
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.053903

ARTICLE

Examining the Quality Metrics of a Communication Network
with Distributed Software-Defined Networking Architecture

Khawaja Tahir Mehmood1,2,*, Shahid Atiq1, Intisar Ali Sajjad3, Muhammad Majid Hussain4 and
Malik M. Abdul Basit2

1Department of Electrical Engineering, Khwaja Fareed University of Engineering and Information Technology,
Rahim Yar Khan, 64200, Pakistan
2Department of Telecommunication Systems, Bahauddin Zakariya University, Multan, 60000, Pakistan
3Department of Electrical Engineering, University of Engineering and Technology, Taxila, 47050, Pakistan
4School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK

*Corresponding Author: Khawaja Tahir Mehmood. Email: ktahir@bzu.edu.pk

Received: 13 May 2024 Accepted: 26 July 2024 Published: 27 September 2024

ABSTRACT

Software-Defined Networking (SDN), with segregated data and control planes, provides faster data routing,
stability, and enhanced quality metrics, such as throughput (Th), maximum available bandwidth (Bd(max)), data
transfer (DTransfer), and reduction in end-to-end delay (D(E-E)). This paper explores the critical work of deploying
SDN in large-scale Data Center Networks (DCNs) to enhance its Quality of Service (QoS) parameters, using
logically distributed control configurations. There is a noticeable increase in Delay(E-E) when adopting SDN with
a unified (single) control structure in big DCNs to handle Hypertext Transfer Protocol (HTTP) requests causing
a reduction in network quality parameters (Bd(max), Th, DTransfer, D(E-E), etc.). This article examines the network
performance in terms of quality matrices (bandwidth, throughput, data transfer, etc.), by establishing a large–
scale SDN-based virtual network in the Mininet environment. The SDN network is simulated in three stages:
(1) An SDN network with unitary controller-POX to manage the data traffic flow of the network without the
server load management algorithm. (2) An SDN network with only one controller to manage the data traffic
flow of the network with a server load management algorithm. (3) Deployment of SDN in proposed control
arrangement (logically distributed controlled framework) with multiple controllers managing data traffic flow
under the proposed Intelligent Sensing Server Load Management (ISSLM) algorithm. As a result of this approach,
the network quality parameters in large-scale networks are enhanced.

KEYWORDS
Software defined networking; quality of service; hypertext transfer protocol; data transfer rate; latency; maximum
available bandwidth; server load management

1 Introduction

In today’s advanced technological environment, internet service providers increasingly manage
demands for ultra-high-speed connectivity across different remote networks. By the end of 2023,

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.053903
https://www.techscience.com/doi/10.32604/cmes.2024.053903
mailto:ktahir@bzu.edu.pk


1674 CMES, 2024, vol.141, no.2

approximately 29.3 billion different remote networks should be connected via modern network
resources [1]. Optimizing the performance of any network mostly involves increasing its throughput,
ensuring that it can process large amounts of data concurrently, improving data transfer rates, and
minimizing latency. Software-defined networking (SDN) can ease the optimization process with a
unique centralized control arrangement for managing data traffic and the ability to overcome the
challenges associated with traditional networks in terms of scaling, controllability, and reliability [2].
SDN architectural framework has a three-layered structure (1-application layer, 2-control layer, and
3-data layer). Using a northbound Application Program Interface (API), the programmable logic is
easily transferred to the controller at the control layer from the application layer. SDN controller
updates routing tables of various networking devices in the data plane and coordinates and manages
the data flow over various topologies via the southbound interface. SDN is becoming a key component
of modern network infrastructures because of its two programmable properties that greatly enhance
network scalability: (1) The segregation of the data plane from the control plane, augmenting network
controllability, as illustrated in Fig. 1. (2) The instructions can easily be forwarded to the SDN
controller that can effectively process data traffic management over the whole network architecture [3],
providing augmented controllability. Due to centralized control arrangements, congestion in SDN-
based networks can easily be managed compared to traditional networks [4]. In an SDN-based
network, the segregation of control and data planes means all the flow management functionality
of network devices (routers, switches, etc.) is managed by the SDN controller. The unified controller
is used for small to medium-sized networks and multiple controllers (logically distributed/logically
centralized). This functionality enhances the Quality of Service (QoS) parameters; the logical reasons
are as follows:

➢ The separation of control and data planes with all flow management control is with an SDN
controller, which can have dynamic flow control ability in an SDN-based network by managing
network traffic flow based on real-time conditions.

➢ The separation of planes with the controller incharge provides reconfiguration of network
paths, avoidance of congestion, application of prioritization of network traffic, enhanced
throughput, greater data transfer, maximum available bandwidth, and ensuring low latency.
These factors result in enhanced network performance and greater QoS parameter values.

➢ The segregation of control and data planes in an SDN-based network provides additional
facilities to optimize resource allocation based on the current demands of users by modifying
the controller operation mode.

➢ The programmability of the control plane allows quick implementation of new applications
and services based on the QoS demands of any network environment.

➢ The segregation of data and control planes in SDN provides an agile, responsive, and dynam-
ically manageable network, resulting in enhanced QoS parameters.

There are two configuration options for the SDN controller: (a) centralized mode and (b)
distributed mode [5]. The SDN controller operates best in centralized mode for small- to medium-sized
networks. However, there can be significant delays in data transmission when large, multi-component
Data Center Networks (DCNs) use a single, centralized model-based SDN controller, which provides
slower controller operation and causes traffic congestion and delay. This delay can exacerbate network
issues by creating backlogs of data that need to be processed [6]. The study was conducted in [7] to
evaluate the performance of a single NOX controller for processing a large amount of data to pass
through a large DCN. To mitigate latency issues within large-scale SDN-based DCNs using a single
controller, the SDN controller must be framed in either logically centralized or distributed [8,9] control



CMES, 2024, vol.141, no.2 1675

mode. The research articles [10,11] suggest the resource management issue and its mitigation in the
SDN network.

Figure 1: Difference between the traditional and SDN-based networks’ operational models

1.1 A Centralized Controlled System Using an SDN Controller
This controller design distributes Hypertext Transfer Protocol (HTTP) requests from different

hosts equally by deploying numerous high-performance SDN controllers across DCNs with exact
synchronization. In comparison to the single SDN controller mode, this logically centralized SDN
controller configuration, as shown in Fig. 2, improves QoS characteristics in bigger DCNs. On the
other hand, maintaining strict synchronization between these controllers may cause compatibility
issues. The arrangement’s primary drawback is the difficulty of synchronization between various
controllers. Under some circumstances, synchronizing these controllers with un-versioned third-party
programs may cause unpredictable and unstable network behavior, ultimately leading to system failure.

1.2 Distributed Controlled Arrangement with an SDN Controller
This SDN control architecture uses a decentralized method that eliminates the need for controller

synchronization in a distributed network configuration. The vast network of Large DCNs is separated
into smaller domains, in contrast to the use of separate controllers in master and slave versions,
as explained in Section 1.1. Every controller stores vital flow information inside its Storage Area
Network (SAN) and controls flow within its assigned domain. The network administrator can use
this data to receive more instruction, which improves localized flow control inside each domain.
Due to this solution, the strict synchronization requirement of distributed controllers is removed,
which is necessary for global control of the distributed SDN network, as outlined in Section 1.1.
Comparing this SDN controller configuration to a centralized SDN control framework, one can get
higher efficiency, faster response rates, and more versatility. Fig. 3 outlines the structure for logically
distributed SDN control mode.



1676 CMES, 2024, vol.141, no.2

Figure 2: Logically centralized SDN controller configuration

Figure 3: SDN controller set up in a control mode



CMES, 2024, vol.141, no.2 1677

This SDN control configuration is frequently used by software-defined wide-area networks (SD-
WANs). The research articles [12,13] demonstrate how SDN is used in distributed controlled structures
regarding Google and Microsoft’s network development. These employ distributed network devices
to offer their users services. Compared to typical networking systems, the quality characteristics with
a hierarchical distributed control arrangement are significantly superior. Fig. 4 shows the hierarchical
distributed control configuration. The controller of each domain in the network is in charge of it.
Under the supervision of a global controller, each route controller controls its local controller. That
local domain controller manages the data flow inside a domain. When data travels outside the local
controller’s controlling area, the route controller will take control of the flow. The research papers
[14–16] raise attention to the issue with the “east-west” bound interface between multiple controllers.

Figure 4: SDN controller arranged in hierarchical, logically distributed mode

1.3 Research Objectives
The main goal of this study is to implement the suggested method (ISSLM) to control network

server loads effectively and improve the QoS. Many HTTP servers can handle HTTP queries within the
SDN architecture. However, server overload may occur if all HTTP request flows are directed toward
a single server without considering network server load management. Consequently, this results in (a)
overcrowded links, (b) HTTP queues, and (c) end-to-end delays. In the end, this decrease in the QoS
characteristics of the network may cause the network to collapse due to total network failure. The
following are the main objectives of this research project.

1.3.1 To Deploy SDN in Large DCNs

In this method, the large DCN network is divided into smaller domains, and every controller
is responsible for flow control inside its domain and storing necessary flow data in its SAN for the



1678 CMES, 2024, vol.141, no.2

network administrator to instruct the controller further to manage the flow inside that local domain
better as compared to the logically centralized method.

1.3.2 To Enhance QoS (Bdmax, Th, DTransfer, etc.) Parameters

A. Self-Adapting Configuration:

The Request Per Second (RPS) load on each server is calculated by adaptation of the following
procedure:

➢ Firstly, the APACHE program must be installed on every HTTP server.

