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ABSTRACT

Fractal time-dependent issues in fluid dynamics provide a distinct difficulty in numerical analysis due to their
complex characteristics, necessitating specialized computing techniques for precise and economical solutions. This
study presents an innovative computational approach to tackle these difficulties. The main focus is applying the
Fractal Runge-Kutta Method to model the time-dependent magnetohydrodynamic (MHD) Newtonian fluid with
rescaled viscosity flow on Riga plates. An efficient computational scheme is proposed for handling fractal time-
dependent problems in flow phenomena. The scheme is comprised of three stages and constructed using three
different time levels. The stability of the scheme is shown by employing the Fourier series analysis to solve scalar
problems. The scheme’s convergence is guaranteed for a time fractal partial differential equations system. The
scheme is applied to the dimensionless fractal heat and mass transfer model of incompressible, unsteady, laminar,
Newtonian fluid with rescaled viscosity flow over the flat and oscillatory Riga plates under the effects of space-
and temperature-dependent heat sources. The first-order back differences discretize the continuity equation. The
results show that skin friction local Nusselt number declines by raising the coefficient of the temperature-dependent
term of heat source and Eckert number. The numerical simulations provide valuable insights into fluid dynamics,
explicitly highlighting the influence of the temperature-dependent coefficient of the heat source and the Eckert
number on skin friction and local Nusselt number.
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Nomenclature

u∗ Horizontal components of velocity
(
m.s−1

)
y∗ Cartesian co-ordinate (m)

σ Electrical conductivity of the fluid
(
S.m−1

)
ν Kinematic viscosity

(
m2.s−1

)
ρ Density of fluid

(
kg.m−3

)
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C Concentration of fluid
(
mol.m−3

)
j0 Current density
cp Specific heat capacity

(
J.kg−1.K−1

)
a1 Width of the magnet and electrodes (m)

γ Reaction rate
kr Reaction rate parameter

(
s−1

)
β Newtonian fluid with rescaled viscosity parameter
M Magnetic parameter
Pr Prandtl number
Re Reynolds number
A Electrode’s width and the magnets
A∗ Dimensionless parameter
u, v Dimensionless horizontal and vertical components of velocity
θ Dimensionless temperature
v∗ Vertical components of velocity

(
m.s−1

)
x∗ Cartesian co-ordinate (m)

T Temperature of fluid (K)

Tw Temperature of fluid at the wall (K)

T∞ Ambient temperature of the fluid (K)

Cw Concentration on the wall
(
mol.m−3

)
C∞ Ambient concentration

(
mol.m−3

)
M0 Magnetization of the magnet
B0 Strength of imposed transverse magnetic field (Gaussmeter)
α Thermal diffusivity

(
m2.s−1

)
μ Dynamic viscosity

(
kg.m−1.s−1

)
H0 Hartmann number
Ec Eckert number
Q Modified Hartmann number
Sc Schmidt number
D Mass diffusivity
B∗ Dimensionless parameter
x, y Dimensionless coordinates
φ Dimensionless concentration

1 Introduction

Fluid dynamics have long enthralled scientific investigation due to its complicated and sophis-
ticated interplay of forces. Researchers have recently focused more on solving the problems of time-
dependent phenomena in fluid dynamics, thanks to improvements in numerical approaches and a
spike in processing power [1]. Fractal time-dependent problems are incredibly fascinating since they
present unique difficulties for numerical analysis due to their complexity and self-repeating patterns.
A unique computational approach is presented in this study to tackle the difficulties of fractal time-
dependent issues and contribute to the improvement of numerical solutions in fluid dynamics [2]. We
are particularly interested in the area where Newtonian fluid dynamics meets magnetohydrodynamics
(MHD), where the behaviour of time-dependent fluids affected by magnetic fields is crucial. Another
new development in geometry is ‘fractal geometry’, which helps to create a masterpiece of the flow
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pattern and its general attributes on several scales [3]. This can significantly improve the results and
the way of modelling behind employing complexities and methods of fractal view.

The purpose of the current study was to verify the complexity of flow by comparing it to other
fractals. Fractals in mathematics are geometric appearances that can be divided into pieces and cut out,
where each piece’s reduction is that very essence known as fractality. We need to adjust these linear and
non-linear differential equations that give solutions of flow fields with a set of calculations so it can
quickly figure out the different patterns of flow fields over several times and space scales. We use the
Fractal Runge-Kutta Method to solve the problem. It is an efficient way to find an approximate answer,
whereas when we use the method in flow, it successfully displays the flow details at different times and
scales. When we try to study the dynamics of a time-dependent fractal MHD Newtonian fluid with
rescaled viscosity over the Riga plate, a moving surface is used as the wall [4]. Since identifying the flow
detail and heat transfer is not a simple problem, we also needed the terminal of mathematical methods
to derive the results. Therefore, we used a fractal method to model the problem. The comparison
with fractals as and when needed can help us determine the flow pattern’s complexity. In the modern
techniques of geometry or the field of fluid flow analysis, the employment of fractal theory can improve
the predictability of the pattern of flow behaviour. In the study, we see the use of geometry in the case
of a dynamics problem [5].

Flows similar at different time scales can reflect the complexity of the fractal structure of a flow.
There are various ways to make a computer do fractal analysis, and various computer programs are
available on the internet to help us perform that task on our own. One such famous fractal is far from
us to find a set of complex roots of a polynomial. We needed an efficient way to get a target result
with a close approach; thus, we used a completely modified approach, Runge-Kutta. We can infinitely
approximate the error of the flow field into a particular area and then fix those results and validate
them from our fractal comparison.

The Fractal Runge-Kutta Method is a version of the Runge-Kutta scheme and is a very efficient
way to solve differential equations that show fractal characteristics. Traditionally, the equations to be
solved are essentially third-, fourth-, and fifth-order differential equations. Hence, a suitable fractal
point is to be achieved, and then the differential equations are solved to get a particular result. That’s
where Fractal Runge Kutta differs from traditional. It comes up with a target point and the error value
to get an exact result value that is as close as possible to the append error. And that’s what we needed to
solve the problem. It allows the accurate portrayal of physical phenomena. To summarise, Fractals can
assist us in many fractals when we get stuck. Solving difficult problems yields constants-based fractal
calculations that allow us to draw quick conclusions and retain seemingly impossible answers. These
fractals would account for many mathematical interpretations while we analyze the problem through
different patterns. When we try to see what is happening in the flow (when the flow field turns out
to be very subtle), we find connecting these Roman coefficients to form a Pythagorean Theorem and
then adjusting the results as much as possible.

A boundary layer in fluid dynamics is a thin layer that has been researched in theory in fluid
dynamics. It’s a thin layer of each phase or a boundary layer in each phase. It has been around for
more than a century. It started when Ludwig Prandtl developed it in 1904. The boundary layer has
powerful effects on the motion of fluids and represents their characteristics. Hence, studying a Riga
plate is an essential dynamic phenomenon [6]. It can be stated as a fluid layer that flows directly
over a surface, including shear flow. Researchers have conducted studies to explore the nature of the
flow of the layers in various forms of geometry, elongated shape, and horizontal plates [7], Read
Less vertical plates, being infinite in length [8], stretching sheets [9], and Read Less wedges [10]. A
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novel device called the Riga plate has been developed to minimize skin friction in movement [11]. The
electromagnetic properties of the Riga plate can be utilized to study the effects of thermal radiation and
viscous dissipation when the plate is submerged in a setup by positioning electrodes on it. Research on
this geometry has lately gathered steam in the 21st Century, despite Gailitis and Lielausis introducing
this plate in 1961 [12]. Using the Cattaneo Christov model [13], we studied the impact of radiation and
chemical reactions on Darcy Forchheimer flow, focusing on a Williamson fluid passing over a Riga
plate. Later, Reyaz et al. [14] used both numerical methods to analyze the data.

