features in the data. Autoencoders are particularly effective because they are trained to minimize
the reconstruction error, encouraging the model to capture and prioritize the most salient features
of the data. This ability to reduce dimensionality while retaining significant information makes
autoencoders valuable tools in areas like image processing, where reducing the size of data can
significantly enhance computational efficiency without sacrificing critical content. When designing
an encryption algorithm, it is important to ensure that, in addition to being secure, it encrypts large
images efficiently and with good encryption speeds [10]. Hence, the motivation of this paper is to
design an image encryption scheme that protects medical images with high security while efficiently
handling large high-definition (HD) images and providing fast encryption speed.

This paper introduces a novel convolutional autoencoder-based image encryption scheme
designed specifically for medical images. The proposed architecture of the convolutional autoencoder
converts HD medical images into their low-resolution equivalents but keeps all the important
information. These low-resolution equivalents are then encrypted and transmitted resulting in fast
encryption and decryption speeds. The proposed encryption scheme consists of four stages of
encryption. The first two stages involve permutation and the next two stages involve confusion. The
proposed scheme is specifically designed to protect medical images and to facilitate fast encryption,
transmission, and decryption of the input images. The procedural flowchart of the proposed scheme
mentioning all components is depicted in Fig. 1.
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Figure 1: Flowchart of the proposed artificial intelligence-driven encryption scheme

The main contributions of this paper are:

1. A novel AI-based convolutional autoencoder is proposed. This autoencoder encodes the HD
medical images into lower dimensional space to facilitate fast encryption and transmission of
medical images over various communication channels.
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2. A novel four-stage medical image encryption is proposed. The first two stages involve two
permutation modules that ensure the disruption of the correlation within the medical images.
The last two stages involve two modules of confusion which makes the proposed scheme
resistant to statistical and known-plaintext attacks.

The rest of the paper is organized as follows. A detailed literature review is presented in Section 2
which summarises the latest work related to this paper and highlights the research gap. Section 3
presents the design of the autoencoder. Section 4 entails the proposed medical image encryption
scheme. The results are presented in Section 5, which is followed by a clear and concise conclusion
in Section 6.

2 Related Work

The necessity for secure transmission and storage of medical images in telemedicine and related
fields has resulted in the development of various cryptographic schemes. These systems aim to
safeguard sensitive patient information from unauthorized access and misuse. For instance, a novel
encryption system for digital medical images using DNA cryptography and dual hyper-chaotic maps
is proposed in [11]. This scheme utilizes DNA encoding for the encryption stage and performs selective
pixel encryption. This technique ensures fast encryption/decryption phases and results in efficient
protection of medical images. In a similar attempt to protect medical images, the authors in [12] also
follow the approach of elective encryption. They have utilized chaotic maps in conjunction with DNA
encryption to protect medical images and the results portray secure encryption. Moreover, different
chaotic maps have been utilized in [13]. The authors have utilized Chen’s chaotic system and Henon
map and used it with Brownian motion. The authors claim that it is a lightweight encryption system
and evaluation shows commendable statistical security results. Furthermore, hybrid chaotic maps have
also been utilized to protect medical images, for example, the authors in [14] use a two-dimensional
Logistic-Sine-Coupling map with the Arnlod’s cap map. Utilization of these two maps together results
in a secure encryption scheme with close-to-ideal results. Moreover, medical images have also been
encrypted in the frequency domain, like the authors in [15] propose a frequency domain encryption
scheme and utilize wavelet transform in conjunction with DNA encryption. They also proposed a key
generation module using 3D Lorenz map. The authors performed several security evaluations and the
scheme performed very well.