➢ Then, the GRAFANA program is started on every server. PROMETHEUS is a data source,
making collecting HTTP server data logs possible.

➢ Prom_QL queries are written to control the RPS matrices for every server, considering settings
like RAM and default time.

➢ Installing and integrating the POX controller with the PSUTIL Python library function.

➢ Using PSUTIL, endpoints are created so that the POX controller may access all of the servers’
RPS matrix values.

➢ These RPS matrices are used to determine the load on every HTTP server.

B. Adaptive Optimization:

To balance server loads, the ISSLM algorithm takes three factors into account: (1) Comparing
each server’s RPS values to a benchmark server load (Sload) measurement. When a server’s load exceeds
the reference server load (Sload) in an SDN network, it is considered overloaded and is removed from
the server list. When this occurs, HTTP flows are diverted to the server with the lowest server load
value among the servers accessible on the network, within the acceptable range of the reference server
load (Sload) value. (2) HTTP flows are routed to the server in the SDN network with the fewest
active connections if the criterion mentioned above is not satisfied. (3) The server with the fastest
response time.

1.4 Work Contribution
The main goal of this study is to apply a suggested load balancing algorithm, called ISSLM, for

network servers to improve the QoS metrics, which include maximum bandwidth (Bdmax), throughput,
data transfer, and delay in a chosen or parameterized SDN based DCN. The suggested working model,
which uses the ISSLM algorithm to accomplish the study goals, is shown in Fig. 5.

A large-scale SDN-based virtual network was created in the Mininet environment to study
network quality factors to achieve the previously indicated goal. According to this research study,
the chosen or parameterized network is simulated in three steps:

➢ In the first step, we configured an SDN network with only one controller—the POX con-
troller—to manage the data flow over the network. The Mininet environment is used to set
up this network configuration. In particular, this configuration does not include a server load
management algorithm.

➢ In the second step, we keep the SDN network operational using a single controller (POX) set up
in the Mininet environment, which controls data traffic flow within the network. We integrate
a server load management algorithm into this design to efficiently balance the load among
network servers.



CMES, 2024, vol.141, no.2 1679

➢ In the third case, we build a user-defined distributed network that several controllers oversee.
The controllers are responsible for monitoring data flow inside their designated domains.
Moreover, the suggested ISSLM algorithm influences how these controllers function. This
strategic approach aims to improve the large-scale network’s network quality metrics.

Figure 5: A proposed working model for obtaining research objectives by the proposed algorithm
(ISSLM)

1.5 Paper Arrangement
Section 2 explains the literature review and provides a comparison table of traditional server

load management algorithms with the proposed technique of the ISSLM algorithm. In Section 3,
we have discussed the working model of (ISSLM) algorithm and problem statement. In Section 4,
the SDN network (in this research article) is simulated in three stages: (1) An SDN network with
only one controller (POX) to manage the data traffic flow of the network (established on the Mininet
environment) without the server load management algorithm. (2) An SDN network with only one
controller to manage the data traffic flow of the network (established on the Mininet environment)
with a server load management algorithm. (3) A user-defined network is now established in distributed
network domains with multiple controllers managing data traffic flow under the proposed ISSLM
algorithm. As a result of this approach, the network quality parameters in the large-scale network are
augmented. In Section 5, we conclude the simulation results along with future research directions.



1680 CMES, 2024, vol.141, no.2

2 Literature Review

This section provides an overview of study findings about distributed SDN control configurations
divided into two groups. As shown in Fig. 6, there are two research strategies: (1) logically centralized
SDN configuration research techniques and (2) logically distributed SDN configuration research
techniques.

Figure 6: Classification of the literature review into two portions

2.1 Research Methodology for Linking Large DCNs in SDN Centralized Controlled Structure
The Hyperflow protocol [17], which uses the WheelFS application to synchronize controllers, is

covered in an article [18]. A broker-oriented distributed file system is used in this technique, which
could lead to network Denial of Service (DOS) attacks. The Online Information Exchange (ONIX)
program, which controls flow characteristics in the Network Information Database (NIDB) database,
is presented in a research study [19]. While this method is appropriate for medium-sized networks,
NIDB exchange may cause network overload in larger Data Center Networks (DCNs), resulting in
worse quality parameters. A research paper [20] shows an Open Daylight (ODL) cluster that utilizes
the AKKA (derived from a Swedish mountain and the choice of name symbolizes stability, resilience,
and the ability to handle heavy loads, much like a mountain) framework [21,22] to synchronize
controllers. Still, many control frames are used, making big DCNs slow. The Open Network Operating
System (ONOS) is presented in a research article [23], which uses the Reliable, Available, and Fault-
Tolerant (RAFT) algorithm [24] to map data between controllers. An active standby controller
configuration is used to provide fault tolerance. According to a research paper [25], Atomix, a Java-
based program, helps with fault tolerance in SDN networks. Similarly, Smart-Light uses an active-
standby controller topology for fault tolerance with centralized data storage (CDS) [26,27]. A research
article [28] discusses Ravenna, built on the Replicated State Machine (RSM) method for network
device interconnections. As explained in another study [29], Manta’s and Rama’s methods aim to
emulate Ravana’s traits without changing the OpenFlow protocol. Compared to Ravana, the open
flow-based algorithm Kandos provides better quality parameters, as shown in a study publication
[30]. Furthermore, research papers [31,32] include white documents from the Google project, which
show that when used in logically centralized control mode setups, practical efficiency can reach up
to 90%.

2.2 Research Methodology for Linking Large DCNs in SDN Distributed Controlled Structure
The functioning of controllers in the SDN distributed controlled plane (DISCO) is explained

in a research study [33]. For intra- and inter-domain applications, this controller uses a variety of



CMES, 2024, vol.141, no.2 1681

network-based agents to enable information flow. A revised protocol for managing queue messages
(AMQP), specifically for inter-domain data transfers, is suggested by the authors in a research study
[34]. The outcomes are noticeably better with the application of this technique. The Distributed
Control Plane Interface (DCPI) program, which functions as an east-west bound interface, is also
introduced in a research study [35]. It makes sharing and synchronizing network flow status easier for
several domains. Based on the OpenFlow protocol, the Route Flow Partial (RFP) application is used to
manage applications related to inter-domain flow. It is covered in more detail in another article [36]. A
research article [37] discusses an application created by INRIA to improve fault tolerance and security
in distributed SDN (D-SDN) configurations. Novel techniques for implementing SDN across internet
exchange points, or SDX, are explored in several research articles [38–42]. Among these, research
articles [43–45] cover fault tolerance techniques and DOS attack detection techniques within SDX.
Furthermore, a study [46] describes enhancements to the SDN network’s Border Gateway Protocol
(BGP). As demonstrated in a different study publication [47–48], the Distributed Flow Architecture
for Networked Enterprises (DIFANE) application, when implemented in an SDN network, yields
better QoS parameters.

2.3 A Comparison between Traditional Server Load Balancing Algorithms and the Proposed (ISSLM)
Algorithm for Efficient Server Load Balancing

The differences between the suggested ISSLM algorithm and traditional load-balancing tech-
niques are shown in Table 1. This section also details how the ISSLM algorithm overcomes the
drawbacks of conventional load-balancing methods.

Table 1: Comparison of the proposed (ISSLM) method with conventional server load balancing
algorithms

Authors Key contribution Implemented
method/technique

Notable constraint

Mehmood et al. [49] Improve the network’s
QoS metrics, focusing
on Bd(max), throughput,
and data transfer.

Implementing an
algorithm for dynamic
load balancing.

Scalability problems in
larger configurations;
effectiveness restricted
to smaller DCNs.

Chiang et al. [50] 1-Optimum servers are
chosen based on lower
RPS values.

1-Utilizing the Dynamic
Weighted Random
Selection (DWRS)
method. Giving less
loaded servers a more
substantial weight.
2-Direct flow to servers
that have greater
weights.

Lack of active
connection analysis and
rapid responses.

2-Execution is carried
out in a framework that
is hardware-centric.

Begam et al. [51] 1-Best server selection
based on calculation of
response time.

The search technique
was based on multiple
regression (MRBS).

The approach does not
use active server load
sensing.

2-Redirecting flow to
servers with the lowest
possible delay.

(Continued)



1682 CMES, 2024, vol.141, no.2

Table 1 (continued)

Authors Key contribution Implemented
method/technique

Notable constraint

Malbašić et al. [52] 1- Determine the
optimal server based on
minimum server load.

Using matrices with
several parameters to
schedule connections.

Restricted scope of the
assessments, absence of
response time, and
active connection
assessments.

2-Implementation is
performed on a Mininet
arrangement.

Liang et al. [53] Automated load
redistribution among
servers driven by IoT
applications.

Employing a Bayesian
network based on IoT
inputs.

Oversight in active
server load sensing
within the framework.

Ahmad et al. [54] Middlebox integration
as a proxy server for
load sharing with SDN
controllers.

Developing a robust
network involving a
controller and
middlebox for traffic
control.

Compatibility
challenges between
middlebox and SDN
controller
infrastructure.

Saxena et al. [55] Introduction of
Adaptive
Multi-Objective Load
Balancing (AMOLB)
considering various
metrics.

Calculation of routing
cost with data
forwarding based on
path weights.

The narrow focus on
routing cost overlooks
response time
considerations.

