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ABSTRACT

By analyzing the results of compliance minimization of thermoelastic structures, we observed that microstructures
play an important role in this optimization problem. Then, we propose to use a multiple variable cutting (M–VCUT)
level set-based model of microstructures to solve the concurrent two–scale topology optimization of thermoelastic
structures. A microstructure is obtained by combining multiple virtual microstructures that are derived respectively
from multiple microstructure prototypes, thus giving more diversity of microstructure and more flexibility in
design optimization. The effective mechanical properties of microstructures are computed in an off-line phase by
using the homogenization method, and then a mapping relationship between the design variables and the effective
properties is established, which gives a data-driven model of microstructure. In the online phase, the data-driven
model is used in the finite element analysis to improve the computational efficiency. The compliance minimization
problem is considered, and the results of numerical examples prove that the proposed method is effective.
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Two–scale structure; topology optimization; multiple variable cutting level set; data–driven; radial basis function;
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1 Introduction

A thermoelastic structure in this study is subjected to both temperature changes and mechanical
forces. Optimization of thermoelastic structures with the aim of compliance minimization leads to
some unusual and interesting results, as discussed in our previous study [1], and this motivated
the present work of concurrent two-scale topology optimization. When the classical Solid Isotropic
Microstructure with Penalization (SIMP) method is applied to solve the thermoelastic problem, many
“gray” densities persist in the optimized structures even when the penalty parameter is increased, as
shown in Fig. 1. In fact, such a structure with “gray” densities is indeed better than a “black–white”
structure for this optimization problem [1]. More importantly, recalling that the “gray” densities in
the SIMP method represent isotropic microstructures, we see that introducing microstructures into
the topology optimization of thermoelastic structures will have great significance.

According to the observation mentioned above, one can see that it would be better if the
optimization of thermoelastic structures was solved in both the macro scale and the microscale so that

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.054059
https://www.techscience.com/doi/10.32604/cmes.2024.054059
mailto:minjieshao@mail.hust.edu.cn
mailto:qxia@mail.hust.edu.cn


1328 CMES, 2024, vol.141, no.2

different microstructures can be properly distributed in the structure to match different requirements
at different positions and directions.

Figure 1: The optimized thermoelastic structure based on SIMP method, where gray densities imply
isotropic microstructures

Two-scale topology optimization has caught much attention in the past decades, and many meth-
ods were proposed [2,3]. One important category of methods is based on the optimal microstructure
prototype known a priori for the optimization problem or those specified by designer [4–7]. For
example, in the minimum compliance problem under a single load, laminate microstructures have
been rigorously shown to be optimal [8,9], and specified lattice structures are applied in two–scale
optimization [10–13]. During the optimization, some parameters that describe the shape or topology
of microstructures are iteratively updated, and different microstructures appear. In addition, based on
this method, people also proposed to post-process the result to obtain a structure on a fine grid in the
macro scale [14–18]. However, in this category of methods, the diversity of shape and topology of the
optimized microstructure is not so rich.

The other category, often referred to as hierarchical or concurrent methods [19–23], does not
require microstructural prototypes and allows microstructures at different locations of the structure
to generate different configurations freely. This approach is more flexible, but the issue of connectivity
between neighboring microstructures arises. Many efforts were made to address the connectivity
issue [24–28].

Based on these previous research works, it is clear that the microstructure model has important
impacts on two-scale topology optimization. Given this, an alternative microstructure model is
proposed in the present study. The geometry of microstructure is described by the multiple variable
cutting (M–VCUT) level set method proposed in our previous studies [29,30]. A microstructure is
obtained by combining multiple virtual microstructures that are derived respectively from multiple
microstructure prototypes. Then, the microstructures are treated as homogeneous materials in the
macro scale, and their effective mechanical properties are dealt with respectively by two different
approaches in an offline phase and an online phase. In the offline phase, the effective properties are
computed by homogenization. Then, a mapping relationship between effective properties and design
variables is established, which gives a data-driven model of microstructure. In the online phase, i.e.,
during the optimization, the data-driven model is used.

