
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.054820

ARTICLE

Privacy-Preserving Large-Scale AI Models for Intelligent Railway
Transportation Systems: Hierarchical Poisoning Attacks and Defenses
in Federated Learning

Yongsheng Zhu1,2,*, Chong Liu3,4, Chunlei Chen5, Xiaoting Lyu3,4, Zheng Chen3,4, Bin Wang6,
Fuqiang Hu3,4, Hanxi Li3,4, Jiao Dai3,4, Baigen Cai1 and Wei Wang3,4

1School of Automation and Intelligence, Beijing Jiaotong University, Beijing, 100044, China
2Institute of Computing Technologies, China Academy of Railway Sciences Corporation Limited, Beijing, 100081, China
3School of Computer Science and Technology, Beijing Jiaotong University, Beijing, 100044, China
4Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing, 100044, China
5Institute of Infrastructure Inspection, China Academy of Railway Sciences Corporation Limited, Beijing, 100081, China
6Zhejiang Key Laboratory of Multi-Dimensional Perception Technology, Application and Cybersecurity, Hangzhou, 310053, China

*Corresponding Author: Yongsheng Zhu. Email: zhuys@rails.cn

Received: 08 June 2024 Accepted: 29 July 2024 Published: 27 September 2024

ABSTRACT

The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving
mechanisms into AI models to protect sensitive information and enhance system efficiency. Federated learning
offers a promising solution by allowing multiple clients to train models collaboratively without sharing private
data. However, despite its privacy benefits, federated learning systems are vulnerable to poisoning attacks, where
adversaries alter local model parameters on compromised clients and send malicious updates to the server,
potentially compromising the global model’s accuracy. In this study, we introduce PMM (Perturbation coefficient
Multiplied by Maximum value), a new poisoning attack method that perturbs model updates layer by layer,
demonstrating the threat of poisoning attacks faced by federated learning. Extensive experiments across three
distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy. Additionally,
we propose an effective defense method, namely CLBL (Cluster Layer By Layer). Experiment results on three
datasets have confirmed CLBL’s effectiveness.

KEYWORDS
Privacy-preserving; intelligent railway transportation system; federated learning; poisoning attacks; defenses

1 Introduction

Federated Learning (FL) [1] is a new paradigm in the field of machine learning. Its core is that
multiple clients collaboratively train a shared machine learning model, namely the global model, to
improve the performance and accuracy of the model. Under the framework of FL, clients can keep
their data local, which not only protects data privacy but also reduces the need for data transmission.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.054820
https://www.techscience.com/doi/10.32604/cmes.2024.054820
mailto:zhuys@rails.cn


1306 CMES, 2024, vol.141, no.2

At the same time, the server takes on the responsibility of maintaining and updating the global model.
Each iteration of FL follows three basic steps: The process begins with the server broadcasting the
latest global model parameters to the selected clients participating in the iteration. Subsequently,
each client uses its own local dataset to train the received global model and then uploads the model
update to the server. Finally, the server aggregates the model updates from each client according
to predetermined rules and uses this aggregated information to update the global model. With the
increasing awareness of privacy protection and data security, FL is gradually becoming a technology
that technology companies are vying to adopt. Recent advancements have expanded the applicability
of FL across various domains. In intelligent transportation systems, privacy-preserving methods like
CreditCoin have demonstrated secure and efficient communications in smart vehicles [2]. Integrating
blockchain technology into FL systems enhances transparency and security of data transactions, as
shown by studies on blockchain-based incentive networks. Automated detection of vulnerabilities in
smart contracts, such as the models proposed by ContractWard, highlights FL’s potential to improve
security measures in decentralized applications without compromising data privacy [3–6]. In network
security, tools like BotMark have used hybrid analysis techniques to identify botnet behaviors through
flow-based and graph-based traffic patterns [7], enhancing detection and prevention mechanisms. The
integration of FL with advanced machine learning techniques, such as heterogeneous graph attention
auto-encoders explored in HGATE, shows potential in improving model performance with complex
and diverse data structures [8]. This underscores FL’s versatility in addressing a range of challenges in
data analysis and model training.

In the field of rail transportation, ensuring the smooth operation of railway equipment is crucial
for maintaining efficient services. Train stations are spread across diverse geographical areas, resulting
in significant variations in environmental conditions such as temperature and humidity that the
equipment is exposed to. To enhance the accuracy of equipment anomaly detection, it is beneficial
to train detection models using data distributed across different train stations. By employing FL, we
can effectively integrate equipment data from various train stations, thereby significantly improving
the performance of anomaly detection models. This approach not only enhances detection capabilities
but also ensures data privacy and security, as local data at each train station remains in its original
location.

As shown in Fig. 1, FL has been extensively adopted in the railway industry, demonstrating
significant advantages across various aspects. Firstly, FL enables railway companies to collect real-
time operational data from trains across different locations. This data can be used to optimize
train scheduling and operational plans, effectively reducing traffic congestion and improving train
punctuality. Secondly, FL facilitates real-time monitoring of track health, enabling the detection of
issues such as cracks and deformations, and predicting potential future failures. This allows for timely
maintenance measures, ensuring the safety and stability of railway lines. Finally, FL allows railway
companies to analyze passenger behavior and preferences, leading to personalized services such as
customized itinerary suggestions and optimized carriage layouts, thereby significantly enhancing the
passenger travel experience. These applications illustrate that FL holds broad prospects and substantial
practical value in the railway industry.



CMES, 2024, vol.141, no.2 1307

Figure 1: The application of FL in railways

However, due to the distributed nature of FL, it is vulnerable to poisoning attacks [9–12]. Attackers
can manipulate certain clients to upload malicious model updates [13,14], disrupting the security of the
global model. In untargeted poisoning attacks, the compromised global model suffers from reduced
accuracy. Conversely, in targeted poisoning attacks, the malicious updates degrade the performance
of the model specifically on attacker-chosen inputs, leaving other inputs largely unaffected.

Current poisoning attacks [15–19] have demonstrated some degree of success. For instance, Min-
Max [20] constructs malicious updates by ensuring the maximum distance between a malicious update
and any normal update is less than the maximum distance between any two normal updates, thereby
subtly affecting the global model. However, this method’s effectiveness is limited when using Krum on
the FMNIST dataset. To address this, we propose a new attack method named PMM (Perturbation
coefficient Multiplied by Maximum value). The method performs targeted perturbations on each layer
of the model update and scales it by a perturbation coefficient λ to construct malicious updates, with
the goal of more effectively reducing the accuracy of the global model.

Existing defense methods [21–23] can prevent a small number of malicious clients from launching
poisoning attacks on FL and detect these clients by observing statistical differences in model updates
between malicious and benign participants. However, these methods have notable limitations. For
example, in subsequent experiments, Krum fails to effectively defend against PMM. To address these
shortcomings, we propose a novel defense method called CLBL (Cluster Layer By Layer). This method
involves clustering model updates layer by layer, selecting the class with the most elements, computing
its average, and using this average as the global model update.

