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ABSTRACT

A mathematical model is designed to investigate Tuberculosis (TB) disease under the vaccination, treatment, and
environmental impact with real cases. First, we introduce the model formulation in non-integer order derivative
and then, extend the model into fractional order derivative. The fractional system’s existence, uniqueness, and
other relevant properties are shown. Then, we study the stability analysis of the equilibrium points. The disease-
free equilibrium (DFE) D0 is locally asymptotically stable (LAS) when Rv < 1. Further, we show the global
asymptotical stability (GAS) of the endemic equilibrium (EE) D∗ for Rv > 1 and D0 for Rv ≤ 1. The existence
of bifurcation analysis in the model is investigated, and it is shown the system possesses the forward bifurcation
phenomenon. Sensitivity analysis has been performed to determine the sensitive parameters that impact Rv. We
consider the real TB statistics from Khyber Pakhtunkhwa in Pakistan and parameterized the model. The computed
basic reproduction number obtained using the real cases is R0 ≈ 3.6615. Various numerical results regarding
disease elimination of the sensitive parameters are shown graphically.

KEYWORDS
Tuberculosis; real data; stability analysis; parameter estimations; discussion

1 Introduction

A Mycobacterium tuberculosis (MTB) infection is the reason for tuberculosis (TB), a persistent
contagious disease that frequently spreads through the air in the form of droplets [1]. Pulmonary
tuberculosis is the name given to TB that mostly affects the lungs, however, it can affect any organ in the
body [2]. Before the COVID-19 pandemic in 2019, TB ranked as the world’s 13th most common cause
of mortality and the primary cause of death from single-source infections. Even though TB prevention
and mitigation have come a long way over the last 20 years, 10.6 million new cases of the disease were
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reported globally in 2021. Based on estimates, Pakistan ranked fifth among B high-burden nations
globally, accounting for 61% of the TB burden in the World Health Organization (WHO) Eastern
Mediterranean Region, with 510,000 new cases of TB arising yearly and roughly 15,000 drug-resistant
cases developing annually [3]. According to the WHO in 2002, approximately 1.3 million death cases
have been reported, and 10.6 million infected cases are reported worldwide [4]. There is an urgent need
to make more control and prevention measures to conduct research on TB and highlight this issue to
make more efforts for its resolution.

Several recent mathematical studies have been conducted on TB dynamics in the past. For
example, the authors in [5] introduced a mathematical formulation for TB dynamics and discussed
the disease trends in India and other nations. The work in [6], provided the development of the age
structure modeling of TB controlling under dots. Further, different case studies have investigated
related to TB cures in different areas of the world. In [7], the authors conducted a study, to examine the
TB dynamics incorporated by the features of slow and fast progression within the SEIR (Susceptible,
Exposed, Infected, Recovered) model. The recurrence features in the TB model formulation have been
done by [8], where the authors considered an XLTiTn R model and divided the treatment into infectious
and non-infectious classes. They studied the time-dependent uncertainty and sensitivity analysis
quantitatively, to understand the TB when the treatment effect is absent. The Bacillus Calmette-Guerin
(BCG) for vaccinating susceptible people has been incorporated in the study [9], where the susceptible
people are divided into unvaccinated and vaccinated individuals. Similarly, the exposed people with
a history of no pre-exposure vaccination, and those with a history of pre-exposure vaccination are
divided. They showed that treatment combined with vaccination is more effective than vaccination
alone. The treatment and vaccination impact on the TB disease dynamics in terms of mathematical
formulation has been completed in [10], where the global stability and optimal control results are
obtained regarding the disease curtail in the population. A mathematical model for TB infection,
considering the potential public health impacts of new vaccines and their predictions for countries
with high incidence rates, is discussed in [11]. The model is subdivided into six groups: vaccinated
uninfected, unvaccinated uninfected, unvaccinated latent, vaccinated latent, infected, and recovered
classes. The features of complete and incomplete treatment in the transmission dynamics of TB have
been formulated in terms of a mathematical model [12], where the SEIR model in terms of age structure
has been studied. A mathematical model for TB with drug resistance by studying the high endemic
countries of the Asia-Pacific area [13]. The authors considered various results regarding vaccine
efficacy in partial and temporary, and reinfection during the latency period. A mathematical model in
non-integer derivative describing the TB disease is discussed in [14], where the real data is considered
and various results regarding the disease curtail are presented. TB and HIV coinfection models have
been studied in [15] where the details analysis of each model and their co-dynamics are studied. The
TB model is considered in the form of an SEIR type. The dynamics of TB with relapse and treatment
under the age-structured model is analyzed in [16]. They considered the infected data of TB in China
from 2017 to 2018 to obtain the optimal values of the parameters using the Grey Wolf Optimizer
algorithm. A non-autonomous mathematical model for TB with seasonality and age structure has
been studied in [17]. The findings show that immunizing vulnerable people over the age of sixty-five
as well as those between the ages of 20 and 24 are significantly more efficient at lowering the overall
incidence of TB and that each enhanced vaccination approach, screening approach, and therapeutic
the approach results in significant decreases in the prevalence of TB per 100,000 people in comparison
with present methods, and that combining all three methods is even more successful. A tuberculosis
mathematical study with seasonality and without seasonality is discussed in [18]. They studied the
model without seasonality and showed that it undergoes backward bifurcation while the model with
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seasonality provided the data fitting to the model. A mathematical model to study TB using the cases
in China is given in [19] where the authors used the Chinese data on TB from 2005 to 2021. Further,
they designed an optimal control problem using four controls to obtain the optimal control results. In
[20], the authors used the control theory to study the middle eastern respiratory syndrome (MERS)
coronavirus disease model.

Vaccination is considered a powerful tool for the prevention and control of diseases. The authors
in [21] studied the COVID-19 spread in China with vaccination in some percentage. The authors
in [22] studied the model with the Omicron strain and the Delta variant strain. To prevent TB
disease, administer the BCG vaccine, which is made from a suspension of attenuated Bacillus bovis. It
boosts macrophage action, enhances tumor cell killing, activates T lymphocytes, and improves cellular
immunity. The two French scientists, Calmette and Guerin, are the first to develop it [23,24]. For a long
time, it was considered that the vaccine BCG does not protect against the mycobacterium tuberculosis
infection, however, it protects against progression of the active disease [25]. A vaccination model in [26]
is formulated to study TB infection with relapse incomplete treatment, and slow and past progression.