Speaking of the application of autoencoders in image encryption schemes, several encryption
schemes have utilized autoencoders, such as the authors in [9] present a convolutional autoencoder-
based encryption scheme that utilizes DNA encryption to encrypt images. The autoencoder recon-
structs images exceptionally well and the evaluation of the encryption scheme also showcases close to
ideal results. Besides in another paper [16], a deep autoencoder has been used to maintain uniform
distribution and to ensure randomness created by the encryption scheme. Furthermore, autoencoders
have also been utilized in conjunction with chaotic maps in [17]. The logistic map is used for image
scrambling and the autoencoder is used for dimensionality reduction. In addition, autoencoders have
also been used as image-scrambling adversaries in [18]. The proposed scheme utilizes asymmetric
encryption. The autoencoder is a Cycle-Consistent Generative Adversarial Network (CycleGAN)
network and results in a secure encryption system. Besides, the autoencoders have also been used in an
encryption scheme proposed in [19]. The autoencoder is used for semantic feature extraction, which
follows a carefully designed encryption scheme. This scheme also utilizes an attention mechanism
which is used to optimise the compression mechanism. Results indicate a high level of security
and effective image compression. While most of the papers focus on dimensionality reduction, the
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architecture of the autoencoders is not lightweight. This paper focuses on proposing a new architecture
that is lightweight and offers exact reconstruction of input images.

3 Design of the Proposed AI Autoencoder

In this paper, an autoencoder is proposed for the effective compression of high-resolution
medical images before encryption to facilitate fast encryption-decryption stages. The architecture
of the proposed autoencoder is given in Fig. 2 and Table 1. The autoencoder has been trained
on two public datasets, i.e., the ‘COVID-19 Pakistani Patients X-ray Image Dataset’ [20,21]
and the ‘Brain MRI Images for Brain Tumor Detection’ [22], both are publicly available on Kaggle.
The training performance is given in the accuracy and loss curves in Fig. 3. The curves show that
the autoencoder exhibits almost 99% accuracy. The following subsections entail the modeling of the
proposed autoencoder.
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Figure 2: Architecture of the proposed AI autoencoder; (a) AI Encoder. (b) AI Decoder

Table 1: Architecture of the autoencoder

Neural network
layers

Feature map Size Kernel Stride Activation
function

Input layer Input image – 512 × 512 × 3 – –
1: Convolution 128 512 × 512 ×

128
3 × 3 1 ReLU

2: Max pool 128 256 × 256 ×
128

2 × 2 2 –

(Continued)
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Table 1 (continued)

Neural network
layers

Feature map Size Kernel Stride Activation
function

3: Convolution 64 256 × 256 × 64 3 × 3 1 ReLU
4: Max pool 64 128 × 128 × 64 2 × 2 2 –
5: Convolution 32 128 × 128 × 32 3 × 3 1 ReLU
6: Convolution 32 64 × 64 × 32 3 × 3 2 ReLU
7: Flatten – 131072 × 1 – – –
8: Dense
(Encoder-Out)

– 256 – – –

9: Dense
(Decoder-In)

– 256 – – –

10: Reshape – 64 × 64 × 32 – – –
11: Convolution
transpose

32 128 × 128 × 32 3 × 3 2 ReLU

12: Convolution
transpose

64 256 × 256 × 64 3 × 3 2 ReLU

13: UpSampling2D 64 512 × 512 × 64 2 × 2 1 –
14: Convolution
transpose

128 512 × 512 ×
128

3 × 3 1 ReLU

15: Convolution
transpose

3 512 × 512 × 3 3 × 3 1 ReLU

Output Reconstructed
image

– 512 × 512 × 3 – –

(a) (b)
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Figure 3: Training performance of the AI autoencoder; (a) Accuracy curves. (b) Loss curves
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3.1 Mathematical Modelling of the Autoencoder Architecture
A comprehensive mathematical modeling of the proposed autoencoder including the encoder and

decoder is given as follows:

Design of the Encoder

1. The autoencoder begins with an input layer receiving an RGB image of dimensions
512 × 512 × 3, denoted by the tensor X ∈ R

512 × 512 × 3. This foundational layer facilitates
the extraction of features by subsequent layers.