To evaluate the effectiveness of the proposed method, we conduct experimental verification.
Specifically, we find that PMM shows effectiveness on three large-scale benchmark datasets (MNIST,
FMNIST, and CIFAR10) against three different aggregation algorithms, FedAVG, Krum, and
Trimmed_mean. Experimental data show that PMM outperforms several existing benchmark attack
methods, including LIE, Min-Max, and Min-Sum, in attack performance to a certain extent. In
addition, we find that CLBL successfully resists poisoning attack methods such as LIE, Min-Max, and



1308 CMES, 2024, vol.141, no.2

Min-Sum in the experiment and outperforms other aggregation algorithms such as FedAVG, Krum,
and Trimmed_mean, showing its superiority in defending against attacks. These results highlight the
potential of PMM and CLBL in practical applications.

In summary, our key contributions are as follows:

• We propose a novel attack method, named PMM. The core of this method involves sorting
the model updates generated by a malicious client controlled by the attacker after the normal
training. The maximum value from the sorted updates is then selected and multiplied by
a perturbation coefficient λ to construct a malicious model update, which is subsequently
uploaded to the server.

• We propose a defense method, named CLBL. This method clusters the model updates layer
by layer, identifies the class containing the majority of the model updates, and computes the
average of all updates within this class to determine the update for the global model.

• We conduct a comprehensive empirical evaluation of PMM and CLBL. The experimental
results demonstrate that PMM can significantly reduce the accuracy of the global model,
whereas CLBL can accurately and effectively protect the global model, preserving its accuracy.

2 Related Work
2.1 Federated Learning

FL can be categorized into two distinct settings: cross-device FL and cross-silo FL [24]. Cross-
device FL is ideal for scenarios involving a large number of devices, each with limited computational
resources. Cross-silo FL is better suited for situations where there are fewer entities, each with
substantial computational power. In summary, cross-device FL and cross-silo FL address different
application scenarios. The choice of setting depends on the specific requirements of the application.
Cross-device FL is optimal for environments with numerous distributed devices that have constrained
computing capabilities, whereas cross-silo FL is preferable for contexts where computational resources
are more centralized but fewer in number.

We now consider a standard FL setting [1,25], consisting of a central server and n clients, each
owning local data. The workflow of FL in the t-th global training round is as follows:

• Step 1: The server broadcasts the current global model ωt−1 to all clients, or optionally, to a
subset of clients.

• Step 2: The clients train local models using their local data and send the model updates back to
the server.

• Step 3: The server aggregates the local model updates using a specified aggregation rule and
updates the global model accordingly:

ωt = ωt−1 − η · AGR(gt
1, gt

2, . . . , gt
i) (1)

Here, ωt represents the global model parameters at round t, η denotes the learning rate, AGR
signifies the aggregation rule, and gt

i denotes the model update from the i-th client in round t.



CMES, 2024, vol.141, no.2 1309

2.2 Aggregation Algorithms for FL
In non-adversarial FL settings [1], FedAVG [26] is a widely used aggregation method that averages

local model updates in each global epoch and integrates the results into the global model. However, in
adversarial FL with a trusted server, where there are n clients including m malicious clients, even a single
malicious client can compromise the system when using FedAVG. Ensuring the security and stability of
FL systems against poisoning attacks is crucial. The predominant defense strategy involves Byzantine-
robust aggregation algorithms, which can detect [27–30] and filter out updates from malicious clients,
thereby reducing their impact on the global model.

Trimmed Mean [21] is a coordinate-wise aggregation algorithm. In Trimmed Mean, local model
updates from each client are first sorted, and then a certain proportion of extreme values are removed
by excluding a specified percentage of the smallest and largest values. The remaining model updates
are then averaged to compute the global model. Trimmed Mean is particularly effective in handling
imbalanced or anomalous data in FL, preventing malicious clients from significantly affecting the
global model.

Krum [22] is an aggregation algorithm that uses the sum of squared distances to select global
model updates. In each global training epoch, Krum calculates the distances between each client’s
model updates and those of other clients. It then selects the updates from the client with the smallest
anomaly score as the global model update. Anomaly scores are computed by comparing the distances
of each client’s updates with those of other clients.

Median [21] is another coordinate-wise aggregation technique, which computes the median of the
updated values across all dimensions. This approach effectively mitigates the influence of outliers on
gradient updates, enhancing the stability and reliability of the global model.

FLTrust [31] requires the server to maintain a small yet high-quality clean dataset to train a reliable
model, which then guides the aggregation process. However, maintaining such a high-standard dataset
poses a significant challenge.

2.3 Poisoning Attacks on FL
Existing research indicates that FL is vulnerable to poisoning attacks, where malicious clients

compromise the global model’s accuracy by submitting malicious model updates during the second
step of the FL process [9,32–35]. In this paper, we examine three notable poisoning attack methods:
LIE, Min-Max, and Min-Sum.

LIE [32] demonstrates that attackers can reduce the global model’s accuracy by making subtle,
carefully designed modifications to a specific proportion of parameters, thereby creating malicious
model updates. The core principle of LIE involves calculating the mean and standard deviation of
model updates produced by malicious clients during normal training. Malicious updates are then
constructed by subtracting a multiple of the standard deviation from the mean, which minimizes the
distinguishability between malicious and normal model updates.

Min-Max and Min-Sum [20] generate malicious model updates by examining normal model
updates in each training epoch to reduce the global model’s accuracy. Min-Max crafts updates such
that the maximum distance between any malicious update and any normal update is less than the
maximum distance between any two normal updates. Min-Sum, on the other hand, constructs updates
so that the sum of squared distances between any malicious update and all other updates is smaller
than the sum of squared distances between any two normal updates. Both methods aim to minimize
the discrepancy between malicious and normal updates, thus evading anomaly detection systems.



1310 CMES, 2024, vol.141, no.2

However, Min-Sum imposes stricter constraints on malicious updates compared to Min-Max, making
anomalies even harder to detect.

3 Threat Model
3.1 Attacker’s Objective

In line with numerous studies on poisoning attacks [20,32], we examine the attacker’s objective of
generating and sending malicious model updates to the server. The goal is to compromise the utility of
the global model, thereby reducing its accuracy. This type of attack, known as an untargeted attack,
aims to render the learned global model unusable.

3.2 Attacker’s Capability
We assume there are a total of n clients, with m of them being malicious. We further assume that the

number of normal clients exceeds the number of malicious clients, i.e., (m/n) < 0.5. This assumption
is critical because if malicious clients constitute the majority, no Byzantine-robust FL system can
effectively resist poisoning attacks. Additionally, we consider that attackers have the capability to
craft malicious gradients that can detrimentally affect the global model. Furthermore, it is assumed
that malicious clients can collaborate to launch attacks, thereby increasing both the effectiveness and
stealthiness of their malicious activities.