Scientists and researchers are always exploring ways to find the best possible treatment against
the disease for it curtail. Presently, the treatment available for TB is drug treatment. The TB treatment
follows five principles and with many constraints, treatment for an individual frequently falls short of
the intended outcomes. The incomplete treatment causes some of the infected people to have drug-
resistant infections [19]. The latent individuals, as a control strategy to design an optimal control
problem for TB, have been studied in [27]. Various studies indicate the survival of the TB bacteria
outside the host in favorable conditions for a long time and even alcohol with 75% cannot be
able to vanish it. Healthy individuals can easily be infected with the pathogens in the environment
that is available to live freely. Thus, the concept of environmental study in TB modeling has been
incorporated by many researchers [28]. The contaminated environment effect includes handkerchiefs,
doorknobs, towels, and toys used by infected individuals. The authors conducted research on TB with
environmental class in their mathematical modeling in China [29]. Some more related work in applied
mathematics area are provided here in the work [30,31].

An expanded form of integer-order calculus is called fractional calculus. In the last few decades, it
has been widely applied in various scientific and technological fields, such as electronic circuit analysis,
control theory, heat transfer, and fluid dynamics [32]. The fractional derivative is primarily used
because it incorporates memory, a feature shared by the majority of biological systems. Moreover,
the fractional order derivative has a nonlocal characteristic. Additionally, the dynamical systems’
stability zone is expanded by fractional-order derivatives. It has been heavily utilized in the past
several years to address numerous biological issues. The difficulties are modeled using differential
equations of fractional order. In this connection, we may cite various research in which non-integer
derivatives are considered to simulate and examine the transmission of different types of illnesses other
than TB (see [33,34]). For example, a fractional study to examine TB disease has been considered in
[35]. A mathematical model of TB in Caputo-Fabrizio derivative is explored in [36]. The COVID-
19 mathematical study in different fractional kernels is given in [37]. A Zika virus model under
fractional differential equation modeling is studied in [38]. There is more related research on fractional
derivatives, see [39–42].

We design a mathematical model in the present analysis for tuberculosis infection with vac-
cination, environmental contamination, and therapies that significantly influence the TB disease’s
dynamics. In the previous works mentioned above none of us used the concept of fractional derivative
with real data of KP, in Pakistan to study TB, with vaccination, environmental impacts, and treatment.
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We considered a perfect vaccination and provided the results when there was an increase in vaccine and
less waning rate of vaccine. We use real data and provide a more detailed analysis of the model with
qualitative and numerical results. The rest of the paper has been organized in detail section-wise as
follows: The basic definitions and the construction of the mathematical model are given in Section 2.
The fundamental analysis of the model and its existence and uniqueness is shown in Section 3 while
bifurcation and the local stability analysis are discussed in Section 4. Section 5 studies the global
stability analysis of the proposed model. Parameters estimation is shown in Section 6 while the detailed
numerical results are given in Section 7. Results are summarized finally in Section 8.

2 Model Construction and Basic of Fractional Formulae

We shall provide some important formulae that will be used in the modeling of the problem. We
follow the definitions from [32,43].

Definition 1. A Caputo derivative of order q of a function g ∈ Ck([0, ∞],R), where q ∈ (k − 1, k] is
described by

Dqg(t) = 1
�(k − q)

∫ t

0

(t − φ)k−q−1g(k)(φ)dφ, t > 0. (1)

Definition 2. We can define the fractional Riemann–Liouville of the function g : R+ → R shown by

Iqg(t) = 1
�(q)

∫ t

0

(t − φ)q−1g(φ)dφ, (2)

where �(q) represents Euler Gamma function.

2.1 Model Construction
The present section formulates a mathematical model for tuberculosis infection, with treatment,

vaccination, and environmental contamination. The model consists of seven classes where the popu-
lation of humans is distributed among six different categories, such as susceptible people, S(t) (people
who are vulnerable to TB infection but are not vaccinated), vaccinated people, V(t) (people who are
vaccinated against the TB infection), exposed people, E(t) (people who are exposed to the disease
but not yet infected), infected people, I(t) (people infected with TB disease), treated people, T(t)
(people who are treated after being identified as TB infected), and those recovered people by R(t)
(those who have recovered from the sickness). The compartment W(t) demonstrates the pathogen
abundance in the polluted environment. The contaminated environment may include the bedding,
toys, handkerchiefs, towels, etc. The total population of the human compartments can be represented
by N(t) = S(t) + V(t) + E(t) + I(t) + T(t) + R(t). Currently, the BCG vaccine available in the market
does not provide full prevention against mycobacterium tuberculosis, but it can give some protection
to people who are vaccinated. As a result, in this research, we assume that inoculated individuals move
to the exposed condition following infection. The TB model with vaccination and the combination of
the environment contamination compartment takes the following shape in terms of the evolutionary
differential equation:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= � − κ1

SI
N

− κ2

SW
N

− (μ + α)S + θV ,

dV
dt

= αS − μV − θV ,

dE
dt

= κ1

SI
N

+ κ2

SW
N

− (μ + β + r1) E,

dI
dt

= βE + φR − (μ + d + τ + r2) I ,

dT
dt

= τ I − (r3 + d + μ)T ,

dR
dt

= r1E + r2I + r3T − (φ + μ)R,

dW
dt

= ψI − bW ,

(3)

where the initial conditions subject to the system (3) are given by

S(0) ≥ S0, V(0) ≥ V0, E(0) ≥ E0, I(0) ≥ I0, T(0) ≥ T0, R(0) ≥ R0, W(0) ≥ W0. (4)

In the TB system (3), the parameters � and μ denote respectively the birth rate and natural
mortality rate in each human class. The rate at which healthy humans are infected after close
contact with the infected person by the rate κ1. The rate κ2 measures the contact of healthy people
becoming infected through indirect exposure to the contaminated environment. Healthy people are
being vaccinated through the rate α while the vaccine waning rate is given by θ . The exposed individuals
become infected at a rate β, and the infected people are treated at a rate τ . The disease-related death of
the TB infected and treated individuals is given by d. The recovery rate of the exposed, infected, and
treated individuals is given by r1, r2, and r3, respectively. At a rate φ, the recovered people are infected
again and join infected compartment I(t). The parameter ψ is the shedding rate of the virus from
infected humans, and b is the clearance rate of pathogens in the environment.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dq
t S = � − κ1

SI
N

− κ2

SW
N

− (μ + α)S + θV ,

Dq
t V = αS − μV − θV ,

Dq
t E = κ1

SI
N

+ κ2

SW
N

− (μ + β + r1) E,

Dq
t I = βE + φR − (μ + d + τ + r2) I ,

Dq
t T = τ I − (r3 + d + μ)T ,

Dq
t R = r1E + r2I + r3T − (φ + μ)R,

Dq
t W = ψI − bW .

(5)

3 Model Analysis

We shall carry out some important results regarding the fractional system (5) in the present
portion.