Haidi et al. [56] Improving Bandwidth
utilization through
Dynamic Load
Balancing.

The Floodlight
controller is used for
Dynamic Load
Balancing.

Insufficient analysis of
response time dynamics.

Ejaz et al. [57] Load distribution
among SDN controllers.

Multiple controllers in
Master-Slave scenario.

Dependency on tight
synchronization within
logically centralized
frameworks.

Gasmelseed et al. [58] SDN controller load
balancing.

TCP/UDP flow
separation using
Multiple Controllers.

Dependency on tight
synchronization within
logically centralized
frameworks.

Xu et al. [59] Load balancing on
network switches.

It is based on migration
cost, prioritizing servers
with lower migration
costs.

Inefficiency when
targeting overloaded
servers considering
migration cost.

(Continued)



CMES, 2024, vol.141, no.2 1683

Table 1 (continued)

Authors Key contribution Implemented
method/technique

Notable constraint

Geo et al. [60] Bandwidth optimization
& Latency reduction.

They are opting for
multiple controllers
with segregated master
controllers.

Compatibility
challenges, energy
consumption, and
overhead constraints
with controllers.

Vyakarana et al. [61] Elephant flow
avoidance.

Employing a static
algorithm
distinguishing critical
and non-critical traffic.

Network bandwidth
wastage under varying
dynamic load
conditions.

Sathyanarayana
et al. [62]

Load balancing via
less-loaded server
selection and shortest
path algorithms.

1-Dynamic Flow
Algorithm for servers
with less traffic.

Extensive resource
consumption when
concurrently executing
both algorithms.2-The shortest path to

the best server using the
Ant Colony Algorithm.

Zhong et al. [63] Reduction of processing
delays.

Computations of server
response time.

Trade-offs in
throughput and
bandwidth to mitigate
processing delays.

Hamed et al. [64] Server load balancing. Utilizing the traditional
Round-Robin method.

Reduced load balancing
effectiveness in
extensive SDN setups
with intense data flows.

Hai et al. [65] Elephant flow
mitigation.

Using traffic
categorization into
critical and non-critical
segments.

Significant network
bandwidth utilization
concerns.

3 Problem Statement

When a single SDN controller controls the data traffic flow of a large SDN-based DCN, even how
efficient the proposed method is, the network quality parameters are derailed. In the research article
[47], the server load was balanced using a dynamic server load algorithm but using a single controller,
which could result in a large processing delay of control instruction to the underlying switch in large
DCNs. This research article uses multiple controllers in a logically distributed scenario to overcome
the tight synchronization problem, as happens in the logically centralized control environment. Many
research ideas to address this practical issue are mentioned in Section 2. But there are some significant
issues related to this worthwhile issue that are following:

➢ The SDN controller manages the data traffic flow of all networking devices inside a network.
Suppose another controller is incorporated inside a network to share the load of flow control.
The transfer of control information among controllers inside the network requires tight



1684 CMES, 2024, vol.141, no.2

synchronization. The open flow protocol will connect them to transmit control information
regarding network controllability, which could also lead to vulnerabilities in DOS attacks. The
problem of synchronization arises in the logically controlled arrangement.

➢ However, suppose the synchronization condition is somehow fulfilled. In that case, there is
a problem when the network is a large DCN, and sharing necessary control files among
controllers in case of heavy data traffic flow could make the controller loaded, enhancing the
processing delays and latency and further derailing network quality parameters.

➢ Normally, there are two types of data flow inside a network: (1) data traffic requests to be
transferred from one host and (2) control data flow from one controller to another. Sharing
every flow information among different controllers has the advantage that if one controller
fails, another controller takes responsibility for flow control in addition to its commitments.
This requires additional spaces and programming to sport multiple control data flow inside a
network.

However, this research article proposed a more efficient method: to balance server load as
compared to the research methods suggested in Table 1 that is, instead of using different controllers
in the master and slave version, the large DCNS network is divided into smaller domains, and every
controller is responsible for flow control inside its domain and storing necessary flow data in its SAN
for the network administrator to instruct the controller further to manage the flow inside that local
domain better.

Solution Proposed by Implementing the Proposed Algorithm

Logically distributed use of SDN controllers is recommended when working with big networks
with hundreds of thousands of network components. This method divides the large DCNs into
smaller domains and assigns each controller to control flow control inside its assigned domain.
These controllers also store important flow data in their SANs, which makes it easier for network
administrators to give additional instructions for better flow management in each local domain.
As seen in Fig. 3, this logically distributed technique has advantages over the logically centralized
approach.

4 Methodology of the Proposed Technique (ISSLM)

The methodology of the proposed algorithm, the ISSLM algorithm, is divided into three proce-
dural steps that are as follows.

4.1 Procedural Step#1
The SDN controller mode of operation is defined before forming an SDN-based network. If the

network to be managed is small (comprising a few networking devices), then a single SDN controller
is sufficient to control the flow. However, if the network is large (comparing hundreds of thousands
of network components), the SDN controller should be used in a logically distributed manner. In this
method, the large DCNS network is divided into smaller domains, and every controller is responsible
for flow control inside its domain and storing necessary flow data in its SAN for the network
administrator to instruct the controller further to manage the flow inside that local domain better as
compared to the method adopted in research article [49]. The procedure of Step 1 is shown in Fig. 7.



CMES, 2024, vol.141, no.2 1685

Figure 7: Illustration of the suggested technique’s initial procedural step in a flow diagram

4.2 Procedural Step#2
The SDN controller determines each server’s HTTP request load (RPS) to prevent network server

overload carried by HTTP requests. The Grafana application is launched on the HTTP server and
configured to modulate the data source in Prometheus format; to accomplish this, Grafana gives the
required server logs access to the SDN controller when combined with Prometheus as the data source.
Each server’s RPS and active connection details are automatically retrieved every 10 milliseconds by
designing a server load module at the POX controller using core and Psutil as Python library functions
to fetch data by eliminating the need for lengthy calculation and Python coding. The following is the
summary algorithm shown in Table 2.

Table 2: Procedural steps for evaluation of RPS matrices

Sr. no. Procedural step explanation

1 def Integrate_ HTTP servers_RPS matrices_with_POXContoller ():
PSUTIL_setup ()
PSUTIL_Integrate_with_POXController ()
Endpoint_Creation_in_POXController_for_handling_RPS matrices ()
APACHE_Setup ()
GRAFANA_Run ()
Data_source_addition_of_PROMETHEUS ()
Construct_PromQL_query_manager_for_RPS_matrices ()

2 def Integrate_ HTTP servers_RPS matrices_with_POXContoller ():
Print (“Amending the POX controller module to retrieve each HTTP server’s RPS
matrices data”)

3 def PSUTIL_setup ():

(Continued)



1686 CMES, 2024, vol.141, no.2

Table 2 (continued)

Sr. no. Procedural step explanation

Print (“The Python library function that is installed and integrated with the POX
controller is called PSUTIL”)

4 def PSUTIL_Integrate_with_POXController ():
Print (“With the POX controller installed, PSUTIL is the Python library function that is
integrated”)

5 def Endpoint_Creation_in_POXController_for_handling_RPS matrices ():
Print (“To expose all of each server’s RPS matrix values to the POX controller, an
endpoint is constructed using PSUTIL”)

6 def APACHE_Setup ():
Print (“Every HTTP server has the APACHE program installed”)

7 def GRAFANA_Run ():
Print (“On every server, the GRAFANA application is started”)

8 def Data_source_addition_of_PROMETHEUS ():
Print (“To select the data source for PROMETHEUS to extract the HTTP server’s data
logs, the GRAFANA application is run on each server and its browser is extracted”)

9 def Construct_PromQL_query_manager_for_RPS_matrices ():
Print (“To query the RPS matrix (i.e., needed parameters, default time, memory detail,
etc.) of each server, Prom_QL queries are built”)

4.3 Procedural Step#3
After forming the SDN network on the Mininet tool, the controller calculates the HTTP request

load (RPS) for each server in the network. If the RPS value for any request severing sever is greater than
the reference load threshold value (S_Load), the following conditions are met in the proposed algorithm:

if (Request load of requested server > = Server load)

{
Remove the requested server from the available servers list;

For five times:

If (Server search with lesser request load value = Successful)

{
Move the load of HTTP requests to that server;

break the loop;

}
else if (Server search with the fewest connections active = Successful)

{
Move the load of HTTP requests to that server;

break the loop;

}



CMES, 2024, vol.141, no.2 1687

else if (Server search with slowest response time = Successful)

{
Move the load of HTTP requests to that server;

break the loop;

}
else

{
Print “The optimal server was not found”;

}
}

else

{
The requested server is given a new HTTP flow;

}
The procedure of Step 3 is illustrated in Fig. 8.

Figure 8: The second and third procedural steps of the suggested technique are represented in a flow
diagram

4.4 A Comparison between Traditional Server Load Balancing Algorithms and the Proposed (ISSLM)
Algorithm for Efficient Server Load Balancing

This portion includes an algorithm, as shown in Table 3, to perform server load balancing with
the research technique (ISSLM) algorithm.



1688 CMES, 2024, vol.141, no.2

Table 3: Algorithm to perform server load balancing with ISSLM

Steps Explanation

Initialization:
“total_Unavailable_Servers” ← Count of currently unavailable servers in the
network.
“server_With_MinLoad” ← Server with minimum HTTP request load in the
network.
The “chosen_Optimal_Server” ← server was selected via the ISSLM algorithm for
new HTTP request management.
“incoming_HTTP_Request_Batch” ← The SDN controller will manage A new batch
of HTTP requests.