3.3 Attacker’s Knowledge
In FL systems, an attacker’s knowledge is generally categorized into two common settings: partial-

knowledge and full-knowledge [33]. In the partial-knowledge setting, the attacker is presumed to have
knowledge of the global model, the loss function, and the local training data and model updates on
malicious clients. In the full-knowledge setting, the attacker additionally has access to the local training
data and model updates of all clients, as well as the server’s aggregation rule. This study concentrates
on poisoning attacks within the partial-knowledge setting.

4 Attack Method

In this section, we first introduce the intuition behind our attack method, and then introduce
PMM in detail, which consists of three steps in every global epoch.

Intuition: Defense methods for FL typically weaken or remove malicious model updates based
on one or more of the following criteria: (1) distance from benign model updates, (2) distributional
differences with benign model updates, and (3) differences in Lp-norms between benign and malicious
model updates. Fig. 2 illustrates our attack principles. Algorithm 1 outlines the procedure of PMM.

• Step 1. Normal training to obtain model updates. Initially, the malicious clients controlled by the
attacker receive the global model and perform normal training using their local data to generate
model updates.

gt
i = ∇Li(ωt) (2)

Here, gt
i represents the model update generated by the i-th client in round t, and Li(ωt) denotes

the loss function on client i. Eq. (2) illustrates the process of obtaining model updates through
client training.

• Step 2. Constructing malicious model updates. The attacker sorts the model updates from all
malicious clients layer by layer. After sorting, the attacker selects the maximum value from



CMES, 2024, vol.141, no.2 1311

each layer of the model updates. This maximum value is then multiplied by the perturbation
coefficient λ to construct the malicious model update.

ĝt
i,j = λ × {

gt
i,j | i ∈ Malicious Clients, j = 1, 2, . . . , k

}
max

(3)

Here, gt
i,j represents the model update of the j-th layer of the i-th client in round t, where the

model consists of k layers, and ĝt
i,j denotes the malicious model update of the j-th layer of the

i-th client in round t. Eq. (3) details the process of constructing malicious model updates layer
by layer. This approach ensures that the selected values remain within the range of normal
model updates, enhancing the stealthiness of the attack. The perturbation coefficient λ controls
the extent of disruption caused by the malicious model updates to the global model.

• Step 3. Uploading malicious model updates. After constructing the malicious model updates, the
malicious clients upload these updates to the server, thereby disrupting the global model.

Figure 2: The attack principle of PMM



1312 CMES, 2024, vol.141, no.2

Algorithm 1: PMM
Input: global model parameter ωt, set of malicious clients, global epoch T
Output:

1. for t ∈ [1, T ] do
2. Receive the global model parameter ωt

3. Train the local model using ωt

4. for j ∈ [1, k] do
5. for i ∈ Malicious Clients do
6. ĝt

i,j ← max(ĝt
i,j, gt

i,j)

7. Construct malicious model updates using perturbation coefficients. ĝt
i,j = λ × ĝt

i,j

8. end for
9. end for

10. end for
11. Send the malicious model update ĝt to server

To calculate the time complexity of PMM, we will evaluate the complexity of each step
sequentially.

• Step 1: Normal Training to Obtain Model Updates. In this step, the malicious clients receive the
global model and perform normal training using their local data to generate model updates. The
time complexity of this step depends on the training process. Assuming the time complexity for
each client to perform one gradient descent update is O(D), where D is the size of the dataset,
the total time complexity for m clients is: O(m · D).

• Step 2: Constructing Malicious Model Updates. In this step, the attacker sorts the model updates
from all malicious clients layer by layer. Each layer has m updates, and the time complexity for
sorting is O(m log m). For k layers, each layer is sorted and the maximum value is selected,
making the total time complexity:

O(k · m log m) (4)

• Step 3: Uploading Malicious Model Updates. In this step, the malicious clients upload the
constructed malicious model updates to the server. Assuming the time complexity for uploading
each model update is O(1), the total time complexity for m malicious clients is: O(m).

Combining the time complexities of all the steps, the total time complexity of the process is: O(m ·
D) + O(k · m log m) + O(m). Each layer has the same number of model updates in PMM, the total
time complexity can be simplified to: O(m · D) + O(k · m log m) + O(m). Therefore, the overall time
complexity is:

O(m · D + k · m log m) (5)

In summary, PMM starts by engaging malicious clients in normal training to acquire model
updates. These updates are meticulously sorted layer by layer, where the maximum value from each
layer is carefully selected. This selected value is then scaled by a perturbation coefficient λ to craft
malicious model updates that closely resemble legitimate updates but are strategically altered to
degrade the global model’s performance. Finally, these crafted updates are transmitted to the server,
effectively undermining the integrity and accuracy of the global model’s predictions. This methodical
approach ensures that the malicious modifications evade detection while exerting significant influence
on the model’s behavior and outcomes.



CMES, 2024, vol.141, no.2 1313

In intelligent railway scenarios, PMM could severely impact applications such as train scheduling
optimization, predictive maintenance, and security monitoring. FL is utilized to optimize these systems
by training a global model across multiple distributed nodes. However, PMM can degrade scheduling
system performance, leading to train delays and scheduling disruptions; interfere with predictive
maintenance models, increasing equipment failure rates and maintenance costs; and disrupt security
monitoring models, compromising the ability to effectively detect safety threats, thereby affecting
railway system security. Overall, PMM attacks can result in decreased model performance, reduced
system reliability, increased economic losses, and risks to security.

5 Defense Method

In this section, we provide a comprehensive overview of CLBL, comprising three distinct steps in
each global epoch. Algorithm 2 and Fig. 3 delineate the entire procedure of CLBL.

• Step 1: Cluster Model Updates Layer by Layer. Upon receiving model updates from clients, the
server initiates the clustering process using HDBSCAN [36], organizing all model updates layer
by layer as follows:

{gt,∗
i,j | i = 1, 2, . . . , L; j = 1, 2, . . . , k} ← HDBSCAN Cluster{gt

i,j |i = 1, 2, . . . , n;

j = 1, 2, . . . , k} (6)

Here, L represents the total number of admitted model updates. gt,∗
i,j denotes the j-th layer of the

admitted model update from the i-th client in round t. Given our assumption that the number
of malicious clients is less than that of benign ones, and benign model updates exhibit higher
similarity, clustering model updates layer by layer allows us to identify the class containing the
most model updates as benign.

• Step 2: Average of Benign Model Updates. After clustering to isolate benign model updates, the
next step involves averaging these updates layer by layer:

gt
global,j = average(gt,∗

1,j , gt,∗
2,j , . . . , gt,∗

L,j) (7)

Here, gt
global,j represents the j-th layer of the global model update in round t. Drawing from

the methodology of PMM, clustering model updates based on layers enhances the robustness
of aggregation algorithms compared to traditional approaches, offering improved outlier
detection capabilities.

