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ABSTRACT

In this paper, we consider the numerical implementation of the 2D wave equation in isotropic-heterogeneous
media. The stability analysis of the scheme using the von Neumann stability method has been studied. We
conducted a study on modeling the propagation of acoustic waves in a heterogeneous medium and performed
numerical simulations in various heterogeneous media at different time steps. Developed parallel code using
Compute Unified Device Architecture (CUDA) technology and tested on domains of various sizes. Performance
analysis showed that our parallel approach showed significant speedup compared to sequential code on the Central
Processing Unit (CPU). The proposed parallel visualization simulator can be an important tool for numerous wave
control systems in engineering practice.
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1 Introduction

Acoustic wave simulations are foundational in numerous scientific and engineering disciplines,
offering insights into wave propagation phenomena crucial for understanding complex systems.
Numerical simulations of acoustic wave equations have emerged as indispensable tools, enabling inves-
tigations into scenarios that are challenging or impossible to explore through traditional analytical
methods or experiments [1].

In this article, we explore the field of numerical modeling aimed at unraveling the intricacies
of the two-dimensional acoustic wave equation. However, our study goes beyond conventional
simulation to cover a critical real-world characteristic: variable coefficients. Acoustic wave propagation
in isotropic-heterogeneous media with spatially varying coefficients is a fundamental problem with
diverse applications, including seismology, geophysics, and medical imaging [2]. The investigation of
seismic waves involves the analysis of wave propagation in complex media, including interfaces between
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distinct materials and the interpretation of data recorded in seismographs. Furthermore, the principles
developed for this study find application in various fields of knowledge, such as helioseismology [3].

Given its high precision, minimal memory requirements, and rapid computational speed, the finite
difference method stands out as a potent tool for simulating acoustic or seismic waves [4–7]. Liao [8]
investigated the dispersion, stability, and accuracy of a compact higher-order finite difference scheme
for the 3D acoustic wave equation, offering a robust solution to address the complexities of three-
dimensional simulations. Building on this work, Liao et al. [9] presented an efficient and precise
numerical simulation of acoustic wave propagation in 2D heterogeneous media, underscoring the
importance of computational efficiency in practical applications. Li et al. [10] further advanced this
field by developing a highly efficient and accurate finite-difference scheme for the 3D acoustic wave
equation in heterogeneous media. Their research highlighted the necessity for high-precision solutions
in three-dimensional contexts, where media complexity significantly affects wave behavior. Recently,
Wu et al. [11] introduced an accurate and efficient local one-dimensional method for the 3D acoustic
wave equation, advancing computational methods and providing new insights into the simulation of
acoustic waves. However, all proposed numerical solutions are focused mainly on the classical wave
equation with a variable coefficient; These equations can generally be used to model wave propagation
in anisotropic media. Numerical studies of the wave equation with a variable coefficient, which models
the propagation of waves in isotropic media, have been studied relatively little since seismology is a
very young branch of science [12]. Numerical studies of the wave equation with a variable coefficient
simulating wave propagation in an isotropic medium are well considered in the works of Virieux [13],
who showed good results by proposing a staggered-grid scheme, and further, other authors presented
their solutions [14–16].

In practice, physical phenomena must be simulated over a large area and over a long time; if
the computational algorithm is sequential, this leads to a significant investment of time and energy.
Therefore, the most effective way to solve this problem is parallel computing. Modern computers
are multi-core and heterogeneous, so computing algorithms must be based on parallel computing
to take full advantage of the computer’s capabilities. One of the parallel computing technologies
is GPU. Graphics Processing Units (GPUs) represent a notable parallel computing technology.
They provide highly parallelized processors with multiple threads and cores, delivering substantial
computational power. The appeal of GPUs lies in their cost-effectiveness, high bandwidth for floating-
point operations, and efficient memory access. This makes them an increasingly attractive option for
high-performance computing. In contrast to conventional cluster systems, GPUs offer a cost-effective
alternative with comparable performance and lower power consumption [17]. Researchers across
diverse scientific and technological fields have observed significant enhancements in productivity by
harnessing the computational capabilities offered by GPUs [18–22].