Algorithm Workflow:
1 Evaluate if “incoming_HTTP_Request_Batch” equals “total_Unavailable_Servers.”

If true, proceed to Step 2. If false, move to Step 4.
2 Identify the optimal server with the lowest load among available servers:

“available_Servers” = [active_Server_List]
def select Server_With_MinLoad(available_Servers)

return min(available_Servers, key=lambda server: available_Servers.get(server))
Assign “chosen_Optimal_Server” = select Server_With_MinLoad(available_Servers)

3 If the condition in Step 2 is not satisfied, select the optimal server with the fewest
active connections:
“connection_Servers” = [active_Server_List]
def select Least_Connections_Server(connection_Servers):

return min(connection_Servers, key=lambda server:
connection_Servers.get(server))
Assign “chosen_Optimal_Server” = select LeastConnectionsServer
(connectionServers)

4 If neither of the previous conditions are satisfied, select the optimal server with the
quickest response time:
“avail_Servers” = [active_Server_List]
def Server_RespTime(avail_Servers):

startTime = get_current_time()
response = send_request_to_server(availServers)
endTime = get_current_time()
responseTime = endTime – startTime
print(f”Server response time: {responseTime} milliseconds”)

def Fastest Resp_Server(responseTime):
return min(responseTime, key=lambda server: responseTime.get(server))

Assign “chosen_Optimal_Server” = FastestRespServer(ServerRespTime
(availServers))



CMES, 2024, vol.141, no.2 1689

4.4.1 Algorithm for Segregating the Control Plane of Large SDN-Based DCN

This portion includes an algorithm, as shown in Table 4, to segregate the control plane of large
SDN-based DCN with the research technique (ISSLM) algorithm.

Table 4: Algorithm to perform server load balancing with ISSLM

Sr. no. Explanation

1 class NetworkManager:
2 def __init__(self, identifier, http_RequestCount):

self.identifier = identifier
self.http_RequestCount = http_RequestCount
self.qualityMetrics = {}

3 def monitor_subnetwork(self):
self.qualityMetrics = {“Delay-EndToEnd”: “ms,” “Throughput”: “Gbps,”
“DataTransfer”: “GB”}

4 def balance_http_load_with_ISSLM(self):
print(f”Applying ISSLM to balance load for controller {self.identifier} handling
{self.httpRequestCount} HTTP requests.”)

5 def store_qos_metrics(self, storage_Area_Network):
storage_Area_Network[self.identifier] = self.qualityMetrics

6 class SAN:
7 def distribute_sdn_control(http_Request_Distributions):

storage_Network = {}
for index, http_RequestCount in enumerate(http_Request_Distributions):

manager = Network_Manager(index, http_RequestCount)
manager.balance_http_load_with_ISSLM()
manager.monitor_subnetwork()
manager.store_qos_metrics(storage_Network)

return storage_Network

5 Results and Discussion

For the evaluation of the quality metrics parameters (maximum available bandwidth: Bd(max),
Throughput: Th, Data transfer: DTransfer, and end-to-end delay: DE-E, etc.), the SDN-based network
is simulated in three different configurations: (1) A single POX controller-based SDN controller
arrangement designed on Mininet without any server load management algorithm for managing
network data traffic. (2) A single POX controller-based SDN controller arrangement designed on
Mininet with a proposed server load management algorithm (ISSLM) for managing network traffic.
(3) Deployment of SDN in logically distributed controlled framework arrangement designed on
Mininet with proposed server load management algorithm (ISSLM) for managing network data
traffic. Fig. 9 represents the virtual network configurations designed on the Mininet tool for the first
two cases of simulations.



1690 CMES, 2024, vol.141, no.2

Figure 9: Network topology selected for obtaining QoS parameter results in the first portion of the
simulation

5.1 Case-A: Evaluation of the Quality Metrics Parameters (Bd(max), Th, DTransfer, D E-E, etc.) in a Single
POX Controller-Based SDN Controller Arrangement Designed on Mininet without Any Server Load
Management Algorithm for Managing Network Data Traffic

The user-defined network designed on Mininet, as shown in Fig. 9, comprises thirty HTTP
request-generating hosts (Hst-1 to Hst-30), three OpenFlow switches (Sw1, Sw2, Sw3), four servers (Ser-1, Ser-2,
Ser-3, and Ser-4), and single POX controller (CPs) that is responsible for managing the HTTP request
load that is directed towards the servers. In this virtualized network environment, the servers are
accordingly assigned the IP addresses 100.0.0.1, 100.0.0.2, 100.0.0.3, and 100.0.0.4. The QoS metrics
(Bd(max), Th, DTransfer, DE-E, etc.) obtained under normal working conditions (200 randomly generated
HTTP requests from hosts Hst-1–Hst-30 in our test case) include a maximum bandwidth (Bd(max)) of 6.5
Gb/s, a throughput (Th) of 5.6152 Gb/s, and a data transfer (DTransfer) volume of 7.019 Gbytes. However,
during the simulation time of 10 s, a high volume of HTTP requests of 20,000 are made from randomly
available Hosts (Hst-1 to Hst-30), and every request is exclusively sent to Ser-2 only. Because in this scenario
there is no server load management technique applied on the Controller (CPs), it makes the Ser-2 get
overloaded and reach a bottleneck state. As a result, QoS parameters (Bd(max), Th, DTransfer, DE-E, etc.)
deteriorate. Fig. 10 shows the QoS parameters for maximum bandwidth (Bd(max)) and data transfer
(DTransfer) related to the link between Ser-2 and the initiating hosts using the Iperf tool. Equations (Eq. (1)–
(4)) are used to obtain the values of throughput (Th), the percentage drop in data transfer (%DTransfer),



CMES, 2024, vol.141, no.2 1691

the percentage increase in server load (%ISL), and end-to-end Delay (DE-E). Where the Round-Trip
Delay (RTD) is obtained from the Iperf utility by using its hping directory.

Th = Data_Transfer in (Gbytes)
Time(s)

(1)

%ISL = 100 −
(

100 ∗ (Bd(max) under loaded conditions)
Bd (max) under normal conditions

)
(2)

%DTransfer = 100 −
(

100 ∗ (Data_Transfer under loaded conditions)
Data_Transfer under normal conditions

)
(3)

DE−E =
(

RTD
2

)
(4)

Figure 10: Results of quality parameters obtained through Iperf utility using a single controller (CPs)
without load management

Table 5 represents the QoS parameters (Bd(max), Th, DTransfer, DE-E, etc.) for Case A with integration of
Iperf utility with the Mininet environment over 10 s. When all 20,000 requests are sent to a Ser-2 without
the use of load balancing, there is a noticeable increase in the server load (%ISL) as compared to the
normal conditions. The percentage of data transfer (%DTransfer) is also drastically decreased compared
to normal conditions (i.e., 200 randomly generated HTTP requests from hosts Hst-1–Hst-30).

Table 5: QoS parameters of Ser-2 using a single controller (CPs) without a Load Balancing Algorithm

Time in (Seconds) Srequested Bd(max) in (Gb/s) DTransfer in (G-bytes) Th in (Gb/s) %ISL %DTransfer

10 S2 1.449 1.652 1.322 77.70% 76.49%



1692 CMES, 2024, vol.141, no.2

Line graphs of QoS parameters (Bd(max) and DTransfer) for Ser-2 using the Gnu Plot tool are represented
in Fig. 11a,b.

Figure 11: Line graphs of (Bd(max) and DTransfer) for Server_2 without load management. (a) Bd(max) using
a single controller (CPs) without load management. (b) DTransfer using a single controller (CPs) without
load management

5.1.1 Summarizing QoS Parameters (Bd(max), Th, DTransfer, DE-E, etc.) Result of Case A

When a network topology shown in Fig. 9 is simulated to obtain the QoS parameters (Bd(max),
Th, DTransfer, DE-E, etc.) results with only a single controller without a load management algorithm,
the overall network QoS is drastically decreased. The Bd decreased to the value (from 6.5 to
1.449 Gb/s). The Th value is declined from (5.612 to 1.322 Gb/s). The DTransfer is also reduced from
(7.019 to 1.652 Gbytes), and a Delay of (262.5 ms) is induced in the selected network. The percentage



CMES, 2024, vol.141, no.2 1693

load on the network servers (%ISL) is increased to (77.70%). The overall percentage reduction in data
transfer (%DTransfer) is (76.49%).

5.2 Case-B: Evaluation of the Quality Metrics Parameters (Bd(max), Th, DTransfer, DE-E, etc.) in a Single
POX Controller-Based SDN Controller Arrangement Designed on Mininet with Proposed Server Load
Management Algorithm (ISSLM) for Managing Network Data Traffic

In this section, the proposed algorithm (ISSLM) in the form of Python script is loaded on the POX
controller, which performs server load management under the direction of (the ISSLM) algorithm. In
this mode, all the HTTP requests generated from randomly available hosts (Hst-1 to Hst-30) are first
countered by an SDN controller that performs load balancing on network servers (Ser1, Ser2, Ser3, and
Ser4) with the aid of the ISSLM algorithm. In ten second simulation period, 20,000 HTTP requests are
directed only toward the POX controller. Using the Iperf utility, the QoS parameters for Case B are
obtained and shown in Fig. 12.

