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ABSTRACT

Artificial rabbits optimization (ARO) is a recently proposed biology-based optimization algorithm inspired by the
detour foraging and random hiding behavior of rabbits in nature. However, for solving optimization problems, the
ARO algorithm shows slow convergence speed and can fall into local minima. To overcome these drawbacks, this
paper proposes chaotic opposition-based learning ARO (COARO), an improved version of the ARO algorithm
that incorporates opposition-based learning (OBL) and chaotic local search (CLS) techniques. By adding OBL to
ARO, the convergence speed of the algorithm increases and it explores the search space better. Chaotic maps in
CLS provide rapid convergence by scanning the search space efficiently, since their ergodicity and non-repetitive
properties. The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions. The
outcomes have been compared with the most recent optimization algorithms. Additionally, the COARO algorithm’s
problem-solving capabilities have been evaluated using six different engineering design problems and compared
with various other algorithms. This study also introduces a binary variant of the continuous COARO algorithm,
named BCOARO. The performance of BCOARO was evaluated on the breast cancer dataset. The effectiveness of
BCOARO has been compared with different feature selection algorithms. The proposed BCOARO outperforms
alternative algorithms, according to the findings obtained for real applications in terms of accuracy performance,
and fitness value. Extensive experiments show that the COARO and BCOARO algorithms achieve promising results
compared to other metaheuristic algorithms.

KEYWORDS
Artificial rabbit optimization; binary optimization; breast cancer; chaotic local search; engineering design problem;
opposition-based learning

1 Introduction

In today’s world, real-world optimization problems have become more complex. Their difficulty
has increased due to developments in various application fields such as engineering, medicine,
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computer science, and manufacturing design. These problems include complexities such as multi-
objective, non-linear, multi-dimensional, multi-disciplinary, and non-convex regions [1]. Practical and
dependable optimization algorithms can be developed to solve these problems. Classical optimization
methods based on gradient information, including calculating first and second derivatives, cannot
provide satisfactory results reasonably for solving such issues [2]. These methods require a large
number of complex mathematical calculations. In these methods, issues with convergence speed and
getting stuck at the local optimum point may be encountered. Complex implementation, mathematical
calculations, difficult convergence for discrete optimization problems, etc., are some disadvantages of
classical optimization methods [3].

In recent years, researchers have taken great interest in metaheuristic approaches to eliminate the
shortcomings of classical optimization methods and solve complex optimization problems with high
efficiency and accuracy. Metaheuristic algorithms aim to find the optimal or approximate solution
to complex optimization problems under limited conditions by using search methods inspired by
different natural methods. These search strategies help find nearly optimal solutions by effectively
searching the search space. Metaheuristic algorithms are not problem-specific and are flexible to solve
various optimization problems [4]. They are stochastic algorithms that start the search process with
random solutions. They have low computational complexity. Additionally, these algorithms can escape
local optima due to randomness-based search strategies. In recent years, metaheuristic algorithms have
been successfully used to solve various optimization problems in many research areas, such as image
segmentation [5], robotic and path planning [6], medical application [7], sensor networks [8], water
resources management [9], thin-walled structures [10], Internet of Things (IoT) [11], bioinformatics
[12], and engineering problems [13]. Metaheuristic algorithms can be examined in different categories:
physics, social, music, swarm, chemistry, biology, sports, mathematics, and hybrid-based.

Artificial Rabbits Optimization (ARO) is a new metaheuristic optimization method presented
in 2022 [14]. ARO mimics rabbits’ natural foraging and hiding behaviors. The problem of falling
into local optima and premature convergence are the main drawbacks of ARO. These limitations
restrict the exploration of the search space and prevent finding the global optimum. The random
initialization of the rabbits, the initial population in ARO, and the imbalance between exploration
and exploitation also affect the algorithm’s performance. Chaotic opposition-based learning ARO
(COARO), an improved version of ARO, has been proposed to overcome these limitations and improve
the effectiveness of ARO. The COARO algorithm is proposed by combining the strengths of chaotic
local search (CLS) and opposition-based learning (OBL) and incorporating ten different chaotic maps
into the optimization process. CLS ensures that solution quality increases by directing the local search
around the global best solution. Adding OBL to the algorithm improves the initial population and
enhances the problem of getting stuck in local minima.

The effectiveness of the proposed algorithm was evaluated using different benchmarks. The
COARO algorithm’s performance is compared to that of ARO, Grey Wolf Optimization (GWO),
Multi-Verse Optimizer (MVO), Particle Swarm Optimization (PSO), and Transient Search Optimiza-
tion (TSO). Performance comparison of the COARO algorithm was supported by Wilcoxon’s signed
rank (WSR) and Friedman tests. Box plot comparison has been employed to check the proposed
COARO algorithm’s consistency. The COARO algorithm’s capacity for problem-solving has been
tested on six different engineering design problems, including pressure vessel, rolling element bearing
design, cantilever beam, speed reducer, welded beam, and tension/compression spring. Simulation
results indicate that the COARO algorithm outperforms ARO in most cases. It has also been observed
that COARO achieves promising results compared to recent optimization algorithms. Furthermore,
the paper proposes the binary version of the COARO algorithm (BCOARO) to solve the issue of
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feature selection in classification tasks. The V-shaped transfer function is integrated into the algorithm
to convert the continuous COARO algorithm into a binary version. The BCOARO algorithm’s
performance is compared using different feature selection methods.

The significant contributions of the paper are:

• This paper introduces COARO, which is proposed to eliminate the shortcomings of ARO and
improve its performance.

• COARO algorithm is proposed by adding CLS with OBL to the original ARO and incorporat-
ing ten different chaotic maps into the optimization process. CLS has improved the performance
and convergence speed of the proposed algorithm by using chaotic maps. Additionally, with the
use of OBL, population diversity has increased, and the problem of getting stuck in local minima
has improved.

• The effectiveness of the proposed algorithm was evaluated using different benchmarks. The
COARO algorithm’s performance is compared to ARO, GWO, MVO, PSO, and TSO. Perfor-
mance comparison of the COARO algorithm was supported by Wilcoxon’s signed rank (WSR)
and Friedman tests. Box plot comparison has been employed to check the proposed COARO
algorithm’s consistency.

• The COARO algorithm’s capacity for problem-solving has been tested on six engineering design
problems, including pressure vessel, rolling element bearing design, cantilever beam, speed
reducer, welded beam, and tension/compression spring.

• This paper also proposes a binary COARO algorithm (BCOARO) version. It has been tested
on the breast cancer dataset, and the results have been compared with different feature selection
methods.

The structure of the paper is as follows: The ARO algorithm’s mathematical model is described in
Section 2. In Section 3, the proposed COARO algorithm is explained. CLS, OBL, and an overview
of COARO and its complexity are detailed. Section 4 evaluates the proposed COARO algorithm
using unimodal, multimodal, fixed-dimension multimodal, and CEC2019 functions. This section also
compares the COARO algorithm’s performance to various metaheuristic algorithms in the literature.
In the same section, performance assessments of WSR and Friedman statistical tests are made. The
results of COARO algorithms on six different engineering problems are examined in this section.
Section 5 concludes with a discussion of future research and conclusions.

2 The Mathematical Model of ARO Algorithm

ARO algorithm was developed with a mathematical model inspired by the survival strategies of
rabbits in nature [15]. Rabbits’ survival strategies are based on exploration and exploitation. The first
behavior, the exploration strategy, is described as detour foraging [16]. Rabbits aim to minimize the
chance of being caught by digging many burrows to protect themselves from predators and mislead
them. In this respect, the second behavior, the exploitation strategy, is described as random hiding.
Depending on their energy state, rabbits must adaptively switch between circuitous foraging and
random hiding strategies. In this respect, the third behavior, the switch from exploration to exploitation
strategy, is described as energy shrink [17].

2.1 Detour Foraging (Exploration)
Rabbits prefer far places rather than near nests when searching for food. The location of each

search individual tends to update towards the other search individual picked at random in the swarm.
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This behavior is a clear indication of the detour foraging behavior of the ARO [18]. The following is
the mathematical model of rabbits’ detour foraging:
−→v i (t + 1) = −→x j (t) + R · (−→x i (t) − −→x j (t)

)+ round(0.5 · (0.05 + r1)) · n1 (1)

R = L · c (2)

L =
(

e − e(
t−1
T )

2) · sin(2πr2) (3)

c (k) =
{

1 if k == g(l)
0 else

(4)

g = randperm(d) (5)

n1 ∼ N(0, 1) (6)

here, i, j = 1, . . . , n and j �= i. k = 1, . . . , d and l = 1, . . . , �r3 · d �. The ith rabbit’s potential
location at a time (t+1) is −→v i(t+1). −→x i(t) represents the ith rabbit’s location at (t). A population of
rabbits has a size of n. The problem’s dimension is d. The max iteration number is T . �·� indicates the
ceiling function. Rounding to the closest integer is indicated by a round. A random permutation of
numbers from 1 to d is returned by randperm. r1, r2 and r3 are defined as the random three numbers in
(0, 1). L is the running distance that reflects the rate of movement when engaging in detour foraging.
The conventional normal distribution applies to n1. The L can provide a longer step during the initial
iterations, according to Eq. (3). The mapping vector c is used to help the algorithm randomly select a
set of search individual components to alter the foraging behavior. R defines the running operator [14].

2.2 Random Hiding (Exploitation)
Rabbits dig tunnels around their caves to protect themselves from predators. According to the

ARO algorithm, a rabbit always digs d tunnels around it in each dimension of the search space, and it
always picks one of the caves at random to hide in to lessen the likelihood of being attacked [18]. The
following is defined of jth nest of the ith rabbit:
−→
b i,j (t) = −→x i (t) + H · g · −→x i (t) (7)

H = T − t + 1
T

· r4 (8)

n2 ∼ N(0, 1) (9)

g (k) =
{

1 if k == j
0 else

(10)

here, i = 1, . . . , n, j = 1, . . . , d, and k = 1, . . . , d. According to Eq. (7), a rabbit creates burrows in
its immediate neighborhood in all directions. H defines the hiding parameter and iteratively decreases
linearly from 1 to 1/T with a random perturbation [19]. The random selection of one of the rabbit’s
burrows for shelter is rejected to avoid being caught by predators [14]. The following is described as
the mathematical model for this random hiding strategy:
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−→v i (t + 1) = −→x i (t) + R ·
(

r4 · −→
b i,r(t) − −→x i (t)

)
(11)

gr (k) =
{

1 if k == �r5 · d�
0 else

(12)

−→
b i,r (t) = −→x i (t) + H · gr · −→x i (t) (13)

here, i = 1, . . . , n and k = 1, . . . , d defines a randomly chosen burrow to hide from its d burrows.
r4 and r5 define two random numbers in (0, 1). Using Eq. (11), the ith search individual updates
its location toward one of the caves from its d burrows that were randomly chosen. Following the
successful completion of either detour foraging or random hiding, the ith rabbit’s position is updated
in Eq. (14):

parent−→x i (t + 1) =
{−→x i (t) f

(−→x i (t)
) ≤ f

(−→v i (t + 1)
)

−→v i (t + 1) f
(−→x i (t)

)
> f

(−→v i (t + 1)
) (14)

When the position of ith rabbit is checked according to Eq. (14), when the candidate position is
better than the current position, the rabbit will leave its current position and move to the candidate
positions determined by Eqs. (1) and (11).