In a study [14], the Zakians method was employed to analyze the flow behaviour near a Riga
plate under the influence of a magnetic field. The findings suggested that the presence of the Riga plate
impacts the velocity. Particle deposition effects in Casson-type hybrid nanofluid flow over a Riga plate
were investigated in another study by [15] utilizing techniques like the Runge-Kutta Fehlberg method.
Additionally, using analysis [16]. They have examined the stagnation point flow of a hybrid nanofluid
across a Riga plate. Furthermore, in their paper, Loganathan et al. [17] examined how variable chemical
reactions affect Casson fluid flow over a Riga plate in a medium. The buoyancy-driven Casson fluid
flow from a vertical wavy surface in the presence of a magnetic field is studied numerically in the
proposed study [18], which also provides a quantitative and qualitative assessment of the underlying
heat transport in the free convective regime.

Computer networking, dynamics, control theory, and biology have all seen a rise in the use of
fractional calculus. Analyzing memory effects is made easier using this tool. Fluid problems are now
being approached using methods, a new trend [19]. Different mathematicians have defined derivatives
with and without kernels [20]. Atangana Baleanu derivative is one example of such a derivative [21].
When dealing with nonlocal behaviour and equations with non-singular kernels, this derivative proves
to be helpful [22]. It assists in addressing real-world issues such as heat and mass transfer, electrical
circuits, image processing, and the adverse effects of chemotherapy in cancer treatment [23]. The
Casson fluid flow alongside a plate was studied by Tassaddiq et al. [24] using a fractional approach.
Using the Laplace transform and Zakians algorithm, they solved transformed equations.

Shah and colleagues examined the Atangana-Baleanu derivative’s utilization in the flow analysis
between plates [25] and cylinders [26]. The study in [27] investigated the flow behaviour of nanoflu-
ids containing spherical-shaped Molybdenum Disulphide nanoparticles using an AB derivative.
Saqib et al. [28] examined the CNT nanofluid’s channel flow properties with CMC as the base fluid
employing an AB derivative. This numerical study [29] investigated the fractional viscoelastic fluid
model with unstable convection on an inclined plane through a Forchheimer medium. This paper
[30] focuses on developing a fractional explicit-implicit numerical method for solving time-dependent
partial differential equations. In their work, Nawaz et al. [31] proposed a third-order numerical
approach for solving fractional partial differential equations. The initial explicit stage can rapidly
converge, while the subsequent implicit stage is responsible for expanding the stability region.

Numerous research efforts have been devoted to exploring the practical applications of nanofluids
in heat transfer studies. Nanofluids are essentially solutions comprised of a fluid infused with
nanoparticles synthesized in laboratories to create an innovative solution that enhances overall fluid
behaviour for improved outcomes. While work on these fluids has been ongoing since the 1990s, Choi
first introduced and coined the term “nanofluids” in 1995 [32]. Using far nanofluids has yielded
promising outcomes in various disciplines, from engineering to healthcare. The consequences of
nanofluid flow in geometries have been the subject of much mathematical discussion; these findings
have significant practical ramifications.
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Offer insights into the utilization of nanoparticles in the base fluid. Magnetite nanoparticles
exhibit potential in applications and research [33]. They prove helpful for diagnosing and treating
diseases. Due to their potential in applications, researchers have devoted significant attention to
magnetite nanoparticles in their studies for several decades. The features of these nanoparticles
make them widely used in treatment. The effect of conductivity on magnetite nanofluid-based sheets
subjected to shrinkage and stretching was studied by [34]. In their paper, Seth et al. [35] discussed
ferrofluid flow over a plate with oscillating behaviour.

In this context, while traditional Runge-Kutta (RK) methods effectively solve equations, they
often face challenges when capturing the complex and non-linear dynamics of time fractal MHD
Newtonian fluid with rescaled viscosity flows over Riga plates. This is where Fractal Runge-Kutta
(FRK) methods emerge as an alternative. FRK methods utilize the concept of calculus, extending
the idea of differentiation and integration beyond numbers. Complex physical systems frequently
exhibit fractal time’s complexity and irregular structure, which exemplifies it. By incorporating these
derivatives into the RK framework, FRK methods demonstrate improved accuracy and stability,
especially when dealing with highly non-linear and singular problems.

The previous studies on flow and heat transfer on stretching sheets have captured the attention of
scholars across fields. It holds significance in polyamide production due to advancements in polymers.
With the idea of moving planes and velocities that change the distance from fixed locations on a sheet
in a linear fashion, Crane [36] investigated these concepts. Many researchers have recently employed
Newtonian fluids for heat and mass transfer [37,38]. Nadeem et al. [39] investigated second-grade
fluids’ time-dependent stretching behaviour. The paper by Majeed et al. [40] suggested using the
suction of stretching surfaces to study the flow of non-Newtonian fluids. The References [41,42]
described a new class of exact solutions to the Oberbeck-Boussinesq equations that describe an
incompressible fluid.

1.1 Novelty of the Study
This study is unique because it takes an interdisciplinary approach, applies the Fractal Runge-

Kutta Method, develops an efficient computational scheme, investigates fractal time-dependent fluid
dynamics, and uncovers valuable insights into fluid dynamics phenomena. All of these things add up
to a more advanced numerical solution to complicated fluid dynamic problems, which in turn opens
up new possibilities for study and development in the area:

1. A new computational approach is used to solve fractal time-dependent fluid dynamics problems.
The Fractal Runge-Kutta Method models time-dependent MHD Newtonian fluid with rescaled
viscosity on Riga plates.

2. A three-stage computational approach using three-time levels is proposed. This comprehensive
approach captures the complexity of fractal time-dependent problems to provide a sophisticated
knowledge of fluid dynamics.

3. Fourier series analysis of scalar issues proves the computing scheme’s stability. Moreover, a
convergence analysis for a time-dependent fractal partial differential equations system ensures the
numerical method’s dependability and correctness.

4. The computational approach is applied to a dimensionless fractal model of incompressible,
unstable, laminar Newtonian fluid with rescaled viscosity over flat and oscillatory Riga plates. For
practicality, space- and temperature-dependent heat sources are included in the numerical simulations.
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5. We present a powerful computational technique for fractal time-dependent fluid dynamics
problems. We ensure numerical solution accuracy and efficiency using a scheme with three-time levels
and rigorous stability analysis.

1.2 Potential Applications
The Riga plate geometry was selected for our investigation due to theoretical and practical

considerations of fluid dynamics. What follows is an outline of our decision-making procedure, along
with some examples of its potential applications:

1. Theoretical Considerations: The Riga plate design is straightforward and analytically under-
standable for fluid flow studies. Its primary and adjustable geometry allows for studying fundamental
fluid dynamics topics, making it a popular choice for theoretical and computational fluid mechanics
investigations. We can use the Riga plate’s simple geometry to learn about time-varying fluid dynamics
in controlled conditions.