To solve high-dimensional problems, using an implicit scheme, a block tridiagonal system arises,
solved at each time step. A direct solution of such a large-scale block linear system is ineffec-
tive, so operator separation methods are used to transform a high-dimensional problem into a
sequence of one-dimensional problems. One commonly used method is the ADI (Alternating Direction
Implicit) method, which was originally proposed for solving parabolic and elliptic equations by
Peaceman et al. [23]. Over the years, many developments have been made in the field of hyperbolic
equations [24–26].

Recent advancements in numerical methods and computational capabilities have facilitated more
sophisticated simulations of wave behavior in complex media. For instance, Wei et al. [27] examined the
numerical simulation of anti-plane wave propagation in heterogeneous media, revealing the intricate
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interactions between waves and material heterogeneities. Similarly, Wei et al. [28] introduced a 2.5D
singular boundary method for acoustic wave propagation, offering a robust framework for simulating
wave phenomena with heightened accuracy and efficiency.

The influence of environmental factors on acoustic wave propagation has also received con-
siderable attention. Coyle et al. [29] studied the effects of internal waves on underwater acoustic
propagation, underscoring the dynamic nature of underwater acoustic environments and the need
for adaptive modeling approaches. Zeng et al. [30] conducted a theoretical and numerical analysis
of transient acoustic wave propagation across ice layers in the Arctic Ocean, addressing the unique
challenges posed by polar environments.

In the field of anisotropic media, Luis et al. [31] extended Snell’s Law for the propagation of
acoustic waves in elliptically anisotropic media, thereby expanding the theoretical framework for
wave behavior in complex anisotropic settings. Additionally, Xue et al. [32] explored the propagation
mechanisms of leakage acoustic waves in gas-liquid stratified flow, providing essential insights into
the acoustic properties of multiphase systems.

In this study, our goal is to perform numerical simulations of acoustic wave propagation in
heterogeneous media using a GPU. We aim to identify the potential benefits and effectiveness of this
approach. By harnessing the processing power of GPUs and Compute Unified Device Architecture
(CUDA) technology, our goal is to make meaningful contributions to the field of numerical simulation
of the variable coefficient acoustic wave equation.

2 Problem Statement and Numerical Scheme

We consider the following equation that describes the propagation of acoustic waves in the
isotropic-heterogeneous medium:

∂2p
∂t2

−
[

∂

∂x

(
q(x, y)

∂p
∂x

)
+ ∂

∂y

(
q(x, y)

∂p
∂y

)]
= s(t, x, y), (t, (x, y)) ∈ [0; T ] × �; (1)

p(0, x, y) = ψ1(x, y), (x, y) ∈ �; (2)

∂p(0, x, y)

∂t
= ψ2(x, y), (x, y) ∈ �; (3)

p(t, x, y) = ϕ(t, x, y), t ∈ [0, T ], (x, y) ∈ ∂�; (4)

Here, p is pressure, q is a variable coefficient that describes heterogeneous medium, s is the source
function, ψi, ϕ are known functions.

First assume that � is a 2D rectangular domain: [x0, x1] × [y0, y1], which is discretized into an
Nx × Ny grid with spatial grid sizes hx, hy. Let τ be the time stepsize and pk

i,j denote the numerical
solution at the grid point (xi, yj) and time level kτ .