2.3 Energy Decline (from Exploration to Exploitation)
Modeling the transition from the exploration process associated with detour foraging to the

exploitation stage associated with random hiding includes an energy component. The energy factor
designed in ARO is given in Eq. (15).

A (t) = 4 ln
1
r

(
1 − t

T

)
(15)

here, r represents a random number in (0, 1). A(t), the energy factor, tends to decrease towards zero as
the number of iterations increases. The ARO pseudo-code is provided in Algorithm 1.

Algorithm 1: The pseudo-code of the ARO algorithm
Input: Maximum iteration number, population size
Output: X best best solutions and Fbest its fitness value
Initialize the first population of rabbits randomly (X i)
Evaluate the fitness value of each rabbit (Fiti)
X best = the best solution found so far

while (termination condition is not met)
for each individual (X i) do
Calculate the energy factor A using Eq. (15)

if A > 1
Select a rabbit randomly from other individuals
Calculate R using Eqs. (2)–(6)
Perform detour foraging using Eq. (1)

(Continued)
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Algorithm 1 (continued)
Calculate the fitness Fiti

Update the position of the current individual using Eq. (14)
else

Generate d burrows and randomly pick one as hiding using Eq. (13)
Perform random hiding using Eq. (11)
Calculate the fitness Fiti

Update the position of the individual using Eq. (14)
end if
Update the best solution found so far X best

end for
end while

Return X best

3 The Proposed COARO Algorithm

In this section, the proposed COARO algorithm is presented, which combines CLS and OBL
techniques to improve the performance of the ARO algorithm and overcome its difficulties. The section
includes general information about CLS and OBL techniques, the motivation for integrating them into
ARO, and the general structure of the COARO algorithm.

3.1 Chaotic Local Search (CLS)
The term “chaos” describes the highly unexpected behavior of a complex system [20]. Math-

ematically, chaos is deterministic randomness found in a nonlinear, dynamic, and non-converging
[21]. Due to this definition, it can be assumed that the source of randomness is chaotic systems.
An optimization algorithm’s search strategy is often implemented within the search space based on
random values. Chaos maps use a function to relate or match the chaos behavior in the optimization
method based on a parameter. This way, optimization algorithms based on chaotic maps can scan
the search space more dynamically and generally. Chaotic maps, which are used as an alternative to
random number generators in the search space, often obtain better results than them. Although chaos
has an unexpected behavior structure, it also has harmony within. Local optima can be avoided when
randomness is adjusted by utilizing chaotic maps in optimization algorithms. A chaotic local search-
based search strategy is introduced to enhance ARO’s ability to obtain optimal global solutions. In
this study, the chaotic maps given in Table 1 are used.

3.2 Opposition-Based Learning (OBL)
OBL proposed by Tizoosh is used to improve the search capability of algorithms and increase the

convergence speed [22]. Classical metaheuristic algorithms start the search process with a randomly
generated population containing solutions to the problem to be tested. In this case, the algorithm’s
convergence rate may be reduced and the calculation time may increase. To overcome this problem,
the OBL strategy considering inverse solutions is introduced. OBL calculates an inverse solution X i

for each solution X in the range lb (lower bound) and ub (upper bound) by Eq. (16).

X i = lbi + ubi − Xi (16)
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Table 1: Chaotic maps used in the COARO algorithm

Algorithm Chaotic map Mathematical expression Range

COARO1 Chebyshev xn+1 = cos
(
kcos−1xn

)
(−1, 1)

COARO2 Circle xn+1 = xn + b −
( a

2π

)
sin(2πxn)mod(1); a = 0.5 and

b = 0.2

(0, 1)

COARO3 Gauss/Mouse xn+1 =

⎧⎪⎨
⎪⎩

0, xn = 0

1
xnmod (1)

, xn ∈ (0, 1)

⎫⎪⎬
⎪⎭ ,

1
xnmod (1)

=

1
xn

−
⌊

1
xn

⌋
.

(0, 1)

COARO4 Iterative xn+1 = sin
(

aπ

xn

)
a = 0.7 (−1, 1)

COARO5 Logistic xn+1 = axn (1 − xn) a = 0.4 (0, 1)

COARO6 Piecewise xn+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn

P
, 0 ≤ xn < P

xn − P
0.5 − P

, P ≤ xn < 0.5

1 − P − xn

0.5 − P
, 0.5 ≤ xn < 1 − P

1 − xn

P
, 1 − P ≤ xn < 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; P = 0.4 (0, 1)

COARO7 Sine xn+1 = a
4

sin (πxn) , 0 < a ≤ 4 (0, 1)

COARO8 Singer xn+1 = μ
(
7.86xn − 23.31x2

n + 28.75x3
n − 13.302875x4

n

)
, μ

= 1.07
(0, 1)

COARO9 Sinusoidal xn+1 = ax2
nsin (πxn) , a = 2.3 and x0 = 0.7 (0, 1)

COARO10 Tent xn+1 =

⎧⎪⎨
⎪⎩

xn

0.7
, xn < 0.7

10
3xn(1 − xn)

, otherwise

⎫⎪⎬
⎪⎭ (0, 1)

3.3 The Overview of Proposed COARO
As with all metaheuristic algorithms, ARO suffers from inefficient search, premature convergence,

and local optima problems. To overcome these problems, the COARO algorithm was proposed by
adding CLS and OBL techniques to the ARO algorithm. CLS is integrated into the ARO algorithm
with the advantages of nonlinear dynamics and advanced exploration. In this way, ARO’s performance
and convergence speed has increased with the proposed COARO algorithm. In addition, COARO’s
convergence speed and performance has been increased by OBL’s ability to increase diversity and bring
it closer to the global optimal solution.
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3.3.1 Initial Stage of COARO

The algorithm’s performance is not stable since a randomly generated initial population is used
in the ARO algorithm. The initial population can be generated using chaotic maps, considering its
ergodicity and unpredictability characteristics. Therefore, in the COARO algorithm, the OBL and
CLS strategies are combined to create a more reliable initial population when initializing the rabbit
population. Eq. (17) refers to generating rabbit population X with chaotic maps.

xi = lbij + chij × (ubij − lbij) (17)

The chij value is the chaotic map value calculated using the equations in Table 1. Xi ∈ X (i = 1,
2, . . . N; j = 1, 2, . . . D), lb and ub represent rabbits X’s lower and upper bounds, respectively. Then,
opposition-based learning is incorporated into this process to increase the effect of chaos on the initial
population.

3.3.2 Updating Stage of COARO

Local optimum traps, inefficient search, and early convergence are some of the issues that
optimization algorithms may encounter. Chaotic maps are employed to increase the success of global
optimal searching, accelerate the search, and avoid being mired in the local optimum. As mentioned in
the ARO algorithm, predators frequently pursue and attack rabbits. As a result, for rabbits to survive,
they need to locate a secure hiding area. The rabbits’ random selection of burrow

−→
b i,r from its d

burrows is expressed by Eq. (18) in the COARO algorithm and is called the random hiding strategy.
The random variable in this equation has been used to determine the rabbits’ potential positions after
selecting the burrow with a random hiding strategy.

−→v i (t + 1) = −→x i (t) + R ·
(

CM · −→
b i,r (t) − −→x i (t)

)
(18)

In the Eq. (18), CM refers to the value produced by the chaotic maps in Table 1. Furthermore, CLS
and OBL approaches are also used to optimize the positions of the rabbits in this stage of COARO.
If the rabbit’s position remains the same or changes slightly, the algorithm will fall into the local
optimum. The CLS in Eq. (17) was used to eliminate this issue. As a result of the algorithm finding a
better location, the chaotic local search is terminated and OBL is applied. The COARO pseudo-code
is provided in Algorithm 2.

Algorithm 2: The pseudo-code of the COARO algorithm
Input: Maximum iteration number T and population size N
Output: X best best solutions and Fbest its fitness value
Initialize the first population of rabbits randomly (X i)
Generate a new population of rabbits (X C) using Eq. (17)
Compute the opposite point X OC of X C using Eq. (16)
Evaluate the fitness value (Fiti), (FitOC) of X i and X OC

if (FitOC) ≤ (Fiti)
X i = X OC

end if
Evaluate the fitness value of X i

X best = the best solution found so far
while (termination condition is not met)

(Continued)
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Algorithm 2 (continued)
for each individual (X i) do
Calculate the energy factor A using Eq. (15)
if A > 1

Select a rabbit randomly from other individuals
Calculate R using Eqs. (2)–(6)

Perform detour foraging using Eq. (1)
else

Generate d burrows and randomly pick one as hiding using Eq. (13)
Perform random hiding using Eq. (18)

end if
end for

Calculate the fitness Fiti

Update the position of the current individual using Eq. (14)
Update the best solution found so far X best

Generating new solution X new by using chaotic maps and opposition-based learning
Calculate the fitness value (Fitbest), (Fitnew) of X best and X new

if (Fitnew) ≤ (Fitbest)
X best = X new

end if
end while

Return X best and its fitness value (Fitbest)

3.4 Computational Complexity of COARO
In this section, the complexity of the proposed COARO algorithm is examined. The complexity

of the COARO adheres to initializing the search agents and evaluating the fitness function. The search
agents are updated based on the value of the fitness function, chaotic local search, and opposition-
based learning strategies. The initialization stage of the search agent has an O(n∗d) complexity,
where n is the population number and d is the number of dimensions. The complexity cost for
evaluating the fitness functions of all search agents is O(n∗T); here, T represents the max iteration
numbers. The complexity cost of updating the search agents based on the fitness function value is
O(n∗T∗d). The complexity cost of CLS and OBL strategies is O(n∗T). Consequently, the overall
complexity cost of COARO is calculated as O(n∗T∗d).