2. Practical Applications: Despite its theoretical simplicity, the Riga plate geometry has extensive
practical applications across various industries. For example:

a. Heat Exchangers: The Riga plate geometry finds utility in heat exchangers, which transfer heat
from one fluid to another using a series of flat or oscillating plates. A comprehensive comprehension
of the fluid dynamics across Riga plates is necessary for systems to achieve optimal heat transfer
efficiency.

b. Aerospace Engineering: Regarding aerospace applications, the Riga plate geometry is a
common feature in the design of airfoils and wings. The fluid flow characteristics over these surfaces
are essential in determining the aerodynamic performance. Studying fluid dynamics over Riga plates
can provide valuable insights into airflow behaviour, which can help improve efficiency and stability
in aerospace systems.

Therefore, the article focuses on advancing and implementing a particular FRK technique to
investigate the time fractal MHD Newtonian fluid dispersion with rescaled viscosity flows on Riga
plates. We expect that this method will offer valuable information regarding the correlation between
the Newtonian characteristics of the fluid, magnetic fields, and fractal time scales. These insights can
be applied in various sectors, including optimizing heat transfer processes, regulating flow instabilities,
and creating innovative material coatings.

2 The Fractal Numerical Scheme

The fractal scheme is a numerical method consisting of three stages that can be used to discretize
time-dependent PDEs. Any finite difference discretization or other scheme can be employed for spatial
discretization. Before proposing a scheme, the whole domain is divided into small subintervals with
endpoints called grid points. The solution will be found at each grid point using the proposed scheme
except at those where boundary conditions are given. The main advantage of using the proposed
scheme is that it does not require linearization or any other iterative scheme. The scheme is employed
to follow time fractal partial differential equations.

∂v
∂tα

= G
(

v,
∂v
∂x

,
∂v
∂y

,
∂2v
∂y2

)
(1)
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where 0 < α ≤ 1. Subject to initial and boundary conditions given as:

v (0, x, y) = 0
v (t, 0, y) = α1 v (t, L, y) = α2, v (t, x, 0) = α3

v (t, x, L) = α4

⎫⎬
⎭ (2)

where αi, i = 1, 2, 3, 4 are constant.

The first stage of the scheme is:

vn+1
i,j = vn

i,j + Δt1

∂v
∂tα

∣∣∣∣
n

i,j

(3)

The first stage (1) finds the solution of Eq. (1) at an arbitrary time level. This stage (1) can also be
called as predictor stage. The second stage of the proposed scheme can be written as:

=
v

n+1

i,j = 1
2

(
vn

i,j + vn+1
i,j

) + Δt2

∂v
∂tα

∣∣∣∣
n+1

i,j

(4)

This stage (4) is also a predictor stage that finds the solution of the fractal partial differential
equation at an arbitrary time level. It also utilizes the solution computed from the first predictor stage.
The third stage of the proposed scheme can be articulated as:

vn+1
i,j = avn

i,j + bvn
i,j + c

=
v

n+1

i,j + dΔt
∂

=
v

∂tα

∣∣∣∣∣
n+1

i,j

(5)

where a, b, c, and d are parameters to be determined.

Now, substituting the first predictor stage (3) into the second predictor stage (4) yields:

=
v

n+1

i,j = vn
i,j +

1
2
Δt1

∂v
∂tα

∣∣∣∣
n

i,j

+ Δt2

∂v
∂tα

∣∣∣∣
n

i,j

+ Δt1Δt2

(
∂

∂tα

)2

vn
i,j (6)

By using Eqs. (3) and (6) into corrector stage (5), it yields:

vn+1
i,j = avn

i,j + bvn
i,j + bΔt1

∂v
∂tα

∣∣∣∣
n

i,j

+ cvn
i,j +

c
2
Δt1

∂v
∂tα

∣∣∣∣
n

i,j

+ cΔt2

∂v
∂tα

∣∣∣∣
n

i,j

+ cΔt1Δt2

(
∂

∂tα

)2

vn
i,j

+ dΔt

{
∂v
∂tα

∣∣∣∣
n

i,j

+ 1
2
Δt1

(
∂

∂tα

)2

vn
i,j + Δt2

(
∂

∂tα

)2

vn
i,j + Δt1Δt2

(
∂

∂tα

)3

vn
i,j

}
(7)

Expanding vn+1
i,j using fractal Taylor series yields:

vn+1
i,j = vn

i,j + Δt
∂v
∂tα

∣∣∣∣
n

i,j

+ (Δt)2

2

(
∂

∂tα

)2

vn
i,j +

(Δt)3

6

(
∂

∂tα

)3

vn
i,j + O

(
(Δt)4

)
(8)



1220 CMES, 2024, vol.141, no.2

By substituting fractal Taylor series expansion of vn+1
i,j (8) into Eq. (7), it is obtained:

vn
i,j + Δt

∂v
∂tα

∣∣∣∣
n

i,j

+ (Δt)2

2

(
∂

∂tα

)2

vn
i,j +

(Δt)3

6

(
∂

∂tα

)3

vn
i,j = avn

i,j + bvn
i,j + bΔt1

∂v
∂tα

∣∣∣∣
n

i,j

+ cvn
i,j

+ c
2
Δt1

∂v
∂tα

∣∣∣∣
n

i,j

+ cΔt2

∂v
∂tα

∣∣∣∣
n

i,j

+ cΔt1Δt2

(
∂

∂tα

)2

vn
i,j

+ dΔt

{
∂v
∂tα

∣∣∣∣
n

i,j

+ 1
2
Δt1

(
∂

∂tα

)2

vn
i,j + Δt2

(
∂

∂tα

)2

vn
i,j + Δt1Δt2

(
∂

∂tα

)3

vn
i,j

}
(9)

By equating coefficients of vn
i,j,

∂v
∂tα

∣∣∣∣
n

i,j

,
(

∂

∂tα

)2

vn
i,j and

(
∂

∂tα

)3

vn
i,j on both sides of Eq. (9), yields:

a + b + c = 1

bΔt1 + c
2
Δt1 + cΔt2 + dΔt = Δt

cΔt1Δt2 + d
2
ΔtΔt1 + dΔtΔt2 = (Δt)2

2

dΔtΔt1Δt2 = (Δt)3

6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

Solving Eq. (10) yields:

a = Δt3Δt2
1 − 4Δt3Δt1Δt2 − 6Δt2Δt2

1Δt2 − 4Δt3Δt2
2 + 12Δt2Δt1Δt2

2 − 24ΔtΔt2
1Δt2

2 + 24Δt3
1Δt2

2

24Δt3
1Δt2

2

b = Δt2Δt2
1 − 6Δt2Δt2

1Δt2 + 4Δt3Δt2
2 − 12Δt2Δt1Δt2

2 + 24ΔtΔt2
1Δt2

2

24Δt3
1Δt2

2

c = Δt3Δt1 − 2Δt3Δt2 + 6Δt2Δt1Δt2

12Δt2
1Δt2

2

d = Δt2

6Δt1Δt2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

Therefore, the proposed fractal scheme for Eq. (1) with second-order central space discretization
is given as:

vn+1
i,j = vn

i,j + Δt1G
(
vn

i,j, δxvn
i,j, δyvn

i,j, δ
2
yvn

i,j

)
(12)

=
v

n+1

i,j = 1
2

(
vn

i,j + vn+1
i,j

) + Δt2G
(
vn+1

i,j , δxv
n+1
i,j , δyv

n+1
i,j , δ2

yvn+1
i,j

)
(13)

vn+1
i,j = avn

i,j + bvn+1
i,j + c

=
v

n+1

i,j + ΔtdG
(=

v
n+1

i,j , δx

=
v

n+1

i,j , δy

=
v

n+1

i,j , δ2
y

=
v

n+1

i,j

)
(14)

where δxvn
i,j = vn

i+1,j − vn
i−1,j

2Δx
, δyvn

i,j = vn
i,j+1 − vn

i,j−1

2Δy
, δ2

yvn
i,j = vn

i,j+1 − 2vn
i,j + vn

i,j−1

(Δy)
2 .
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Let G = β1

∂v
∂x

+ β2

∂v
∂y

+ β3

∂2v
∂y2

in Eq. (1), then the proposed scheme for this case can be

written as:

vn+1
i,j = vn

i,j + Δt1(β1δxvn
i,j + β2δyvn

i,j + β3δ
2
yvn

i,j) (15)