The approximate solution is calculated at discrete points of the space-time grid �τ

hx ,hy
: �τ

h1,h2
=

{xi = ih1, i = 0, Nx; yj = jh2, j = 0, Ny; tk = kτ , k = 0, 1, 2 . . . M}.
To approximate problems (1)–(4), we use the finite difference method. For simplicity, we put N :=

Nx = Ny and denote h := hx = hy. Let us consider the Crank-Nicholson scheme for the problem
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(1)–(4). First, we transform the partial differential Eq. (1) into an implicit finite-difference equation.
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for (k, i, j) ∈ ωτ

h,h, where qk
i,j := q(ih, jh), sk

i,j := s(kτ , ih, jh) with initial conditions

p0
i,j = ϕi,j, p1

i,j − p0
i,j = τϕi,j; (6)

for (i, j) ∈ 0, N × 0, N, and with boundary conditions

pk
0,j = 0, pk

N,j = 0, pk
i,0 = 0, pk

i,N = 0; (7)

for (j, k) ∈ 0, N × 0, M and (i, k) ∈ 0, N × 0, M, respectively. The implicit finite difference scheme (5)
has an accuracy order of O(τ 2 + h2).

Next, implementing the ADI method to the Eq. (5), we split it into two sub-equations. In the ADI
method, each numerical step is divided into several sub-steps depending on the spatial dimension of
the problem. A system of linear equations is solved implicitly in one direction, while information in
the other (or other) directions is processed explicitly. This alternate approach makes the ADI method
unconditionally robust, providing second-order accuracy in both time and space. An additional
positive property of the ADI method is that at each substage the equations to be solved have a
tridiagonal structure, which makes it possible to effectively use the tridiagonal matrix algorithm
(TDMA) to solve them.

For problem (5), the ADI method has the form
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and
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2.1 Stability Analysis
In this subsection, we consider the von Neumann stability analysis [33] to analyze the stability of

the finite difference schemes 8 and 9. The von Neumann stability analysis method is a common tool for
assessing the stability of numerical methods such as finite difference methods or finite element methods
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in the numerical solution of partial differential equations (PDE). In this problem the coefficient qi,j

is not constant, so to implement the von Neumann stability analysis, we use the principle of frozen
coefficients [34]. Here we perform stability analysis for Eqs. (8), and (9) is analyzed similarly. To
investigate the stability of the scheme, we start with the usual ansatz

pk+1/2
i,j = ξ k+1/2eIβxiheIβyjh;

where βx and βy are the wave number in x and y, I = √−1, h is spatial step size in x and y, i is the
spatial index in x, j is the spatial index in y, ξ is the amplification factor.

Replacing the expression above into the Eq. (8) yields:

ξ k+1/2eIβxiheIβyjh − 2ξ keIβxiheIβyjh + ξ k−1/2eIβxiheIβyjh
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)]
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where r = τ 2

4h2
, qa

i,j = qi+1,j − qi−1,j

After dividing by ξ keIβxiheIβyjh and simplifying Eq. (10), we have
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Let G = ξ 1/2 then we can rewrite it as therefore
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1 + 4rqi,j

(
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)
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Clearly, the maximum value of the sin function is 1, and since r and qi,j are real numbers, the
discriminant (D) of a quadratic Eq. (12) is always greater than 0. Therefore, two distinct real solutions
exist. For stability, ξ1 and ξ2 must be less than or equal to 1. In general, for the quadratic equation
ax2 + bx + c = 0 to have solutions that are less than or equal to 1, the following inequality must hold:
−b ± √

D
2a

≤ 1.

If we substitute our values into this inequality, we get 12 ≥ −2rqa
i,j ± √

D. After analyzing the
discriminant, we consistently find that it remains below 2, and the previously mentioned inequality is
consistently met. Consequently, we can assert that |(ξ1, ξ2)

2| remains equal to or less than 1, leading us
to conclude that the equation scheme exhibits unconditional stability.

Eqs. (8) and (9) are in the form of a tridiagonal matrix and will be solved individually by the
Tridiagonal matrix algorithm. In practice, the three most widely used methods are the Thomas
method [35], the cyclic reduction (CR) [36] method, and the parallel cyclic reduction (PCR) method
[37]. The Thomas method, characterized by a sequential approach, turns out to be ineffective for
parallelization on GPUs. In this regard, preference is given to the PCR method, which provides
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more efficient parallelization and solution of tridiagonal systems of equations. The CR method is an
efficient algorithm for solving tridiagonal linear systems of equations that often arise in the process of
discretizing partial differential equations. The basic idea of the CR is to successfully reduce the size of
a linear system by a factor of two at each step until the system can not be solved directly [37,38].