4 Experimental Results

The experimental test results and evaluations that were utilized to gauge how well the suggested
COARO algorithm performed are included in this section. Six different engineering design problems
and 33 benchmark functions—including unimodal, multimodal, fixed-dimension multimodal, and
CEC2019 functions—are used to assess it. The performance of the COARO algorithm is evaluated by
comparing the results obtained with COARO algorithms for 23 classical and 10 CEC2019 benchmark
functions with ARO and the well-known GWO, MVO, PSO, and TSO algorithms. Additionally,
the evaluation of performance is supported by WSR and Friedman tests. The experimental results
obtained in this paper were carried out in the MATLAB R2021b environment, and the test results
were taken on a machine with Core i7 4.7 GHz CPU, 16 GB memory, and GeForce GTX4060 GPU.
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4.1 The Performance Comparison for Classical and CEC2019 Benchmark Functions
This section uses 33 benchmark functions to assess the efficacy of the proposed COARO. F1–F7

are unimodal functions used to measure the local exploitation capacity of the algorithm. F8–F13
functions are used to evaluate the algorithm’s exploration ability. F14–F23 functions assess the
algorithm’s ability to explore fixed-dimension optimization problems. Mathematical expressions for
these functions are shown in Tables 2–4.

Table 2: Unimodal benchmark functions

(Fi) Function Range Dim f min

F1 = ∑n

i=1 x2
i [−100, 100] 30 0

F2 = ∑n

i=1 |xi| +∏n

i=1 |xi| [−10, 10] 30 0

F3 = ∑n

i=1

(∑i

j=1 xj

)2
[−100, 100] 30 0

F4 = max
i

{|xi| , 1 ≤ i ≤ n} [–100, 100] 30 0

F5 = ∑n−1

i=1

[
100

(
xi+1 − x2

i

)2 + (xi − 1)
2
]

[−30, 30] 30 0

F6 = ∑n

i=1 ([xi + 0.5])2 [−100, 100] 30 0
F7 = ∑n

i=1 ix4 + random [0, 1] [−1.28, 1.28] 30 0

Table 3: Multimodal benchmark functions

(Fi) Function Range Dim f min

F8 = ∑n

i=1 −xi sin
(√|xi|

)
[−500, 500] 30 428.989 × n

F9 = ∑n

i=1

[
x2

i − 10 cos (2πxi) + 10
]

[−5.12, 5.12] 30 0

F10 = −20exp

(
−0.2

(
1
n

∑n

i=1 x2
i

)0.5
)

−

exp
(

1
n

∑n

i=1 cos (2πxi)

)
+ 20 + e

[−32, 32] 30 0

F11 = 1
4000

∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 [−600, 600] 30 0

(Continued)
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Table 3 (continued)

(Fi) Function Range Dim f min

F12 = π

n

{
10

n−1∑
i=1

sin(πy1)

+
n−1∑
i=1

(yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2

}

+
n∑

i=1

u(xi, 10, 100, 4), yi = 1 + xi + 1
4

u(xi, a, m)

=

⎧⎪⎨
⎪⎩

k(xi − a)m) xi > a
0 a < xi < a
k(−xi − a)m xi < −a

[−50, 50] 30 0

F13 = 0.1
{
sin2 (3πx1)

+
∑n

i−1
(xi − 1)

2
[
1 + sin2 (3πxi + 1)

]
+ (xn − 1)

2
[
1 + sin2 (2πxn)

]}
+
∑n

i=1
u (xi, 5, 100, 4)

[−50, 50] 30 0

Table 4: Fixed-dimension multimodal benchmark functions

(Fi) Function Range Dim f min

F14 =
(

1
500

+∑25

j=1

1

j +∑2

i=1

(
xi − aij

)6

)−1

[−65, 65] 2 1

F15 = ∑11

i=1

[
ai − x1

(
b2

i + bix2

)
b2

i + bix3 + x4

]2

[−5, 5]4 2 1

F16 = 4x2
1 − 2.1x4

1 + 1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2 [−5, 5]2 2 −1.0316

F17 =
(

x2 − 5.1
4π 2

x2
1 + 5

π
x1 − 6

)2

+ 10
(

1 − 1
8π

)
cos x1 + 10 [−5, 5]2 2 0.398

F18 =[
1 + (x1 + x2 + 1)

2
(
19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
[
30 + (2x1 − 3x2)

2(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)]
[−2, 2] 2 3

(Continued)
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Table 4 (continued)

(Fi) Function Range Dim f min

F19 = −∑4

i=1 ciexp
(
−∑3

j=1 aij

(
xj − pij

)2
)

[1, 3] 3 −3.86

F20 = −∑4

i=1 ciexp
(
−∑6

j=1 aij

(
xj − pij

)2
)

[0, 1] 6 −3.32

F21 = −∑5

i=1

[
(X − ai) (X − ai)

T + ci

]−1
[0, 10] 4 −10.1532

F22 = −∑7

i=1

[
(X − ai) (X − ai)

T + ci

]−1
[0, 10] 4 −10.4028

F23 = −∑10

i=1

[
(X − ai) (X − ai)

T + ci

]−1
[0, 10] 4 −105.363

In this study, CEC2019 benchmark functions were also used to evaluate the performance of
the COARO algorithm. These functions are minimization problems. cec01–cec03 are uncomplicated
problems with different dimensions and ranges. cec04–cec10 are rotated and shifted and have the same
dimension and range. Mathematical expressions, dimensions, ranges, and minimum values of function
for CEC2019 functions are indicated in Table 5.

Table 5: CEC2019 benchmark functions

Function Range Dim f min

cec01- Store’s Chebyshev Polynomial Fitting [−8192, 8192] 9 1
cec02- Inverse Hilbert Matrix [−16384, 16384] 16 1
cec03- Lennard Jones Min Energy Cluster [−4, 4] 18 1
cec04- Rastrigin [−100, 100] 10 1
cec05- Griewangk [−100, 100] 10 1
cec06- Weierstrass [−100, 100] 10 1
cec07- Modified Schwefels [−100, 100] 10 1
cec08- Expanded Schaffer F6 [−100, 100] 10 1
cec09- Happy Cat [−100, 100] 10 1
cec10- Ackley [−100, 100] 10 1

Before performing the experimental tests, the running parameters of the metaheuristic algorithms
were adjusted. For a fair evaluation, the max iteration number was chosen as 1000 and the number
of population was 50. Metaheuristic algorithms were executed 30 times in all experiments. Specific
parameter values of GWO, MVO, PSO, and TSO algorithms were derived based on parameter values
widely utilized in the literature and these values are included in Table 6.
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Table 6: Parameters settings of the metaheuristic algorithms

Algorithm Parameter setting

ARO –
GWO a = [2, 0]
MVO WEPmin = 0.2

WEPmax = 1
PSO C1 = 1.5

C2 = 2.0
Inertia weight = 1

TSO k = 1

The best, mean, standard deviation (SD), and Friedman mean rank (MR) values obtained for
the classical and CEC2019 benchmark functions with the COARO and ARO algorithms are given in
Tables 7 and 8, respectively.

Table 7 analysis reveals that for unimodal functions, the proposed COARO method performs
better than ARO. The best results have been achieved with COARO3 for F1–F4 and F7, and COARO4
for F5, according to MR values. It is observed that for the F6 function, the suggested COARO
algorithm and ARO yield the same value. In multimodal benchmark functions, COARO3 for F8 and
F12 functions and COARO10 for F13 function showed the best performance. The proposed COARO
algorithm and ARO achieve similar performance for F9–F11. It is observed that for fixed-dimension
multimodal benchmark functions, the proposed COARO algorithms with ten chaotic maps perform
similarly to the ARO algorithm.

Table 8 shows that the proposed COARO algorithm and ARO achieve similar results for cec02 and
cec03. Additionally, it is observed that COARO9 for cec01, COARO3 for cec04 and cec05, COARO5
for cec06, cec09 and cec10, COARO6 for cec07 and COARO10 for cec08 achieved the best results.
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Based on the above analyses, combining CLS and OBL techniques and adding 10 chaotic maps
to the optimization process, providing efficiency in determining global solutions, contributed to the
COARO algorithm achieving promising results compared to the ARO algorithm in the classical and
CEC2019 benchmark functions. Additionally, the results include validation of enhanced exploration
advantage, increased diversity, and the ability to find better global resolution.

By integrating CLS into the COARO algorithm, dynamic behaviors are added to the movement
rules, allowing rabbits to better explore the search space. With CLS, it is also possible to reduce
the possibility of getting stuck in local optima and increase the convergence speed by maintaining
a balance between exploration and exploitation. The addition of OBL to COARO provides the ability
to explore opposing directions based on existing solutions. OBL encourages rabbits to explore opposite
directions and discover potentially different but feasible solutions, rather than simply advancing
towards optimal solutions. Exploring opposite directions has allowed COARO to discover solutions
that ARO might have overlooked. Thus, the robustness of COARO is increased by providing alternative
search areas. These gains are supported by the effective experimental results obtained in Tables 7 and 8.

The average Friedman MR values for the classic and CEC2019 benchmark functions are shown
in Table 9. According to Table 9, the best performance for classical benchmark functions was achieved
with the COARO3 algorithm. According to the same table, COARO1 achieved the second-best
performance by following the COARO3 algorithm. The best performance for CEC2019 benchmark
functions was achieved with the COARO3 and COARO7 algorithms. These algorithms are followed
by the COARO5 algorithm with a close value.

Table 9: The values of average Friedman MR for classical and CEC2019 benchmark functions

ARO COAROs

1 2 3 4 5 6 7 8 9 10

Classical 7.73 4.94 6.51 4.63 6.03 5.98 6.56 5.08 5.78 6.45 6.58
CEC2019 7.88 5.79 6.61 5.42 6.14 5.47 5.80 5.42 5.98 5.67 5.81

Fast convergence of metaheuristic algorithms to the optimal solution is crucial to its effectiveness.
Figs. 1 and 2 show the convergence graphs of the some classic and CEC2019 benchmark functions for
COARO and ARO, respectively. Convergence curves show that the behavior of the proposed COARO
algorithm and ARO varies throughout iterations for given functions.
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Figure 1: Convergence curve of some classical benchmark functions for COAROs and ARO

Figure 2: (Continued)
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Figure 2: Convergence curve of some CEC2019 benchmark functions for COAROs and ARO

In addition to ARO, four cutting-edge metaheuristic algorithms: GWO, MVO, PSO, and TSO
are employed to assess the performance of the proposed COARO algorithm. Statistical results such
as best, mean and SD values obtained for the classic and CEC2019 benchmark functions are given
in Tables 10 and 11. Examining the mean values in Table 10, it can be said that in 22 of the 23
classical benchmark functions except for F8, the COARO performs better than the other metaheuristic
algorithms. Likewise, according to Table 11, the proposed COARO algorithm achieved superior
performances than other algorithms for CEC2019 benchmark functions, except for the cec09 function.
Figs. 3 and 4 show the convergence graphs of the some classical and CEC2019 benchmark functions
for COARO and competitive algorithms. When Figs. 3 and 4 are examined, it has been noticed that
the COARO algorithm’s convergence speed is faster than the ARO, GWO, MVO, PSO, and TSO
algorithms.