X ∈ R
512 × 512 × 3 (1)

2. The first convolutional layer employs 128 filters, each of size 3 × 3 and stride 1. This layer
applies these filters to generate feature maps, using the Rectified Linear Unit (ReLU) activation
function to introduce non-linearity. The mathematical operation for this convolutional layer
is captured by:

Z1[i, j, k] = ReLU

(
1∑

m=−1

1∑
n=−1

3∑
c=1

X [i + m, j + n, c] · W1[m, n, c, k] + b1[k]

)
(2)

The parameter count for this layer is computed considering the number of filters, the
dimensions of each filter, and the number of input channels:

Parameters = Number of Filters × (Filter Height × Filter Width × Input Channels + 1)

= 128 × (3 × 3 × 3 + 1) = 3, 488 (3)

3. A max pooling layer follows, with a 2×2 kernel and stride of 2, reducing the spatial dimensions
to 256 × 256 and minimizing the potential for overfitting by downsampling feature maps:

Z2[i, j, k] = max
0≤m, n<2

Z1[2i + m, 2j + n, k] (4)

4. Further, the third convolutional layer continues the feature extraction process. The third layer
uses 64 filters with 3 × 3 kernels and a stride of 1, enhancing the detail of the features:

Z3[i, j, k] = ReLU

(
1∑

m=−1

1∑
n=−1

128∑
c=1

Z2[i + m, j + n, c] · W3[m, n, c, k] + b3[k]

)
(5)

Including the effects of stride on the output dimensions, this layer helps further reduce
dimensionality efficiently, which can be generally calculated as:

Output Dimension =
⌊

Input Dimension − Filter Size + 2 × Padding
Stride

⌋
+ 1 (6)

5. Another max pooling layer reduces dimensions to 128 × 128, further compressing the data:

Z4[i, j, k] = max
0≤m, n<2

Z3[2i + m, 2j + n, k] (7)

6. Subsequent layers, including further convolutional stages and dense layers, process and
transform the compressed feature maps into a more abstract representation, suitable for the
encoding process:



CMES, 2024, vol.141, no.2 1715

Z5[i, j, k] = ReLU

(
1∑

m=−1

1∑
n=−1

64∑
c=1

Z4[i + m, j + n, c] · W5[m, n, c, k] + b5[k]

)
(8)

Z6[i, j, k] = ReLU

(
1∑

m=−1

1∑
n=−1

32∑
c=1

Z5[2i + m, 2j + n, c] · W6[m, n, c, k] + b6[k]

)
(9)

7. The encoded feature map is flattened and processed through dense layers, transforming the
learned features into a compressed form that captures the essence of the input data:

Z7 = vec(Z6) (10)

Z8 = ReLU(W8Z7 + b8) (11)

Design of the Decoder

Decoder layers, including convolutional transpose operations, reconstruct the original image from
the compressed representation:

Z9 = ReLU(W9Z8 + b9) (12)

Z10 = reshape(Z9, (64 × 64 × 32)) (13)

Z11[i, j, k] = ReLU

(
1∑

m=−1

1∑
n=−1

Z10[i/2 + m, j/2 + n, c] · W11[m, n, c, k] + b11[k]

)
(14)

Z12[i, j, k] = ReLU

(
1∑

m=−1

1∑
n=−1

Z11[i/2 + m, j/2 + n, c] · W12[m, n, c, k] + b12[k]

)
(15)

Z13[i, j, k] = Z12[i/2, j/2, k] (16)

Finally, the output layer consists of a convolutional transpose layer that uses three filters to
reconstruct the RGB channels of the final output image, returning it to its original dimensions and
appearance:

Y [i, j, k] = ReLU

(
1∑

m=−1

1∑
n=−1

Z14[i + m, j + n, c] · W15[m, n, c, k] + b15[k]

)
(17)