In our previous studies on the optimization of cellular structures [29,30], full-scale finite element
analysis (FEA) with a fine mesh of elements was used, and this induces high computational costs. To
improve the efficiency of the FEA, a data-driven model is employed. The benefits are two-fold. First,
by deriving microstructures from multiple microstructure prototypes, the layouts of microstructures
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become more diverse, thus providing more flexibility for design optimization, and at the same time
the connectivity between microstructures is ensured. Second, because the computational costs of
using such a data-driven model are much less than those of homogenization, the efficiency of FEA is
improved.

2 Geometry Model and Homogenization of Microstructure
2.1 Geometry Model of Microstructure

A two–scale structure � ⊂ R
d (d = 2 or 3) is optimized within a fixed reference domain D ⊂ R

d,
and the domain is decomposed into cells Dk (k = 1...M), i.e., D = ∪M

k=1 Dk. In each cell Dk, there may
exist a microstructure �k, i.e., �k ⊂ Dk. Similarly, a two–scale structure � is given by

� = ∪M
k=1 �k (1)

The microstructures �k are described by using the M–VCUT level set method [29,30]. Each �k

is described by using multiple basic level set functions �k
i (i = 1...N) and multiple cutting functions

�k
i (i = 1...N). Each �k

i represents a microstructure prototype and remains unchanged during the
optimization. The cutting function is a horizontal plane with a constant height hk

i here, i.e.,

�k
i (x) = hk

i , ∀x ∈ Dk (2)

The function ϒ k
i is used to represent the result of a cutting operation between �k

i and �k
i , i.e.,

ϒ k
i (x) = �k

i (x) − hk
i , x ∈ Dk, k = 1 . . . M, i = 1 . . . N (3)

After all the cutting operations are finished in Dk, N virtual microstructures �̃k
i defined by the

function ϒ k
i are obtained as

�̃k
i = {

x | ϒ k
i (x) < 0, x ∈ Dk

}
(4)

Examples of the cutting operation are shown in Fig. 2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Description of the cutting operation. (a)–(d) four virtual microstructures obtained by the
cutting operation, (e)–(h) four basic level set functions with the cutting planes shown in purple color
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With all the virtual microstructures in Dk, one obtains an actual microstructures �k by combining
them together, i.e.,

�k = ∪N
i=1�̃

k
i (5)

The combination operation in Eq. (5) can be realized by

ϒ k(x) = min
{
ϒ k

1 (x), . . . , ϒ k
N(x)

}
(6)

where ϒ k is the function used to define the actual microstructure �k, i.e.,

�k = {
x | ϒ k(x) < 0, x ∈ Dk

}
(7)

With the basic level setting function shown in Fig. 2, various actual microstructures can be
obtained by changing the height of the cutting plane, as shown in Fig. 3.

Figure 3: Actual microstructures generated based on the basic level set functions shown in Fig. 2.
The heights of cutting planes for each microstructure are as follows: (a) h1 = −0.2, h2 = −0.8,
h3 = −0.8, h4 = −0.8; (b) h1 = −0.8, h2 = −0.8, h3 = −0.2, h4 = −0.8; (c) h1 = −0.8,
h2 = −0.2, h3 = −0.6, h4 = −0.4; (d) h1 = −0.8, h2 − 0.8, h3 = −0.2, h4 = −0.2

It should be noted that although the examples shown in Figs. 2 and 3 are obtained from the four
microstructure prototypes, the number and type of prototypes are unrestricted in this method, and the
prototypes can be modified according to different requirements.

In the optimization process, the only parameter of the cutting plane �k
i is the height hk

i , which
is the design variable, and all the heights hk

i are changed according to the optimization algorithm,
thus changing the virtual microstructure �̃k

i , and then the actual microstructure �k, and finally the
double-scale structure �.

In the optimization, the design variables are the heights hk
i of cutting planes. They are changed

according to an optimization algorithm, thus changing the virtual microstructure �̃k
i , then the actual

microstructures �k, and in the end the two-scale structure �.