Theorem 1. All the associated solutions to the system (5) are uniformly bounded and nonnegative.
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Proof. It follows from the model (5) we get

Dq
t S

∣∣∣
S=0

= � + θV ≥ 0,

Dq
t V

∣∣∣
V=0

= αS ≥ 0,

Dq
t E

∣∣∣
E=0

= κ1

SI
N − E

+ κ2

SW
N − E

≥ 0,

Dq
t I

∣∣∣
I=0

= βE + φR ≥ 0,

Dq
t T

∣∣∣
T=0

= τ I ≥ 0,

Dq
t R

∣∣∣
R=0

= r1E + r2I + r3T ≥ 0,

Dq
t W

∣∣∣
W=0

= ψI ≥ 0.

So, it follows from the work given in [44] that all the solution will remain always in R
7
+. Assume

that N(t) = S(t) + V(t) + E(t) + I(t) + T(t) + R(t), and adding the equations of the model (5) except
the W equation, we have

Dq
t N(t) = � − μN − d(I + T),

≤ � − μN.

Now consider the result from [45], we obtain

N(t) ≤ �

μ
+

(−�

μ
+ N(0)

)
Eq(−μtq),

where Eq is the Mittag-Leffler function. So N(t) → �/μ for t → ∞, and so 0 < N(t) ≤ �/μ. We
also use the W equation of the model (5) and obtain

Dq
t W = ψI − bW ≤ ψ�

μ
− bW ,

Dq
t W + bW ≤ ψ�

μ
.

Again using the result from [45], we have

W(t) ≤
(

W(0) − ψ
�

bμ

)
Eq(−btq) + ψ

�

bμ
.

Hence, W(t) → ψ�/bμ when t → ∞, and thus 0 < W(t) ≤ ψ�/bμ. Therefore, all the solutions
starting in R

7
+ are restricted in the region �1 × �2, where

�1 =
{
(S, V , E, I , T , R)

∣∣∣0 ≤ N ≤ �

μ

}
, and �2 =

{
W

∣∣∣0 ≤ W ≤ ψ�

bμ

}
.

�
The existence of a unique solution is given in the theorem below.
Theorem 2. There exists a unique solution associated to the system (5).
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Proof. Denote J(t) = (S, V , E, I , T , R, W) = (j1, j2, j3, j4, j5, j6, j7)
T . Then, system (5) follows the

form given by

Dq
t J(t) = Q1J(t) + j1Q2J(t) + Q3, (6)

where

Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−z1 θ 0 0 0 0 0
α −z2 0 0 0 0 0
0 0 −z3 0 0 0 0
0 0 β −z4 0 φ 0
0 0 0 τ −z5 0 0
0 0 r1 r2 r3 −z6 0
0 0 0 ψ 0 0 −b

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −κ1

N
0 0 −κ2

N
0 0 0 0 0 0 0

0 0 0
κ1

N
0 0

κ2

N
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Denoting �(t, J(t)) = Q1J(t) + j1Q2J(t) + Q3. Now,

‖�(t, J(t)) − �(t, P(t))‖ = ‖(Q1J(t) + j1Q2J(t) + Q3) − (Q1P(t) + j1Q2P(t) + Q3)‖,

= ‖Q1(J(t) − P(t)) + j1Q2(J(t) − P(t))‖,

= ‖(Q1 + j1Q2)(J(t) − P(t))‖,

≤ L‖J(t) − P(t)‖,

where L = max(Q1+j1Q2), and ‖.‖ represents the usual Euclidean norm. So, �(t, J(t)) holds Lipschitz
condition thus, follows from [46], the fractional system (5) exists and has a unique solution. �

4 Analysis of the Equilibrium Points

First, we obtain the disease-free equilibrium point of the model (5) in the following by solving the
equations of the model (5) at a steady state by setting:

Dq
t S = 0, Dq

t V = 0, Dq
t E = 0, Dq

t I = 0, Dq
t T = 0, Dq

t R = 0, Dq
t W = 0.

We get the following equilibrium point called the disease-free equilibrium is given by

D0 =
(

S0, V 0, 0, 0, 0, 0, 0
)

,

where

S0 = �(θ + μ)

μ(α + θ + μ)
, V 0 = α�

μ(α + θ + μ)
.

To study the analysis of the equilibrium points, first, we need to obtain the expression for the
basic reproduction number R0 using the concept given in [47]. According to [47], we have the following
expressions:
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F =

⎛
⎜⎜⎜⎜⎜⎝

κ1SI
N

+ κ2SW
N

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎜⎜⎝

(μ + β + r1) E
−βE − φR + (μ + d + τ + r2) I

−τ I + (r3 + d + μ)T
−r1E − r2I − r3T + z6R

−ψI + bW

⎞
⎟⎟⎟⎟⎠ .

Further, we have the following matrices:

F =

⎛
⎜⎜⎜⎜⎜⎝

0
κ1S0

S0 + V 0
0 0

κ2S0

S0 + V 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎜⎜⎝

z3 0 0 0 0
−β z4 0 −φ 0
0 −τ z5 0 0

−r1 −r2 −r3 z6 0
0 −ψ 0 0 b

⎞
⎟⎟⎟⎟⎠ .

Using the concept of spectral radius of FV−1, we obtain

Rv = κ2r1ψφS0

bz3z4z6(S0 + V 0)
+ βκ2ψS0

bz3z4(S0 + V 0)
+ κ1r1φS0

z3z4z6(S0 + V 0)
+ βκ1S0

z3z4(S0 + V 0)
+ r3τφ

z4z5z6

+ r2φ

z4z6

,

= R1 + R2 + R3 + R4 + R5 + R6,

where z1 = (α+μ), z2 = (θ +μ), z3 = (β+μ+r1), z4 = (d +μ+r2 +τ), z5 = (d +μ+r3), z6 = (μ+φ).
Now, we obtain the expression of the threshold quantity known as the basic reproduction number R0,
which can be derived from the vaccine-induced reproduction number Rv, given by

R0 = (bκ1 + κ2ψ) (r1φ + βz6)

bz3z4z6

+ φ (r3τ + r2z5)

z4z5z6

.

We give the comparison of the basic reproduction number R0 and Rv in Fig. 1. We can see that
vaccine reproduction number Rv decreases the basic reproduction number R0 effectively.