Figure 12: Results of quality parameters obtained through Iperf utility using a single controller (CPs)
with ISSLM algorithm

Table 6 represents the QoS parameters (Bd(max), Th, DTransfer, DE-E, etc.) for Case B with integration of
Iperf utility with Mininet environment over 10 s. As it is evident from Table 6 and Fig. 12, the network
quality parameters (Bd(max), Th, DTransfer, DE-E) are greatly increased as compared to Case A when all
20,000 HTTP requests are controlled by the controller equipped with a proposed algorithm (ISSLM).
The (Bd(max)) increases to 5.561 from 1.449 Gb/s. The Th improves to 4.854 from 1.322 GB/s. There is
also significant increase in DTransfer, going from 1.652 G-bytes to 6.068 G-bytes. Regarding Eqs. (2) and
(3), the (%DTransfer) and (%ISL) drop from 76.49% to 13.55% and 77.70% to 14.44%, respectively.

Line graphs of QoS parameters (Bd(max) and DTransfer) for Case B using the Gnu Plot tool are
represented in Figs. 13 and 14.



1694 CMES, 2024, vol.141, no.2

Table 6: QoS parameters using a single controller (CPs) with a Load Balancing Algorithm (ISSLM)

Node Time Bd(max) Th DTransfer %ISL %DTransfer D(E-E)

QoS parameter
extraction with
Cs under ISSLM

10 s 5.561 Gb/s 4.854 Gb/s 6.068 G-bytes 14.44% 13.55% 36.7 ms

QoS parameter
extraction with Cs
without ISSLM

10 s 1.449 Gb/s 1.322 Gb/s 1.652 G-bytes 77.70% 76.49% 513.5 ms

Figure 13: Bd(max) using a single controller (CPs) with load management algorithm (ISSLM)

Figure 14: DTransfer using a single controller (CPs) with load management algorithm (ISSLM)



CMES, 2024, vol.141, no.2 1695

5.2.1 Summarizing QoS Parameters (Bd(max), Th, DTransfer, DE-E, etc.) Result of Case B

When a network topology shown in Fig. 9 is simulated to obtain the QoS parameters (Bd(max), Th,
DTransfer, DE-E, etc.) results with only a single controller with the proposed load management algorithm
(ISSLM), the overall QoS of the network is increased as compared to Case A. The Bd is maximized to
the value (from 1.449 to 5.561 Gb/s). The Th value is increased from (1.322 to 4.854 Gb/s). The DTransfer

is also incremented from (1.652 to 6.068 Gbytes), and Delay is reduced to (513.5 to 36.7 ms) in the
selected network. The percentage load on the network servers (%ISL) is decreased up to (from 77.70%
to 14.44%). The overall percentage reduction in data transfer (%DTransfer) is also less in Case B (76.49%
to 13.55%).

5.3 Case-C: Evaluation of the Quality Metrics Parameters (B d(max), Th, DTransfer, DE-E, etc.) with Deplo-
yment of SDN in Logically Distributed Controlled Framework Arrangement Designed on Mininet with
Proposed Server Load Management Algorithm (ISSLM) for Managing Network Data Traffic

In this case, the SDN architecture is framed in a logically distributed controlled arrangement, as
shown in Fig. 15. Thirty hosts (Hst-1 to Hst-30) are divided into four logically distributed SDN-based sub-
networks (Ld1, Ld2, Ld3, and Ld4), each of which is overseen by a separate dedicated controller (Cd1, Cd2,
Cd3, and Cd4). Now, instead of handling 20,000 HTTP requests by the single controller (CPs), the Cd1 and
Cd3, handle 6000 HTTP requests apiece that come from network devices in sub-networks Ld1 and Ld3,
respectively, using a proposed algorithm (ISSLM). Similarly, 4000 HTTP requests apiece are managed
by Cd2 and Cd4 and directed from network devices inside Ld2 and Ld4 using the ISSLM algorithm with
the help of logic presented in Table 4. Higher-level controllers Cp1 and Cp2 are responsible for overall
network flow control management and fault tolerance.

Figure 15: The proposed network configuration for deploying SDN in large DCNs



1696 CMES, 2024, vol.141, no.2

The subnetwork controllers (Cd1, Cd2, Cd3 and Cd4) have an IP address as (11.0.1.1, 12.0.1.1,
13.0.1.1, and 14.0.1.1), respectively. For subnetworks (Ld1, Ld2, Ld3 and Ld4), the corresponding IP
addresses are (11.0.1.2, 12.0.1.2, 13.0.1.2 and 14.0.1.2), respectively. Fig. 16 illustrates the values of
(Bd(max), Th, and DTransfer) in all sub-divided networks (Ld1, Ld2, Ld3, and Ld4) using the Iperf utility.

Figure 16: (Continued)



CMES, 2024, vol.141, no.2 1697

Figure 16: QoS parametric values of four subdivided networks (Ld1, Ld2, Ld3, and Ld4) using Iperf utility.
(a): Displays the QoS parametric values for (Ld1) using Iperf utility. (b): Displays the QoS parametric
values for (Ld2) using the Iperf utility. (c): Displays the QoS parametric values for (Ld3) using Iperf
utility. (d): Displays the QoS parametric values for (Ld4) using the Iperf utility

As evidenced by Table 7 and Fig. 16, the QoS parametric values in the proposed framework
(logically distributed controlled arrangement) by implementing the proposed algorithm (ISSLM) are
far greater than the quality requests obtained from the Case (A and B).



1698 CMES, 2024, vol.141, no.2

Table 7: Comparative analysis of QoS parametric values obtained in all three portions

Terminal Time in
(Seconds)

Bd(max) in
(Gb/s)

Th in (Gb/s) DTransfer in
(G-bytes)

%ISL %DTransfer

QoS parameters of Case A 10 1.449 1.322 1.652 77.70% 76.49%
QoS parameters of Case B 10 5.561 4.854 6.068 14.44% 13.55%
QoS parameters for local
domain (Ld1)

10 5.901 5.072 6.340 9.21% 9.67%

QoS parameters for local
domain (Ld2)

10 6.101 5.201 6.501 6.14% 7.38%

QoS parameters for local
domain (Ld3)

10 5.901 5.072 6.340 9.21% 9.67%

QoS parameters for local
domain (Ld4)

10 6.101 5.201 6.501 6.14% 7.38%

It is the dividend from Table 7 that (Bd(max)) for (Ld1, Ld2, Ld3, and Ld4) has increased to (5.901,
6.101, 5.901, 6.101 Gb/s), respectively, from (5.561 Gb/s), as recorded under QoS parameters in Case
B. Similarly (Th) for each subnetwork has increased from 4.854 Gb/s (throughput as QoS parametric
value in Case B) to (5.072, 5.201, 5.072, 5.201 Gb/s) for (Ld1, Ld2, Ld3 and Ld4), respectively. (DTransfer) for
each subnetwork has increased from 6.068 Gbytes (Data transfer as QoS parametric value in Case B)
to (6.340, 6.501, 6.340, 6.501 Gbytes) for (Ld1, Ld2, Ld3 and Ld4), respectively. Moreover, the (%ISL) has
dropped throughout the corresponding sub-networks from 14.44% (QoS parametric value in Case B)
to (9.21%, 6.14%, 9.21%, 6.14%), for (Ld1, Ld2, Ld3, and Ld4), respectively. The (%DTransfer) has dropped
throughout the corresponding subnetworks from 13.55% (QoS parametric value in Case B) to (9.67%,
7.38%, 9.67%, 7.38%), for (Ld1, Ld2, Ld3, and Ld4), respectively. These differences in Bd(max)and DTransfer

across the segmented networks (Ld1, Ld2, Ld3, and Ld4) are graphically represented in line graph format
using the Gnu plot in Fig. 17.

5.3.1 Summarizing QoS Parameters (Bd(max), Th, DTransfer, DE-E, etc.) Result of Case C

When a network is framed in a logically distributed controlled environment, as shown in Fig. 15,
the QoS parameters (Bd(max), Th, Dtransfer, DE-E, etc.) results are far more superior as compared to QoS
parameters of Case (A & B). The Bd is maximized from (5.561 Gb/s) in Case B to (5.901, 6.101, 5.901,
6.101 Gb/s) for (Ld1, Ld2, Ld3 and Ld4), respectively. The Th value is increased from (4.854 Gb/s) in
Case B to (5.072, 5.201, 5.072, 5.201 Gb/s) for (Ld1, Ld2, Ld3 and Ld4), respectively. The Dtransfer is also
incremented from (6.068 Gbytes) in Case B to (6.340, 6.501, 6.340, 6.501 Gbytes) for (Ld1, Ld2, Ld3

and Ld4) respectively and Delay is reduced from (36.7 ms) in Case B to (3.57, 0.87, 3.57, 0.87 ms) for
(Ld1, Ld2, Ld3 and Ld4) respectively in the selected network. The percentage load on the network servers
(%ISL) decreased from (14.44%) in Case B to (9.21%, 6.14%, 9.21%, 6.14%) for (Ld1, Ld2, Ld3 and Ld4),
respectively. The overall percentage reduction in data transfer (%DTransfer) is also less in Case C (9.67%,
7.38%, 9.67%, 7.38%) for (Ld1, Ld2, Ld3, and Ld4), respectively.