4 The Proposed Medical Encryption Scheme

The proposed AI-driven encryption scheme comprises two important constituents, i.e., the
novel AI-based autoencoder and the proposed medical image encryption scheme. The design
of the autoencoder was explained in the previous section. The following subsections entail the
design and implementation of the encryption scheme. The proposed encryption scheme is a
four-stage encryption scheme. There are two stages of permutation and two stages of confusion. This
four-stage encryption scheme ensures effective encryption. The detailed flowchart of the proposed
medical image encryption scheme is given in Fig. 4.
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Figure 4: Flowchart of the proposed medical image encryption scheme

1. Hashing the Input: The first step is to read the encoded image and to apply the 256-bit Secure
Hash Algorithm (SHA-256) hash to generate a unique hash. This unique hash is used to create
three secret keys and a seed matrix. The secret keys control the permutation and the confusion
process and the seed matrix is used in the fourth stage of the encryption. SHA-256 generates
a 256-bit hash value from any input data. The algorithm processes a block size of 512 bits and
outputs a hash of 256 bits. The input message undergoes padding to make its length a multiple
of 512 bits. The steps include:
(a) Append a ‘1’ bit to the message.

(b) Append ‘0’ bits until the message length is 448 modulo 512.

(c) Append the original message length as a 64-bit number.

The SHA-256 function uses several logical functions and bitwise operations:
• Ch(x, y, z) = (x ∧ y) ⊕ (¬x ∧ z)

• Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z)

• �0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x)

• �1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x)

• σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x)

• σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x)



CMES, 2024, vol.141, no.2 1717

The following steps are followed while generating the hash:
(a) Initialize the hash values h0, h1, . . . , h7.

(b) Expand the 512-bit block into a 64-word schedule using the σ functions.

(c) For each round, update the working variables and mix them into the intermediate hash
values using the � and Ch, Maj functions along with round constants.

(d) After processing all blocks, concatenate the intermediate hash values to form the final hash.

2. Initialization of the Chaotic Map: In this step, the logistic chaotic map is initialized by setting
its control parameter and initial conditions. The logistic map equation used is:

xn+1 = r · xn · (1 − xn);

This map takes input from the unique hash and generates the three secret keys and the seed
matrix.

3. Encryption Stage 1: Chaotic Column Shuffling: The first secret key derived from the logistic map
sequence is used to shuffle the columns of the image. This shuffling is based on a permutation
generated by sorting the outputs of several iterations of the map. The following steps are
involved in the encryption stage 1:

• Selecting an initial value x0, obtained from the hash function:

x0 = hash value

• Iterating the logistic map for N iterations to reach the chaotic regime:

xi+1 = r · xi · (1 − xi) for i = 0, 1, 2, . . . , N − 1

• Recording the values after discarding initial transients to form sequence S:

S = [xk, xk+1, . . . , xk+M−1]

where k is the number of initial values discarded, and M is the number of columns to be
shuffled.

• Converting the chaotic sequence to column indices for a matrix with m columns:

indexi = �xi · m� for i = k, k + 1, . . . , k + M − 1

• In this step, for a matrix A of dimensions n × m where n is the number of rows and m is
the number of columns, the columns are shuffled as follows:

A′[:, i] = A[:, indexi] for each column i

This reorders the columns based on the indices generated from the logistic map sequence.
Following is the example of the encryption stage 1 on a matrix A with 5 columns (m = 5),
with initial conditions of the logistic maps as r = 3.9, and x0 = 0.5. Then:

x1 = 3.9 · 0.5 · (1 − 0.5) = 0.975

x2 = 3.9 · 0.975 · (1 − 0.975) = 0.09350625

...
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The values from the chaotic indices are:

index1 = �0.975 · 5� = 4

index2 = �0.09350625 · 5� = 0

...

The columns are shuffled accordingly:

A′[:, 0] = A[:, 4]

A′[:, 1] = A[:, 0]

...