2.2 Homogenization of Microstructure
In the two-scale optimization, the effective mechanical properties of microstructures are an

important link between the macroscale and microscale. The homogenization method [4,31] is applied
in an offline phase to compute the effective mechanical properties of the unit cells:

EH
ijkl = 1

|Y |
∫

Y

Epqrs

(
ε0(ij)

pq − ε(ij)
pq

) (
ε0(kl)

rs − εkl
rs

)
dY (8)



CMES, 2024, vol.141, no.2 1331

where Epqrs is the elastic tensor of the material of the microstructure; |Y | is the volume of the cell; ε0(ij)
pq

is the prescribed strain in macroscale; ε(ij)
pq denotes the strain in microscale defined as

ε(ij)
pq = εpq

(
χ ij

) = 1
2

(
χ ij

p, q + χ ij
q, p

)
(9)

where χ ij is obtained by solving the equation∫
Y

Eijpqεij (v) εpq

(
χ kl

)
dY =

∫
Y

Eijpqεij (v) ε0
pq

(
χ kl

)
dY , ∀v ∈ V (10)

where v is the virtual displacement. For 2D problems, the results are rewritten in a matrix form as

DH =
⎡
⎣DH

11 DH
12 DH

13

DH
21 DH

22 DH
23

DH
31 DH

32 DH
33

⎤
⎦ , DH

mn = DH
nm (11)

3 Mapping Relationship between hi and DH

Although numerical homogenization is a powerful tool for obtaining the effective elastic modulus
of a microstructure, it leads to high computational costs for two–scale structures containing many
microstructures. The costs are more prominent in the optimization that usually needs tens or hundreds
of iterations. Therefore, in this paper, numerical homogenization is only done in an offline phase
to generate data samples. Thereafter, these data samples are used to construct a simple numerical
mapping model between the effective elastic modulus DH and the design variables hi. In the end, such
a mapping model is used in the online optimization phase, more specifically in the macroscale FEA
and sensitivity analysis. Because the computational costs of invoking such a mapping model are much
less than those of homogenization, the efficiency of analysis and optimization of two-scale structures
is improved. Such a mapping model can be regarded as a generalized model of anisotropic material
microstructure whose role in structural optimization is similar to that of the power law model of the
SIMP method.

3.1 Database of Microstructures
To establish the mapping relationship, we need a database that contains many data samples. The

process of database creation is described below.

The range of all the basic level set functions �i is [−1, 1], as shown in Fig. 2. In addition, to ensure
that empty microstructure and full microstructure can be obtained, the ranges of the cutting heights
hi are enlarged to [−1.2, 1.2]. Then, the cutting heights hi are uniformly sampled in this interval with
a spacing of 0.1. In other words, we have four microstructure prototypes, and we generate 25 virtual
microstructures by changing the cutting height of each microstructure prototype with a spacing of 0.1.
According to our numerical experience, such spacing is a proper compromise between the size of the
database and the accuracy of the mapping relationship.

For each combination of the cutting heights hi, we generate an actual microstructure and then
create a data sample in the database. Therefore, if four microstructure prototypes are used, a total of
254 data samples are created in the database. Each data sample includes all the information required
by the two-scale optimization, i.e., the cutting heights hi, the elastic modulus DH , and the volume V H

of the microstructure sample. Here, the V H is obtained by numerical integration of the region occupied
by the microstructure sample.
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3.2 Radial Basis Function (RBF) Based Interpolation
With the database of microstructure, many methods can be used to construct the mapping

relationship, for instance, the linear or low-order polynomials interpolation, neural networks, or
surrogate models. In this paper, the RBF interpolation is used [32,33], because of its unique solvability,
smoothness, and accuracy [34–38].

The Compact Support Radial Basis Function (CS–RBF) [32] is used to construct a local
interpolation function by using a small amount of data around the evaluation point (denoted h).
Here, h is a column vector whose components are the cutting heights, i.e., h = [h1, . . . , hN]T and N
is the number of cutting planes. The computational costs of such local interpolation are much lower
than that of homogenization.