CMES, 2024, vol.141, no.2 1699

Figure 17: (Continued)



1700 CMES, 2024, vol.141, no.2

Figure 17: Line Graphs of QoS parametric values of four local domains (Ld1, Ld2, Ld3, and Ld4) using
Gnu-plot. (a): Bd(max) for (Ld1 and Ld3) with the proposed algorithm (ISSLM). (b): Bd(max) for (Ld2 and
Ld4) with the proposed algorithm (ISSLM). (c): DTransfer for (Ld1 and Ld3) with the proposed algorithm
(ISSLM). (d): DTransfer for (Ld2 and Ld4) with the proposed algorithm (ISSLM)



CMES, 2024, vol.141, no.2 1701

5.4 Case-D: Evaluating the Performance in Terms of QoS Parameters of the Proposed Framework
(Logically Distributed Controlled Environment) under ISSLM in Comparison with Traditional Load
Balancing Methods

In Case D, we tested and gathered the QoS parameter values (Bd(max), Th, Dtransfer, D_Transmission_Delay)
result with the application of the following latest and widely used load balancing techniques mentioned
in Table 1 one by one on the user-defined network to compare it with the proposed method (ISSLM)
as they also based on Mininet environment as our proposed technique.

• Dynamic Weight Random Selection Method (DWRS) in [50]

• Multiple Regression Based Search Algorithm (MRBS) in [51]

• Adoptive Multiple Objective Load Balancing (AMLOB) in [55]

• Shortest Time Calculation Method (SRT) in [63]

• Conventional Round Robin Method (CRRM) in [64]

The results of Case D are summarized in Table 8. The network QoS parameters are tested for all
the above methods, including the proposed technique in two load conditions (normal flow: 200 HTTP
requests to be managed by the SDN controller and heavy flow: 20,000 HTTP requests to be managed
by the SDN controller). The Delay_Transmission is calculated by Eq. (5) in both modes (heavy flow mode:
M2 and normal flow mode: M1). The differential transmission Delay (D_Transmission_Delay), as shown in
Eq. (6), is a difference in milliseconds of transmission delay in (Heavy flow mode to normal flow mode:
Transmission delay in M2–Transmission Delay in M1). The main reason for finding this parameter, in
addition to the transmission delay, is to see how much delay is produced in ms when the load shifts
from normal to heavy mode. The last column of Table 8 explains the difference in transmission delay
in ms when the load shifts from normal mode to heavy flow mode. The QoS metrics (Bd(max), Th, DTransfer)
obtained under normal loaded conditions include a maximum bandwidth (Bd(max)) of 4.02 Gb/s and a
data transfer (DTransfer) volume of 7.02 Gbytes for 15 s.

Delay_Transmission = [DTransfer(Gbytes)] × 8
Bdmax(Gb/s)

(5)

Overall(D_Transmission_Delay) = Delay_Transmission(M2) − Delay_Transmission(M1) (6)

where (M1 = Normal data traffic mode) and M2 = (Heavy data traffic mode).

Table 8: Contrasting QoS variables results calculated from Iperf utility

Technique utilized Time in
(Seconds)

Bd(max) in (Gb/s) Th in (Gb/s) DTransfer in
(G-bytes)

D_Transmission_Delay

Research technique
ISSLM Algorithm

15 3.469 3.232 6.059 2.80

(SRT) 15 1.499 1.40 2.629 60.58
(CRRM) method 15 1.449 1.386 2.599 379.10
(DWRS) method 15 3.229 3.013 5.649 25.564
(MRBS) method 15 3.025 2.82 5.299 43.78
(AMLOB) method 15 2.796 2.6133 4.899 47.06



1702 CMES, 2024, vol.141, no.2

Figs. 18–20 show the contrast of QoS variable (Bd(max), DTransfer, D_Transmission_Delay) results obtained
from the Iperf utility under the proposed framework (logically distributed) using the Gnu plot.

Figure 18: Contrasting the QoS variable (Bd(max)) results from different traditional methods with the
research technique (ISSLM)

Figure 19: Contrasting QoS variable (DTransfer) results from different traditional methods with the
research technique (ISSLM)



CMES, 2024, vol.141, no.2 1703

Figure 20: Contrasting QoS variable (D_Transmission_Delay) results from different traditional methods with
the research technique (ISSLM)

5.4.1 Summarizing QoS Parameters (Bd(max), Th, DTransfer, D_Transmission_Delay, etc.) Result of Comparative
Analysis

When a network is framed in a logically distributed controlled environment, as shown in Fig. 15,
the QoS parameters (Bd(max), Th, DTransfer, D_Transmission_Delay, etc.) results with the proposed algorithm
ISSLM are far more superior as compared to QoS parameters obtained from the traditional methods
namely: SRT, CRRM, DWRS, MRBS and AMLOB. The Bd value in the selected network with the
proposed algorithm-based framework is (3.649 Gb/s) as compared to (1.499, 1.449, 3.229, 3.025,
2.796 Gb/s) for (SRT, CRRM, DWRS, MRBS, and AMLOB), respectively. The Th value in the
selected network with the proposed algorithm-based framework is (3.232 Gb/s) as compared to (1.40,
1.386, 3.013, 2.82, 2.6133 Gb/s) for (SRT, CRRM, DWRS, MRBS, and AMLOB), respectively. The
Dtransfer value in the selected network with the proposed algorithm-based framework is (6.059 Gbytes)
as compared to (2.629, 2.599, 5.649, 5.299, 4.899 Gbytes) for (SRT, CRRM, DWRS, MRBS, and
AMLOB) respectively and D_Transmission_Delay in the selected network with proposed algorithm based
framework is (2.80 ms) as compared to (60.58, 379.10, 25.564, 43.78, 47.06 ms) for (SRT, CRRM,
DWRS, MRBS and AMLOB), respectively.

6 Conclusion

In this research article, we have accomplished our goal of magnifying the network quality param-
eters (maximum available bandwidth, greater throughput, and higher data transfer) in large DCNs
by applying the proposed algorithm, ISSLM on SDN controllers arranged in logically distributed
arrangement with the utilization of two new methods (1) A large SDN based DCN is divided into
sub-networks with independent controllers to overcome the bottleneck issues of the unified controller
and also nullifying the compatibilities issues with use of multiple controllers in single large network. (2)
Each local controller manages the load by adopting the ISSLM algorithm that performs the desired
task of shifting load to the most suitable controller based on three conditions (A-server have less RPS



1704 CMES, 2024, vol.141, no.2

value (OR) B-server with fewer concurrent requests (OR) C-server with less response time). For testing,
the virtual network (with many network devices) is formed on Mininet, and simulation is performed
in three different configurations: (1) A single POX controller-based SDN controller arrangement
designed on Mininet without any server load management algorithm for managing network traffic.
(2) A single POX controller-based SDN controller arrangement designed on Mininet with a proposed
server load management algorithm (ISSLM) for managing network traffic. (3) Deployment of SDN
in logically distributed controlled framework arrangement designed on Mininet with proposed server
load management algorithm (ISSLM) for managing network data traffic. Case C’s QoS parametrized
values (Bd(max), Th, DTransfer, D_Transmission_Delay, etc.) showed that the proposed framework with ISSLM
algorithm performed better server load management in Large DCNs. The comparative analysis
results of the proposed algorithm ISSLM are far more superior as compared to QoS parameters
obtained from the traditional methods, namely: SRT, CRRM, DWRS, MRBS and AMLOB. The
Bdmax value in the selected network with the proposed algorithm-based framework is (3.649 Gb/s) as
compared to (1.499, 1.449, 3.229, 3.025, 2.796 Gb/s) for (SRT, CRRM, DWRS, MRBS and AMLOB),
respectively. The Th value in the selected network with the proposed algorithm-based framework is
(3.232 Gb/s) as compared to (1.40, 1.386, 3.013, 2.82, 2.6133 Gb/s) for (SRT, CRRM, DWRS, MRBS,
and AMLOB), respectively. The Dtransfer value in the selected network with the proposed algorithm
based framework is (6.059 Gbytes) as compared to (2.629, 2.599, 5.649, 5.299, 4.899 Gbytes) for (SRT,
CRRM, DWRS, MRBS and AMLOB), respectively and D_Transmission_Delay in the selected network
with proposed algorithm based framework is (2.80 ms) as compared to (60.58, 379.10, 25.564, 43.78,
47.06 ms) for (SRT, CRRM, DWRS, MRBS and AMLOB), respectively. However, one possible
limitation of this research study is that it has been conducted in a controlled or simulated environment;
the obtained results can show slight variation when the proposed technique is made functional in real-
world conditions and is strongly tied to the performance and reliability of the SDN controllers.

Acknowledgement: Special thanks to Shahid Atiq, Muhammad Majid Hussain, and Intisar Ali Sajjad
for guiding and supporting the implementation of the QoS Enhancement Method ISSLM Algorithm.
Also, special thanks to Malik Muhammad Abdul Basit for manuscript preparation.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The author’s contributions to this paper are as follows: study conception and
design: Khawaja Tahir Mehmood, Shahid Atiq; data collection: Khawaja Tahir Mehmood, Shahid
Atiq; analysis and interpretation of results: Khawaja Tahir Mehmood, Shahid Atiq; draft manuscript
preparation: Khawaja Tahir Mehmood, Shahid Atiq, Intisar Ali Sajjad, Muhammad Majid Hussain,
Malik M. Abdul Basit. All authors reviewed the results and approved the final version of the
manuscript.