This process repeats for all columns of the image.

4. Encryption Stage 2: Row Permutation: In this stage, a permutation key from the logistic map,
i.e., the secret key 2 is used to permute the rows of the column-permuted image in a similar way
done in stage 1.

Q[:, j] = P[τ(j), :]

where τ is a permutation of the rows based on the chaotic sequence.

5. Encryption Stage 3: Dynamic S-Box Substitution: In this stage, a dynamic S-box substitution
is applied, and the secret key 3, which is also generated from the chaotic map, is utilized to
select any one of the 3 S-boxes. The values from the selected s-box replace pixels in the row and
column-shifted image. This substitution process ensures confusion the image.

R[i, j] = Sk[P[i, j]]

where Sk is selected from a set of predefined S-boxes based on the key. The substitution process
is performed as follows:

• Producing a chaotic sequence to select S-boxes:

xi+1 = r · xi · (1 − xi)

• Maping each xi to one of three S-boxes S1, S2, S3.

• Converting each pixel p to 8-bit binary, then splitting into Most Significant Bits (MSB)
and Least Significant Bits (LSB), converting back to decimal, and calculating the S-box
index:

MSBdec = decimal value of MSB, LSBdec = decimal value of LSB

S-box index = MSBdec × LSBdec

• Substituting by using the selected S-box:

p′ = Sindexi [S-box index]

6. Encryption Stage 4: Seed Matrix Addition: The final encryption layer involves bitwise Exclusive
OR (XOR) with a seed matrix derived from the logistic map to enhance security:

S[i, j] = R[i, j] ⊕ M[i, j]
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where M is the seed matrix, adding another layer of confusion and diffusion.

5 Results and Analysis

The proposed encryption scheme has been evaluated for various statistical security parameters
to validate its security characteristics. Histogram analysis, correlation analysis, entropy analysis,
correlation analysis, and other statistical parameters, such as energy, contrast, and homogeneity have
been evaluated. The visual encryption results of four stages are given in Fig. 5.
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(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)
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Figure 5: Encryption results of four-stage encryption scheme. (a) to (e) Plaintext images. (f) to (j) Stage
1. (k) to (o) Stage 2. (p) to (t) Stage 3. (u) to (y) Stage 4
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5.1 Histogram Analysis
The histogram of an image represents the frequency of occurrence of intensity levels within the

image. This information is crucial for attackers as it can be used to extract concealed information from
an encrypted image. Therefore, an ideal secure encryption scheme should result in a flat or uniformly
distributed histogram, meaning that all intensity levels occur an equal number of times. As shown in
the histogram analysis in Fig. 6, the histograms of the ciphertext images are uniformly distributed,
depicting that all pixel intensities from 0 to 255 occur an equal number of times. Hence, the original
information regarding the frequency of occurrence cannot be retrieved. These histograms demonstrate
the effectiveness of the proposed encryption scheme.
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Figure 6: Histogram and correlation analysis. (a) to (e) Plaintext images. (f) to (j) Histogram of plaintext
images. (k) to (o) Histogram of ciphertext images. (p) to (t) Correlation of plaintext images. (u) to (y)
Correlation analysis of ciphertext images
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5.2 Correlation Analysis
Correlation within an image indicates the patterns and shapes present in the image. Areas with

defined patterns and shapes exhibit high correlation, whereas areas where pixels are not correlated
with each other display low correlation values. An ideally encrypted image should correlate close to
zero, indicating that no pixel is related to its neighbor. The correlation plots of an ideally encrypted
image should be widely scattered, demonstrating the disrupted correlation throughout the image. As
illustrated in Fig. 6, the correlation plots are widely scattered depicting that neighboring pixels in
the cipher image are not correlated, validating the effectiveness of the proposed encryption scheme.
Moreover, it can be seen in Table 2 that the correlation within the image is ideally close to zero. The
table presents the correlation of plaintext and ciphertext images individually by calculating the Gray
Level Co-occurrence Matrix (GLCM) and the correlation between the plaintext and ciphertext images
as well.