• Step 3: Aggregation. The server computes the global model parameter ωt using the global update
obtained from CLBL:
ωt = ωt−1 − η · gt

global (8)

Figure 3: Illustration of CLBL’s workflow in round t



1314 CMES, 2024, vol.141, no.2

Here, gt
global represents the global model update in round t.

Algorithm 2: CLBL
Input: Set of model updates
Output:
1. for t ∈ [1, T ] do
2: Receive model updates uploaded by the clients {gt

i | i = 1, 2, . . . , n}
3: for j ∈ [1, k] do
4: for i ∈ [1, n] do
5: gt,∗

i,j | i = 1, 2, . . . , L; j = 1, 2, . . . , k ← HDBSCAN {gt
i,j | i = 1, 2, . . . , n; j = 1, 2, . . . , k}

�L is the number of admitted model updates.
6: gt

global,j = average(gt,∗
1,j , gt,∗

2,j , . . . , gt,∗
L,j)

7: end for
8: end for
9: end for
10: Server updates the global model ωt = ωt−1 − η · gt

global

To analyze the time complexity of CLBL, we need to evaluate the complexity of each step
sequentially. CLBL consists of three main steps: clustering model updates layer by layer, averaging
benign model updates, and aggregation.

• Step 1: Cluster Model Updates Layer by Layer. In this step, the server clusters model updates
for each layer using the HDBSCAN algorithm. The time complexity of HDBSCAN is approx-
imately O(n log n), where n is the number of data points. In the context of CLBL, this means
that for each layer of model updates, the time complexity is O(ni log ni), where ni is the number
of model updates in the i-th layer.The total time complexity for the clustering step is:

O

(
k∑

i=1

ni log ni

)
(9)

• Step 2: Averaging Benign Model Updates. After identifying the benign model updates, the
algorithm averages these updates layer by layer. For each layer, this involves averaging all benign
updates, with a time complexity of O(ni) for each layer. Overall, for k layers of model updates,
the total time complexity for the averaging step is:

O

(
k∑

i=1

ni

)
(10)

• Step 3: Aggregation. This step involves updating the global model parameters using the global
update obtained from the CLBL process. This is a constant-time operation with a time
complexity of O(1).

Combining the time complexities of all the steps, the total time complexity of the CLBL
algorithm is:

O

(
k∑

i=1

ni log ni

)
+ O

(
k∑

i=1

ni

)
+ O(1) (11)



CMES, 2024, vol.141, no.2 1315

In CLBL, each layer has the same number of model updates., i.e., ni = n, the total time complexity
simplifies to: O (kn log n). Therefore, the time complexity of the CLBL algorithm is O(kn log n), where
n is the number of model updates in each layer.

In summary, CLBL initially clusters model updates uploaded by clients layer by layer, selecting
the class with the most model updates as benign. It then computes the average of these benign updates
to derive the global model update.

In intelligent railway scenarios, CLBL significantly enhances the security, robustness, and effi-
ciency of model updates, particularly in addressing poisoning attacks. Its specific applications include
track monitoring and maintenance, train operation control, and environmental monitoring and early
warning systems, ensuring stable system operation under various adverse conditions. The introduction
of CLBL notably improves the safety and reliability of railway systems while reducing maintenance
costs and enhancing passenger satisfaction. However, ongoing algorithm optimization, increased
adaptability, and improved real-time performance remain critical challenges to ensuring its long-term
effectiveness.

6 Experiment
6.1 Experimental Settings

In this section, we evaluate the performance of PMM under different aggregation methods and
compared it with three attack methods. We also test the impact of varying numbers of malicious clients
and perturbation coefficients λ. Additionally, we evaluate the performance of CLBL under different
attacks and compared it with three aggregation algorithms. Meanwhile, to enhance the persuasiveness
of the experimental results, we use different seeds for cross-validation.

6.1.1 Datasets and Models

In this experiment, we use three large-scale benchmark datasets. We provide a detailed description
of each dataset in Table 1 and showcase the samples and their corresponding labels in Fig. 4.

• MNIST [37] dataset consists of 70,000 grayscale images, each with a size of 28 ∗ 28 pixels,
divided into 10 classes. Each class in MNIST contains 7000 images. We employ LeNet [37] as
the architecture for the global model for training and evaluation.

• FMNIST [38] dataset consists of 70,000 grayscale images, each with a size of 28 ∗ 28 pixels,
divided into 10 classes. Each class in FMNIST contains 7000 images. We employ LeNet [37] as
the architecture for the global model for training and evaluation.

• CIFAR10 [39] dataset consists of 60,000 RGB images, each with a size of 32 ∗ 32 pixels, divided
into 10 classes. Each class in CIFAR10 contains 6000 images. We employ VGG-11 [40] as the
architecture for the global model for training and evaluation.

Table 1: Description of datasets and models

Dataset MNIST [37] FMNIST [38] CIFAR10 [39]

Number of samples 70,000 70,000 60,000
Image size 28 ∗ 28 ∗ 1 28 ∗ 28 ∗ 1 32 ∗ 32 ∗ 3
Number of classes 10 10 10

(Continued)



1316 CMES, 2024, vol.141, no.2

Table 1 (continued)

Dataset MNIST [37] FMNIST [38] CIFAR10 [39]

Category Handwritten digits Fashion images Natural images
Model LeNet LeNet VGG11

Figure 4: Samples of datasets

6.1.2 FL Settings

To present the experimental parameters clearly, Table 2 details the parameters used in the
experiments:

Table 2: Experimental parameters

Dataset Number of
clients

Number of clients in
each epoch

Global/Local
epoch

Batch
size

Learning
rate

MNIST 100 15 50/1 64 0.05
FMNIST 100 15 50/1 64 0.05
CIFAR10 100 15 100/1 64 0.05

6.1.3 Baseline Poisoning Attacks and Defense Methods

We conduct adversarial experiments involving defense methods (FedAVG, Krum, Trimmed_mean,
and our proposed method, CLBL) and attack strategies (LIE, Min-Max, and Min-Sum). Detailed
descriptions of the attack methods are provided in Section 2.3, while specifics regarding the defense
mechanisms are outlined in Section 2.2. To ensure equitable comparisons, all experiments are executed
within the same FL framework and under identical attack configurations. The hyperparameter settings
for PMM and CLBL in the experiment are presented in the Table 3.

6.2 Attack Results
In this section, we present a comparative analysis of PMM with existing state-of-the-art model

poisoning attacks, namely LIE, Min-Max, and Min-Sum, across various aggregation algorithms as
outlined in Table 4.