=
v

n+1

i,j = 1
2

(
vn

i,j + vn+1
i,j

) + Δt2

(
β1δxv

n+1
i,j + β2δyv

n+1
i,j + β3δ

2
yvn+1

i,j

)
(16)

vn+1
i,j = avn

i,j + bvn+1
i,j + c

=
v

n+1

i,j + Δtd
(
β1δx

=
v

n+1

i,j + β2δy

=
v

n+1

i,j + β3δ
2
y

=
v

n+1

i,j

)
(17)

3 Stability Analysis

The Fourier series analysis exists in the literature to find the stability conditions of partial
differential equations. The scheme can be applied to non-linear PDEs, but it estimates the exact
stability conditions in this case. For non-linear differential equations, equations are linearized first,
and then this criterion is employed. This criterion is based on some transformations that convert the
different equations into trigonometric equations with the involvement amplitude of waves. To apply
this criterion, consider the following transformations:

vn+1
i,j = P

n+1
eiIψ1ejIψ2 , vn+1

i±1,j = P
n+1

e(i±1)Iψ1ejIψ2

vn+1
i,j±1 = P

n+1
eiIψ1e(j±1)Iψ2 , vn

i,j = PneiIψ1ejIψ2

vn
i±1,j = Pne(i±1)Iψ1ejIψ2 , vn

i,j±1 = PneiIψ1e(j±1)Iψ2

=
v

n+1

i,j = =
P

n+1

eiIψ1ejIψ2 ,
=
v

n+1

i±1,j = =
P

n+1

e(i±1)Iψ1ejIψ2

=
v

n+1

i,j±1 = =
P

n+1

eiIψ1e(j±1)Iψ2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)

where I = √−1. By substituting corresponding transformations from (18) into the first stage of the
proposed scheme (15), it yields:

P
n+1

eiIψ1ejIψ2 =PneiIψ1ejIψ2 + Δt1

{
β1

(
e(i+1)Iψ1ejIψ2 − e(i−1)Iψ1ejIψ2

2Δx

)
Pn

+β2

(
eiIψ1e(j+1)Iψ2 − eiIψ1e(j−1)Iψ2

2Δy

)
Pn + β3

(
eiIψ1ejIψ2 − 2eiIψ1ejIψ2 + eiIψ1e(j−1)Iψ2

(Δy)
2

)
Pn

}
(19)

Simplifying Eq. (19) yields:

P
n+1 = Pn + Δt1

{
β1

(
eIψ1 − e−Iψ1

2Δx

)
Pn + β2

(
eIψ2 − e−Iψ2

2Δy

)
Pn + β3

(
eIψ2 − 2 + e−Iψ2

(Δy)
2

)
Pn

}
(20)

Re-write Eq. (20) as:

P
n+1 = Pn + Δt1

{
β1

Isinψ1

Δx
+ β2

Isinψ2

Δy
+ β3

2(cosψ2 − 1)

(Δy)
2

}
Pn (21)
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Let c1 = β1Δt1

Δx
, c2 = β2Δt1

Δy
, d1 = β3Δt1

(Δy)
2 . Then, Eq. (21) can be written as:

P
n+1 = Pn +

{
c1Isinψ1 + c2Isinψ2 + 2d1(cosψ2 − 1)

}
Pn (22)

Similarly, substituting corresponding transformations from (18) into the second stage of the
proposed scheme gives:
=
P

n+1 = 1
2
(Pn + P

n+1
) +

{
ĉ1Isinψ1 + ĉ2Isinψ2 + 2d̂1(cosψ2 − 1)

}
P

n+1
(23)

By using Eq. (22) in Eq. (23), it gives:

=
P

n+1 = 1
2

Pn +
{

1
2

+ (ĉ1Isinψ1 + ĉ2Isinψ2 + 2d̂1 (cosψ2 − 1))

}
{1 + c1Isinψ1 + c2Isinψ2

+ 2d1 (cosψ2 − 1)
}

Pn (24)

Similarly, the following equation can be obtained by applying suitable transformations from (18)
into the third stage of the proposed scheme (17):

Pn+1 = aPn + bP
n+1 + c

=
P

n+1 + dΔt {c1Isinψ1 + c2Isinψ2 + 2d1 (cosψ2 − 1)} =
P

n+1

(25)

where c1 = β1

Δt
Δx

, c2 = β2

Δt
Δy

, d1 = β3

Δt

(Δy)
2 .

Upon substituting Eqs. (22) and (24) into Eq. (25) that gives:

Pn+1 = Pn + b
{

1 + c1Isinψ1 + c2Isinψ2 + 2d1 (cosψ2 − 1)
}

Pn

+ [c + dΔt (c1Isinψ1 + c2Isinψ2 + 2d1 (cosψ2 − 1))][
1
2

+
{

1
2

+ ĉ1Isinψ1 + ĉ2Isinψ2 + 2d̂1 (cosψ2 − 1)

}
{

1 + c1Isinψ1 + c2Isinψ2 + 2d1 (cosψ2 − 1)
}]

Pn (26)

Eq. (26) can be written as:

Pn+1 =
(

a + Ib
)

Pn (27)

where is a and b are real and imaginary parts of the expression in (26).

The amplification factor, in this case, is:∣∣∣∣Pn+1

Pn

∣∣∣∣
2

= a2 + b
2 ≤ 1 (28)

If the step size and β
′
i s, i = 1, 2, 3 satisfy condition (28), the scheme will remain stable; otherwise,

convergence is not guaranteed. Fig. 1 shows the amplification factor over the phase angle for both
classical and fractal cases. The fractal scheme provides a smaller stability region for the chosen spatial
step size than the scheme for the classical model. Also, for selecting small values of α, the stability
region is becoming smaller and smaller.
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(a) (b)

Figure 1: Stability regions (a) classical (b) fractal models using β1 = 0 = β2, β3 = 1, Δy = 0.9,
Δt

(Δy)
2 = 0.75

The next task is to provide convergence with the proposed scheme. For doing so, consider the
system of fractal partial differential equations as follows:

∂u
∂tα

= A1

∂u
∂x

+ A2

∂u
∂y

+ A3

∂2u
∂y2

+ A4u (29)

where u is a vector and A′
i s, i = 1, 2, 3 are matrices. Applying the proposed scheme on Eq. (29) as:

un+1
i,j = un

i,j + Δt1

{
A1δxun

i,j + A2δyun
i,j + A3δ

2
yun

i,j + A4un
i,j

}
(30)

=
u

n+1

i,j = 1
2

(
un

i,j + un+1
i,j

) + Δt2

(
A1δxu

n+1
i,j + A2δyu

n+1
i,j + A3δ

2
yun+1

i,j + A4u
n+1
i,j

)
(31)

un+1
i,j = aun

i,j + bun+1
i,j + c

=
u

n+1

i,j + Δtd
(

A1δx

=
u

n+1

i,j + A2δy

=
u

n+1

i,j + A3δ
2
y

=
u

n+1

i,j + A4

=
u

n+1

i,j

)
(32)

Theorem 1: The proposed scheme (30)–(32) converges conditionally for Eq. (29).