Availability of Data and Materials: The supporting data related to the algorithm and simulation
material technical details are with the corresponding author and can be provided upon appropriate
request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that have no conflicts of interest to report regarding the
present study.



CMES, 2024, vol.141, no.2 1705

References
1. Cisco. Annual internet report (2018–2023) white paper. Cisco; 2020. Available from: https://www.cisco.com/

c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html.
[Accessed 2020].

2. Sloane T. Software-defined networking: the new norm for networks. Open Networking Foundation; 2013.
Available from: https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-n
ew-norm-for-networks/. [Accessed 2020].

3. Gomez-Rodriguez JR, Sandoval-Arechiga R, Ibarra-Delgado S, Rodriguez-Abdala VI, Vazquez-Avila JL,
Parra-Michel R. A survey of software-defined networks-on-chip: motivations, challenges and opportunities.
Micromachines. 2021 Feb 12;12(2):183. doi:10.3390/mi12020183.

4. Jenabzadeh MR, Ayatollahitafti V, Mollakhalili MR, Mollahoseini Ardakani MR. VNR_CCP: a new
approach to congestion control using virtualization technique and switch migration in SDN. J Model Eng.
2024 May;22(76):85–98.

5. Kaur S, Sandhu AK, Bhandari A. Investigation of application layer DDoS attacks in legacy and
software-defined networks: a comprehensive review. Int J Inf Secur. 2023 Aug 7;22(6):1949–88.
doi:10.1007/s10207-023-00728-5.

6. Salti IA, Zhang N. An effective, efficient and scalable link discovery (EESLD) framework for hybrid multi-
controller SDN networks. IEEE Access. 2023 Jan;11:140660–86. doi:10.1109/ACCESS.2023.3339381.

7. Imran Hussain S, Yesvanth R, Yuvarajapathi V. Implementing OpenFlow, exploring the present and
future software-defined networks ecosystem. In: International Conference on Sustainable Communication
Networks and Application (ICSCNA), 2023; Theni, India; p. 280–5.

8. Sezer S, Scott-Hayward S, Chouhan P, Fraser B, Lake D, Finnegan J, et al. Are we ready for
SDN? Implementation challenges for software-defined networks. IEEE Commun Mag. 2013;51(7):36–43.
doi:10.1109/MCOM.2013.6553676.

9. Karakus M, Durresi A. A survey: control plane scalability issues and approaches in Software-Defined
Networking (SDN). Comput Netw. 2017 Jan;112:279–93. doi:10.1016/j.comnet.2016.11.017.

10. Javadpour A, Wang G, Rezaei S. Resource management in a peer-to-peer cloud network for IoT. Wirel Pers
Commun. 2020 Aug;115(3):2471–88. doi:10.1007/s11277-020-07691-7.

11. Javadpour A, Wang G. cTMvSDN: improving resource management using combination of Markov-
process and TDMA in software-defined networking. J Supercomput. 2021;Jul;78(3):3477–99.
doi:10.1007/s11227-021-03871-9.

12. Manzoor S, Kayani MA, Ali N, Ratyal NI, Mohamed HG. TiWA: achieving tetra indicator Wi-Fi
associations in software defined Wi-Fi networks. IEEE Access. 2023 Jan;11:89520–34. doi:10.1109/AC-
CESS.2023.3307476.

13. Kalafatidis S, Demiroglou V, Mamatas L, Tsaoussidis V. Experimenting with an SDN-Based NDN
deployment over wireless mesh networks. In: IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2022; New York, NY, USA; p. 1–6.

14. Kobo HI, Abu-Mahfouz AM, Hancke GP. A survey on software-defined wireless sensor networks:
challenges and design requirements. IEEE Access. 2017;5:1872–99. doi:10.1109/ACCESS.2017.2666200.

15. Kreutz D, Ramos FMV, Esteves Verissimo P, Esteve Rothenberg C, Azodolmolky S, Uhlig
S. Software-defined networking: a comprehensive survey. Proc IEEE. 2015 Jan;103(1):14–76.
doi:10.1109/JPROC.2014.2371999.

16. Shah N, Giaccone P, Rawat DB, Rayes A, Zhao N. Solutions for adopting software defined network in
practice. Int J Commun Syst. 2019 May 1;32(17):e3990. doi:10.1002/dac.3990.

17. Zuo QY, Chen M, Zhao GS, Xing CY, Zhang GM, Jiang PC. Research on OpenFlow-based SDN
technologies. J Softw. 2013 Dec 1;24(5):1078–97. doi:10.3724/SP.J.1001.2013.04390.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://opennetworking.org/sdn-resources/whitepapers/software-defined-networking-the-new-norm-for-networks/
https://doi.org/10.3390/mi12020183
https://doi.org/10.1007/s10207-023-00728-5
https://doi.org/10.1109/ACCESS.2023.3339381
https://doi.org/10.1109/MCOM.2013.6553676
https://doi.org/10.1016/j.comnet.2016.11.017
https://doi.org/10.1007/s11277-020-07691-7
https://doi.org/10.1007/s11227-021-03871-9
https://doi.org/10.1109/ACCESS.2023.3307476
https://doi.org/10.1109/ACCESS.2017.2666200
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1002/dac.3990
https://doi.org/10.3724/SP.J.1001.2013.04390


1706 CMES, 2024, vol.141, no.2

18. Stribling J, Sovran Y, Zhang I, Pretzer X, Li J, Kaashoek MF, et al. Flexible, wide-area storage for
distributed systems with WheelFS. Netw Syst Des Implement. 2009 Apr;4:43–58.

19. Koponen T, Casado M, Gude N, Stribling J, Poutievski L, Zhu M, et al. Onix: a distributed control platform
for large-scale production networks. Proc OSDI. 2010;10:1–6.

20. Medved J, Varga R, Tkacik A, Gray K. OpenDaylight: towards a model-driven SDN controller architecture.
In: Proceeding of IEEE International Symposium on a World of Wireless, Mobile and Multimedia
Networks, 2014; Sydney, NSW, Australia; p. 1–6.

21. Akka. Build concurrent, distributed, and resilient message-driven applications for java and scala. Available
from: https://akka.io/. [Accessed 2020].

22. Suh D, Jang S, Han S, Pack S, Kim T, Kwak JY. On performance of OpenDaylight clustering. In: IEEE
NetSoft Conference and Workshops (NetSoft), 2016; Seoul, Republic of Korea; p. 407–10.

23. Berde P, Gerola M, Hart J, Higuchi Y, Kobayashi M, Koide T, et al. ONOS: towards an open, distributed
SDN OS. In: Proceedings of the Third Workshop on Hot Topics in Software Defined Networking, 2014;
Chicago, IL, USA; p. 1–6.

24. Sakic E, Kellerer W. Response time and availability study of RAFT consensus in distributed SDN control
plane. IEEE Trans Netw Serv Manag. 2018 Mar;15(1):304–18. doi:10.1109/TNSM.2017.2775061.

25. Atomix. A reactive java framework for building fault-tolerant distributed systems. Available from:
https://atomix.io/ [Accessed 2020].

26. Hunt P, Konar M, Junqueira FP, Reed B. ZooKeeper: wait-free coordination for internet-scale systems. In:
USENIX Annual Technical Conference, 2010; Boston, MA, USA; p. 11.

27. Rehman AU, RuiL A, Barraca JP. Fault-tolerance in the scope of software-defined networking (SDN).
IEEE Access. 2019;7:124474–90. doi:10.1109/ACCESS.2019.2939115.

28. Katta N, Zhang H, Freedman M, Rexford J. Ravana: controller fault-tolerance in software-defined
networking. In: Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, 2015; Santa Clara, CA, USA; p. 1–13.

29. Mantas A, Ramos FMV. Consistent and fault-tolerant SDN with unmodified switches. Cornell University:
USA; 2016 Jan.

30. Yeganeh S, Ganjali Y. Kandoo: a framework for efficient and scalable offloading of control applications.
In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks, ACM SIGCOMM,
2012; Helsinki, Finland; p. 19–24.

31. Jain S, Zhu M, Zolla J, Hölzle U, Stuart S, Vahdat A, et al. B4: experience with a globally-
deployed software defined WAN. ACM SIGCOMM Comput Commun Rev. 2013 Aug;43(4):3–14.
doi:10.1145/2486001.2486019.

32. Hong CY, Kandula S, Mahajan R, Zhang M, Gill V, Nanduri M, et al. Achieving high utilization with
software-driven WAN. In: Proceedings of the ACM SIGCOMM, 2013 Conference on SIGCOMM, 2013;
Hong Kong, China; p. 15–26.

33. Phemius K, Bouet M, Leguay J. DISCO: distributed multi-domain SDN controllers. In: 2014 IEEE
Network Operations and Management Symposium (NOMS), 2014; Krakow, Poland.

34. Basavaraju N, Alexander N, Seitz J. Performance evaluation of advanced message queuing protocol
(AMQP): an empirical analysis of AMQP online message brokers. In: International Symposium on
Networks, Computers and Communications (ISNCC), 2021; Dubai, United Arab Emirates; p. 1–8.

35. Benamrane F, Ben Mamoun M, Benaini R. An East-West interface for distributed SDN
control plane: implementation and evaluation. Comput Electr Eng. 2017 Jan;57:162–75.
doi:10.1016/j.compeleceng.2016.09.012.