CMES, 2024, vol.141, no.2 1317

Table 3: Experimental hyperparameters for PMM and CLBL

Method Hyperparameter Value

PMM Malicious clients 5
Perturbation coefficient 1.1

CLBL Min_cluster_size 2

Table 4: Accuracy (%) of different poisoning attacks against various defense methods (results are the
mean of five experiments, with variance in parentheses)

Dataset AGR LIE Min-Max Min-Sum PMM

MNIST
FedAVG 11.36 (0.0000) 11.36 (0.0001) 11.36 (0.0001) 9.81 (0.0001)
Krum 97.73 (0.0000) 94.67 (0.0143) 95.13 (0.0001) 10.56 (0.0043)
Trimmed_mean 11.30 (0.0001) 11.36 (0.0001) 11.36 (0.0001) 9.69 (0.0043)

FMNIST
FedAVG 9.98 (0.0000) 10.02 (0.0000) 10.03 (0.0000) 9.97 (0.0000)
Krum 70.64 (0.1727) 76.52 (0.1128) 77.63 (0.0624) 45.72 (0.0869)
Trimmed_mean 10.01(0.0000) 10.01 (0.0000) 10.00 (0.0000) 9.99 (0.0000)

CIFAR10
FedAVG 10.00 (0.0000) 10.03 (0.0000) 10.03 (0.0013) 9.99 (0.0000)
Krum 46.42 (0.1735) 28.14 (0.0196) 30.05 (0.0181) 22.07 (0.1593)
Trimmed_mean 9.99 (0.0000) 10.01 (0.0000) 10.01 (0.0000) 12.47 (0.3042)

Table 4 presents a comparison of the accuracy of various defense methods under different poison-
ing attacks. The overall results indicate that the PMM method exhibits superior attack performance
in various scenarios, achieving lower accuracy across multiple datasets and defense methods. In
contrast, the performance of the LIE, Min-Max, and Min-Sum attacks is relatively unstable. While
these methods can achieve good attack effects in some datasets and defense methods, overall, PMM
outperforms the other attack methods.

The superior performance of PMM can be attributed to its layer-based attack strategy, which
enhances attack effectiveness while increasing stealth. By introducing targeted minor perturbations to
each layer of the model, PMM effectively constructs malicious model updates, thereby evading some
common defense mechanisms. In contrast, LIE, Min-Max, and Min-Sum, although relatively complex
in strategy design, perform malicious updates on the entire model without targeted fine-tuning. This
leads to significant attack effects, but with less stealth. Overall, PMM demonstrates clear advantages
in both attack effectiveness and stealth, making it a more effective attack method when facing various
defense strategies.

6.3 Defense Results
In this section, we compare CLBL with state-of-the-art defense methods, Krum and Trimmed_

mean for all the poisoning attacks.



1318 CMES, 2024, vol.141, no.2

We initially assess the performance of CLBL without any attackers, with results presented in
Table 5. The experimental findings reveal that the global model aggregated using our proposed CLBL
achieves accuracies of 99.08%, 89.94%, and 76.06% on the MNIST, FMNIST, and CIFAR10 datasets,
respectively, which are comparable to the performance of FedAVG. While the accuracy of the global
model on CIFAR10 aggregated by CLBL is marginally lower than that of the model aggregated by
FedAVG, the experiments confirm the effectiveness and availability of CLBL. Table 6 presents the
accuracies of the compared aggregation algorithms on the three datasets. These results demonstrate
the effectiveness of CLBL, surpassing existing attacks in numerous scenarios, notably yielding higher
accuracies under PMM attacks.

Table 5: ACC (%) of the global model on defense methods without attackers (results are the mean of
five experiments, with variance in parentheses)

AGR MNIST FMNIST CIFAR10

FedAVG 99.02 (0.0090) 89.70 (0.0096) 76.61 (0.0060)
CLBL 99.08 (0.0000) 89.94 (0.0000) 76.06 (0.0066)

Table 6: ACC (%) of the global model on different defense methods against poisoning attacks (results
are the mean of five experiments, with variance in parentheses)

Dataset Attack FedAVG Krum Trimmed_mean CLBL

MNIST

LIE 11.36 (0.0000) 97.93 (0.0000) 11.30 (0.0001) 98.98 (0.0000)
Min-Max 11.36 (0.0001) 94.67 (0.0143) 11.36 (0.0001) 97.19 (0.0002)
Min-Sum 11.36 (0.0001) 95.13 (0.0001) 11.36 (0.0001) 97.23 (0.0040)
PMM 9.81 (0.0001) 10.56 (0.0043) 9.69 (0.0043) 98.93 (0.0000)

FMNIST

LIE 9.98 (0.0000) 70.64 (0.1727) 10.01 (0.0000) 87.30 (0.0000)
Min-Max 10.02 (0.0000) 76.52 (0.1128) 10.01 (0.0000) 79.95 (0.2740)
Min-Sum 10.03 (0.0000) 77.63 (0.0624) 10.00 (0.0000) 78.23 (0.2050)
PMM 9.97 (0.0000) 45.72 (0.0869) 9.99 (0.0000) 88.90 (0.1080)

CIFAR10

LIE 10.00 (0.0000) 46.42 (0.1735) 9.99 (0.0000) 67.07 (0.3670)
Min-Max 10.03 (0.0000) 28.14 (0.0196) 10.01 (0.0000) 62.51 (0.0703)
Min-Sum 10.03 (0.0013) 30.05 (0.0181) 10.01 (0.0000) 61.81 (0.2020)
PMM 9.99 (0.0000) 22.07 (0.1593) 12.47 (0.3042) 64.12 (0.2190)

Under LIE attacks, CLBL shows accuracy improvements of 16.66% and 77.29% on the FMNIST
dataset compared to Krum and Trimmed_mean, respectively. On the CIFAR10 dataset, the improve-
ments are 20.65% and 57.08%, respectively, compared to Krum and Trimmed_mean. On the MNIST
dataset, the improvements are 1.05% and 87.68%, respectively. Under Min-Max attacks, CLBL
demonstrates accuracy improvements of 3.43% and 69.93% on the FMNIST dataset compared to
Krum and Trimmed_mean, respectively. On the CIFAR10 dataset, the improvements are 34.37% and
52.50%, respectively. On the MNIST dataset, the improvements are 2.52% and 85.83%, respectively.
Under Min-Sum attacks, CLBL achieves accuracy improvements of 0.60% and 68.23% on the
FMNIST dataset compared to Krum and Trimmed_mean, respectively. On the CIFAR10 dataset,



CMES, 2024, vol.141, no.2 1319

the improvements are 31.76% and 51.80%, respectively. On the MNIST dataset, the improvements
are 2.10% and 85.87%, respectively. Under PMM attacks, CLBL delivers accuracy improvements of
43.18% and 78.91% on the FMNIST dataset compared to Krum and Trimmed_mean, respectively. On
the CIFAR10 dataset, the improvements are 42.05% and 51.65%, respectively. On the MNIST dataset,
the improvements are 88.37% and 89.24%, respectively.