Table 2: Correlation analysis of the proposed encryption scheme

Parameter Images Image 1 Image 2 Image 3 Image 4 Image 5

Correlation Plaintext (GLCM) 0.970 0.955 0.898 0.935 0.945
Ciphertext (GLCM) 0.001 −0.001 0.001 0.0004 0.002
Between plaintext and ciphertext 0.007 0.001 0.003 0.003 0.001

5.3 Entropy Analysis
Entropy, or information entropy, measures the amount of randomness in an image. The greater

the randomness, the more secure the encrypted image is. For a grayscale image, the ideally encrypted
image should have an entropy of 8, which indicates that there is maximum randomness in the image,
making it difficult to retrieve any information. As shown in Table 3, the entropy of the ciphertext
images is ideally close to 8.

Table 3: Entropy analysis of the proposed encryption scheme

Parameter Images Image 1 Image 2 Image 3 Image 4 Image 5

Entropy Plaintext 7.980 6.560 4.745 5.757 6.085
Ciphertext 7.998 7.994 7.994 7.982 7.977

5.4 Contrast Analysis
Contrast in an image indicates how rapidly the intensity changes between two pixels or within a

certain area. In regions where there are distinct shapes, the contrast is usually low because the pixels
are related to each other to form a shape. Conversely, areas where colors change abruptly exhibit
high contrast. An ideally encrypted image should have high contrast, indicating that no two pixels
are related and the intensity of every neighboring pixel is completely different from each other. As
shown in Table 4, the contrast of the ciphertext images is very high, validating the effectiveness of the
proposed encryption scheme.
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Table 4: Contrast analysis of the proposed encryption scheme

Parameter Images Image 1 Image 2 Image 3 Image 4 Image 5

Contrast Plaintext 0.300 0.237 0.467 0.346 0.254
Ciphertext 10.485 10.194 9.239 10.544 10.116

5.5 Energy Analysis
The energy of an image refers to the uniformity and repetition of pixels within it. High energy

indicates the presence of patterns and shapes, while low energy values suggest that the pixels are
unrelated and there are no distinct shapes in an image. Therefore, ideally, the energy of a well-encrypted
image should be low. This can be validated through Table 5, which shows that the energy values of the
encrypted images are quite low.

Table 5: Energy analysis of the proposed encryption scheme

Parameter Images Image 1 Image 2 Image 3 Image 4 Image 5

Energy Plaintext 0.074 0.285 0.342 0.345 0.295
Ciphertext 0.015 0.015 0.016 0.015 0.015

5.6 Homogeneity Analysis
Homogeneity measures the consistency and smoothness of patterns across an image. High

homogeneity indicates smooth areas with distinct shapes, whereas low homogeneity corresponds
to areas with no consistent relationship among pixels. An ideal encrypted image should have low
homogeneity, indicating that the pixel values are less correlated. This can be validated by the results
in Table 6, which show that all homogeneity values are very low, depicting secure encryption.

Table 6: Homogeneity analysis of the proposed encryption scheme

Parameter Images Image 1 Image 2 Image 3 Image 4 Image 5

Homogeneity Plaintext 0.869 0.922 0.897 0.915 0.909
Ciphertext 0.389 0.390 0.398 0.388 0.392

6 Conclusion

This paper introduced an innovative AI-driven encryption scheme specifically tailored for securing
medical images. The process starts by utilizing an AI-based autoencoder that compresses high-
resolution images into lower-resolution versions while preserving essential diagnostic information.
These compressed images then undergo a sophisticated four-stage encryption process, involving
permutation and confusion techniques, to enhance security. The permutation stages disrupt the
image structure, effectively safeguarding against statistical attacks, while the confusion stages obscure
the pixel values, making unauthorized decryption challenging. The effectiveness of this encryption
strategy was rigorously validated through extensive security and performance evaluations. Results
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from these tests demonstrated that the scheme effectively maintained the confidentiality and integrity
of the medical images during storage and transmission. This robust encryption approach thus ensures
that sensitive medical data is protected against various cyber threats, making it highly suitable for
real-world application in healthcare settings where data security is paramount. Moreover, a possible
limitation of the scheme could be the scalability issue. As the volume of data increases, especially in
large healthcare systems generating vast amounts of medical images, the training process could take
more time.