Table 10: The classical benchmark functions result of COARO and other algorithms

Benchmark Criteria Algorithms
ARO COARO GWO MVO PSO TSO

F1 Best 7.15E-143 2.34E-206 6.55E-92 5.49E-04 1.60E-22 6.01E-17
Mean 3.08E-125 1.64E-199 1.83E-91 1.01E-03 2.82E-19 1.23E-12
SD 7.8E-125 0 1.14E-91 2.70E-04 5.35E-19 1.63E-12

F2 Best 1.87E-76 7.56E-110 1.01E-55 5.36E-03 1.52E-14 8.12E-15
Mean 2.51E-69 2.10E-106 5.06E-53 9.68E-03 1.80E-09 1.89E-12
SD 5.14E-69 3.5E-106 9.06E-53 1.44E-03 1.80E-09 1.97E-12

F3 Best 1.42E-115 1.37E-173 2.79E-33 1.34E-03 3.03E-02 5.28E-06
Mean 2.03E-93 1.82E-162 1.83E-24 3.10E-03 8.91E-02 4.37E-02
SD 8.96E-93 4.45E-162 3.21E-24 1.33E-03 3.20E-02 4.50E-02

F4 Best 2.36E-59 1.01E-86 4.10E-26 1.80E-02 1.81E+00 1.41E-02
Mean 8.02E-52 1.69E-83 3.34E-13 2.09E-02 1.81E+00 3.73E-02
SD 2.97E-51 1.51E-83 5.95E-13 1.83E-03 0 1.72E-02

F5 Best 2.16E-04 1.58E-04 2.51E+01 2.15E+00 5.19E-04 3.68E-03
Mean 4.98E-04 3.18E-04 2.66E+01 5.34E+00 8.69E-04 4.11E-02
SD 1.66E-04 1.11E-04 1.44E+00 1.72E+00 1.46E-04 2.26E-02

F6 Best 0 0 2.65E-05 5.91E-04 3.49E-24 9.38E-05
Mean 0 0 4.01E-01 9.07E-04 3.90E-20 1.26E-02
SD 0 0 4.29E-01 1.83E-04 8.23E-20 6.65E-03

F7 Best 2.38E-05 2.93E-06 5.91E-05 1.89E-04 1.81E-03 4.21E-05
Mean 6.73E-05 4.33E-05 5.17E-04 4.46E-04 2.22E-02 4.23E-03

(Continued)
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Table 10 (continued)

Benchmark Criteria Algorithms
ARO COARO GWO MVO PSO TSO

SD 3.19E-05 1.81E-05 5.65E-04 1.51E-04 1.84E-02 4.44E-03
F8 Best −11286.3 −12332.5 −12566.3 −3735.8 −12569.5 −12493.8

Mean −11144.1 −12053 −12566.2 −3531.8 −12535.9 −12481.0
SD 99.9002 147.0704 0.1572 133.4417 74.4729 9.5867

F9 Best 0 0 1.56E+01 2.99E+00 5.68E-14 5.68E-14
Mean 0 0 1.56E+01 4.78E+00 7.39E-14 5.51E-13
SD 0 0 1.58E-08 1.13E+00 2.75E-14 7.69E-13

F10 Best 8.88E-16 8.88E-16 7.99E-15 1.25E-02 3.29E-14 5.76E-10
Mean 8.88E-16 8.88E-16 7.17E-01 1.33E-02 1.01E-12 5.21E-08
SD 0 0 1.51E+00 5.21E-04 4.88E-13 5.19E-08

F11 Best 0 0 1.05E-02 8.36E-02 3.43E-02 1.11E-16
Mean 0 0 2.78E-02 1.34E-01 4.44E-02 3.41E-13
SD 0 0 1.40E-02 2.74E-02 1.35E-02 4.52E-13

F12 Best 5.44E-09 3.12E-09 2.27E-06 8.14E-06 5.20E-12 3.12E-06
Mean 1.70E-08 6.59E-09 1.18E-03 3.71E-05 1.87E-01 1.36E-03
SD 6.56E-09 2.16E-09 2.45E-03 9.97E-06 1.53E-01 2.40E-03

F13 Best 5.08E-08 1.10E-08 3.83E-05 4.39E-05 1.10E-02 1.15E-05
Mean 1.48E-07 4.22E-08 2.37E-01 9.70E-05 2.20E-02 3.23E-03
SD 5.42E-08 1.48E-08 3.12E-01 2.92E-05 1.79E-02 5.09E-03

F14 Best 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01
Mean 9.98E-01 9.98E-01 1.99E+00 9.98E-01 9.98E-01 9.98E-01
SD 1.18E-05 8.86E-06 1.05E+00 2.00E-13 3.15E-10 4.80E-13

F15 Best 3.07E-04 3.07E-04 1.22E-03 3.08E-04 3.07E-04 3.07E-04
Mean 3.07E-04 3.07E-04 7.04E-03 3.39E-04 3.07E-04 3.08E-04
SD 3.64E-09 1.82E-09 9.20E-03 3.08E-05 1.36E-19 3.71E-08

F16 Best −1.04E+00 −1.04E+00 −1.04E+00 −1.04E+00 −1.04E+00 −1.04E+00
Mean −1.04E+00 −1.04E+00 −1.04E+00 −1.04E+00 −1.04E+00 −1.04E+00
SD 1.22E-05 9.15E-06 6.97E-10 1.90E-09 0 6.19E-10

F17 Best 4.00E-01 4.00E-01 4.00E-01 4.00E-01 4.00E-01 4.00E-01
Mean 4.00E-01 4.00E-01 4.00E-01 4.00E-01 4.00E-01 4.00E-01
SD 4.71E-06 2.35E-06 1.88E-08 5.22E-09 3.56E-06 7.67E-09

F18 Best 2.99E+00 2.99E+00 2.99E+00 2.99E+00 2.99E+00 2.99E+00
Mean 2.99E+00 2.99E+00 2.99E+00 2.99E+00 2.99E+00 2.99E+00
SD 3.55E-05 1.77E-05 3.41E-06 1.65E-08 1.60E-15 8.57E-08

F19 Best −3.90E+00 −3.90E+00 −3.90E+00 −3.90E+00 −3.90E+00 −3.90E+00
Mean −3.90E+00 −3.90E+00 −3.90E+00 −3.90E+00 −3.90E+00 −3.90E+00
SD 4.57E-05 3.43E-05 4.45E-07 3.79E-09 4.15E-03 4.21E-06

F20 Best −3.29E+00 −3.29E+00 −3.29E+00 −3.29E+00 −3.29E+00 −3.29E+00
Mean −3.29E+00 −3.29E+00 −3.29E+00 −3.29E+00 −3.16E+00 −3.29E+00
SD 3.93E-05 2.95E-05 6.31E-07 3.79E-09 1.60E-01 4.55E-05

F21 Best −1.02E+01 −1.02E+01 −1.02E+01 −1.02E+01 −1.02E+01 −1.02E+01
Mean −1.02E+01 −1.02E+01 −1.02E+01 −1.02E+01 −5.61E+00 −1.02E+01
SD 1.20E-04 9.02E-05 1.08E-04 6.68E-06 1.60E+00 2.68E-03

F22 Best −1.04E+01 −1.04E+01 −1.04E+01 −1.04E+01 −1.04E+01 −1.04E+01
Mean −1.04E+01 −1.04E+01 −6.68E+00 −7.24E+00 −5.66E+00 −1.04E+01
SD 1.23E-04 8.00E-05 2.57E+00 2.72E+00 1.66E+00 5.74E-04

F23 Best −1.04E+01 −1.04E+01 −1.04E+01 −1.04E+01 −1.04E+01 −1.04E+01
Mean −1.04E+01 −1.04E+01 −1.04E+01 −6.25E+00 −1.04E+01 −1.04E+01
SD 1.25E-04 8.10E-05 2.76E-04 2.26E+00 1.87E-15 7.21E-04
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Table 11: CEC2019 benchmark functions results of COARO and other algorithms

Benchmark Criteria Algorithms
ARO COARO GWO MVO PSO TSO

cec01 Best 3.65E+04 3.41E+04 3.63E+06 2.14E+07 1.17E+05 7.39E+04
Mean 3.73E+04 3.61E+04 1.02E+07 2.46E+08 3.87E+06 5.25E+05
SD 4.44E+02 9.24E+02 5.98E+06 1.20E+08 3.73E+06 3.01E+05

cec02 Best 1.73E+01 1.73E+01 1.73E+01 1.73E+01 1.73E+01 1.73E+01
Mean 1.73E+01 1.73E+01 1.73E+01 1.73E+01 1.73E+01 1.73E+01
SD 1.56E-03 1.15E-03 1.44E-04 4.93E-05 3.16E-05 1.72E-04

cec03 Best 1.30E+01 1.30E+01 1.30E+01 1.30E+01 1.30E+01 1.30E+01
Mean 1.30E+01 1.30E+01 1.30E+01 1.30E+01 1.30E+01 1.30E+01
SD 7.59E-05 1.28E-04 7.54E-07 4.10E-11 4.57E-07 5.16E-10

cec04 Best 7.96E+00 2.98E+00 9.08E+00 1.07E+01 9.95E+00 6.67E+01
Mean 1.23E+01 9.11E+00 1.20E+03 1.24E+01 1.48E+01 9.33E+01
SD 1.63E+00 2.20E+00 1.20E+03 8.92E-01 3.46E+00 1.23E+01

cec05 Best 1.02E+00 1.00E+00 1.56E+00 1.06E+00 1.03E+00 1.28E+00
Mean 1.03E+00 1.02E+00 1.59E+00 1.09E+00 1.04E+00 1.35E+00
SD 7.13E-03 1.18E-02 2.16E-02 1.43E-02 5.24E-03 3.28E-02