The superior performance of CLBL can be attributed to its layer-based defense strategy, which
meticulously filters the parameters of each layer in the model to mitigate the impact of malicious model
updates on the global model. By employing this layer-by-layer filtering method, CLBL can effectively
identify and eliminate potential malicious modifications within each layer, thereby enhancing the
overall robustness of the model. In contrast, Krum and Trimmed_mean only perform filtering and
selection on the model as a whole, overlooking the possibility that an attacker might make minor
modifications in only one layer. In such cases, malicious model updates constructed by attackers might
successfully pass through Krum and Trimmed_mean filters, thereby compromising the performance
of the global model. Therefore, CLBL’s layered defense strategy proves particularly effective in
countering fine-grained attacks, significantly improving the model’s defense against various poisoning
attacks.

7 Factors of Poisoning Attacks

To comprehensively evaluate the attack performance of PMM, we conduct experimental evalua-
tions on the MNIST, FMNIST, and CIFAR10 datasets regarding the number of malicious clients and
the perturbation coefficient λ. We employ FedAVG, Krum and Trimmed_mean algorithms to conduct
defense experiments against PMM.

7.1 Numbers of Malicious Clients
In this section, we discuss the impact of the numbers of malicious clients in PMM.

Figs. 5–7 present the accuracy of FedAVG, Krum, and Trimmed_mean under PMM attacks with
varying numbers of malicious clients (m). In all cases, as m increases, PMM demonstrates progressively
stronger attack effectiveness, resulting in reduced model accuracy. This trend reflects the heightened
influence of malicious clients’ uploaded model updates on the global model with the increase in m.

Figure 5: ACC vs. Global Epochs for FedAVG under PMM across 3 datasets (MNIST, FMNIST,
CIFAR10) with 3 different numbers of malicious clients (Vertical Axis: accuracy, Horizontal Axis:
number of global epochs)



1320 CMES, 2024, vol.141, no.2

Figure 6: ACC vs. Global Epochs for Krum under PMM across 3 datasets (MNIST, FMNIST,
CIFAR10) with 3 different numbers of malicious clients (Vertical Axis: accuracy, Horizontal Axis:
number of global epochs)

Figure 7: ACC vs. Global Epochs for Trimmed_mean under PMM across 3 datasets (MNIST,
FMNIST, CIFAR10) with 3 different numbers of malicious clients (Vertical Axis: accuracy, Horizontal
Axis: number of global epochs)

7.2 Perturbation Coefficient λ

In this section, we discuss the impact of the perturbation coefficient λ in PMM.

Impact of Perturbation Coefficient λ in PMM Attacks against FedAVG: Fig. 8 illustrates the
accuracy of FedAVG subjected to PMM attacks. Varying values of the perturbation coefficient λ

were employed in our attacks. We observed that PMM exhibits enhanced attack effectiveness when
λ is larger, indicating lower model accuracy. This phenomenon stems from the amplified perturbation
introduced by PMM with larger λ values, resulting in greater deviation from normal model updates.
Consequently, the constructed malicious model updates exhibit more pronounced deviations, leading
to a more substantial adverse impact on the model.

Impact of Perturbation Coefficient λ in PMM Attacks against Krum: In Fig. 9, we depict the
accuracy of Krum amidst PMM attacks. Different λ values were utilized in our attacks. Notably,
PMM demonstrates superior attack efficacy with smaller λ values, leading to lower model accuracy.
This observation arises because increasing λ introduces greater perturbations by PMM, causing more
substantial deviations from normal values in the constructed malicious model updates. Consequently,
these anomalous behaviors make it less likely for Krum to select malicious model updates as the global
model update.



CMES, 2024, vol.141, no.2 1321

Figure 8: ACC vs. Global Epochs for FedAVG under PMM across 3 datasets (MNIST, FMNIST,
CIFAR10) with 3 different values of λ (Vertical Axis: accuracy, Horizontal Axis: number of global
epochs)

Figure 9: ACC vs. Global Epochs for Krum under PMM across 3 datasets (MNIST, FMNIST,
CIFAR10) with 3 different values of λ (Vertical Axis: accuracy, Horizontal Axis: number of global
epochs)

Impact of Perturbation Coefficient λ in PMM Attacks against Trimmed_mean: Fig. 10 showcases
the accuracy of Trimmed_mean subjected to PMM attacks. Our attacks utilized varying λ values. We
found that PMM exhibits heightened attack effectiveness with larger λ values, resulting in lower model
accuracy. This outcome is attributed to the increased perturbation introduced by PMM with larger λ

values, leading to greater deviation from normal values in the constructed malicious model updates.
Consequently, the detrimental effect on the model is more pronounced.

Figure 10: ACC vs. Global Epochs for Trimmed_mean under PMM across 3 datasets (MNIST,
FMNIST, CIFAR10) with 3 different values of λ (Vertical Axis: accuracy, Horizontal Axis: number
of global epochs)



1322 CMES, 2024, vol.141, no.2

8 Limitation and Future Work

Although this study provides thorough validation of the effectiveness of PMM and CLBL, there
are still some limitations. Firstly, the scalability of CLBL in larger and more complex federated
learning environments has not been fully tested. The current experimental setup may not fully reflect
its performance in real-world applications. Secondly, the types of poisoning attacks explored in this
study are limited, and the combinations and interactions of different types of attacks have not been
considered. These limitations restrict our understanding of CLBL’s defensive capabilities in diverse
attack scenarios.

Future research could further explore the integration of CLBL with other defense mechanisms
to enhance overall robustness and resilience. For example, investigating how to combine CLBL
with existing defense methods to form a more comprehensive defense system would be beneficial.
Additionally, studying the impact of different types of poisoning attacks and their combinations on the
model will help develop more effective defense strategies, thereby improving the security and reliability
of the model in complex environments. Such research would not only enhance defense effectiveness
but also provide stronger guarantees for practical applications.

9 Conclusion

In the realm of intelligent railway transportation systems, where large-scale AI models are pivotal,
FL offers a privacy-preserving solution. However, despite its effectiveness in preserving privacy, FL
systems remain susceptible to poisoning attacks. To illustrate these threats, we introduce a novel
attack method, PMM, which exploits the hierarchical structure of models to generate malicious model
updates through controlled malicious clients. Our extensive experiments across three datasets under-
score the effectiveness of PMM in disrupting the global model. In real-world railway scenarios, PMM
can degrade train scheduling performance, interfere with predictive maintenance models, and disrupt
security monitoring, leading to delays, increased costs, and compromised safety. In response to these
threats, we further develop a robust aggregation technique, CLBL, specifically tailored to counteract
such attacks. CLBL operates by clustering model parameters layer by layer, effectively filtering out
malicious model updates and enhancing the global model’s resilience. In practical applications, CLBL
can improve track monitoring, train operation control, and environmental monitoring, ensuring stable
railway system operations. The implementation of CLBL not only increases the reliability of railway
transportation but also reduces economic losses caused by system failures, and improves passenger
safety and satisfaction. Additionally, a stable railway system contributes to economic development,
enhances logistics efficiency, and supports connectivity between cities and regions. The efficacy of
CLBL is substantiated by our experiments on the same three datasets, showcasing its ability to enhance
the global model’s resilience and availability, crucial for maintaining the security of the intelligent
railway transportation systems.