Acknowledgement: None.

Funding Statement: The author received no specific funding for this research.

Availability of Data and Materials: All data generated or analyzed during this study are included in
this published article.

Ethics Approval: Not applicable.

Conflicts of Interest: The author declares that they have no conflicts of interest to report regarding the
present study.

References
1. Ahmed ST, Hammood DA, Chisab RF, Al-Naji A, Chahl J. Medical image encryption: a comprehensive

review. Computers. 2023;12(8):160. doi: 10.3390/computers12080160.
2. Lai Q, Hu G, Erkan U, Toktas A. High-efficiency medical image encryption method based on 2D logistic-

Gaussian hyperchaotic map. Appl Math Comput. 2023;442:127738.
3. Zhou NR, Hu LL, Huang ZW, Wang MM, Luo GS. Novel multiple color images encryption and

decryption scheme based on a bit-level extension algorithm. Expert Syst Appl. 2024;238:122052. doi:
10.1016/j.eswa.2023.122052.

4. Abbasi SF, Ahmad J, Khan JS, Khan MA, Sheikh SA. Visual meaningful encryption scheme using
intertwinning logistic map. In: Intelligent Computing: proceedings of the 2018 Computing Conference,
2019; Cham: Springer; vol. 2, p. 764–73.

5. Khan MS, Ahmad J, Ali H, Pitropakis N, Al-Dubai A, Ghaleb B, et al. SRSS: a new chaos-based
single-round single S-box image encryption scheme for highly auto-correlated data. In: 2023 International
Conference on Engineering and Emerging Technologies (ICEET), 2023; Istanbul, Turkey; p. 1–6.

6. Khan MS, Ahmad J, Al-Dubai A, Ghaleb B, Pitropakis N, Buchanan WJ. RNA-TransCrypt: Image
encryption using chaotic RNA encoding, novel transformative substitution, and tailored cryptographic
operations. 2024. doi:10.48550/arXiv.2401.04707.

7. Khan MS, Ahmad J, Al-Dubai A, Jaroucheh Z, Pitropakis N, Buchanan WJ, et al. PermutEx: feature-
extraction-based permutation—a new diffusion scheme for image encryption algorithms. In: 2023 IEEE
28th International Workshop on Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD), 2023; Edinburgh, UK; p. 188–93.

8. Ali H, Khan MS, Driss M, Ahmad J, Buchanan WJ, Pitropakis N. CellSecure: securing image data
in industrial internet-of-things via cellular automata and chaos-based encryption. In: 2023 IEEE 98th
Vehicular Technology Conference (VTC2023-Fall), 2023; Hong Kong, China: IEEE; p. 1–6.

9. Ahmed F, Rehman MU, Ahmad J, Khan MS, Boulila W, Srivastava G, et al. A DNA based colour
image encryption scheme using a convolutional autoencoder. ACM T Multim Comput. 2023;19(3s):1–21.
doi:10.1145/3570165.

https://doi.org/10.3390/computers12080160
https://doi.org/10.1016/j.eswa.2023.122052
https://doi.org/10.48550/arXiv.2401.04707
https://doi.org/10.1145/3570165


1724 CMES, 2024, vol.141, no.2

10. Alawida M, Teh JS, Alshoura W. A new image encryption algorithm based on DNA state machine for UAV
data encryption. Drones. 2023;7(1):38. doi:10.3390/drones7010038.