Proof: Let the first stage of the exact scheme for (29) be:

U
n+1

i,j = U n
i,j + Δt1

{
A1δxU

n
i,j + A2δyU

n
i,j + A3δ

2
yUn

i,j + A4U
n
i,j

}
(33)

Subtracting Eq. (30) from Eq. (33) and considering:

U
n+1

i,j − un+1
i,j = en+1

i,j , U n
i,j − un

i,j = en
i,j, U n

i±1,j − un
i±1,j = en

i±1,j, Un
i,j±1 − un

i,j±1 = en
i,j±1

The resulting equation is:

en+1
i,j = en

i,j + Δt1

{
A1δxen

i,j + A2δyen
i,j + A3δ

2
yen

i,j + A4en
i,j

}
(34)

Applying the norm on both sides of Eq. (34) and using triangle inequality yields:

en+1 ≤ en + cxen + cyen + 4dyen + Δt1 ‖A4‖ en (35)
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where cx = ‖A1‖Δt1

Δx
, cy = ‖A2‖ Δt1

Δy
, dy = ‖A3‖ Δt1

(Δy)
2 .

The second stage of the scheme is expressed as:

=
u

n+1

i,j = 1
2

(
U n

i,j + U
n+1

i,j

)
+ Δt2

{
A1δxU

n+1

i,j + A2δyU
n+1

i,j + A3δ
2
yU

n+1

i,j + A4U
n+1

i,j

}
(36)

Similarly, the following inequality can be obtained by subtracting Eq. (31) from Eq. (36):

=
e

n+1 ≤ 1
2

(
en + en+1) + ĉxen+1 + ĉye

n+1 + 4d̂ye
n+1 + Δt2 ‖A4‖ en+1 ≤ 1

2
en

+
(

1
2

+ ĉx + ĉy + 4d̂y + Δt2 ‖A4‖
) (

1 + cx + cy + 4dy + Δt1 ‖A4‖
)

en (37)

Let the third stage of the exact scheme be:

U n+1
i,j = aU n

i,j + bU
n+1

i,j + c
=
U

n+1

i,j + Δtd
(

A1δx

=
U

n+1

i,j + A2δy

=
U

n+1

i,j + A3δ
2
y

=
U

n+1

i,j + A4

=
U

n+1

i,j

)
(38)

Similarly, subtracting the proposed scheme’s third stage from the exact scheme’s third stage and
applying the norm yields inequality.

en+1 ≤ aen + ben+1 + c
=
e

n+1 + dcx

=
e

n+1 + dcy

=
e

n+1 + d4dy

=
e

n+1 + dΔt ‖A4‖ =
e

n+1
(39)

≤ aen + b
(

1 + cx + cy + 4dy + Δt1 ‖A4‖
)

en + (
c + dcx + dcy + 4dyd + dΔt ‖A4‖

)
(

1
2

+
(

1
2

+ ĉx + ĉy + 4d̂y + Δt2 ‖A4‖
)(

1 + cx + cy + 4dy + Δt1 ‖A4‖
))

en

+ M
(
O

(
(Δt)3 , (Δx)

2 , (Δy)
2
))

(40)

where cx = Δt ‖A1‖
Δx

, cy = Δt ‖A2‖
Δy

, dyx = Δt ‖A3‖
(Δy)

2 .

Re-write inequality (40) as:

en+1 ≤ μen + M
(
O

(
(Δt)3 , (Δx)

2 , (Δy)
2
))

(41)

where μ = a + b
(

1 + cx + cy + 4dy + Δt1 ‖A4‖
)

+ (
c + dcx + dcy + 4dyd + dΔt ‖A4‖

) (
1
2

+
(

1
2

+ ĉx

+ ĉy + 4d̂y + Δt2 ‖A4‖
) (

1 + cx + cy + 4dy + Δt1 ‖A4‖
))

.

Let n = 0 in inequality (41) it gives:

e1 ≤ μe0 + M
(
O

(
(Δt)3 , (Δx)

2 , (Δy)
2
))

(42)

Since e0 = 0 because there is no error in initial conditions; therefore (42) is written as:

e1 ≤ M
(
O

(
(Δt)3 , (Δx)

2 , (Δy)
2
))

(43)

Suppose n = 1 in inequality (41) then:

e2 ≤ μe1 + M
(
O

(
(Δt)3 , (Δx)

2 , (Δy)
2
)) ≤ (1 + μ)M

(
O

(
(Δt)3 , (Δx)

2 , (Δy)
2
))

(44)
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If this continued, then for finite n:

en ≤ (
μn−1 + . . . + μ + 1

)
M

(
O

(
(Δt)3 , (Δx)

2 , (Δy)
2
))

= 1(1 − μn)

1 − μ
M

(
O

(
(Δt)3 , (Δx)

2 , (Δy)
2
))

(45)

when n → ∞ then the series . . . + μn + . . . + μ + 1 becomes an infinite geometric series that will
converge if and only if |μ| < 1.

4 Problem Formulation

Consider laminar, incompressible, two-dimensional, unsteady, Newtonian fluid with rescaled
viscosity flow over flat, oscillatory sheets. Let x∗-axis is held along the plate and y∗-axis is taken
perpendicular to x∗-axis. The flow is generated due to the sudden movement of the plate. The flow
is moving from left to right, or its direction is towards positive x∗-axis. The flow is considered on the
Riga plates. An alternating array of electrodes is placed in the Riga plate, and permanent magnets
set up their plan surface. It is also presumed that the plates’ temperature and concentration exceed
the surrounding and ambient temperatures. Fig. 2 shows the geometry of the problem on the laminar,
incompressible, two-dimensional, unsteady, Newtonian fluid with rescaled viscosity flow over flat and
oscillatory sheets, particularly on Riga plates.

Figure 2: Geometry of the problem

Description of the Geometry:

1. Riga Plate Configuration (Left part of Fig. 2): The Riga plate is represented with alternating
positive and negative electrodes placed along the x∗-axis. Permanent magnets are also shown,
indicating that they are arranged on the surface of the plate. The electrodes and magnets create
an electromagnetic field, influencing the fluid flow.

2. Coordinate System: The x∗-axis is oriented along the plate’s length. The y∗-axis is perpendicular
to the plate, extending outwards from the plate’s surface. The z∗-axis represents the direction
normal to the plane formed by the x∗ and y∗-axes.



1226 CMES, 2024, vol.141, no.2

3. Flow and Boundary Layers (Right part of Fig. 2): The fluid flow is initiated due to the sudden
movement of the plate along the x∗-axis with a velocity uw. The velocity uw indicates the direc-
tion of the fluid flow from left to right along x∗-axis. The momentum boundary layer represents
the velocity profile development from the plate surface into the fluid. The thermal boundary
layer shows how temperature T changes from the plate Tw to the ambient temperature T∞
as we move away from the plate. The concentration boundary layer illustrates the change in
the concentration C from the plate concentration. Cw to the ambient concentration C∞ with
increasing distance from the plate.