2.2 Numerical Accuracy Analysis
We assess the numerical solution’s accuracy obtained through the finite-difference method by

calculating both the absolute error and the L2 norm error. These errors are defined as follows:

errabs = |p − pnum| (13)

L2 =
√√√√ n∑

i=1

(p − pnum)2
x
y (14)

where p represents the exact value, and pnum is the numerical approximation. We use the unit square
(x, y) ∈ [0, 1] × [0, 1] as the spatial domain, with 100 elements per side and 100 interior points. The
parameters are q(t, x, y) = 1, s(t, x, y) = 0, with the initial condition p(x, y, 0) = sin(2πx) sin(2πy),
∂p(x, y, 0)

∂t
= 0, and boundary conditions p(0, y, t) = p(1, y, t) = p(x, 0, t) = p(y, 1, t) = 0. The

analytical solution of the Eq. (1) is given by p(x, y, t) = cos(2π
√

2t) sin(2πx) sin(2πy).

Table 1 presents the absolute error and L2 norm error for various time and spatial step sizes.

Table 1: Absolute errors and L2 norm errors


x = 
y 
t Absolute error L2 norm

0.01 0.01 4.12658e−3 2.08959e−3
0.001 0.001 3.25217e−3 3.82509e−4
0.0001 0.0001 1.14426e−3 1.34530e−4
0.00001 0.00001 2.28844e−3 2.75834e−5

From Table 1, it is evident that the numerical solution closely matches the analytical solution,
highlighting their strong agreement. The table displays the absolute error, with the smallest magnitude
being 10−3. This demonstrates the method’s high accuracy and its effectiveness in simulating wave
equations.

2.3 Numerical Simulations
In this section, we do numerical simulations for the wave propagation in two heterogeneous

mediums with the Dirichlet boundary condition in the domain [0, T ] × [0, 200] × [0, 200]. The two
heterogeneous mediums are shown in the Fig. 1.
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Figure 1: Two heterogeneous mediums: a two-layer medium on the left and a three-layer medium on
the right

As a source term function, we use the Ricker’s wavelet function given by

s(x, y, t) = δ(x − x0)δ(y − y0)(1 − 2π 2f 2
0 (t − t0)

2)e−π2f 2
0 (t−t0)2

where δ(x − x0)δ(y − y0) is the Dirac distribution, f0 represents the dominant frequency of the
source, which controls the central frequency of the wavelet. The graphical illustration of the source
function is shown in the Fig. 2. In the first case, a two-layer medium is considered, characterized by a
homogeneous left half with a seismic speed s1 = 500 m/s and a homogeneous right half with a speed
s2 = 250 m/s. The source is located at point (x0, y0) = (100 m, 100 m). In the second case, a three-layer
medium is considered with velocities s1 = 500 m/s in the left layer, s2 = 250 m/s in the middle layer and
s3 = 500 m/s in the right layer. Computational parameters include spatial step size 
x = 
y = 1 m
and time step size 
t = 0.001 s.

Figure 2: Source waveform
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Fig. 3 presents snapshots of wavefields at different times in a two-layer medium. At t = 0.05 s,
the wavefront forms a precise circle before reaching the interface between the two layers. By t =
0.15 s, the wavefront interacts with the interface, resulting in moderate reflection. As both layers are
homogeneous, the reflected and refracted wavefronts form perfect circles in the left and right halves of
the domain, respectively. At t = 0.25 s and t = 0.30 s, both the reflected and refracted waves continue
to propagate. Due to the higher wave velocity in the left layer compared to the right layer, the wave
circle in the left layer is larger. Simultaneously, the amplitude of the reflected wave in the right layer
appears relatively weak.