Acknowledgement: The authors are thankful to the anonymous reviewers for improving this article.

Funding Statement: This work is supported by Systematic Major Project of China State Railway Group
Corporation Limited (Grant Number: P2023W002).

Author Contributions: The authors confirm their contribution to the paper as follows: study conception
and design, data collection, analysis, and interpretation of results: Yongsheng Zhu, Wei Wang and
Chong Liu; draft manuscript preparation, and editing: Chunlei Chen, Xiaoting Lyu, Zheng Chen,



CMES, 2024, vol.141, no.2 1323

Baigen Cai and Bin Wang; validation: Fuqiang Hu, Jiao Dai and Hanxi Li. All authors reviewed the
results and approved the final version of the manuscript.

Availability of Data and Materials: Based upon reasonable request, data can collect from the
corresponding author. The URLs for the datasets required in the experiments are as follows:
(1) MNIST: http://yann.lecun.com/exdb/mnist/ (accessed on July 23 2024); (2) FMNIST: https://
github.com/zalandoresearch/fashion-mnist (accessed on July 23 2024); (3) CIFAR-10: https://www.cs.
toronto.edu/kriz/cifar.html (accessed on July 23 2024).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Konečný J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D. Federated learning: strategies for

improving communication efficiency. arXiv preprint arXiv:1610.05492. 2016.
2. Li L, Liu J, Cheng L, Qiu S, Wang W, Zhang X, et al. CreditCoin: a privacy-preserving blockchain-based

incentive announcement network for communications of smart vehicles. IEEE Trans Intell Transp Syst.
2018;19(7):2204–20. doi:10.1109/TITS.2017.2777990.

3. Yazdinejad A, Dehghantanha A, Parizi RM, Hammoudeh M, Karimipour H, Srivastava G. Block hunter:
federated learning for cyber threat hunting in blockchain-based IIoT networks. IEEE Trans Ind Inform.
2022;18(11):8356–66. doi:10.1109/TII.2022.3168011.

4. Jagarlamudi GK, Yazdinejad A, Parizi RM, Pouriyeh S. Exploring privacy measurement in federated
learning. J Supercomput. 2024;80(8):10511–51. doi:10.1007/s11227-023-05846-4.

5. Lu S, Li R, Liu W. FedDAA: a robust federated learning framework to protect privacy and defend against
adversarial attack. Front Comput Sci. 2024;18(2):182307. doi:10.1007/s11704-023-2283-x.

6. Wang W, Song J, Xu G, Li Y, Wang H, Su C. ContractWard: automated vulnerability detection models for
ethereum smart contracts. IEEE Trans Netw Sci Eng. 2021;8(2):1133–44. doi: 10.1109/TNSE.2020.2968505.

7. Wang W, Shang Y, He Y, Li Y, Liu J. BotMark: automated botnet detection with hybrid analysis of flow-
based and graph-based traffic behaviors. Inf Sci. 2020;511:284–96. doi:10.1016/j.ins.2019.09.024.

8. Wang W, Suo X, Wei X, Wang B, Wang H, Dai H, et al. HGATE: heterogeneous graph attention auto-
encoders. IEEE Trans Knowl Data Eng. 2023;35(4):3938–51. doi:10.1109/TKDE.2021.3138788.

9. Bagdasaryan E, Veit A, Hua Y, Estrin D, Shmatikov V. How to backdoor federated learning. In: Chiappa S,
Calandra R, editors. The 23rd International Conference on Artificial Intelligence and Statistics (AISTATS)
2020, 2020 Aug 26–28; Palermo, Sicily, Italy: PMLR; vol. 108. p. 2938–48.

10. Lyu X, Han Y, Wang W, Liu J, Wang B, Liu J, et al. Poisoning with cerberus: stealthy and colluded backdoor
attack against federated learning. Proc AAAI Conf Artif Intell. 2023;37:9020–8.

11. Liu P, Xu X, Wang W. Threats, attacks and defenses to federated learning: issues, taxonomy and perspec-
tives. Cybersecurity. 2022;5(1):4.

12. Liu P, Wang W, Xu X, Li H, Ding W. Assessing membership leakages via task-aligned divergent shadow
datasets in vehicular road cooperation. IEEE Internet Things J. 2024;1.

13. Lu S, Li R, Chen X, Ma Y. Defense against local model poisoning attacks to byzantine-robust federated
learning. Front Comput Sci. 2022;16(6):166337. doi:10.1007/s11704-021-1067-4.

14. Zhang K, Song X, Zhang C, Yu S. Challenges and future directions of secure federated learning: a survey.
Front Comput Sci. 2022;16(5):165817. doi:10.1007/s11704-021-0598-z.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/ kriz/cifar.html
https://www.cs.toronto.edu/ kriz/cifar.html
https://doi.org/10.1109/TITS.2017.2777990
https://doi.org/10.1109/TII.2022.3168011
https://doi.org/10.1007/s11227-023-05846-4
https://doi.org/10.1007/s11704-023-2283-x
https://doi.org/10.1109/TNSE.2020.2968505
https://doi.org/10.1016/j.ins.2019.09.024
https://doi.org/10.1109/TKDE.2021.3138788
https://doi.org/10.1007/s11704-021-1067-4
https://doi.org/10.1007/s11704-021-0598-z


1324 CMES, 2024, vol.141, no.2

15. Biggio B, Nelson B, Laskov P. Poisoning attacks against support vector machines. In: Proceedings of the
29th International Conference on Machine Learning (ICML 2012), 2012 Jun 26–Jul 1; Edinburgh, Scotland,
UK: icml.cc/Omnipress.

16. Jagielski M, Oprea A, Biggio B, Liu C, Nita-Rotaru C, Li B. Manipulating machine learning: poisoning
attacks and countermeasures for regression learning. In: 2018 IEEE Symposium on Security and Privacy,
2018; San Francisco, CA, USA: IEEE Computer Society; p. 19–35. doi: 10.1109/SP.2018.00057.

17. Li B, Wang Y, Singh A, Vorobeychik Y. Data poisoning attacks on factorization-based collaborative
filtering. In: Lee DD, Sugiyama M, Von Luxburg U, Guyon I, Garnett R, editors. Advances in neural
information processing systems 29. Barcelona, Spain; 2016 Dec 5–10. p. 1885–93.

18. Rubinstein BIP, Nelson B, Huang L, Joseph AD, Lau S, Rao S, et al. ANTIDOTE: understanding and
defending against poisoning of anomaly detectors. In: Feldmann A, Mathy L, editors. Proceedings of the
9th ACM SIGCOMM Internet Measurement Conference, 2009 Nov 4–6; Chicago, Illinois, USA: ACM; p.
1–14. doi: 10.1145/1644893.1644895.