�
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
0

0

1

2

3

4

5

6

7

8

Without vaccination
�=�=0

with vaccination
�=0.1, �=0.01

Figure 1: Comparison of R0 vs. Rv, values have been taken from Table 1
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Endemic Equilibria

The finding of the expression of the endemic equilibria is important in disease models as it
determines the number of possible equilibrium points in the presence of infection. Further, the
existence of unique or multiple endemic equilibria determines the possibility of the bifurcation which
may be of different types, such as forward or backward. We use the notation D∗ to denote the endemic
equilibrium of the system (5) and obtain in the following:

D∗ = (S∗, V ∗, E∗, I ∗, T ∗, R∗, W ∗)

where

S∗ = �z2

−αθ + λ∗z2 + z1z2

,

V ∗ = α�

−αθ + λ∗z2 + z1z2

,

E∗ = λ∗S∗

z3

,

I ∗ = z3φR∗ + βλS∗

z3z4

,

T ∗ = τ I ∗

z5

,

R∗ = r1E∗ + r2I ∗ + r3T ∗

z6

,

W ∗ = ψI ∗

b
.

Now, putting the above equations into

λ∗ = κ1I ∗ + κ2W ∗

S∗ + V ∗ + E∗ + I ∗ + T ∗ + R∗

and then simplifying, we obtain the following:

AoI ∗ + A1 = 0,

where

A0 = bβz2 (r3τ + r2z5) + br1z2 (τφ + z5 (z4 + φ)) + bβz2z6 (τ + z5) + bz2z4z5z6(1 − R5 − R6),

A1 = bz3z4z5z6 (α + z2) (1 − Rv).

Here, A0 > 0 obviously based on the fact R5 < Rv, and R6 < Rv. Also, Rv < 1 ensures that the
coefficient A1 > 0. So, I∗ = −A1/A0 ensures the existence of endemic equilibria depends on Rv >

1. Further, with the linear expression of the endemic equilibria, there is no possibility of backward
bifurcation in the fractional system (5).

Theorem 3. The fractional system (5) at D0 is LAS if R0 < 1.
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Proof. At D0, we obtain the Jacobian matrix

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−z1 θ 0 − κ1S0

S0 + V 0
0 0 − κ2S0

S0 + V 0

α −z2 0 0 0 0 0

0 0 −z3

κ1S0

S0 + V 0
0 0

κ2S0

S0 + V 0

0 0 β −z4 0 φ 0
0 0 0 τ −z5 0 0
0 0 r1 r2 r3 −z6 0
0 0 0 ψ 0 0 −b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The characteristics equation related to J is

λ7 + f1λ
6 + f2λ

5 + f3λ
4 + f4λ

3 + f5λ
2 + f6λ + f7 = 0, (7)

where

f1 = b + z1 + z2 + z3 + z4 + z5 + z6,

f2 = z6(d + μ + τ) + μr2 + μ (α + z2) + z3z4(1 − R4),

f3 = b (z3 + z4) z5 + z6 (bz5 + z3 (b + z5)) + (z1 + z2) z7 + z4z6 (b + z1 + z2) (1 − R6)

+ μ (b + z3 + z4 + z5 + z6) (α + z2) + bz3z4(1 − R2 − R4) + z3z4z6(1 − R3 − R4 − R6)

+ z3z4 (z1 + z2 + z5) (1 − R4) + z4z5z6(1 − R5 − R6),

f4 = z3z4z6

{
b(1 − R1 − R2 − R3 − R4 − R6) + z5(1 − R3 − R4 − R5 − R6)

}

+ (−αθ + z2z5 + z1 (z2 + z5))z3z4(1 − R4) + z4z5z6 (b + z1 + z2) (1 − R5 − R6)

+ (bz5 + z4 (b + z5) + z6 (b + z5) + z3 (b + z5 + z6)) (z1z2 − αθ)

+
(

z4z6 (−αθ + z2 (b + z3) + z1 (b + z2 + z3))
)
(1 − R6)

+ bz3z4 ((z2 + z5) (1 − R2 − R4) + (1 − R2)z1)

+ b (z1 + z2) (z3 + z4) z5 + z6 (b (z1 + z2) z3 + z5 (b (z1 + z2) + z3 (b + z1 + z2))) ,

f5 = bz3z4 (z1 + z2 + z5) z6(1 − R1 − R2 − R3 − R4 − R6) + b (z1 + z2) z3z4z5(1 − R2 − R4)

+ (1 − R4)z3z4z5 (z1z2 − αθ) + bz3z4(1 − R2 − R4) (z1z2 − αθ) + (z1 + z2) z3z5z6z4

× (1 − R3 − R4 − R5 − R6) + z3z6z4(1 − R3 − R4 − R6) ((z1z2 − αθ))

+ (bz5 (z4 + z6) + z3 (bz6 + z5 (b + z6))) (z1z2 − αθ) + z5z4z6(1 − R5 − R6)

× (b (z1 + z2) + (z1z2 − αθ)) − br3τz3φ + b(1 − R6)z4z6 (z1z2 − αθ) + b (z1 + z2) z5z6z3,

f6 = −Abr2φ + Abz3z4z6(1 − R1 − R2 − R3 − R4) + Abz3z4z5(1 − R2 − R4)

+ Abz4z5z6(1 − R5 − R6) + Abz3z5z6 + Az3z4z5z6(1 − R3 − R4 − R5 − R6)

+ b (z1 + z2) z3z4z5z6(1 − R1 − R2 − R3 − R4 − R6),

f7 = bz3z4z5z6 (μ (α + z2)) (1 − Rv),
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where

z7 = bz5 + z4 (b + z5) + z6 (b + z5) + z3 (b + z5 + z6)

and z1z3 − αθ > 0. So all the coefficients f1, . . . , f7 are positive whenever Rv < 1. Further, the
Routh-Hurwitz conditions can be implemented easily to ensure that the Jacobian matrix exhibits
eigenvalues with negative real parts. Therefore, the fractional system of TB with vaccination is locally
asymptotically stable at D0 whenever Rv < 1. �

4.1 Backward Bifurcation Analysis
We present the backward bifurcation analysis of the model (5) when q = 1 (as the bifurcation

analysis is only studied at the the steady state of disease-free equilibrium (DFE)). It is important
in epidemic models where the infection elimination occurs for Rv < 1. However, in this case, there
exists yet another stable endemic equilibrium point for Rv < 1, indicating that disease elimination
is dependent not solely on Rv but also on the initial infection level. A Jacobian matrix related to the
model (5) has an eigenvalue, zero at DFE D0 when Rv = 1. Here, we established the results for the
existence of the backward bifurcation in the model (5) using the method presented in [48]. To do this,
we assume that y1 = S, y2 = V , y3 = E, y4 = I , y5 = T , y6 = R, y7 = W , then, the system (5) takes
the form below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1

dt
= � − κ1

y1y4

N
− κ2

y1y7

N
− z1y1 + θy2 = h1,

dy2

dt
= αy1 − z2y2 = h2,

dE
dt

= κ1

y1y4

N
+ κ2

y1y7

N
− z3y3 = h3,

dy4

dt
= βy3 + φy6 − z4y4 = h4,

dy5

dt
= τy4 − z5y5 = h5,

dy6

dt
= r1y3 + r2y4 + r3y5 − z6y6 = h6,

dy7

dt
= ψy3 − by7 = h7,

(8)

where N = y1 +y2 +y3 +y4 +y5 +y6. Taking Rv = 1, then the solving for κ1 as a bifurcation parameter,

we get κ1 = κ∗
1 = −κ2ψ

b
− z3 (α + z2) (r3τφ + z5 (r2φ − z4z6))

z2z5 (r1φ + βz6)
. The Jacobian matrix of the system (8) at

D0 when κ1 = κ∗
1 is given by
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J∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−z1 θ 0 − κ∗
1 S0