cec06 Best 1.55E+00 1.00E+00 4.74E+00 4.33E+00 3.60E+00 6.79E+00
Mean 2.51E+00 1.91E+00 9.42E+00 4.90E+00 8.28E+00 7.15E+00
SD 5.21E-01 5.77E-01 1.91E+00 3.35E-01 3.21E+00 2.97E-01

cec07 Best −2.91E+02 −4.17E+02 −1.36E+02 −1.86E+02 −1.30E+02 1.99E+01
Mean −1.94E+02 −2.22E+02 −2.80E+01 −7.07E+01 −6.35E+01 1.22E+02
SD 4.71E+01 7.83E+01 5.19E+01 5.76E+01 3.66E+01 5.05E+01

cec08 Best 1.71E+00 1.50E+00 2.71E+00 2.85E+00 2.37E+00 4.26E+00
Mean 2.46E+00 2.19E+00 5.09E+00 3.44E+00 4.32E+00 5.93E+00
SD 3.35E-01 2.83E-01 1.46E+00 3.11E-01 1.96E+00 1.08E+00

cec09 Best 2.34E+00 2.35E+00 2.55E+00 2.34E+00 2.35E+00 2.86E+00
Mean 2.41E+00 2.41E+00 4.31E+00 2.35E+00 2.37E+00 5.96E+00
SD 4.88E-03 5.25E-03 1.55E+00 1.97E-03 1.37E-02 3.14E+00

cec10 Best 1.16E+00 1.16E+00 3.20E+00 2.00E+01 2.05E+01 2.01E+01
Mean 1.86E+01 1.43E+01 1.63E+01 2.00E+01 2.05E+01 2.01E+01
SD 4.67E+00 8.49E+00 7.04E+00 1.72E-03 1.92E-02 1.28E-02

Figure 3: (Continued)
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Figure 3: Convergence curve of some classical benchmark functions for all algorithms

Figure 4: Convergence curve of some CEC2019 benchmark functions for all algorithms

The proposed COARO algorithm has achieved promising results for the classical and CEC2019
benchmark functions. However, whether there is a notable distinction between the COARO algorithm
and ARO, GWO, MVO, PSO, and TSO should be tested. Therefore, the WSR statistical test has
been used to differentiate between COARO and competitive algorithms. To verify the effectiveness
of the COARO algorithm, the WSR test was applied after 30 runs at a 95% confidence level. In the
evaluations, the maximum number of iterations was chosen as 1000. There is a discernible difference
between the compared algorithms if the p-value determined by the comparisons is less than 0.05.
Otherwise, there aren’t any notable distinctions between the two metaheuristic algorithms. Tables 12
and 13 provide the outcomes of the WSR test for the standard and CEC2019 benchmark functions
comparing COARO and competitor algorithms. In these tables, “+” indicates the superiority of the
proposed COARO algorithm, “–” demonstrates the proposed COARO algorithm is worse than the
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competitive metaheuristic algorithm, and “=” means that COARO and the compared algorithm
obtained the same values.

Table 12: WSR test results between COARO and competitive algorithms for classical benchmark
functions

Benchmark COARO vs.
ARO

COARO vs.
GWO

COARO vs.
MVO

COARO vs.
PSO

COARO vs.
TSO

p-value win p-value win p-value win p-value win p-value win

F1 2.00E-03 + 2.00E-03 + 4.88E-03 + 2.00E-03 + 4.88E-03 +
F2 2.00E-03 + 2.00E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
F3 2.00E-03 + 2.00E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
F4 2.00E-03 + 4.00E-03 + 4.88E-03 + 2.00E-03 + 4.88E-03 +
F5 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
F6 1.00 = 4.88E-03 + 4.88E-03 + 2.00E-03 + 4.88E-03 +
F7 7.00E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
F8 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
F9 1.00 = 2.00E-03 + 4.88E-03 + 4.00E-03 + 4.88E-03 +
F10 1.00 = 4.00E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
F11 1.00 = 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.00E-03 +
F12 4.88E-03 + 4.88E-03 + 4.88E-03 + 7.00E-03 + 4.88E-03 +
F13 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
F14 7.88E-03 + 1.39E-01 = 4.88E-03 + 7.88E-03 + 7.88E-03 +
F15 1.10E-02 + 4.88E-03 + 4.88E-03 + 1.00E-02 + 4.88E-03 +
F16 7.88E-03 + 7.88E-03 + 7.88E-03 + 7.88E-03 + 7.88E-03 +
F17 7.88E-03 + 7.00E-03 + 7.00E-03 + 7.88E-03 + 7.88E-03 +
F18 7.88E-03 + 7.00E-03 + 7.00E-03 + 7.88E-03 + 7.00E-03 +
F19 7.88E-03 + 4.88E-03 + 4.88E-03 + 7.88E-03 + 4.88E-03 +
F20 7.88E-03 + 4.88E-03 + 4.88E-03 + 7.88E-03 + 4.88E-03 +
F21 7.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
F22 7.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
F23 7.88E-03 + 4.88E-03 + 4.88E-03 + 7.88E-03 + 4.88E-03 +
(+, − , =) (19, 0, 4) (22, 0, 1) (23, 0, 0) (23, 0, 0) (23, 0, 0)

Table 13: WSR test results between COARO and competitive algorithms for CEC2019 benchmark
functions

ceci COARO vs.
ARO

COARO vs.
GWO

COARO vs.
MVO

COARO vs.
PSO

COARO vs.
TSO

p-value win p-value win p-value win p-value win p-value win

cec01 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
cec02 4.88E-03 + 4.88E-03 + 4.88E-03 + 3.00E-03 + 4.88E-03 +

(Continued)
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Table 13 (continued)

ceci COARO vs.
ARO

COARO vs.
GWO

COARO vs.
MVO

COARO vs.
PSO

COARO vs.
TSO

p-value win p-value win p-value win p-value win p-value win

cec03 7.88E-03 + 7.00E-03 + 7.88E-03 + 7.88E-03 + 7.88E-03 +
cec04 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
cec05 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
cec06 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
cec07 7.40E-02 = 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
cec08 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
cec09 1.30E-02 + 4.88E-03 + 4.88E-03 + 7.00E-03 + 4.88E-03 +
cec10 7.00E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 + 4.88E-03 +
(+, −, =) (9, 0, 1) (10, 0, 0) (10, 0, 0) (10, 0, 0) (10, 0, 0)

Except for the F9–F11 benchmark functions, the proposed COARO algorithm beat the ARO
algorithm, according to the WSR statistical test results in Table 12. The p-values obtained for the F9-
F11 indicate that the difference between COARO and ARO is insignificant. Moreover, the results of
the COARO algorithm are significantly better than the GWO algorithm, except for the F14 function.
The results of the COARO algorithm are better than the remaining three metaheuristic algorithms
(MVO, PSO, and TSO) for all classical benchmark functions.

Except for the cec07 function, Table 13 shows that the proposed COARO algorithm performs
better than the ARO algorithm. The p-values obtained for COARO and the other four competitive
algorithms show that COARO performs better than the different algorithms.

Figs. 5 and 6 show the boxplots of the proposed COARO, ARO, GWO, MVO, PSO, and
TSO algorithms for the classical and CEC2019 functions, respectively. The x-axis represents the
metaheuristic algorithms being compared. Boxplots have been used to evaluate the distribution of
results from the COARO, ARO, GWO, MVO, PSO, and TSO algorithms.

Figure 5: (Continued)
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Figure 5: Boxplot of classical benchmark function (y-axis indicates values of fitness function)

Figure 6: (Continued)
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Figure 6: Boxplot of CEC2019 benchmark function (y-axis indicates values of fitness function)

OBL and CLS are strategies used to enhance the COARO algorithm. Considering the results
of COARO in the Classic and CEC2019 benchmark functions, it can be concluded that the proposed
COARO algorithm provides effectiveness and efficiency in determining global solutions by combining
CLS and OBL techniques and adding ten chaotic maps to the optimization process. These improve-
ments are due to CLS’s advantage of nonlinear dynamics and advanced exploration and OBL’s ability
to increase diversity and bring closer to the global solution.

COARO has achieved promising results on the classic and CEC2019 benchmark functions. The
proposed algorithm may exhibit different performances under different conditions. For example, in
noisy environments, noise on the objective function may lead to incorrect fitness values, affecting the
quality of the solutions obtained by the COARO algorithm. It can make it difficult for the algorithm
to distinguish between real improvements and fluctuations caused by randomness due to noise. This
can result in convergence to seemingly good but suboptimal solutions with random fluctuations. As
a different example, in Dynamic Optimization Problems, the algorithm must be constantly adapted
to meet new conditions since the optimization criteria, constraints, and variables change over time.
Additionally, the algorithm needs to explore and exploit the changing environment efficiently.

4.2 Application of the COARO for Engineering Design Problems
This section uses six well-known engineering design problems to assess the COARO algorithm’s

problem-solving abilities. Detailed information and mathematical formulations on engineering design
problems can be found in [23]. Each engineering issue’s population and maximum iteration numbers
are 30 and 500, respectively. For every engineering problem, all optimization algorithms have been
performed 30 times. The results achieved by COARO for each engineering problem are compared
with different metaheuristic algorithms.

4.2.1 Welded Beam

Reducing the cost of creating the welded beam is the aim of this minimization problem. The welded
beam problem has four variables: weld thickness (h), attached part to bar length (l), bar height (t), and
bar thickness (b).
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Consider x = [x1 x2 x3 x4] = [h l t b]

Table 14 compares the ARO algorithm’s outcomes and the suggested COARO algorithms applied
to the welded beam.

Table 14: Comparison of the best optimum solution for welded beam

Algorithms Optimum variables Optimum cost

x1 x2 x3 x4

ARO 0.20573 3.470493 9.036624 0.20573 1.7248526
COARO1 0.20573 3.470489 9.036625 0.20573 1.7248524
COARO2 0.20573 3.470489 9.036624 0.20573 1.7248524
COARO3 0.20573 3.47049 9.036624 0.20573 1.7248525
COARO4 0.20573 3.47049 9.036624 0.20573 1.7248524
COARO5 0.20573 3.470491 9.036624 0.20573 1.7248525
COARO6 0.20573 3.470491 9.036624 0.20573 1.7248525
COARO7 0.20573 3.470491 9.036624 0.20573 1.7248525
COARO8 0.20573 3.47049 9.036624 0.20573 1.7248524
COARO9 0.20573 3.470489 9.036624 0.20573 1.7248523
COARO10 0.20573 3.470489 9.036623 0.20573 1.7248524

As seen from Table 14, the COARO9 algorithm achieved better performance than others for
the welded beam with the decision variable values (0.20573, 3.470489, 9.036624, 0.20573) and the
corresponding objective function value equal to 1.7248523. The statistical outcomes of the proposed
COARO algorithms and ARO algorithm are given in Table 15.