A model of Casson fluid has been presented in [43], and here, the modified Casson model with
space and temperature-dependent heat source is presented. The flow can be described using the
governing equations:

∂u∗

∂x∗ + ∂v∗

∂y∗ = 0 (46)

∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ = ν

(
1 + 1

β

)
∂2u∗

∂y∗2
− σB2

◦
ρ

u + πJ◦M◦
8ρ

e− π
a1

y∗
(47)

∂T
∂t∗ + u∗ ∂T

∂x∗ + v∗ ∂T
∂y∗ = α

∂2T
∂y∗2

+ ν

cp

(
1 + 1

β

) (
∂u∗

∂y∗

)2

+ 1
ρcp

q′′′ (48)

∂C
∂t∗ + u∗ ∂C

∂x∗ + v∗ ∂C
∂y∗ = D

∂2C
∂y∗2 − kr (C − C∞) (49)

Subject to the initial and boundary conditions:

u∗ = 0, v∗ = 0, T = 0, C = 0 when t∗ = 0, x∗, y∗ > 0

u∗ = uw, v∗ = 0, T = Tw, C = Cw when y∗ = 0, x∗, t∗ > 0

u∗ = 0 = v∗ = T = C when x∗ = 0

u∗ → 0, T → T∞, C → C∞ when y∗ → ∞, x∗, t∗ > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(50)

where q′′′ = kuw

xνρcp

(A∗u (Tw − T∞) + B∗ (T − T∞)) is temperature and space-dependent internal heat

generation. A∗ and B∗ are spatial and temperature-dependent parameters, respectively, β is the
Newtonian fluid with rescaled viscosity parameter, M◦ is the magnetization of the permanent magnets
mounted on the surface of the Riga plate, a1 is the width of the magnetic field between electrodes,
J◦ represents current directly applied to electrodes, kr denotes chemical reaction, ρ is density, σ

is electric conductivity, B◦ is the applied magnetic field strength, D is mass diffusivity, α denotes
thermal diffusivity, ν is kinematic viscosity, and cp is the specific heat capacity. By employing the
transformations [44,45]:

u = u∗

uw

, v = v∗

uw

, x = x∗

L
, y = y∗

L
, t = uwt∗

L

θ = T − T∞
Tw − T∞

, φ = C − C∞
Cw − C∞

⎫⎪⎪⎬
⎪⎪⎭ (51)
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The problem formulation incorporates boundary conditions that accurately represent the physical
mechanics of fluid flow over the Riga plates. These conditions take into account factors such as tem-
perature and concentration gradients, as well as the impacts of magnetization and heat sources. Below
are the comprehensive boundary conditions together with their corresponding physical mechanisms:

1. Initial Condition: At t∗ = 0 for all x∗ and y∗: u∗ = 0, v∗ = 0, T = 0, C = 0. These initial
conditions signify that the fluid is at rest with no velocity, temperature, or concentration
deviations from the ambient state.

2. Boundary Conditions on the Plate Surface (y∗ = 0): For all x∗ and t∗ > 0: u∗ = uw, v∗ =
0, T = Tw, C = Cw. These conditions represent the sudden movement of the plate initiating
the fluid flow. The plate temperature Tw and concentration Cw are higher than the surrounding
environment, inducing thermal and concentration gradients.

3. Boundary Conditions along with the Leading Edge (x∗ = 0): For all y∗ and t∗ > 0: u∗ = 0, v∗ =
0, T = 0, C = 0. These conditions indicate no slip at the leading edge where the fluid velocity
and deviations in temperature and concentration are zero.

4. Far-Field Conditions (y∗ → ∞): For all x∗ and t∗ > 0: u∗ → 0, T → T∞, C → C∞.
These conditions signify that far away from the plate, the fluid velocity approaches zero, and
temperature and concentration approach the ambient values T∞ and C∞.

These conditions ensure a realistic representation of the initial state and the interactions at the
boundaries, providing a comprehensive framework for analyzing the fluid dynamics problem.

Into Eqs. (46)–(50), the dimensionless equations are obtained as:

∂u
∂x

+ ∂v
∂y

= 0 (52)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
(

1 + 1
β

)
∂2u
∂y2

− H2
◦

Re

u + Qe−Ay (53)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
= 1

Pr

1
Re

∂2u
∂y2

+ Ec

Re

(
1 + 1

β

)(
∂u
∂y

)2

+ ε

xPr

(A∗u + B∗θ) (54)

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
= 1

Sc

1
Re

∂2φ

∂y2
− γφ (55)

With dimensionless initial and boundary conditions:

u = 0, v = 0, θ = 0 = φ, when t = 0, x, y > 0

u = 1, v = 0, θ = 1 = φ, when y = 0, x, t > 0

u = 0 = v, θ = 0 = φ when x = 0

u → 0, θ → 0, φ → 0 when y → ∞, x, t > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(56)

where H◦ is the Hartmann number, A is the dimensionless parameter, Re is Reynolds number, Q denotes
modified Hartmann number, Pr is Prandtl number, Ec is Eckert’s number, Sc is the Schmidt number,
and γ is the reaction rate parameter, and these are defined as:

H◦ = LB◦

√
σ

ρν
, Re = Luw

ν
, Q = πJ◦M◦L

8ρu2
w

, Pr = ν

α
, Ec = u2

w

cp (Tw − T∞)
, Sc = ν

D
, γ = Lkr

uw
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The time fractal model is expressed as:

∂u
∂x

+ ∂v
∂y

= 0 (57)

∂u
∂tα

+ u
∂u
∂x

+ v
∂u
∂y

=
(

1 + 1
β

)
∂2u
∂y2

− H2
◦

Re

u + Qe−Ay (58)

∂θ

∂tα
+ u

∂θ

∂x
+ v

∂θ

∂y
= 1

Pr

1
Re

∂2u
∂y2

+ Ec

Re

(
1 + 1

β

)(
∂u
∂y

)2

+ ε

xPr

(A∗u + B∗θ) (59)

∂φ

∂tα
+ u

∂φ

∂x
+ v

∂φ

∂y
= 1

Sc

1
Re

∂2φ

∂y2
− γφ (60)

with the same initial and boundary conditions (56) as the classical model.

The skin friction coefficients, local Nusselt number, and Sherwood number are precisely
defined as:

Cf = τw

ρu2
w

(61)

Nux = xqw

k∞ (Tw − T∞)
(62)

Shx = xjw

D (Cw − C∞)
(63)

where τw = −μ

(
1 + 1

β

)
∂u∗

∂y∗

∣∣∣∣
y∗=0

, qw = −k
∂T
∂y∗

∣∣∣∣
y∗=0

, jw = −D
∂C
∂y∗

∣∣∣∣
y∗=0

.

Applying transformations (51) to Eqs. (61)–(63) yields dimensionless skin friction coefficients,
local Nusselt numbers, and Sherwood numbers:

Cf = −
(

1 + 1
β

)
∂u
∂y

∣∣∣∣
y=0

(64)

Nux = − ∂θ

∂y

∣∣∣∣
y=0

(65)

Shx = − ∂φ

∂y

∣∣∣∣
y=0

(66)

Justification for Time Fractal Model: Complex features in fluid dynamics, especially in a New-
tonian fluid with rescaled viscosity fluid flow over a plate, inspired the development of a temporal
fractal model. Even while classical models (52)–(55) have been around for a while, we can capture
more temporal subtleties with the time fractal model (57)–(60). A flexible framework for modelling
anomalous diffusion or other non-traditional time-dependent behaviours in the system can be
provided by the fractal derivative in time, which is represented by the parameter α.