S0 + V 0
0 0 − κ2S0

S0 + V 0

α −z2 0 0 0 0 0

0 0 −z3

κ∗
1 S0

S0 + V 0
0 0

κ2S0

S0 + V 0

0 0 β −z4 0 φ 0
0 0 0 τ −z5 0 0
0 0 r1 r2 r3 −z6 0
0 0 0 ψ 0 0 −b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

J∗ has an eigenvalue ‘zero’ while the other eigenvalues contain negative real parts. So, we can
apply the method in [48] to our model (5). Next, we find that the matrix J∗ has right eigenvectors
G = [g1, g2, . . . , g7]T and the left eigenvectors V = [v1, v2, . . . , v7], given by

g1 = g4 (z2z3 (r3τφ + z5 (r2φ − z4z6)))

z5 (z1z2 − αθ) (r1φ + βz6)
, g2 = −αg4 (z3 (r3τφ + z5 (r2φ − z4z6)))

z5 (αθ − z1z2) (r1φ + βz6)
,

g3 = −g4 (r3τφ + z5 (r2φ − z4z6))

z5 (r1φ + βz6)
, g4 = g4 > 0, g5 = g4τ

z5

,

g6 = g4 (βr3τ + z5 (βr2 + r1z4))

z5 (r1φ + βz6)
, g7 = g4ψ

b
,

and

v1 = v2 = 0, v3 = v4 (r1φ + βz6)

z3z6

, v4 = v4 > 0, v5 = r3v4φ

z5z6

, v6 = v4φ

z6

, v7 = κ2v4z2 (r1φ + βz6)

bz3z6 (α + z2)
.

According to [48], the coefficients are

a =
7∑

k,i,j=1

vkgigj

∂2hk

∂xi∂xj

(0, 0)

b =
7∑

i,k=1

vkgi

∂2hk

∂xi∂κ1

(0, 0)

need to be computed using the second-order partial derivatives obtained at D0. Obtaining the partial
derivatives and then inserting into the coefficients a, and b, we have

a = −2g2
4μv4z2 (θ + z1) [l1 (r3τ + r2z5) + l3z5]

b�z3z2
5z6 (α + z2) 2

,

and

b = g4v3z2

α + z2

> 0,
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where l1 = bκ1 (z5(β − φ) − τφ) + κ2ψz5(β − φ), l2 = bκ1 (β + z4) (τ + z5) + κ2ψ (βτ + z5 (β + z4)),
l3 = r1 (bκ1 + κ2ψ) (τφ + z5 (z4 + φ))+ l2z6. We observe that b > 0 and the coefficient a is also negative
that a < 0, and this can be verified through the values of the parameters in Table 1, that is a =
−3.006667 ∗ 10−8 < 0, which is a clear indication of the non-existence of the backward bifurcation in
the system (5). According to the result in [48], there exists a forward bifurcation in the given system as
shown in Fig. 2.
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Figure 2: The plot describes the existence of the forward bifurcation in the model (3)

5 Global Stability

We use the Lemma in the proof of global stability.
Lemma 1. [49]. Consider that a continuous and derivable function f (t) ∈ R+. Then, for any time t,

we have t ≥ t0,

Dq
t (f (t) − f ∗(t) − ln

f (t)
f ∗(t)

) ≤ 1 − f ∗(t)
f (t)

Dq
t f (t), f ∗ ∈ R+, q ∈ (0, 1). (9)

Theorem 4. The fractional system (5) at D0 is globally asymptotical stable whenever Rv ≤ 1.

Proof. We consider the following Lyapunov function:

U(t) = g1E + g2I + g3T + g4R + g5W , (10)
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where the positive constants g1, . . . , g5 might have values at a later time. Further, the time differentiation
of the system (10) and then utilizing the equations of the system (5), we arrive at the following result:

Dq
t U(t) = g1Dq

t E + g2Dq
t I + g3Dq

t T + g4Dq
t R + g5Dq

t W .

Dq
t U(t) = g1

[
κ1SI

N
+ κ2SW

N
− z3E

]
+ g2[βE + φR − z4I ] + g3[τ I − z5T ]

+ g4[r1E + r2I + r3T − z6R] + g5[ψI − bW ],

= [g2β − z3g1 + g4r1]E +
[

g1

κ1S0

S0 + V 0
− g2z4 + g3τ + g4r2 + g5ψ

]
I

+ [g4r3 − g3z5]T + [g2φ − g4z6]R

+
[

g1κ2

S0

S0 + V 0
− g5b

]
W ,

≤ [g2β − z3g1 + g4r1]E +
[

g1κ1

S0

S0 + V 0
− g2z4 + g3τ + g4r2 + g5ψ

]
I

+ [g4r3 − g3z5]T + [g2φ − g4z6]R +
[

g1κ2

S0

S0 + V 0
− g5b

]
W . (11)

Now, consider the values assigned to the constants g1, . . . , g5, which are given by, g1 = r1φ + βz6,

g2 = z3z6, g3 = φr3z3

z5

, g4 = z3φ and g5 = κ2S0(r1φ + βz6)

b(S0 + V 0)
. Now, using these values in the last equation

of (11) and after simplifications, we obtain

Dq
t U ≤ z3z4z6 (Rv − 1)I .

It follows that Dq
t U = 0 whenever Rv = 1, and Dq

t U if Rv < 1. The result follows that there
exists singleton set D0 which is the maximal compact invariant set in {(S, V , E, I , T , R, W) ∈ �1 ×�2 :
Dq

t U = 0}. Thus, the LaSalle Invariance Principle implies that every solution of the system (5) with (4)
in �1 × �2 tends to D0 whenever t → ∞ for R0 ≤ 1. �

5.1 Global Stability Endemic Equilibrium (EE)
The following assumptions are made based on steady-state D∗ of the model (5): We assume S/N ≤

1, so S ≤ N.
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

� = κ1S∗I ∗ + κ2S∗W ∗ + z1S∗ − θV ∗,
αS∗ = z2V ∗,
κ1S∗I ∗ + κ2S∗W ∗ = z3E∗,
βE∗ + φR∗ = z4I ∗,
τ I ∗ = z5T ∗,
r1E∗ + r2I ∗ + r3T ∗ = z6R∗,
ψI ∗ = bW ∗.