Figure 3: Displacement of wave in the two-layer medium at different times

Fig. 4 shows snapshots of wavefields at different time intervals in a three-layer medium. At t = 0.20
s, the wave predominantly propagates within the middle layer. By t = 0.30 s, the wavefront interacts
with both the left and right interfaces, resulting in observable reflection phenomena within the middle
layer. As time progresses, both the reflected and refracted waves continue to propagate, forming precise
circular wavefronts, as evident at t = 0.32 s.
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Figure 4: Displacement of wave in the three layers medium at different times

3 GPU Implementation

Parallel processing on GPUs has emerged as a pivotal area in computational science, significantly
transforming the landscape of high-performance computing. GPUs, originally designed for rendering
graphics in video games, have demonstrated exceptional capabilities in parallel processing due to their
massively parallel architecture [39].

One of the key advantages of GPUs is their ability to handle a large number of simple tasks
simultaneously. This is achieved through the presence of multiple cores, often numbering in the
thousands, allowing GPUs to execute parallel threads efficiently. Unlike traditional Central Processing
Units (CPUs), which are optimized for sequential processing, GPUs excel in parallelizing tasks,
making them particularly well-suited for applications with a high degree of parallelism.

Scientific simulations, such as those used in physics, chemistry, and fluid dynamics, have witnessed
remarkable acceleration through GPU parallel processing. The parallel architecture of GPUs enables
researchers to break down complex simulations into smaller, manageable tasks that can be processed
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simultaneously. This not only significantly reduces the time required for simulations but also opens up
the possibility of exploring more intricate and computationally intensive models.

However, to exploit the full potential of GPU parallel processing, special programming techniques
are required. CUDA and OpenCL (Open Computing Language) are two widely used frameworks that
allow developers to create parallel applications for GPUs.

In this section, we introduce a parallel approach using CUDA technology to numerically solve
problem 1 and then analyze its performance. The parallel approach structure is shown in Fig. 5. The
kernel function shown in this figure refers to implementing the PCR [37] in CUDA. We will describe
the PCR method in the following subsections.

Figure 5: Parallel solver

3.1 CUDA Technology
CUDA is a revolutionary parallel computing technology developed by NVIDIA, designed to

harness the immense computational power of GPUs for general-purpose computing tasks. Introduced
in 2007, CUDA extends the capabilities of GPUs beyond graphics processing, enabling developers
to exploit parallelism for a wide range of applications. At the heart of CUDA is the integration
of parallel constructs into the C programming language, allowing developers to write code that
takes advantage of the parallel architecture inherent in modern GPUs. The parallel part is called
the kernel. A C program using CUDA extensions hands out a large number of copies of the kernel
into available multiprocessors to be performed contemporaneously. The CUDA code consists of three
computational steps: transferring data to the global GPU memory, running the CUDA kernel, and
transferring the results from the GPU to the CPU memory.

The Parallel Cyclic Reduction method is a parallelized version of the Cyclic Reduction algorithm
designed to efficiently solve large-scale tridiagonal systems of linear equations on parallel computing
architectures. The process of the Parallel Cyclic Reduction method data flow with an 8-equation
system is illustrated in Fig. 6. This process involves reducing the 8-equation system to two 4-equation
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systems in the first step, followed by reducing two 4-equation systems to four systems of 2 equations,
and finally solving four systems in the third stage [40]. We have designed a CUDA program based on
Parallel Cyclic Reduction.

Figure 6: Data flow of PCR

Initially, we define the kernel execution parameters. The number of blocks corresponds to the
size of the system, with each individual system being assigned to one block. All variables are stored in
memory using a Double-Precision Floating Point format. We utilize five global arrays for data storage:
three for the tridiagonal matrix elements, one for the right-hand side, and one for the solution vector.
The shared memory allocated tridiagonal system amounts to n ∗ 5 ∗ size of(double) bytes. During the
forward phase of the algorithm, log2(n/2) steps are executed. All five arrays are shared memory arrays,
with data loaded from global memory. The step begins at 1 and doubles with each subsequent step of
the algorithm, while the number of active threads is halved at each stage. At the start of the backward
phase, we solve a system of equations derived from two equations at the final step of the forward phase.
We then apply the algorithm to determine all other unknowns in log2(n/2) steps.