Table 15: Statistical outcomes of algorithms for welded beam

Algorithms Best Worst Mean STD

ARO 1.7248526 2.2386529 1.7562230 0.1159667
COARO1 1.7248524 1.8255664 1.7307169 0.0224871
COARO2 1.7248524 1.7403046 1.7262629 0.0040104
COARO3 1.7248525 1.7983002 1.7313609 0.0178092
COARO4 1.7248524 1.7283227 1.7254714 0.0011201
COARO5 1.7248525 1.8488614 1.7375643 0.0346834
COARO6 1.7248525 1.7323581 1.7261905 0.0025579
COARO7 1.7248525 1.7342267 1.7257824 0.0022121
COARO8 1.7248524 1.7307182 1.7254864 0.0015111
COARO9 1.7248523 1.7342529 1.7257222 0.0023609
COARO10 1.7248524 1.7369788 1.7258341 0.0031111

The different criteria outcomes of the used algorithms are displayed in Table 15. Upon examining
Table 15, it is evident that the COARO9 algorithm outperforms the other algorithms about the best
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value, whereas the COARO4 algorithm outperforms the others regarding the mean value. Fig. 7a
shows the convergence graphs of the ARO algorithm on the welded beam and proposed COARO
algorithms.

Figure 7: Convergence graphs of engineering design problems (a) Welded beam (b) Pressure vessel (c)
Tension/Compression spring (d) Speed reducer (e) Cantilever beam (f) Rolling element bearing

4.2.2 Pressure Vessel

This minimization problem aims to reduce the total cost of a cylindrical vessel, including the cost
of materials, welding, and forming. The problem has four variables: head thickness (Th), length of the
cylindrical vessel without head (L), shell thickness (Ts), and internal radius (R).

Consider x = [x1 x2 x3 x4] = [Ts, Th, R, L]

Table 16 compares the pressure vessel results using the ARO and proposed COARO algorithms.

As seen from Table 16, the COARO8 algorithm achieved better performance than others for the
pressure vessel with the decision variable values (0.778177, 0.384653, 40.32003, 199.9943) and the
corresponding objective function value equal to 5885.346358. The statistical outcomes of the proposed
COARO algorithms and ARO algorithm are given in Table 17.

Table 17 displays the different criteria outcomes of the used algorithms. Upon closer inspection,
the COARO8 algorithm outperforms the others in terms of best and mean values. Fig. 7b shows the
convergence graphs of the ARO algorithm on the pressure vessel and the proposed COARO algorithm.
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Table 16: Comparison of the best optimum solution for pressure vessel

Algorithms Optimum variables Optimum cost

x1 x2 x3 x4

ARO 0.778195 0.384694 40.3207 199.9867 5885.548110
COARO1 0.778225 0.384687 40.32253 199.96 5885.470900
COARO2 0.778188 0.384662 40.32051 199.9878 5885.393193
COARO3 0.778186 0.384691 40.3205 199.9909 5885.527732
COARO4 0.778201 0.384671 40.32127 199.9787 5885.439338
COARO5 0.778226 0.384682 40.32255 199.9596 5885.456881
COARO6 0.778233 0.384681 40.32273 199.9572 5885.485775
COARO7 0.778218 0.384673 40.32214 199.9679 5885.484743
COARO8 0.778177 0.384653 40.32003 199.9943 5885.346358
COARO9 0.778249 0.384687 40.32346 199.9469 5885.516485
COARO10 0.778234 0.384686 40.32293 199.9562 5885.521180

Table 17: Statistical outcomes of algorithms for pressure vessel

Algorithms Best Worst Mean STD

ARO 5885.54811 6457.424141 6200.877104 108.9598287
COARO1 5885.4709 5933.895679 5907.888281 22.6023744
COARO2 5885.393194 5927.311074 5903.619229 18.33119678
COARO3 5885.527732 5906.954286 5895.45643 9.869452674
COARO4 5885.439339 5907.11665 5894.914793 9.489448966
COARO5 5885.456882 5908.000954 5895.707967 10.22962712
COARO6 5885.485775 5949.080407 5914.555475 29.30144986
COARO7 5885.484744 5907.833449 5895.513748 9.97289147
COARO8 5885.346358 5890.513737 5888.032798 2.236531811
COARO9 5885.516486 5905.219431 5894.772226 9.243446177
COARO10 5885.52118 5973.951426 5921.299059 40.3021418

4.2.3 Tension/Compression Spring

This minimization problem aims to reduce the weight of this engineering problem. Three variables
are involved in this problem: the number of active coils (P), wire diameter (d), and mean coil
diameter (D).

Consider x = [x1 x2 x3] = [d, D, N]

Table 18 compares the outcomes produced on the tension/compression spring using the ARO and
proposed COARO algorithms.
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Table 18: Comparison of the best optimum solution for the tension/compression spring

Algorithms Optimum variables Optimum cost

x1 x2 x3

ARO 0.0519 0.3617 11.3611 0.01266602
COARO1 0.0519 0.3617 11.4450 0.01266602
COARO2 0.0519 0.3617 11.1170 0.01266602
COARO3 0.0519 0.3617 11.1065 0.01266602
COARO4 0.0519 0.3617 11.0620 0.01266602
COARO5 0.0519 0.3617 10.7157 0.01266602
COARO6 0.0519 0.3617 11.3386 0.01266602
COARO7 0.0519 0.3617 10.6296 0.01266602
COARO8 0.0519 0.3617 10.6856 0.01266602
COARO9 0.0519 0.3617 11.1136 0.01266602
COARO10 0.0519 0.3617 10.7946 0.01266602

Table 18 shows the best ARO results, and the proposed COARO algorithms are relatively similar.
Table 19 gives the statistical outcomes of the proposed COARO algorithms and the ARO algorithm.

Table 19: Statistical outcomes of algorithms for tension/compression spring

Algorithms Best Worst Mean STD

ARO 0.01266602 0.01272711 0.01268241 2.20E-05
COARO1 0.01266602 0.01268043 0.01266951 4.17E-06
COARO2 0.01266602 0.01268268 0.01266913 4.19E-06
COARO3 0.01266602 0.01267328 0.01266783 2.24E-06
COARO4 0.01266602 0.01272711 0.01269347 2.95E-05
COARO5 0.01266602 0.01418224 0.01277350 3.34E-04
COARO6 0.01266602 0.01532719 0.01302410 6.50E-04
COARO7 0.01266602 0.01355402 0.01276457 2.05E-04
COARO8 0.01266602 0.01318114 0.01271530 1.13E-04
COARO9 0.01266602 0.01270265 0.01267477 1.02E-05
COARO10 0.01266602 0.01272711 0.01269242 2.86E-05

Table 19 displays the different criteria outcomes of the employed algorithms. According to
Table 19, the COARO3 algorithm is more successful regarding mean value. The convergence graphs
of the proposed COARO algorithms and the ARO algorithm on the tension/compression spring are
illustrated in Fig. 7c.
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4.2.4 Speed Reducer

The main goal of the speed reducer is to reduce its weight. The problem has seven variables, such
as the face width (x1), the tooth’s module (x2), the number of teeth on the pinion (x3), the diameter of
the first shaft (x6), the diameter of the second shaft (x7), the length of the first shaft between bearings
(x4), and the length of the second shaft between bearings (x5).

Table 20 compares the outcomes produced by the ARO algorithm and the proposed COARO
algorithms on the speed reducer.

As seen from Table 20, the COARO3 algorithm achieved better performance than others for the
speed reducer with the decision variable values (3.5, 0.7, 17, 7.3, 7.71532, 3.350215, 5.286654) and the
corresponding objective function value equal to 2994.471066. The statistical outcomes of the proposed
COARO algorithms and ARO algorithm are given in Table 21.

Table 20: Comparison of the best optimum solution for speed reducer

Algorithms Optimum variables Optimum cost

x1 x2 x3 x4 x5 x6 x7

ARO 3.5 0.7 17 7.300001 7.715326 3.350215 5.286654 2994.471637
COARO1 3.5 0.7 17 7.300005 7.71532 3.350215 5.286655 2994.471535
COARO2 3.5 0.7 17 7.300008 7.715324 3.350215 5.286654 2994.471602
COARO3 3.5 0.7 17 7.3 7.71532 3.350215 5.286654 2994.471066
COARO4 3.5 0.7 17 7.300009 7.715321 3.350215 5.286655 2994.471325
COARO5 3.5 0.7 17 7.300002 7.715324 3.350215 5.286655 2994.471361
COARO6 3.5 0.7 17 7.3 7.71532 3.350215 5.286655 2994.471474
COARO7 3.5 0.7 17 7.300005 7.715322 3.350215 5.286655 2994.471581
COARO8 3.5 0.7 17 7.300001 7.715324 3.350215 5.286655 2994.471490
COARO9 3.5 0.7 17 7.300002 7.715322 3.350215 5.286654 2994.471593
COARO10 3.5 0.7 17 7.300003 7.71532 3.350215 5.286655 2994.471456

Table 21 displays the different criteria outcomes of the employed algorithms. The COARO3
algorithm beats the others in terms of greatest value, while the COARO5 algorithm beats the others in
terms of mean value. The proposed COARO algorithm and the ARO algorithm’s convergence curves
on the speed reducer are displayed in Fig. 7d.

4.2.5 Cantilever Beam

This problem uses a hollow square portion to decrease the cantilever beam’s total weight. This
problem has five decision variables: x1, x2, x3, x4, and x5.

Table 22 compares the outcomes produced on the cantilever beam using the ARO and proposed
COARO algorithms.