Theorem 5. The infected equilibrium D∗ is GAS if Rv > 1.

Proof. Let us consider the Lyapunov function in the structure given below:

K(t) = K1(S(t)) + θ

z2

K2V(t) + K3E(t) + κ1I ∗S∗

βE∗ K4I(t) + κ1S∗I ∗φR∗

z5βE∗T ∗ K5(T(t))

+ κ2S∗W ∗

r2I ∗ K6R(t) + κ2S∗

b
K7W(t), (12)

where

Kj = m(t) − m∗ − m∗ ln
m(t)
m∗ ,

where j = 1, . . . , 7 and m = (S, V , E, I , T , R, W). Now taking the fractional derivative of K(t) and
applying Lemma 1, we have

Dq
t K(t) ≤

(
1 − S∗

S

)
Dq

t S(t) + θ

z2

(
1 − V ∗

V

)
Dq

t V(t) +
(

1 − E∗

E

)
Dq

t E(t)

+ κ1I ∗S∗

βE∗

(
1 − I ∗

I

)
Dq

t I(t) + κ1S∗I ∗φR∗

z5βE∗T ∗

(
1 − T ∗

T

)
Dq

t T(t)

+ κ2S∗W ∗

r2I ∗

(
1 − R∗

R

)
Dq

t R(t) + κ2S∗

b

(
1 − W ∗

W

)
Dq

t W(t). (13)

Computing the terms on the right side of Eq. (13) one by one below:(
1 − S∗

S

)
Dq

t S =
(

1 − S∗

S

)[
� − κ1SI − κ2SW − z1S + θV

]
,

=
(

1 − S∗

S

)[
κ1S∗I ∗ + κ2S∗W ∗ + z1S∗ − θV ∗ − κ1SI − κ2SW − z1S + θV

]
,

= κ1S∗I ∗
(

1 − S∗

S
− SI

S∗I ∗ + I
I ∗

)
+ κ2S∗W ∗

(
1 − S∗

S
− SW

S∗W ∗ + W
W ∗

)

+ z1S∗
(

2 − S∗

S
− S

S∗

)
+ θV ∗

(
− 1 + S∗

S
+ V

V ∗ − VS∗

SV ∗

)
,

≤ κ1S∗I ∗
(

1 − S∗

S
− SI

S∗I ∗ + I
I ∗

)
+ κ2S∗W ∗

(
1 − S∗

S
− SW

S∗W ∗ + W
W ∗

)

+ θV ∗
(

− 1 + S∗

S
+ V

V ∗ − VS∗

SV ∗

)
,
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θ

z2

(
1 − V ∗

V

)
Dq

t V = θ

z2

(
1 − V ∗

V

)[
αS − z2V

]
,

= θ

(
1 − V ∗

V

) [V ∗

S∗ S − V
]
,

= θV ∗
(

1 − V
V ∗ + S

S∗ − SV ∗

VS∗

)
,

(
1 − E∗

E

)
Dq

t E =
(

1 − E∗

E

)[
κ1SI + κ2SW − z3E

]
,

=
(

1 − E∗

E

)[
κ1SI + κ2SW − (κ1S∗I ∗ + κ2S∗W ∗)E

E∗

]
,

= k1S∗I ∗
(

1 − E
E∗ + SI

S∗I ∗ − SIE∗

S∗I ∗E

)
+ κ2S∗W ∗

(
1 − E

E∗ + SW
S∗W ∗ − SWE∗

ES∗W ∗

)
,

κ1S∗I ∗

βE∗

(
1 − I ∗

I

)
Dq

t I = κ1S∗I ∗

βE∗

(
1 − I ∗

I

)[
βE + φR − z4I

]
,

= κ1S∗I ∗

βE∗

(
1 − I ∗

I

)[
βE + φR − (βE∗ + φR∗)

I ∗ I
]
,

= κ1S∗I ∗
(

1 − I
I ∗ + E

E∗ − EI ∗

IE∗

)
+ κ1S∗I ∗

βE∗ φR∗
(

1 − I
I ∗ + R

R∗ − RI ∗

IR∗

)
,

κ1S∗I ∗φR∗

z5βE∗T ∗

(
1 − T ∗

T

)
Dq

t T = κ1S∗I ∗φR∗

z5βE∗T ∗

(
1 − T ∗

T

)[
τ I − z5T

]
,

= κ1S∗I ∗φR∗

βE∗T ∗

(
1 − T ∗

T

) [T ∗

T
I − T

]
,

= κ1S∗I ∗φR∗

βE∗

(
1 − T

T ∗ + I
I ∗ − IT ∗

TI ∗

)
,

κ2S∗W ∗

r2I ∗

(
1 − R∗

R

)
Dq

t R = κ2S∗W ∗

r2I ∗

(
1 − R∗

R

)[
r1E + r2I + r3T − z6R

]
,

= κ2S∗W ∗

r2I ∗

(
1 − R∗

R

) [
r1E + r2I + r3T − r1E∗

R∗ R − r2I ∗

R∗ R − r3T ∗

R∗ R
]
,

= κ2S∗W ∗

r2I ∗ r1E∗
(

1 − R
R∗ + E

E∗ − ER∗

RE∗

)
+ κ2S∗W ∗

(
1 − R

R∗ + I
I ∗ − IR∗

RI ∗

)

+ κ2S∗W ∗

r2I ∗ r3T ∗
(

1 − R
R∗ + T

T ∗ − TR∗

RT ∗

)
,

κ2S∗

b

(
1 − W ∗

W

)
Dq

t W = κ2S∗

b

(
1 − W ∗

W

)[
ψI − bW

]
,

= κ2S∗
(

1 − W ∗

W

)[ I
I ∗ W ∗ − W

]
,

= κ2S∗W ∗
(

1 − W
W ∗ + I

I ∗ − IW ∗

WI ∗

)
.
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We submit the above into Eq. (12) and simplifying, we obtain,

Dq
t K(t) = κ1S∗I ∗

(
3 − S∗

S
− EI ∗

IE∗ − SIE∗

S∗I ∗E

)
+ κ2S∗W ∗

(
4 − S∗

S
− R

R∗ − E
E∗ − IW ∗

WI ∗ − IR∗

RI ∗ − SWE∗

ES∗W ∗

)

+ κ1S∗I ∗φR∗

βE∗

(
2 − T

T ∗ − IT ∗

TI ∗ + R
R∗ − RI ∗

IR∗

)
+ θV ∗

(S∗

S
− VS∗

SV ∗ + S
S∗ − SV ∗

VS∗

)

+ κ2S∗W ∗

r2I ∗ r1E∗
(

1 − R
R∗ + E

E∗

(
1 − R∗

R

))
+ κ2S∗W ∗

r2I ∗ r3T ∗
(

1 − R
R∗ + T

T ∗

(
1 − R∗

R

))
.