19. Suciu O, Marginean R, Kaya Y, Daumé III H, Dumitras T. When does machine learning FAIL?
Generalized transferability for evasion and poisoning attacks. In: Enck W, Felt AP, editors. 27th USENIX
Security Symposium, USENIX Security 2018. Baltimore, MD, USA: USENIX Association; 2018 Aug 15–
17. p. 1299–316.

20. Shejwalkar V, Houmansadr A. Manipulating the byzantine: optimizing model poisoning attacks and
defenses for federated learning. In: 28th Annual Network and Distributed System Security Symposium,
(NDSS 2021), 2021 Feb 21–25; The Internet Society.

21. Yin D, Chen Y, Ramchandran K, Bartlett PL. Byzantine-robust distributed learning: towards optimal
statistical rates. In: Dy JG, Krause A, editors. Proceedings of the 35th International Conference on Machine
Learning, 2018 July 10–15; Stockholmsmässan, Stockholm, Sweden: PMLR; vol. 80. p. 5636–45.

22. Blanchard P, Mhamdi EME, Guerraoui R, Stainer J. Machine learning with adversaries: Byzantine
tolerant gradient descent. 2017. p. 119–29. Available from: https://proceedings.neurips.cc/paper/2017/hash/
f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html. [Accessed 2024].

23. Chen Y, Su L, Xu J. Distributed statistical machine learning in adversarial settings: Byzantine gradient
descent. Proc ACM Meas Anal Comput Syst. 2017;1(2):1–25. doi:10.1145/3154503.

24. Chen Y, Qin X, Wang J, Yu C, Gao W. FedHealth: a federated transfer learning framework for wearable
healthcare. IEEE Intell Syst. 2020;35(4):83–93. doi:10.1109/MIS.2020.2988604.

25. McMahan B, Moore E, Ramage D, Hampson S, Arcas BA. Communication-efficient learning of deep
networks from decentralized data. In: Singh A, Zhu XJ, editors. Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, AISTATS 2017, 2017 Apr 20–22; Fort Lauderdale, FL,
USA: PMLR; vol. 54, p. 1273–82.

26. Dean J, Corrado G, Monga R, Chen K, Devin M, Le QV, et al. Large scale distributed deep
networks. In: Advances in neural information processing systems 25 (NIPS 2012). 2012:1232–
40. Available from: https://proceedings.neurips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-
Abstract.html. [Accessed 2024].

27. Barreno M, Nelson B, Joseph AD, Tygar JD. The security of machine learning. Mach Learn.
2010;81(2):121–48. doi:10.1007/s10994-010-5188-5.

28. Cretu GF, Stavrou A, Locasto ME, Stolfo SJ, Keromytis AD. Casting out demons: sanitizing training
data for anomaly sensors. In: 2008 IEEE Symposium on Security and Privacy (SP 2008), 2008 May 18–21;
Oakland, CA, USA: IEEE Computer Society; p. 18–21. doi:10.1109/SP.2008.11.

29. Tran B, Li J, Madry A. Spectral signatures in backdoor attacks. In: Bengio S, Wallach HM, Larochelle H,
Grauman K, Cesa-Bianchi N, Garnett R, editors. Advances in neural information processing systems 31:
Montréal, QC, Canada; 2018 Dec 3–8. p. 8011–21.

30. Liu J, Lyu X, Duan L, He Y, Liu J, Ma H, et al. PnA: robust aggregation against poisoning attacks to
federated learning for edge intelligence. ACM Trans Sens Netw. 2024;18:182307. doi:10.1145/3669902.

https://doi.org/10.1109/SP.2018.00057
https://doi.org/10.1145/1644893.1644895
https://proceedings.neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
https://doi.org/10.1145/3154503
https://doi.org/10.1109/MIS.2020.2988604
https://proceedings.neurips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://doi.org/10.1007/s10994-010-5188-5
https://doi.org/10.1109/SP.2008.11
https://doi.org/10.1145/3669902


CMES, 2024, vol.141, no.2 1325

31. Cao X, Fang M, Liu J, Gong NZ. FLTrust: Byzantine-robust federated learning via trust bootstrapping.
arXiv preprint arXiv:2012.13995. 2020.

32. Baruch G, Baruch M, Goldberg Y. A little is enough: circumventing defenses for distributed
learning. In: Advances in neural information processing systems 32 (NeurIPS 2019). 2019.
Available from: https://proceedings.neurips.cc/paper/2019/hash/ec1c59141046cd1866bbbcdfb6ae31d4-
Abstract.html. [Accessed 2024].

33. Fang M, Cao X, Jia J, Gong NZ. Local model poisoning attacks to Byzantine-robust federated learning.
In: Capkun S, Roesner F, editors. 29th USENIX Security Symposium, USENIX Security 2020, 2020 Aug
12–14; Berkeley, CA, USA: USENIX Association; p. 1605–22.

34. Cao X, Gong NZ. MPAF: model poisoning attacks to federated learning based on fake clients. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2022,
2022 Jun 19–20; New Orleans, LA, USA: IEEE; p. 3395–403. doi:10.1109/CVPRW56347.2022.00383.

35. Bhagoji AN, Chakraborty S, Mittal P, Calo SB. Analyzing federated learning through an adversarial lens.
In: Chaudhuri K, Salakhutdinov R, editors. Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 2019 Jun 9–15. Long Beach, CA, USA: Proceedings of Machine Learning Research.
PMLR; vol. 97, p. 634–43.

36. Campello RJGB, Moulavi D, Zimek A, Sander J. Hierarchical density estimates for data clustering, visu-
alization, and outlier detection. ACM Trans Knowl Discov Data. 2015;10(1):1–51. doi:10.1145/2733381.

37. Deng L. The MNIST database of handwritten digit images for machine learning research [Best of the Web].
IEEE Signal Process Mag. 2012;29(6):141–2. doi:10.1109/MSP.2012.2211477.

38. Xiao H, Rasul K, Vollgraf R. Fashion-MNIST: a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747. 2017.

39. Krizhevsky A. Learning multiple layers of features from tiny images (Master’s Thesis). Canada: Department
of Computer Science, University of Toronto; 2009.

40. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556. 2015.

https://proceedings.neurips.cc/paper/2019/hash/ec1c59141046cd1866bbbcdfb6ae31d4-Abstract.html
https://doi.org/10.1109/CVPRW56347.2022.00383
https://doi.org/10.1145/2733381
https://doi.org/10.1109/MSP.2012.2211477

	Privacy-Preserving Large-Scale AI Models for Intelligent Railway Transportation Systems: Hierarchical Poisoning Attacks and Defenses in Federated Learning
	1 Introduction
	2 Related Work
	3 Threat Model
	4 Attack Method
	5 Defense Method
	6 Experiment
	7 Factors of Poisoning Attacks
	8 Limitation and Future Work
	9 Conclusion
	References