36. Esteve Rothenberg C, Trindade Nascimento M, Teixeira Godoy H, Carlos S, Raszuk R. Revisiting routing
control platforms with the eyes and muscles of software-defined networking. In: Proceedings of the First

https://akka.io/
https://doi.org/10.1109/TNSM.2017.2775061
https://atomix.io/
https://doi.org/10.1109/ACCESS.2019.2939115
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1016/j.compeleceng.2016.09.012


CMES, 2024, vol.141, no.2 1707

Workshop on Hot Topics in Software Defined Networks, ACM SIGCOMM, 2012; Helsinki, Finland;
p. 13–8.

37. Santos MAS, Nunes BAA, Obraczka K, Turletti T, de Oliveira BT, Margi CB. Decentralizing SDN’s control
plane. In: 39th Annual IEEE Conference on Local Computer Networks, 2014; Edmonton, AB, Canada;
p. 402–5.

38. Stringer J, Pemberton D, Fu Q, Lorier C, Nelson RE, Bailey JJ, et al. Cardigan: SDN distributed routing
fabric going live at an Internet exchange. In: 2014 IEEE Symposium on Computers and Communications
(ISCC), 2014; Funchal, Portugal; p. 1–7.

39. Lapeyrade R, Bruyère M, Owezarski P. OpenFlow-based migration and management of the TouIX IXP.
In: IEEE/IFIP Network Operations and Management Symposium, 2016; Istanbul, Turkey; p. 1131–6.

40. Malboubi M, Wang L, Chuah CN, Sharma P. Intelligent SDN based traffic (de)aggregation and measure-
ment paradigm (iSTAMP). In: IEEE INFOCOM 2014—IEEE Conference on Computer Communications,
2014; Toronto, ON, Canada; p. 934–42.

41. Endeavour. Project. Available from: https://www.h2020-endeavour.eu/. [Accessed 2024].
42. Morgan H. Atlantic wave-SDX: a distributed intercontinental experimental software defined exchange for

research and education networking; 2015. Available from: https://itnews.fiu.edu/wp-content/uploads/sites/
8/2015/04/AtlanticWaveSDX-Press-Release_FinalDraft.pdf [Accessed 2020].

43. Lin P, Bi J, Wolff S, Wang Y, Xu A, Chen Z, et al. A west-east bridge based SDN inter-domain testbed.
IEEE Commun Mag. 2015 Feb;53(2):190–7. doi:10.1109/MCOM.2015.7045408.

44. Mehmood KT, Atiq S, Hashmi MW. Predictive analysis of telecom system quality parameters with SDN
(Software Define Networking) controlled environment. Elem Educ Online. 2021 Jan;20(3):2342–55.

45. Advanced Layer 2 System, Internet2. Ann Arbor, MI, USA: Advanced Technology Community
Founded by the U.S. Research and Education Communit; Dec. 2014. Available from: https://www.
internet2.edu/products-%20services/advanced-networking/layer-2-services/. [Accessed 2024].

46. Kotronis V, Gämperli A, Dimitropoulos X. Routing centralization across domains via SDN:
a model and emulation framework for BGP evolution. Comput Netw. 2015 Dec;92:227–39.
doi:10.1016/j.comnet.2015.07.015.

47. Yu M, Rexford J, Freedman MJ, Wang J. Scalable flow-based networking with DIFANE. In: SIG-
COMM’10: Proceedings of the ACM SIGCOMM, 2010; New Delhi, India; p. 351–62.

48. Aly WHF. Generic controller adaptive load balancing (GCALB) for SDN networks. J Comput Netw
Commun. 2019 Dec;2019:1–9. doi:10.1145/1851182.1851224.

49. Mehmood KT, Atiq S, Hussain MM. Enhancing QoS of telecom networks through server load management
in software-defined networking (SDN). Sensors. 2023 Jan;23(23):9324. doi:10.3390/s23239324.

50. Chiang ML, Cheng HS, Liu HY, Chiang CY. SDN-based server clusters with dynamic load balancing and
performance improvement. Cluster Comput. 2020 May;24(1):537–58. doi:10.1007/s10586-020-03135-w.

51. Begam GS, Sangeetha M, Shanker NR. Load balancing in DCN servers through SDN machine learning
algorithm. Arab J Sci Eng. 2021 Jul;47(2):1423–34. doi:10.21203/rs.3.rs-277161/v1.

52. Malbašić T, Bojović PD, Bojović Ž., Šuh J, Vujošević D. Hybrid SDN networks: a multi-parameter server
load balancing scheme. J Netw Syst Manag. 2022 Jan;30(2):1–29. doi:10.21203/rs.3.rs-383737/v1.

53. Liang S, Jiang W, Zhao F, Zhao F. Load balancing algorithm of controller based on SDN architecture
under machine learning. J Syst Sci Inform. 2020 Dec;8(6):578–88. doi:10.21078/JSSI-2020-578-11.

54. Ahmad S, Jamil F, Ali A, Khan E, Ibrahim M, Keun Whangbo T. Effectively handling network con-
gestion and load balancing in software-defined networking. Comput Mater Contin. 2022;70(1):1363–79.
doi:10.32604/cmc.2022.017715.

55. Saxena MC, Sabharwal M, Bajaj P. Review of SDN-based load-balancing methods, issues, challenges, and
roadmap. Int J Electr Comput Eng Syst. 2023 Nov;14(9):1031–49. doi:10.32985/ijeces.14.9.8.

https://www.h2020-endeavour.eu/
https://itnews.fiu.edu/wp-content/uploads/sites/8/2015/04/AtlanticWaveSDX-Press-Release_FinalDraft.pdf
https://itnews.fiu.edu/wp-content/uploads/sites/8/2015/04/AtlanticWaveSDX-Press-Release_FinalDraft.pdf
https://doi.org/10.1109/MCOM.2015.7045408
https://www.internet2.edu/products-%20services/advanced-networking/layer-2-services/
https://www.internet2.edu/products-%20services/advanced-networking/layer-2-services/
https://doi.org/10.1016/j.comnet.2015.07.015
https://doi.org/10.1145/1851182.1851224
https://doi.org/10.3390/s23239324
https://doi.org/10.1007/s10586-020-03135-w
https://doi.org/10.21203/rs.3.rs-277161/v1
https://doi.org/10.21203/rs.3.rs-383737/v1
https://doi.org/10.21078/JSSI-2020-578-11
https://doi.org/10.32604/cmc.2022.017715
https://doi.org/10.32985/ijeces.14.9.8


1708 CMES, 2024, vol.141, no.2

56. Haidi AM, Au TW, Shah H. Single cluster load balancing using SDN: performance comparison between
floodlight and POX. In: IEEE 19th International Conference on Communication Technology (ICCT), 2019;
Xi’an, China.

57. Ejaz S, Iqbal Z, Azmat Shah P, Bukhari BH, Ali A, Aadil F. Traffic load balancing using software
defined networking (SDN) controller as virtualized network function. IEEE Access. 2019;7:46646–58.
doi:10.1109/ACCESS.2019.2909356.

58. Gasmelseed H, Ramar R. Traffic pattern-based load-balancing algorithm in software-defined network using
distributed controllers. Int J Commun Syst. 2018 Nov;32(7):e3841. doi:10.1002/dac.3841.

59. Xu Y, Cello M, Wang IC, Walid A, Wilfong G, Wen CHP, et al. Dynamic switch migration in dis-
tributed software-defined networks to achieve controller load balance. IEEE J Sel Areas Commun. 2019
Mar;37(3):515–29. doi:10.1109/JSAC.2019.2894237.

60. Gao Y, Zhang Z, Zhao D, Zhang Y, Luo T. A hierarchical routing scheme with load balanc-
ing in software defined vehicular ad hoc networks. IEEE Access. 2018 Jan;6:73774–85. doi:10.1109/
ACCESS.2018.2884708.

61. Vyakaranal SB, Naragund JG. Weighted round-robin load balancing algorithm for software-defined
network. In: Emerging Research in Electronics, Computer Science and Technology, 2019; Singapore;
p. 375–87.

62. Sathyanarayana S, Moh M. Joint route-server load balancing in software defined networks using ant
colony optimization. In: International Conference on High Performance Computing and Simulation, 2016;
Innsbruck, Austria; p. 156–63.

63. Zhong H, Fang Y, Cui J. LBBSRT: an efficient SDN load balancing scheme based on server response time.
Future Gener Comput Syst. 2017 Mar;68:183–90. doi:10.1016/j.future.2016.10.001.

64. Hamed MI, ElHalawany BM, Fouda MM, Eldien AST. Performance analysis of applying load
balancing strategies on different SDN environments. Benha J Appl Sci. 2017 Mar;2(1):91–7.
doi:10.21608/bjas.2017.163983.

65. Hai NT, Kim DS. Efficient load balancing for multi-controller in SDN-based mission-critical networks. In:
IEEE 14th International Conference on Industrial Informatics (INDIN), 2016; Poitiers, France; p. 420–5.

https://doi.org/10.1109/ACCESS.2019.2909356
https://doi.org/10.1002/dac.3841
https://doi.org/10.1109/JSAC.2019.2894237
https://doi.org/10.1109/ACCESS.2018.2884708
https://doi.org/10.1016/j.future.2016.10.001
https://doi.org/10.21608/bjas.2017.163983

	Examining the Quality Metrics of a Communication Network with Distributed Software-Defined Networking Architecture
	1 Introduction
	2 Literature Review
	3 Problem Statement
	4 Methodology of the Proposed Technique ISSLM
	5 Results and Discussion
	6 Conclusion
	References