Physical Meaning of α: The level of temporal fractality in the system is represented by the
parameter α in our time fractal model. It catches the out-of-the-ordinary diffusion behaviour, which
lets us see the time-dependent dynamics in more detail. We can study and describe complicated
temporal phenomena that traditional models might miss by including α, even if its physical meaning
might change depending on the system.
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Comparison with Classical Model (52)–(55): There is a double benefit to including both the
traditional (52)–(55) and fractal (57)–(60) models. We can demonstrate the time fractal model’s benefits
in capturing extra-temporal complexities by comparing it to the classical model, which serves as a
benchmark. Our goal in comparing the two models is to show how the fractal model is more sensitive
and powerful in our particular fluid dynamics case.

Assumption and Limitations: This study proposes certain assumptions in order to simplify the
modelling of time-dependent magnetohydrodynamic (MHD) Newtonian fluid flow with rescaled
viscosity on Riga plates using the Fractal Runge-Kutta Method. First, it assumes Newtonian,
incompressible, laminar, two-dimensional fluid behaviour, simplifying real-world fluid behaviour.
The study idealizes flow commencement by assuming a sudden plate movement. It also assumes
the plate’s temperature and concentration exceed the surrounding environment, creating continuous
boundary conditions. The Riga plate, with alternating electrodes and permanent magnets, models
electromagnetic effects, but other designs may not. Internal heat generation depends on space and
temperature, although the parameters may not cover all circumstances. The chemical reaction is
modelled with a defined reaction rate and a simplified mechanism, which may not capture more
complex reactions.

The study has significant limitations. The research is limited to high Reynolds number settings
with severe turbulence since it does not account for turbulent flow. Practical applications may involve
more sophisticated geometries than flat and oscillating sheets. Although efficient, the proposed
computational technique may be computationally expensive for very fine time increments or large-
scale issues, limiting its usefulness. The validation of the scheme is based on specific examples,
suggesting it has to be expanded to include more complex fluid behaviours and scenarios. These
limitations limit the study’s conclusions and indicate topics for further research to handle more
complicated or variable conditions.

5 Results and Discussions

An explicit computational scheme that finds the solution of fractal partial differential equations
in three stages is proposed. The first two stages of the schemes are predictor stages that find the
solutions at arbitrary time levels. So, the time from nth to (n + 1)th time level is divided into three
parts. The second stage of the scheme utilizes the solution obtained in the first stage, and the third
stage utilizes the solutions obtained in the first two stages. The scheme can be faster than some other
three explicit stages because it uses only one derivative term for the solution found in the previous stage.
The scheme is a condition that can be verified theoretically when the Fourier series is employed, and
it can also be verified from the computational Matlab code. The scheme can be used for both classical
and fractal differential equations. The scheme is constructed from fractal Taylor series analysis,
and according to this series, the proposed scheme is third-order accurate in fractal time. According
to the Lax equivalence theorem, the scheme is conditionally stable and consistent because it is
third-order accurate.

5.1 Parameter Ranges
• Newtonian fluid with rescaled viscosity parameter (β) : 0.1 to 2.0

• Hartmann number (H◦) : 0.5 to 10.0

• Modified Hartman number (Q) : 0.1 to 5.0

• Eckert number (Ec) : 0.01 to 2.0
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• Coefficients of space and temperature-dependent terms of internal heat generation (A∗ and B∗) :
0.01 to 1.0

• Schmidt number (Sc) : 0.1 to 2.0

• Reaction rate parameter (γ ) : 0.01 to 1.0

The values of parameters depend on the convergence of the scheme. Any parameter value can be
chosen if the scheme meets the stability condition. However, for higher values of the parameters, the
step size in time must be appropriately chosen to get a stable solution. Meeting the stability condition,
in this case, makes the scheme computationally expensive.

Fig. 3 shows the effect of the Newtonian fluid with rescaled viscosity parameter in the velocity
profile. The velocity decays by raising the Newtonian fluid with a rescaled viscosity parameter. Since
the coefficient of diffusion declines by rising Newtonian fluid with rescaled viscosity parameters, the
diffusion process becomes slow, and the velocity profile declines. Fig. 4 shows the effect of Hartmann’s
number velocity profile. The velocity profile declines when the Hartmann number is increased. The
velocity profile declines since the Lorenz force grows by rising Hartmann number, which leads to
increased resistance in the fluid flow. Fig. 5 displays the variation of the modified Hartmann number
on the velocity profile. The velocity profile grows by enhancing the modified Hartmann number.

Figure 3: Effect of Newtonian fluid with rescaled viscosity parameter on velocity profile using Re =
1, Q = 0.1, Ho = 0.1, A1 = 3, α = 0.7

The impact of the Eckert number on the temperature profile is depicted in Fig. 6. Temperature
grows as the Eckert number enhances. The Eckert number is the ratio of kinetic energy to enthalpy. By
raising the Eckert number, the internal friction of the fluid increases, and the temperature gradient is
not the only factor that raises the temperature. It also depends on dissipation due to internal friction.
Therefore, increasing the Eckert number increases self-heating, so the temperature profile grows.
Figs. 7 and 8 show the effect of coefficients of space and temperature-dependent terms of internal
heat generation. Temperature profile rises by augmenting both coefficients of space and temperature-
dependent terms of heat source. Since heat generation increases due to the enhancement of both
coefficients, this heat rise leads to growth in the temperature profile. Fig. 9 illustrates the impact of
the Schmidt number on the concentration profile. The concentration profile decreases as the Schmidt
number increases. Increasing the Schmidt number causes a decrease in mass diffusivity, resulting in
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a decay in the concentration profile. Fig. 10 illustrates the relationship between the concentration
profile and the response rate parameter’s fluctuation. The concentration profile declines by raising
the reaction rate parameter. The formation or breaking of chemical bonds between atoms is due
to chemical reactions in which reactants are converted into products, leading to a decline in the
concentration profile.

Figure 4: Effect of Hartmann number on velocity profile using Re = 1, Q = 1, β = 1, A1 = 3, α = 0.7

Figure 5: Effect of modified Hartmann number on velocity profile using Re = 1, Ho = 0.1, β = 1, A1 =
3, α = 0.7

The effect of the modified Hartmann number and Newtonian fluid with rescaled viscosity
parameter on the skin friction coefficient is displayed in Fig. 11. The skin friction coefficient rises
as the modified Hartmann number and Newtonian fluid with rescaled viscosity parameter grow.
Since the velocity profile increases by raising the modified Hartmann number, friction at the plate
grows, enhancing the skin friction coefficient. Fig. 12 displays the variation of the coefficient of
temperature-dependent terms of heat source and Eckert number on local Nusselt number. Local
Nusselt number decays as the coefficient and Eckert number grows. Since the temperature profile
increases by enhancing the coefficient of temperature-dependent terms and Eckert numbers, heat flux
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decreases, and the local Nusselt number also declines. The influence of the reaction rate parameter
and Schmidt number on the concentration profile is depicted in Fig. 13. The local Sherwood number
increases as the response rate parameter and Schmidt number increase. An increase in the reaction rate
parameter and Schmidt number results in a decrease in concentration, leading to a rise in mass flux
and an elevation in the concentration profile. Figs. 14–16 show the contour plots for horizontal and
vertical components of velocities and temperature profiles for the flow over the oscillatory surface.
The effect of time-dependent oscillations on the horizontal component of velocity and temperature
profiles can be seen in Figs. 14 and 16. It is to be noticed that more oscillations are produced in the
temperature profile as the Eckert number rises.