Using the CS–RBF interpolation, the elastic matrix DH and the volume V H of an actual
microstructure with the cutting heights h can be obtained as

DH
mn(h) =

Q∑
q=1

αmn
q φ

(
rq(h)

)
(12)

V H(h) =
Q∑

q=1

βqφ
(
rq(h)

)
(13)

where αmn
q and βq are the coefficients of the CS–RBFs; Q denotes the required number of data samples

for local interpolation; rq is a function of h defined as

rq(h) = 1
ds

√
||h − ĥq||2 + σ 2 (14)

where ĥq = [ĥ1, . . . , ĥN]T are the data points stored in the database; ||h − ĥq|| is the Euclidean distance
between h and ĥq; ds is the support radius, and it is set to 2; σ is a positive number set to 0.05. For
better interpolation, the CS–RBF with C2 continuity is chosen, as shown in Eq. (15).

φ
(
rq

) = max
{
0, (1 − rq)

4
}
(4rq + 1) (15)

The coefficients αmn
q and βq of the CS–RBFs are obtained by solving equations that enforce values

of interpolation functions that agree with data samples in the database. Such a system of linear
equation of αmn

q is given by

DH
mn(ĥq) = [D̂H

mn]q, q = 1, . . . , Q (16)

where ĥq is the cutting height vector of the q-th data sample in the local region of interpolation; [D̂H
mn]q

is the effective elastic modulus related to ĥq. Here, ĥq and [D̂H
mn]q are stored in the database. The matrix

form of Eq. (16) is written as⎡
⎢⎣

φ1,1 . . . φ1,Q

...
. . .

...
φQ,1 . . . φQ,Q

⎤
⎥⎦

⎡
⎢⎣

αmn
1
...

αmn
Q

⎤
⎥⎦ =

⎡
⎢⎣

[D̂H
mn]1

...
[D̂H

mn]Q

⎤
⎥⎦ (17)

where φi,j is given by

φi, j = φ

(
1
ds

√
||ĥi − ĥj||2 + σ 2

)
, i, j = 1 . . . Q (18)
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Based on the four microstructures in Section 2.1, a mapping relationship between the design
variables to the effective elasticity matrix of the microstructures is established. For example, when the
design variable h = [−0.42, −0.87, −0.68, −0.35]T , the virtual microstructures are shown in Fig. 4a–
d, and the actual microstructure is shown in Fig. 4e. The elastic matrix of the actual microstructure
can be obtained by the RBF interpolation, and the result is

DH =
⎡
⎣ 0.5254 0.1539 −0.0265

0.1539 0.4404 −0.0235
−0.0265 −0.0235 0.1615

⎤
⎦ (19)

Figure 4: Example of mapping relationship from design variables to microstructures: (a)–(d) four
virtual microstructures, (e) actual microstructure

4 Optimization Problem of Two–Scale Thermoelastic Structures

The two–scale optimization of thermoelastic structures was investigated in many previous studies
[39–41]. The optimization problems include multi-obiective problem [42], multi-material problem [43],
and uncertainty problem [44]. In this paper, the compliance minimization of two-scale thermoelastic
structures subjected to a uniform temperature change is considered.

min C = fT
1 u + fT

2 u
s.t. Ku = f1 + f2

hmin ≤ hk
i ≤ hmax

V − V ≤ 0

(20)

where C is the compliance; f1 and f2 are the global thermal and global mechanical load vectors,
respectively; K is the global stiffness matrix; u is the global displacement vector; hmin and hmax are
respectively the upper and lower bounds of the design variable hk

i ; V is the volume of the two–scale
structure, with V as the upper bound.

The global stiffness matrix K is written as

K =
M∑

e=1

∫
�e

BTDH
e B dx (21)

where �e is the e-th element; DH
e denotes effective elastic modulus for the e-th element, and it is

obtained by the CS–RBF interpolation; B is the strain-displacement matrix. In this study, each cell
Dk is treated as a finite element in the macro-scale FEA.
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The global thermal load vector f1 is given by

f1 =
M∑

e=1

∫
�e

BTDH
e εt dx (22)

where the thermal strain εt in plance stress state is given by

εt = α�Tδ (23)

where α is the coefficient of thermal expansion of the material; ν is the Poisson’s ratio; δ is the unit
tensor, which is [1 1 0]T in the planar problem; and �T denotes temperature change. The temperature
change �T is assumed to be uniform. Note that α is independent of the microstructure composed of
one material [45].