As seen from Table 22, the COARO8 algorithm achieved better performance than others for the
cantilever beam with the decision variable values (6.01421, 5.3116, 4.4953, 3.5037, 2.1488) and the
corresponding objective function value equal to 1.339957. The statistical outcomes of the proposed
COARO algorithms and ARO algorithm are given in Table 23.
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Table 21: Statistical outcomes of algorithms for speed reducer

Algorithms Best Worst Mean STD

ARO 2994.471637 3001.328499 2996.136259 1.973584069
COARO1 2994.471535 2996.872811 2994.622798 0.530218617
COARO2 2994.471602 3010.193327 2996.095656 3.766608929
COARO3 2994.471066 2995.512821 2994.524031 0.232769897
COARO4 2994.471325 2995.470134 2994.608258 0.262437814
COARO5 2994.471361 2994.627357 2994.518515 0.054887027
COARO6 2994.471474 2996.567455 2994.680377 0.469851793
COARO7 2994.471581 2995.352142 2994.550356 0.197369751
COARO8 2994.471490 2999.413216 2994.947779 1.252926709
COARO9 2994.471593 2996.014319 2994.616967 0.35696662
COARO10 2994.471456 2995.996723 2994.747002 0.4681583

Table 22: Comparison of the best optimum solution for the cantilever beam

Algorithms Optimum variables Optimum cost

x1 x2 x3 x4 x5

ARO 6.0135 5.3185 4.4892 3.4977 2.1547 1.339960
COARO1 6.0175 5.3082 4.4978 3.5030 2.1472 1.339960
COARO2 6.0118 5.3069 4.4967 3.5088 2.1494 1.339959
COARO3 6.0134 5.3069 4.4929 3.5066 2.1538 1.339959
COARO4 6.0164 5.3079 4.4975 3.5049 2.1469 1.339959
COARO5 6.0118 5.3144 4.4895 3.5042 2.1538 1.339958
COARO6 6.0238 5.3117 4.4931 3.4958 2.1493 1.339961
COARO7 6.0208 5.3084 4.4879 3.5055 2.1511 1.339958
COARO8 6.01421 5.3116 4.4953 3.5037 2.1488 1.339957
COARO9 6.0169 5.3026 4.4962 3.5069 2.1512 1.339958
COARO10 6.0204 5.3144 4.4932 3.4961 2.1497 1.339959

Table 23 displays the different criteria outcomes of the used algorithms. Examining Table 23
reveals that the COARO8 algorithm outperforms the others regarding the best value, while the
COARO1 method outperforms the others regarding the mean value. Fig. 7e shows the convergence
graphs of the ARO algorithm on the cantilever beam and the proposed COARO algorithm.

4.2.6 Rolling Element Bearing

The rolling element bearing problem aims to maximize the load capacity by considering ten design
variables and nine constraints. Table 24 compares the rolling element-bearing results using the ARO
and the proposed COARO algorithms.
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Table 23: Statistical outcomes of algorithms for the cantilever beam

Algorithms Best Worst Mean STD

ARO 1.339960 1.340886 1.340277 0.000338334
COARO1 1.339960 1.340963 1.340225 0.000299814
COARO2 1.339959 1.342045 1.340448 0.000557866
COARO3 1.339959 1.340667 1.340252 0.000214615
COARO4 1.339959 1.341281 1.340414 0.000393155
COARO5 1.339958 1.340685 1.340247 0.000219441
COARO6 1.339961 1.341184 1.340453 0.000383546
COARO7 1.339958 1.341434 1.340274 0.000314256
COARO8 1.339957 1.341051 1.340291 0.000314593
COARO9 1.339958 1.341336 1.340316 0.000341019
COARO10 1.339959 1.341356 1.340329 0.000319468

Table 24: Comparison of the best optimum solution for rolling element bearing

Algorithms Optimum variables Optimum cost

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

ARO 125.719 21.42558 11.40363 0.515 0.515115 0.46908 0.6433 0.300001 0.069386 0.70508 85549.165638
COARO1 125.719 21.42558 10.92733 0.515 0.515014 0.489367 0.681997 0.300001 0.04572 0.611225 85549.194537
COARO2 125.719 21.42559 11.24849 0.515 0.515133 0.472623 0.655669 0.3 0.025772 0.690266 85549.183172
COARO3 125.7191 21.42559 10.98129 0.515 0.515092 0.47815 0.654484 0.3 0.058815 0.640921 85549.177948
COARO4 125.719 21.42558 10.66787 0.515 0.515008 0.455802 0.670355 0.3 0.062129 0.664941 85549.178314
COARO5 125.719 21.42559 10.59076 0.515 0.515147 0.45075 0.692508 0.3 0.070533 0.692081 85549.190693
COARO6 125.7191 21.42559 11.42134 0.515 0.515021 0.436863 0.652134 0.3 0.042243 0.699072 85549.216495
COARO7 125.719 21.42559 11.24861 0.515 0.515051 0.427389 0.640772 0.3 0.064626 0.627065 85549.188577
COARO8 125.719 21.42558 11.23125 0.515 0.515026 0.482662 0.63974 0.3 0.080328 0.710014 85549.172942
COARO9 125.719 21.42558 10.58058 0.515 0.515056 0.426017 0.666648 0.300001 0.028812 0.682922 85549.166227
COARO10 125.719 21.42558 11.30117 0.515 0.515004 0.446034 0.651252 0.300001 0.085675 0.704554 85549.164527

As seen from Table 24, the COARO6 algorithm achieved better performance than other algo-
rithms for the rolling element bearing with the decision variable values (125.7191, 21.42559, 11.42134,
0.515, 0.515021, 0.436863, 0.652134, 0.3, 0.042243, 0.699072) and the corresponding objective func-
tion value equal to 85549.216495. The statistical outcomes of the proposed COARO algorithms and
ARO algorithm are given in Table 25.

The different criteria outcomes of the employed algorithms are displayed in Table 25. Table 25
clearly shows that the COARO3 algorithm performs better than the others in terms of mean value,
while the COARO6 algorithm performs better than the others in terms of best value. Fig. 7f shows the
convergence graphs of the ARO algorithm on the rolling element bearing and the proposed COARO
algorithms.
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Table 25: Statistical outcomes of algorithms for rolling element-bearing

Algorithms Best Worst Mean STD

ARO 85549.165638 77416.35105 83008.19849 3740.059887
COARO1 85549.19454 77070.27012 81460.99637 4194.729804
COARO2 85549.18317 77056.97501 82089.23191 4051.852567
COARO3 85549.17795 77179.73319 83187.4337 3531.931723
COARO4 85549.17831 77022.02841 82970.94662 3782.111316
COARO5 85549.19069 77331.14936 81475.93122 4159.762648
COARO6 85549.2165 77247.46207 82513.00518 3868.355991
COARO7 85549.18858 76909.03228 82264.89189 4127.295742
COARO8 85549.17294 77431.22899 82699.92899 3956.314121
COARO9 85549.16623 77439.87626 81499.18125 4155.019965
COARO10 85549.16453 77367.68304 82657.8327 3944.527031

4.3 Analysis of COARO for Engineering Design Problems with Other Metaheuristic Algorithms
Many metaheuristic algorithms have found the best solution for the welded beam. The best cost

and relevant decision variables obtained from the proposed COARO algorithm and other compared
metaheuristic algorithms for the welded beam are given in Table 26.

Table 26: Best solutions obtained for welded beam

Algorithms Optimum variables Optimum cost

x1 x2 x3 x4

HGSO [24] 0.2054 3.4476 9.0269 0.2060 1.7260
GWO [25] 0.2057 3.4754 9.0369 0.2062 1.726995
DE [26] 0.2065 3.6359 10 0.2032 1.836250
AOA [27] 0.2015 3.4707 10 0.2025 1.7837
GSA [28] 0.1471 5.4907 10 0.2177 2.172858
BWOA [29] 0.1552 5.6462 8.9621 0.2114 1.9406383
SHO [30] 0.2056 3.4748 9.0358 0.2058 1.725661
MVO [31] 0.2056 3.4721 9.0409 0.2057 1.725472
RSA [32] 0.1964 3.5366 9.9520 0.2182 1.9831072
HHO [33] 0.2040 3.5311 9.0275 0.2061 1.7319905
ARO 0.2057 3.4705 9.0366 0.2057 1.7248526
COARO9 0.2057 3.4705 9.0366 0.2057 1.7248523

Upon examining Table 26, it can be noted that the COARO9 method performs better than
both ARO and the competitive optimization techniques. The literature has employed a variety of
metaheuristic algorithms to determine the best solution for the pressure vessel. ARO and the proposed
COARO algorithm were compared with ten different algorithms in the literature. Table 27 presents
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the optimal cost and pertinent choice variables derived from the proposed COARO algorithm and
other comparative metaheuristic algorithms for the pressure vessel. The potential applications of the
COARO algorithm in various fields, such as image processing, wireless sensor networks, and decision
support systems, are inspiring.

Table 27: Best solutions obtained for pressure vessel

Algorithms Optimum variables Optimum cost

x1 x2 x3 x4

SHO [34] 0.7782 0.3847 40.3223 199.9623 5885.4926
SMA [35] 0.7931 0.3932 40.6711 196.2178 5994.1857
MSCA [36] 0.7806 0.3918 40.4191 198.9641 5917.5098
ABC [37] 0.8125 0.4375 42.0984 176.6366 6059.7143
EO [38] 0.8125 0.4375 42.0984 176.6366 6059.7143
MBA [39] 0.7802 0.3856 40.4292 198.4964 5889.3216
ALO [40] 0.7816 0.3863 40.4986 197.5273 5891.3929
SSA [41] 0.8176 0.4179 41.7494 183.5727 6137.3725
CS [42] 0.8125 0.4375 42.0984 176.6366 6059.7143
GSA [28] 1.0858 0.9496 49.3452 169.4874 11550.2976
ARO 0.7782 0.38467 40.3207 199.9867 5885.5481
COARO8 0.778177 0.384653 40.32003 199.9943 5885.346358

Upon examining Table 27, it’s clear that the COARO8 method competes favorably with ARO and
other competitive optimization techniques. The literature has employed various metaheuristic methods
to find the best tension/compression spring solution. Nine different approaches from the literature
were compared with ARO and the proposed COARO algorithm. Table 28 presents the optimal cost
and relevant choice factors for the tension/compression spring derived from the proposed COARO
algorithm and other comparative metaheuristic algorithms.

Table 28: Best solutions obtained for tension/compression spring

Algorithms Optimum variables Optimum cost
x1 x2 x3

TLBO [43] 0.0515 0.3523 11.5559 0.012671
PSO [44] 0.0517 0.3576 11.2445 0.0126747
WOA [19] 0.0512 0.3452 12.0040 0.0126763
DE [45] 0.0516 0.3547 11.4108 0.0126702
GOA [46] 0.0526 0.3853 9.5862 0.012493
BOA [47] 0.0511 0.3415 12.3269 0.012789
HS [48] 0.0511 0.3499 12.0764 0.012671
ABC [49] 0.0527 0.3819 9.9519 0.01268595

(Continued)
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Table 28 (continued)

Algorithms Optimum variables Optimum cost
x1 x2 x3

GA [50] 0.0515 0.3517 11.6322 0.0127048
ARO 0.0519 0.3617 11.3611 0.01266602
COARO3 0.0519 0.3617 11.1065 0.01266602

Upon examining Table 28, it can be noted that the algorithms for COARO3 and ARO performed
better than those for competitive optimization. Numerous metaheuristic algorithms have been used in
the literature to find the optimal solution for the speed reducer. Nine different approaches from the
literature were compared with ARO and the proposed COARO algorithm. The best cost and relevant
decision variables obtained from the proposed COARO algorithm and other compared metaheuristic
algorithms for the speed reducer are given in Table 29.