Figure 6: Effect of Eckert number on temperature profile using Re = 1, Ho = 0.1, β = 1, Q = 1,
A1 = 3, Pr = 0.9, A∗ = 0.1, B∗ = 0.1, ε = 0.1, α = 0.7

Figure 7: Effect of the coefficient of the space-dependent term of heat source on temperature profile
using Re = 1, Ho = 0.1, β = 1, Q = 1, A1 = 3, Pr = 0.9, Ec = 0.1, B∗ = 0.1, ε = 0.1, α = 0.7
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Figure 8: Effect of the coefficient of the temperature-dependent term of heat source on temperature
profile using Re = 1, Ho = 0.1, β = 1, Q = 1, A1 = 3, Pr = 0.9, Ec = 0.1, A∗ = 0.1, ε = 0.1, α = 0.7

Figure 9: Effect of the Schmidt number on concentration profile using Re = 1, Ho = 0.1, β = 1,
Q = 1, A1 = 3, Pr = 0.9, Ec = 0.1, A∗ = 0.1, B∗ = 0.1, ε = 0.1, γ = 0.1, α = 0.7

Fig. 17 shows the relative error made by the proposed scheme for the classical derivative. The
scheme solves the example studied in [46]. The solved example is a two-dimensional problem that has
the exact solution. Fig. 17 can be used to validate the results.

Table 1 shows the comparison of three schemes for finding the error and computational cost
when these schemes are applied to 1st example considered in [47]. A scheme comparison is made for
this example since the exact solution is available for this problem. The comparison shows that the
proposed scheme provides smaller errors than the other two existing schemes. The first-order scheme
is the forward Euler method, whereas the second-order scheme is just the second-order Runge-Kutta
method. The proposed scheme produced better results but took more time to achieve them. So, the
proposed scheme is more computationally expensive than the other two existing schemes. Also, it can
be seen that the error is reduced by increasing the size of time levels or decreasing the size of the time
step. The suggested scheme can be expanded in the following directions [48,49].



1234 CMES, 2024, vol.141, no.2

Figure 10: Effect of reaction rate parameter on concentration profile using Re = 1, Ho = 0.1, β =
1, Q = 1, A1 = 3, Pr = 0.9, Ec = 0.1, A∗ = 0.1, B∗ = 0.1, ε = 0.1, Sc = 1, α = 0.7

Figure 11: Effect of Newtonian fluid with rescaled viscosity parameter and modified Hartmann
number on skin friction coefficient using Re = 1, Ho = 0.1, A1 = 3, α = 0.7

Figure 12: Effect of reaction rate parameter on local Nusselt number using Re = 1, Ho = 0.1, β =
1, Q = 1.3, A1 = 3, Pr = 0.9, A∗ = 0.1, ε = 0.1, α = 0.7
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Figure 13: Effect of reaction rate parameter and Schmidt number on local Sherwood number using
Re = 1, Ho = 0.1, β = 1, Q = 1.3, A1 = 3, α = 0.7

Figure 14: Contour plot for the horizontal component of velocity using Re = 1, Ho = 0.1, β = 1, Q =
1.3, A1 = 3, Pr = 0.9, Ec = 0.9, A∗ = 0.1, B∗ = 1.9, ε = 0.1, Sc = 1.3, γ = 0.1, α = 0.7, Lx =
27(length of domain on x-axis), Lx = 15(length of domain on y-axis), uw = cos (1.5t) , x = 2.2041
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Figure 15: Contour plot for the vertical component of velocity using Re = 1, Ho = 0.1, β = 1, Q =
1.3, A1 = 3, Pr = 0.9, Ec = 0.9, A∗ = 0.1, B∗ = 1.9, ε = 0.1, Sc = 1.3, γ = 0.1, α = 0.7, Lx =
27(length of domain on x-axis), Lx = 15(length of domain on y-axis), uw = cos(1.5t), x = 2.2041

Figure 16: Contour plot for temperature profile using Re = 1, Ho = 0.1, β = 1, Q = 1.3, A1 =
3, Pr = 0.9, Ec = 0.9, A∗ = 0.1, B∗ = 1.9, ε = 0.1, Sc = 1.3, γ = 0.1, α = 0.7, Lx =
27(length of domain on x-axis), Lx = 15(length of domain on y-axis), uw = cos(1.5t), x = 2.2041
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Figure 17: Relative error computed by the scheme for the classical case, i.e., α = 1

Table 1: Comparison of three numerical schemes for finding error and consumption of time using
Nx = 50 = Ny(No. of gridpoints), tf = 0.1

Δt Proposed 1st Order 2nd order

L2 Error Time (s) L2 Error Time (s) L2 Error Time (s)
0.1

1500
3.81e-04 46.35 6.29e-04 11.10 5.31e-04 22.71

0.1
1750

3.79e-04 54.58 5.93e-04 13.99 5.09e-04 27.28

0.1
2000

3.77e-04 60.60 5.66e-04 15.59 4.92e-04 30.00

0.1
2250

3.76e-04 70.18 5.45e-04 16.15 4.79e-04 34.31

6 Conclusions

An innovative computer approach called the Fractal Runge-Kutta Method has been developed in
this study. Its purpose is to address the challenging fractal time-dependent issues in fluid dynamics,
namely the magnetohydrodynamic (MHD) Newtonian fluid with rescaled viscosity fluid flow on Riga
plates. Several essential facts and insights have contributed significantly to the field due to the study.
We confirm its robustness in dealing with the complexities of fractal dynamics by showing that the
three-stage computing method, built with multiple time levels, is stable under Fourier series analysis
for a scalar problem. The suggested method is further supported by a convergence analysis for the
time-dependent fractal partial differential equations system, which gives a strong basis for its use in
real-world situations. A dimensionless fractal model of incompressible, unstable, laminar Newtonian
fluid with rescaled viscosity fluid flow over flat and oscillatory Riga plates successfully employs the
computational scheme, demonstrating its adaptability. The numerical framework is further improved
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and more applicable to various fluid dynamic situations by discretizing the continuity equation
using first-order back differences. A finite difference scheme has been constructed. The scheme was
applied for fractal time-dependent partial differential equations of boundary layer flow over the
flat and oscillatory sheets. The proposed scheme and backward differencing formulas have solved
four dimensionless differential equations. Space discretization was done using second-order central
difference formulas. The concluding points can be expressed as:

1. Skin friction coefficient has grown by enhancing the modified Hartmann number and Newto-
nian fluid with rescaled viscosity parameter.

2. Local Nusselt number declined by raising Eckert number and coefficient of temperature-
dependent heat source term.

3. The local Sherwood number was increased by growing reaction rate parameter values and
Schmidt number values.

Notable results include investigating how the skin friction and local Nusselt number are affected
by the heat source’s temperature-dependent term coefficient. The findings show interesting patterns
that show how fluid dynamics is affected by characteristics that depend on temperature. With this
information, we can better comprehend how different factors interact in fractal fluid flow models.

In general, when dealing with time-dependent fluid dynamics problems, especially those involving
fractal phenomena, the Fractal Runge-Kutta Method is an effective tool. This new and challenging
field of study can build upon the analytical stability and convergence investigations conducted and
practical applications to Newtonian fluid flow with rescaled viscosity fluid over Riga plates. With the
growing knowledge of fractal dynamics, the computational technique proposed here could be helpful
in many areas of fluid mechanics.

Integrating multi-physics phenomena, experimental validation or comparison with empirical
data, practical applications in aerospace engineering, heat exchanger design, or chemical processing
industries, and extension to complex geometries and boundary conditions could be the focus of future
research. Another area of interest could be developing and applying advanced fractal techniques for
time-dependent fractal MHD Casson fluid dynamics over moving Riga plates. We aim to include
various viewpoints in the conclusion to lay out a thorough plan for future research efforts, encouraging
creativity and progress in the area.
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