5 Sensitivity Analysis

To calculate the derivative of C concerning hk
i , the objective function is rewritten by adding the

state equation as a constraint

C = fT
1 u + fT

2 u − ũT
(Ku − f1 − f2) (24)

where ũ is the Lagrange multiplier, also known as the adjoint vector. Then, the derivative is

∂C
∂hk

i

= (uT + ũT
)
∂f1

∂hk
i

− ũT ∂K
∂hk

i

u + (fT
1 + fT

2 − ũTK)
∂u
∂hk

i

(25)

Because u does not have an explicit relationship to the design variable hk
i , calculation of

∂u
∂hk

i

should

be avoided. Therefore, the coefficient of this derivative is set to zero.

fT
1 + fT

2 − ũTK = 0 (26)

Comparing Eq. (26) with the state equation in the optimization problem Eq. (20), we get

ũ = u (27)

Applying the Eq. (27), we can simplify Eq. (25), so that the derivatives is

∂C
∂hk

i

= 2uT ∂f1

∂hk
i

− uT ∂K
∂hk

i

u (28)

Then, substituting Eqs. (21) and (22) into (28), we get

∂C
∂hk

i

= 2uT
e

∫
�e

BT ∂DH
e

∂hk
i

εtdx − uT
e

(∫
�e

BT ∂DH
e

∂hk
i

B dx
)

ue (29)

where ue is the displacement vector.
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The derivative of the elastic matrix DH
e with respect to hk

i in 2D problems is

∂DH
e

∂hk
i

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂[DH
11]e

∂hk
i

∂[DH
12]e

∂hk
i

∂[DH
13]e

∂hk
i

∂[DH
21]e

∂hk
i

∂[DH
22]e

∂hk
i

∂[DH
23]e

∂hk
i

∂[DH
31]e

∂hk
i

∂[DH
32]e

∂hk
i

∂[DH
33]e

∂hk
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(30)

According to the interpolation function in Eq. (12), we have

∂[DH
mn]e

∂hk
i

=
Q∑

q=1

αmn
q

∂φ(rq)

∂hk
i

(31)

According to the definition of CS–RBF in Eq. (15), we have

∂φ(rq)

∂hk
i

= ∂φ

∂rq

∂rq

∂hk
i

= max
{
0, (1 − rq)

3
}
(−20rq)

∂rq

∂hk
i

(32)

Finally, according to Eq. (14), we have

∂rq

∂hk
i

= hk
i − ĥq, i

ds

√
||h − ĥq||2 + σ 2

(33)

The volume in the constraint function is the sum of the volumes of all the elements, which are also
obtained from the mapping relationship. Therefore, the sensitivity analysis of the volume constraint
function can also be performed by the above method. In this study, the Method of Moving Asymptotes
(MMA) algorithm is used for optimization [46].

6 Numerical Example

Several examples of two–scale thermoelastic structural optimization are presented. Relevant
properties of the material used in these examples are as follows: coefficient of thermal expansion
α = 15.4 × 10−3

(/K), Young’s modulus E = 1(Pa), and Poisson’s ratio ν = 0.3. To avoid singularities
in FEA, an artificially weak material is defined with Young’s modulus of E = 10−3

(Pa) and other
properties are the same.

Because the cutting heights in neighboring cells may not be continuous, the boundary of
microstructures may exhibit a zigzag shape at the border of cells. Such a phenomenon can be relieved
as the size of cells becomes smaller. In addition, we use a post-processing technique that smoothes the
boundaries of structure [47]. In the post-processing, the cutting heights in adjacent cells are averaged
at common nodes, and the node heights are used to obtain a new cutting surface by interpolation. This
is similar to stress smoothing which takes the average of the element stresses as the node stress.

The convergence condition is given by

Cerr = | ∑4

a=0 |Citer−a − Citer−5−a||∑4

a=0 Citer−a
≤ δc (34)
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where Cerr is the relative error of the objective function; iter is current number of iterations; δc is the
bound of relative error. And, if iter reaches 500, the optimization will be stopped.