Here, the arithmetic mean is greater or equal to the geometric mean, so we get,(
3 − S∗

S
− EI ∗

IE∗ − SIE∗

S∗I ∗E

)
≤ 0,

(
4 − S∗

S
− R

R∗ − E
E∗ − IW ∗

WI ∗ − IR∗

RI ∗ − SWE∗

ES∗W ∗

)
≤ 0.

If
(

2 − T
T ∗ − IT ∗

TI ∗ + R
R∗ − RI ∗

IR∗

)
≤ 0,

(S∗

S
− VS∗

SV ∗ + S
S∗ − SV ∗

VS∗

)
≤ 0,

(
1 − R

R∗ + E
E∗

(
1 − R∗

R

))
≤ 0,(

1 − R
R∗ + T

T ∗

(
1 − R∗

R

))
≤ 0, then the Dq

t K(t) ≤ 0. Thus, the system (5) is globally asymptotically

stable if Rv > 1.

�

6 Estimation of Parameters

The estimation of the parameters of the model (5) will be investigated for q = 1 in the absence
of vaccination using the cases reported TB in Khyber Pakhtunkhwa in Pakistan for the period 2002–
2017 [50]. We utilize the nonlinear least square fitting method to estimate the model parameters where
some of the parameters as the birth and recruitment rates are considered from literature or estimated
from existing equations of the considered model while the parameters other than birth and death are
fitted to the model. The life expectancy of an individual in Pakistan was 67.7 years in 2017. So, we
write the natural death rate can be obtained as the inverse of life expectancy given by 1/67.7 years [51].
In 2002, the total population of Khyber Pakhtunkhwa was 30,523,371, so, we assume the initial size
of the population is N(0) = 30,523,371 [52]. We assume that the total population of Pakistan from
2002–2017 will not change significantly. Therefore, in our numerical simulation, the total population
N(t) is assumed to be constant, i.e., � = μ ∗ N(0) which describes the birth of the susceptible people.
According to the reported data, the initial cases in 2002 were reported as 8010, so we consider I(0) =
8010 as the initial TB-infected cases. The remaining initial values of the variables involved in the model
are computed as S(0) = N(0)−E(0)−8010−T(0)−R(0) = 30,075,361, where we assume that there is
no treatment and recovery from infection on the disease starting period, that is T(0) = R(0) = 0, while
E(0) = 440,000 has been adjusted to the data fitting. The population of the contaminated environment
is subjected to the data fitting is W(0) = 100. The method is explained in the following follows [53] to
get the results:

i) Create the objective function that measures how much the real and projected values vary from
one another. The stated designed function is the sum of squared residuals between the model’s
forecast and the corresponding real data cases.

ii) First, provide the initial values of the parameters that need estimations. It might be an initial
guess or a prior knowledge base.
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iii) Using the initial values of the parameters shown in step (ii), the model is simulated to obtain
the predictions of the model.

iv) Applying the “lsqcurvefit” optimization technique to see whether the objective function can
be minimized.

v) Setting convergence criteria to end the process of iterative estimating. It is based on reaching
a predetermined threshold for the relevant objective function, an appropriate number of
iterations, or the smallest modification in parameter estimations.

vi) Set the original parameter estimations back to repeat steps (i–v) until an acceptable agreement
across the model simulation and the actual data is attained if the estimated parameter values
do not fulfill the convergence condition or do not match the real data curve sufficiently.

The model in the absence of vaccination provides a reasonable fitting which is shown in Fig. 3
while the obtained fitted/estimated parameters are shown briefly in Table 1. For the parameter values
listed in Table 1, we computed R0, which is R0 ≈ 3.6615 while vaccine basic reproduction number is
Rv ≈ 2.83209.
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Figure 3: Model fitting with real data. The circle shows real TB data while the bold line is the model
solution. (a) model vs. data fitting (b) data vs. model long-time predictions (c) data vs. fractional model
q = 0.99
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Table 1: Parameters and their values

Notation Value Unit Ref.

� μ × N(0) Year−1 Estimated

μ
1

67.7
Year−1 [51]

κ1 0.4401 – Fitted
κ2 0.0107 – Fitted
β 0.0100 Year−1 Fitted
φ 0.2933 Year−1 Fitted
τ 0.0100 Year−1 Fitted
r1 0.1777 Year−1 Fitted
r2 0.1001 Year−1 Fitted
r3 0.4000 Year−1 Fitted
ψ 0.0106 Year−1 Fitted
b 0.2997 Year−1 Fitted
d 0.01 Year−1 Fitted

6.1 Sensitivity Analysis
6.1.1 Local Sensitivity Analysis

Here, we study the sensitivity analysis of the parameters involved in R0. Sensitivity analysis is
important in epidemic modeling because it provides information about the parameters that how much
they are sensitive to R0. Such sensitive parameters are then considered in focus for the eradication of
disease as a control. We first study the local sensitivity analysis of the parameters in R0. The formula
in [54] that used to get the sensibility of the parameters involved in R0 is given by
R0∏

c

= ∂R0

∂c
× c

R0

, (14)

where c is a general parameter of R0. Using the the formula above, we obtained the sensitivity indices,
which are shown in Table 2. We see from Table 2 that the sensitive parameters are κ1, μ, r2, etc.,
that enhance the basic reproduction number. We give some parameters in terms of R0 and show it
graphically in Figs. 4 and 5.

6.1.2 Global Sensitivity Analysis

This section studies the sensitivity and uncertainty of the basic reproduction R0 in relation to
each parameter, which is given in Fig. 6. We do this by using the Partial rank correlation coefficient
(PRCC) technique and the Latin hypercube sampling (LHS) technique [55]. It follows from the Fig. 6
that the positive correlated parameters with R0 are respectively, κ1, κ2, β, φ, r1, r2, r3 and ψ while the
parameters that are negative correlated are μ, τ , b and d. The absolute value of the PRCC greater
or equal to 0.5 represents a high correlation between the output and input parameters, we can see a
moderate correlation when the value lies in the range of 0.2 and 0.4 while a weak correlation exists
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for the range 0 to 0.2. Here, the parameters μ, b, d, κ2, β, φ, ψ are correlated highly with the basic
reproduction number R0.