11. Akkasaligar PT, Biradar S. Selective medical image encryption using DNA cryptography. Inform Secur J:
A Glob Perspect. 2020;29(2):91–101. doi:10.1080/19393555.2020.1718248.

12. Kamal ST, Hosny KM, Elgindy TM, Darwish MM, Fouda MM. A new image encryption algorithm for
grey and color medical images. IEEE Access. 2021;9:37855–65. doi:10.1109/ACCESS.2021.3063237.

13. Masood F, Driss M, Boulila W, Ahmad J, Rehman SU, Jan SU, et al. A lightweight chaos-based
medical image encryption scheme using random shuffling and XOR operations. Wirel Pers Commun.
2022;127(2):1405–32. doi:10.1007/s11277-021-08584-z.

14. Jain K, Aji A, Krishnan P. Medical image encryption scheme using multiple chaotic maps. Pattern Recognit
Lett. 2021;152:356–64. doi:10.1016/j.patrec.2021.10.033.

15. Banu SA, Amirtharajan R. A robust medical image encryption in dual domain: chaos-DNA-IWT combined
approach. Med Biol Eng Comput. 2020;58:1445–58. doi:10.1007/s11517-020-02178-w.

16. Sang Y, Sang J, Alam MS. Image encryption based on logistic chaotic systems and deep autoencoder.
Pattern Recognit Lett. 2022;153:59–66. doi:10.1016/j.patrec.2021.11.025.

17. Ameen Suhail K, Sankar S. Image compression and encryption combining autoencoder and chaotic logistic
map. Iran J Sci Technol, Trans A: Sci. 2020;44(4):1091–100. doi:10.1007/s40995-020-00905-4.

18. Bao Z, Xue R, Jin Y. Image scrambling adversarial autoencoder based on the asymmetric encryption.
Multimed Tools Appl. 2021;80(18):28265–301. doi:10.1007/s11042-021-11043-3.

19. Wang B, Lo KT. Autoencoder-based joint image compression and encryption. J Inf Secur Appl.
2024;80:103680. doi:10.1016/j.jisa.2023.103680.

20. Khan MS. COVID-19 Pakistani patients X-ray image dataset. 2021. Available from: https://www.kaggle.
com/datasets/muhammadshahbazkhan/covid19-pakistani-patients-xray-image-dataset. [Accessed 2024].

21. Umair M, Khan MS, Ahmed F, Baothman F, Alqahtani F, Alian M, et al. Detection of COVID-19
using transfer learning and grad-CAM visualization on indigenously collected X-ray dataset. Sensors.
2021;21(17):5813. doi:10.3390/s21175813.

22. Chakrabarty N. Brain MRI images for brain tumor detection. 2019. Available from: https://www.kaggle.
com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection. [Accessed 2024].

https://doi.org/10.3390/drones7010038
https://doi.org/10.1080/19393555.2020.1718248
https://doi.org/10.1109/ACCESS.2021.3063237
https://doi.org/10.1007/s11277-021-08584-z
https://doi.org/10.1016/j.patrec.2021.10.033
https://doi.org/10.1007/s11517-020-02178-w
https://doi.org/10.1016/j.patrec.2021.11.025
https://doi.org/10.1007/s40995-020-00905-4
https://doi.org/10.1007/s11042-021-11043-3
https://doi.org/10.1016/j.jisa.2023.103680
https://www.kaggle.com/datasets/muhammadshahbazkhan/covid19-pakistani-patients-xray-image-dataset
https://doi.org/10.3390/s21175813
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection

	AI-Powered Image Security: Utilizing Autoencoders for Advanced Medical Image Encryption
	1 Introduction
	2 Related Work
	3 Design of the Proposed AI Autoencoder
	4 The Proposed Medical Encryption Scheme
	5 Results and Analysis
	6 Conclusion
	References