6.1 Example 1
The optimization problem and initial design are shown in Fig. 5. The structure is subjected to a

uniform temperature change �T . The design domain is divided into 60×30 cells, and microstructures
are defined by using the four prototypes shown in Fig. 2. In the macro-scale FEA, each cell is treated as
a finite element. The upper bound of the structure volume is 20% of the design domain. Then, cutting
height h of all cells are set to [−0.5, −0.9, −0.6, −0.6]T in the initial design Fig. 5b. The bounds of
the design variables in the optimization equation Eq. (20) are set to hmin = −1.2 and hmax = 1.2. The
“move” parameter is set to 0.01 when using the MMA method. The parameter δc in the convergence
condition Eq. (34) is set to 0.05%.

1 1

�T

F

1

(a) (b)

Figure 5: The first example: (a) the design problem, (b) the initial design

The optimized structures with different temperature changes �T are shown in Fig. 6, and Table 1
shows their volume and compliance values. From the results, it is clear that the optimized structures
change significantly with different temperature changes, which indicates that temperature cannot be
ignored in structural design. Different types of microstructures, including porous cells, empty cells,
and full-solid cells, are distributed in different regions of the structure.

Figure 6: (Continued)
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Figure 6: The optimized structure of the first example at different temperature changes: (a) �T = 0,
(b) �T = 10, (c) �T = 15, (d) �T = 20

Table 1: Compliances and volumes of the optimized structures with different temperature changes

�T 0 10 15 20

Compliance 11.27 20.83 27.51 35.37
Volume 20.01% 20.00% 20.01% 20.00%

The design optimization problem is also solved only in the macroscale by using the SIMP method
and the level set method. In the optimization, the temperature increment �T is set to 10 and the mesh
used for FEA is 60 × 30. The optimized structures are shown in Fig. 7. The macroscale optimization
results are compared with the previous one as shown in Table 2.

Figure 7: The optimized structures obtained through macroscale optimization methods with �T = 10:
(a) employing the level set method, (b) employing the SIMP method

Table 2: Comparison between two–scale and macroscale optimizations with �T = 10

Method Two–scale Level set SIMP

Compliance 20.83 29.08 28.40
Volume 20.09% 18.53% 20.00%
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As can be seen from Table 2, the level set method results in the worst structural compliance. This is
because the level set-based optimization has no microstructure, which is significant for thermoelastic
structure optimization. In addition, one can see in Table 2 that the allowed volume of material is
not fully used with the level set method. But the material volume fraction is always kept at 20%
when using the optimization method proposed in this paper. This is because the proposed method
provides multiple microstructures, and the use of microstructures provides a larger degree of freedom
for structural design. This allows for a more rational material distribution, which will reduce the
thermal loads, increase the structural stiffness, and reduce compliance.

In the SIMP method, the relative densities of the cells are the design variables, and a penalty
parameter p = 3 is usually employed to drive the densities to either 1 or 0, i.e., a “black-white”
design. However, as shown in Fig. 7b, the optimized structure has a large area of “gray” densities,
but not a “black-white” design. Such a design is indeed the best solution given by the SIMP method,
as discussed in our previous study [1]. Recall the name SIMP is “solid isotropic microstructure with
penalization”, one can see that these “gray” densities represent isotropic material microstructures.
Therefore, we conclude that microstructures are helpful in this optimization problem. However, the
isotropic microstructures are still not enough for the optimization to fully exploit its potential, and
using various anisotropic microstructures in the optimization gives the best compliance among the
three methods, as shown in Table 2.

Finally, to verify the advantage of using multiple microstructure prototypes, the optimization
is also conducted by using only two microstructure prototypes, as shown in Fig. 8. The setting
of optimization is kept the same as before. Fig. 9 shows the optimized structures, which have the
compliance and volume shown in the Table 3. Comparing Table 3 with Table 1, one can see that using
more microstructural prototypes yields better optimization results. In addition, the microstructures
shown in Fig. 8 are orthotropic, and those shown in Fig. 2 are anisotropic. Because anisotropic
microstructures offer more flexibility than orthotropic ones, the results of the optimization with the
former are better than the latter.