Table 29: Best solutions obtained for speed reducer

Algorithms Optimum variables Optimum cost

x1 x2 x3 x4 x5 x6 x7

CS [42] 3.5015 0.7 17 7.6050 7.8181 3.3520 5.2875 3000.9810
MVO [31] 3.5088 0.7 17 7.3928 7.8160 3.3581 5.2868 3002.9280
GSA [28] 3.6000 0.7 17 8.3 7.8 3.3697 5.2892 3051.120
SSA [51] 3.5103 0.7 17 8.35 7.8 3.3622 5.2877 3067.561
GWO [25] 3.5005 0.7 17.003 7.3062 7.8781 3.3508 5.2873 2999.3605
WSA [52] 3.500 0.7 17 7.3 7.8 3.3502 5.2867 2996.348225
AO [53] 3.5021 0.7 17 7.3099 7.7476 3.3641 5.2994 3007.7328
CSA [54] 3.48 0.7 17 8.26 7.95 3.34 5.28 2997.70741
WOA [19] 3.48 0.7 17 7.30 7.80 3.34 5.28 2997.98729
SCA [55] 3.5087 0.7 17 7.3 7.8 3.4610 5.2892 3030.563
ARO 3.500001 0.7 17 7.300001 7.715326 3.350215 5.286654 2994.471637
COARO3 3.5 0.7 17 7.3 7.71532 3.350215 5.286654 2994.471066

Upon closer inspection of Table 30, it’s evident that the COARO3 algorithms outperform ARO
and other competitive optimization algorithms. The literature has employed various metaheuristic
methods to find the best cantilever beam solution. ARO and the proposed COARO algorithm were
compared with four different algorithms in the literature. Table 30 gives the best cost and relevant
decision variables obtained from the proposed COARO algorithm and other compared metaheuristic
algorithms for the cantilever beam.

Upon closer inspection of Table 30, it can be shown that the COARO8 algorithms perform better
than both ARO and the competitive optimization algorithms. The literature has employed various
metaheuristic methods to determine the rolling element bearing the ideal solution. ARO and the
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proposed COARO algorithm were compared with five different algorithms in the literature. The
best cost and relevant decision variables obtained from the proposed COARO algorithm and other
compared metaheuristic algorithms for the rolling element bearing are given in Table 31.

Table 30: Best solutions obtained for cantilever beam

Algorithms Optimum variables Optimum cost

x1 x2 x3 x4 x5

CSO [54] 6.7628 5.1583 5.6537 2.9279 1.8854 1.397024
WOA [19] 5.1261 5.6188 5.0952 3.9329 2.3219 1.378732
MVO [31] 6.0239 5.3060 4.4950 3.49602 2.1527 1.3399595
GSA [28] 5.6052 4.9553 5.6619 3.1959 3.2026 1.41
ARO 6.0135 5.3185 4.4892 3.4977 2.1547 1.339960
COARO8 6.01421 5.3116 4.4953 3.5037 2.1488 1.339957

Table 31: Best solutions obtained for rolling element bearing

Algorithms Optimum Variables Optimum cost

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

MBA [39] 125.7153 21.4233 11.0000 0.515 0.5150 0.48881 0.627829 0.300149 0.097305 0.646095 85535.6911
TLBO [43] 125.7191 21.42559 11 0.515 0.515 0.424266 0.633948 0.3 0.068858 0.799498 81859.74
SCA [55] 125 21.14834 10.92928 0.515 0.515 0.5 0.7 0.3 0.02778 0.62912 83431.117
HPO [23] 125.000 21.8750 10.7770 0.515 0.515 0.40 0.7 0.3 0.0290 0.6 83918.4925
HHO [33] 125.000 21.0000 11.09207 0.515 0.515 0.40 0.6 0.3 0.050474 0.6 83011.88329
ARO 125.719 21.42558 11.40363 0.515 0.515115 0.46908 0.6433 0.300001 0.069386 0.70508 85549.165638
COARO6 125.7191 21.42559 11.42134 0.515 0.515021 0.436863 0.652134 0.3 0.042243 0.699072 85549.216495

Upon closer inspection of Table 31, it can be shown that the COARO6 algorithms perform better
than both ARO and the competitive optimization algorithms. In addition to all the evaluations in this
section, the proposed COARO algorithm performs better for six engineering design problems than
other metaheuristic algorithms.

4.4 Real Application
Performance of BCOARO for Feature Selection in Breast Cancer Problem. The BCOARO

algorithm shows promising results in feature selection for the breast cancer dataset, instilling hope
for its potential in real-world applications. This section uses the breast cancer dataset to analyze the
performance of binary COARO algorithms. This analysis’s main objective is to assess the proposed
continuous COARO algorithm’s (BCOARO) binary version’s applicability in the real world and its
efficiency in feature selection for the breast cancer dataset. It is also to compare its performance
with different algorithms on this dataset. The breast cancer dataset used to consider the BCOARO
algorithm performance contains a total of 569 data, 212 of which are malignant and 357 of which are
benign [56]. It consists of 31 features in Table 32 in the breast cancer dataset.
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Table 32: The attributes of the breast cancer dataset

1 Diagnosis 12 Radius_se 23 Texture_worst
2 Radius_mean 13 texture_se 24 perimeter_worst
3 texture_mean 14 perimeter_seperimeter_se 25 area_worst
4 perimeter_mean 15 area_se 26 smoothness_worst
5 area_mean 16 smoothness_se 27 compactness_worst
6 smoothness_mean 17 compactness_se 28 concavity_worst
7 compactness_mean 18 concavity_se 29 concave points_worst
8 concavity_mean 19 concave points_se 30 symmetry_worst
9 concave points_mean 20 symmetry_se 31 fractal_dimension_worst
10 symmetry_mean 21 fractal_dimension_se
11 fractal_dimension_mean 22 radius_worst

The results obtained for the breast cancer dataset with the BCOARO algorithm are compared with
those of the ARO, WOA, BGWO, BASO, HGSO, and BHHO algorithms. For a fair evaluation, the
maximum iteration number was set to 100, and the number of populations was 30 for all algorithms.
Table 33 displays the accuracy and fitness values acquired using these algorithms.

Table 33: Comparison of BCOARO with other algorithms for breast cancer dataset

Algorithms Accuracy (%) Fitness value

BCOARO1 98.40 0.01170
BCOARO2 96.46 0.03539
BCOARO3 98.23 0.01769
BCOARO4 95.58 0.04425
BCOARO5 97.35 0.02655
BCOARO6 97.35 0.02655
BCOARO7 99.38 0.00231
BCOARO8 98.23 0.01769
BCOARO9 98.23 0.01769
BCOARO10 99.12 0.00885
BARO 96.46 0.03539
WOA 97.06 0.02941
BGWO 97.35 0.02655
BASO 98.23 0.01986
HGSO 98.23 0.01770
BHHO 97.35 0.02655

A graphical representation of accuracy values is presented in Fig. 8. According to Fig. 8,
BCOARO7 achieved the highest accuracy value, BCOARO10 had the second highest accuracy value,
and BCOARO4 showed the lowest. According to Table 33, the BCOARO7 algorithm has a superior
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result to other algorithms in terms of 99.38% accuracy. Likewise, BCOARO7, which uses a sine
chaotic map, is more successful than other compared algorithms with a fitness value of 0.00231. Since
the sine map introduces a specific form of nonlinearity, unlike other chaotic maps, it exhibits different
behavioral patterns and obtains different statistical results. Therefore, the 99.38% accuracy and
0.00231 fitness value obtained from the experimental results showed that BCOARO7 demonstrated
an outlier and practical value and that its performance was replicability. The second-best algorithm
for feature selection in the breast cancer dataset is the BCOARO10 algorithm, with an accuracy value
of 99.12%. The fitness function value of this algorithm is 0.00885.

Figure 8: Comparison of accuracy values for breast cancer dataset

5 Conclusion and Future Works

The detour foraging and random hiding habits of rabbits in the wild inspired the biology-based
metaheuristic algorithm known as the ARO algorithm. This paper proposed an enhanced COARO
by integrating the concept of CLS and OBL and incorporating ten different chaotic maps into the
optimization process of ARO. CLS ensures that solution quality increases by directing the local search
around the global best solution. Adding OBL to the algorithm improves the initial population and
enhances the problem of getting stuck in local minima. The concept of chaos is a very effective
technique to overcome the issues of optimization algorithms, such as local optimum traps, early
convergence, and inefficient search. The findings showed that the COARO algorithm outperformed
ARO in reaching the optimal solution for 33 benchmark functions, including unimodal, multimodal,
fixed-dimension multimodal, and CEC2019 functions. Furthermore, the literature compares the
performance of the COARO algorithm with four popular metaheuristic algorithms: GWO, MVO,
PSO, and TSO. As a result of the comparison, the COARO algorithm achieved better results
than competitive algorithms. We evaluated the proposed COARO algorithm’s performance on six
engineering design problems. It is superior to other algorithms for engineering design problems.
Additionally, a binary version of the COARO algorithm was developed, and its performance was
evaluated as a feature selection method for an actual application. As a result of the analysis performed
on the breast cancer dataset, it was observed that the results obtained with the BCOARO algorithm
were promising.

Although it has the advantage of efficiently managing different types of applications, the proposed
COARO algorithm has limitations. First of all, the first limitation that all metaheuristic methods
have is that, according to the No-Free-Lunch theorem, there is the possibility of developing newer
algorithms that achieve more effective performance than COARO. Another limitation is that although
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the COARO algorithm achieved successful performance for the optimization problems examined in
this study, it does not guarantee successful performance for different optimization problems. This
means that the COARO algorithm may still need changes and improvements. The proposed COARO
algorithm can be applied to future research fields, such as image processing, wireless sensor networks,
decision support systems, the Internet of Things, and logistics. Further study may focus on creating
parallel or multi-objective versions of the proposed algorithm to address various optimization issues.
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