Table 2: Sensitivity of parameters in R0

Symbol SI Symbol SI

μ −0.2135 κ1 0.7882
κ2 0.0006 β 0.0050
φ 0.0458 τ −0.0559
r1 0.0524 r2 −0.5493
r3 0.0010 ψ 0.0006
b −0.0006 d −0.0745
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Figure 4: The plot represents the parameters κ1 and τ in terms of R0 (a) 3D contour (b) 2D contour
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7 Numerical Results

We perform the numerical simulation in the present section by considering the parameter values
shown in Table 1. The model (5) is solved numerically by the method explained in [46,56]. According
to the nature of the data, we consider the units in simulation per year. We present graphical results
for the fractional model (5) under different fractional orders. Figs. 7 and 8 show the dynamics of the
model using different fractional order q. We note, that the solutions converge to the DFE equilibrium
when the order q decreases.
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Figure 7: (Continued)



1386 CMES, 2024, vol.141, no.2

t-year
0 20 40 60 80 100 120 140 160 180 200

In
fe

ct
ed

 P
op

ul
at

io
n

× 106

0

2

4

6

8

10

12

14

16

Integer order
q=0.98
q=0.96
q=0.94
q=0.92

(c)

Figure 7: Numerical simulation of the healthy, exposed, and infected compartments (a–c) respectively
for different fractional order q
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Figure 8: Numerical simulation of the treated, recovered and contaminated environmental compart-
ments (a–c) respectively for different fractional order q
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We see from Fig. 9 the impact of the κ1 on the dynamics of exposed, infected and environmental
populations. By decreasing the contact between healthy and infected populations, the number of future
cases in the community decreases. Adequate ventilation and natural light are essential safety measures
to reduce the risk of TB infection. Without proper ventilation, TB can remain in the air for hours.
Ultraviolet (UV) light kills bacteria, so exposure to natural light helps eliminate the bacteria. It is also
important to maintain good hygiene by covering the mouth and nose when sneezing or coughing to
prevent the transmission of TB bacteria.
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Figure 9: The plot shows the dynamics of exposed, infected and environmental population for various
values of κ1 when q = 0.97. (a) exposed population, (b) infected population, and (c) environmentally
contaminated population
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Fig. 10 represents the comparison of vaccination vs. no vaccination on the dynamics of exposed,
infected, and environmental populations. It can be seen that the vaccine impacts greatly disease
dynamics and reduces future cases in society. When increasing the vaccine rate α = 0.02 and fixing the
waning rate of vaccine θ = 0.01, there is a clear difference between the two models with and without
vaccination, see Fig. 11. The vaccination impact on the exposed and infected population by varying
α, see the result in Fig. 12. Increasing the vaccination to individuals will decrease the number of cases
in the future in the country. Infants in Pakistan are immunized with the BCG vaccination, which
can prevent serious TB in children. The BCG vaccination, which prevents tuberculosis has been used
extensively since 1921. In Pakistan, newborns are usually given a single dose of the BCG vaccination.
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Figure 10: The plot shows the dynamics of exposed, infected and environmental population with and
without vaccination. (a) to (c) represent the exposed, infected, and environmental population
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Figure 11: The plot shows the dynamics of exposed and infected population for α = 0.01 and θ = 0.01
Subfigures (a) to (b) represent the exposed and the infected population
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Figure 12: The plot shows the dynamics of exposed and infected populations with the variation in α.
(a) to (b) represent the exposed and the infected population

We show the results for the treatment parameter τ on the exposed and infected population, see
Figs. 13 and 14. We can see that by increasing the treatment for the infected and exposed populations,
there is a decrease in the population of exposed and infected individuals. The TB program in Pakistan
provides 1700 TB care institutions in both commercial and public sectors of the nation. In 2002, more
than 424,000 infected persons with TB were treated successfully. If this process continues, a significant
decrease in TB cases will be observed in the coming years.
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Figure 13: The treatment impact on the dynamics of exposed and infected population when varying τ ,
q = 1. (a) exposed population (b) infected population
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Figure 14: The treatment impact on the dynamics of exposed and infected population when varying τ ,
q = 0.93. (a) exposed population (b) infected population

8 Conclusion

In this study, we investigated tuberculosis infection with treatment, vaccination, and environmen-
tal impact using non-integer order derivatives. The basic modeling is done initially in integer case
and later the model is extended to non-integer order based on the definition of Caputo. First, the
formulation of the model has been obtained and discussed in detail. Then, we extended the model
into a fractional order differential equation using the concept of Caputo derivative. The existence
and uniqueness of the fractional model have been obtained. The stability of the equilibrium points
is obtained and discussed based on R0. We found that the disease-free equilibrium D0 is locally
asymptotically stable for Rv < 1. The equilibrium point D0 is stable globally asymptotically when
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Rv ≤ 1. We proved that there exists a unique endemic equilibrium when Rv > 1. The existence of
the unique endemic equilibrium ensures the impossibility of the backward bifurcation existence in the
model where the DFE coexists with EE. We also proved the impossibility of the backward bifurcation
in the given model, hence, there exists only the forward bifurcation analysis and the only focus to
reduce the cases is R0. The non-existence of the backward bifurcation suggests that the infection cases
can be minimized by focusing on the sensitive parameters involved in R0. The model is stable globally
asymptotically when Rv > 1. The sensitivity analysis is performed for the basic reproduction number
and for obtaining the results graphically. We considered the local and global sensitivity analysis and
determined the most sensitive parameters that impact the basic reproduction number.

We considered the real data of TB in Khyber Pakhtunkhwa in Pakistan and experimented using
the nonlinear least square method. The estimated parameters obtained from the experiment that
provided reasonable fitting to the data have been used in numerical simulation and obtained graphical
results regarding disease elimination. We observed that vaccinating more and more individuals and
reducing the contact between healthy and infected people can minimize well the future cases of TB
in the country. The treatment provides important results regarding the disease control of TB in the
country. Increasing the treatment for the long-term program, the number of TB cases has decreased
significantly in the country. Vaccination impact on the disease has a significant impact on the TB cases
in Pakistan. The results obtained in the numerical section show that vaccination has a great impact on
the reduction of TB cases. So, vaccination, treatment, and controlling environmental contamination
will significantly decrease TB cases in the country shortly.

The results obtained in the work are based on the formulation of the model with their parameters
and the available data. The time domain considered for the data is per year which may have different
impacts with other time units. The model results rely on the real data used and the accuracy is limited
to the quality and quantitative data which is different from the other data used in the model. The
demographic parameters may vary from region to region and thus will have different results. The
environmental factors are also different from region to region and hence will impact the result.
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