Figure 8: Two orthotropic microstructure prototypes
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Figure 9: The optimized structures using two microstructure prototypes at different temperature
changes: (a) �T = 0, (b) �T = 10, (c) �T = 15, (d) �T = 20

Table 3: Results of two–scale optimization using two microstructure prototypes

�T 0 10 15 20

Compliance 11.44 27.60 41.67 51.71
Volume 19.99% 20.00% 19.97% 17.51%

6.2 Example 2
This problem is the cantilever beam, as shown in Fig. 10. The structure is subjected to a uniform

temperature change �T . The design domain is divided into 60 × 40 cells, and microstructures are
defined by using the four prototypes shown in Fig. 2. In the macro-scale FEA, each cell is treated as
a finite element. The upper bound of the structure volume is 50% of the design domain. The cutting
heights h of all cells in the initial design are [−0.5, −0.9, −0.6, −0.6]T . The bounds of the design
variables are kept the same, i.e., hmax = 1.2 and hmin = −1.2. The “move” parameter is set to 0.005
when using the MMA method. The parameter δc in the convergence condition Eq. (34) is set to 0.05%.

The two-scale structure is optimized with different temperature increments �T . The optimized
results can be seen in Fig. 11, and the volume and compliance values are shown in Table 4. It is
clear that as the temperature increases, the number of full-solid cells gradually decreases and that
of the porous cells increases. Therefore, one can see the significance of two-scale optimization for
thermoelastic structures, which considers the microstructure in the optimization.
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1.5

1

F

�T

Figure 10: The design problem of the second example

Figure 11: The optimized structure of the second example at different temperature changes:
(a) �T = 0, (b) �T = 5, (c) �T = 10
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Table 4: Compliance and volume at different temperature changes

�T 0 5 10

Compliance 37.70 53.10 80.71
Volume 50.00% 49.99% 49.95%

6.3 Example 3
The previous numerical examples are all planar problems, but the approach presented in this paper

can also be applied to three-dimensional (3D) problems, shown in Fig. 12. The boundary conditions
for this problem are similar to those of Example 1: the two end faces of the structure are completely
fixed, the middle of the bottom is subjected to a line load, and the structure is in a uniform temperature
increment �T . The design domain is divided into 30 × 15 × 5 cells, which are also used as finite
elements in FEA. The upper bound of the structure volume is set to 20% of the design domain.
Young’s modulus of the material is set to E = 200(Pa) and the coefficient of thermal expansion
α = 15.4 × 10−5

(/K).

3

3

3

�T

q

Figure 12: The 3D design problem of the third example

When the temperature increments �T are set to 5 and 10, the optimized structure is shown in
Fig. 13. The microstructures of different regions in the structure are different, which is the result of
the two-scale optimization. It is evident that in the upper face of Fig. 13a, the material in the middle
of the structure was removed. As the temperature increases, more porous microstructures appear in
Fig. 13b, which is the same tendency as in Fig. 9. The material distribution of the structure can also be
clearly shown from the frontal views Fig. 13c,d, which are similar to the results of the planar examples.
At the same time, the data-driven approach enhances the speed of structure optimization.
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Figure 13: The optimized 3D structure at different temperature changes: (a) optimized result for
�T = 5 in the default view, (c) is the front view; (b) optimized result for �T = 10 in the default
view, (d) is the front view

7 Conclusion

In this paper, a data-driven model is integrated with the M–VCUT level set-based geometry
model to solve the two–scale topology optimization of thermoelastic structures. The geometry of
the microstructures is described using the M–VCUT level set method; the effective properties of
the microstructure are calculated using the homogenization method in an offline phase; the RBF-
based interpolation is employed to construct a data-driven model that describes the relationship
between design variables and effective properties; this data-driven model is used in the FEA and
sensitivity analysis. Because the costs of invoking such a data-driven model are much less than those
of homogenization, the computational efficiency is improved.

From the numerical examples, one can see that the results of the proposed method are
better than those of the macroscale optimization because various anisotropic microstructures
are reasonably distributed into the macrostructure. In addition, one can also see that when
more microstructure prototypes are used in the optimization, the results become better. Although
four microstructure prototypes are used in the numerical examples in this study, the number and type
of microstructure prototypes are unrestricted, and this flexibility is very important for obtaining better
results in two-scale optimization.
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