The kernel function is shown below in Listing 3.1.

_ _global_ _ void PCR(double∗ d_a, double∗ d_b, double∗ d_c, double∗ d_f, double∗
d_result, int n) {
int tid = blockIdx.x ∗ blockDim.x + threadIdx.x;

for (int step = n / 2; stride > 0; step /= 2) {
_ _syncthreads();

if (tid < step) {
int j = tid + step;

double alpha = d_a[j] / d_b[tid];

double gamma = d_c[j] / d_b[j];

d_b[j] _= alpha ∗ d_c[tid];

d_f[j] _= alpha ∗ d_f[tid];

if (j + step < n) {
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d_a[j + step] _= gamma ∗ d_c[tid + step];

d_b[j + step] _= gamma ∗ d_a[tid + step];

d_f[j + step] _= gamma ∗ d_f[tid + step];

}
}

}
_ _syncthreads();

if (tid < n) {
d_result[tid] = d_f[tid] / d_b[tid];

}
}
By executing the kernel function log2n times, n is the number of equations, we find all the

unknowns of a three-diagonal system after that we will copy calculated data yi from the device to
the host.

3.2 Experimental Results
To evaluate the program’s performance, we utilized a personal computer featuring an eight-core

Intel Core i7-9800X processor, running at a clock speed of 3.8 GHz, coupled with 64 GB of RAM.
Additionally, the system was equipped with an Nvidia RTX 2080 graphics card containing 4352
cores and 8 GB of video memory. The operating system employed was Windows 10. Both parallel
and sequential algorithms were implemented using the C++ programming language. Key parameters
for the problem were configured as follows: mesh size (N) maintained uniformity in both directions
with a step size of 
x = 
y = 0.05, a time step of 
t = 0.005, and a total simulation time of 0.5.
Consequently, the number of time iterations amounted to 100. The mesh size was chosen as a power
of two plus one, and the block size was determined based on the value of N and the GPU’s processing
capabilities, imposing limitations on the grid size. In Table 2, we report the execution times in seconds
for serial (CPU time) and CUDA (GPU time) implementation of the parallel cyclic reduction method
to the problem (1)–(4) together with the values of the speedup computed as the ratio. The calculation
results in the table indicate a moderate speedup for small domains up to a size of 1024 × 1024, but a
pronounced increase occurs when working with larger domains. This is because large domains generate
a significant computational load, which can be efficiently parallelized across multiple GPU processors.
The parallelism provided by the GPU plays a key role in achieving speedup, and larger domains
naturally provide greater parallel processing capabilities.

Table 2: Execution time and speedup

N (mesh size) CPU time GPU time Speedup

128 × 128 2.128 0.946 2.249
512 × 512 6.413 1.094 5.862
1024 × 1024 28.214 1.780 15.851

(Continued)
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Table 2 (continued)

N (mesh size) CPU time GPU time Speedup

2048 × 2048 78.826 3.508 22.470
4096 × 4096 253.618 8.420 30.121

4 Conclusions and Future Work

In this work, we proposed a parallel numerical solution to the two-dimensional acoustic wave
equation in heterogeneous media. We used a fully implicit finite difference scheme with a parallel cyclic
reduction method. The implemented parallel algorithms were run on a GPU, and the computational
results were subjected to comparative analysis. As the results from Table 2 show, our parallel imple-
mentations are 2–30 times faster than the sequential algorithm. Despite these significant performance
improvements, our work has several limitations. The scalability of the current implementation may be
hindered by communication overheads and synchronization requirements when scaling to larger GPU
clusters. Additionally, the performance gains are heavily dependent on the specific GPU architecture
used, which may limit the generalizability of our results across different hardware configurations.

In future research plans, we intend to improve our parallel algorithms for GPU clusters. Specifi-
cally, we aim to address the identified limitations by exploring more efficient communication strategies,
optimizing the algorithms for various GPU architectures, and developing techniques to better handle
complex boundary conditions and large-scale problems.
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