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ABSTRACT

The rapid proliferation of Internet of Things (IoT) technology has facilitated automation across various sectors.
Nevertheless, this advancement has also resulted in a notable surge in cyberattacks, notably botnets. As a result,
research on network analysis has become vital. Machine learning-based techniques for network analysis provide
a more extensive and adaptable approach in comparison to traditional rule-based methods. In this paper, we
propose a framework for analyzing communications between IoT devices using supervised learning and ensemble
techniques and present experimental results that validate the efficacy of the proposed framework. The results
indicate that using the proposed ensemble techniques improves accuracy by up to 1.7% compared to single-
algorithm approaches. These results also suggest that the proposed framework can flexibly adapt to general IoT
network analysis scenarios. Unlike existing frameworks, which only exhibit high performance in specific situations,
the proposed framework can serve as a fundamental approach for addressing a wide range of issues.
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1 Introduction

The advancement of Internet of Things (IoT) technology and the resulting increase in connectivity
have sparked a surge in demand for IoT devices [1]. This expansion has enabled the deployment of
the IoT in various industries, leading to the emergence of new automation-driven services such as
smart grids, smart farming, and healthcare. However, this increased demand for IoT devices has also
resulted in a significant increase in cyberattacks. Since the notorious Mirai botnet targeted the IoT
in 2016, numerous other botnets have arisen that have disrupted the normal functioning of devices
and caused unauthorized data breaches, including breaches of personal information. Botnets are
characterized by their ability to connect devices to command-and-control (C&C) servers for remote
control communications, and they have facilitated large-scale cyberattacks, including distributed
denial of service (DDoS) attacks [2]. Therefore, it is imperative to take prompt action to mitigate
and prevent further damage from such attacks.

Establishing international standards for addressing IoT breaches is challenging due to the wide
range and diversity of IoT devices. Standard practices involve developing response strategies tailored

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.053457
https://www.techscience.com/doi/10.32604/cmes.2024.053457
mailto:iceuom@jnu.ac.kr


1496 CMES, 2024, vol.141, no.2

to each IoT environment based on guidelines such as NIST SP 800-86, which is intended for incident
response and digital forensics in traditional network environments [3]. Additionally, NIST SP 800-86
highlights the impor of collecting evidence or relevant data during security incidents. Typically, IoT
devices have limited storage capacity, and the heterogeneity and distributed nature of data storage
can greatly influence the data collected from each device, meaning it is extremely difficult to gather
pertinent information from their internal storage. Thus, the analysis of network traffic from device
communications becomes equally crucial.

Fig. 1 presents statistics from a study conducted in 2023 on cyberattacks against the IoT [4].
According to this data, the damage caused by botnets has increased by more than five times and
accounts for over 40% of the total DDoS-related damage. In this study, the proposed IoT network
analysis framework is applied to two issues: detecting botnet infections through communication with
C&C servers and identifying the sources of collected network traffic data.

Figure 1: Ratio of all DDoS attacks involving IoT botnets

The significance of analyzing network traffic has been increasing, with research trends in IoT
network traffic analysis shifting towards methods that utilize artificial intelligence (such as machine
learning or deep learning) rather than simple rule-based approaches. Specifically, traffic analysis
methods that involve decrypting encrypted traffic can induce legal and regulatory concerns regarding
the violation of personal information [5], which is why this trend is gaining further momentum.
However, IoT devices cannot be expected to possess such high levels of computing performance,
constraining network traffic analysis to the devices themselves [6]. Consequently, not participating
in the network renders it improbable that a meaningful payload can be obtained from encrypted
communications. Hence, this study suggests a framework for analyzing network activities using
machine and deep learning, following the gathering of encrypted network traffic from outside the
IoT network.

This paper presents an IoT network traffic analysis framework that employs machine learning. In
particular, a versatile analysis framework is introduced that concurrently applies machine learning
algorithms and deep learning algorithms, followed by an ensemble decision-maker. Unlike other
frameworks designed to achieve high performance solely in specific scenarios, the suggested IoT
network traffic analysis framework capitalizes on universally applicable features to enable fundamental
analyses. Consequently, it can serve as a primary tool for incident investigation, such as in digital
forensics.

The remainder of the paper is structured as follows: Section 2 examines relevant studies on botnet
detection and device identification through IoT network analysis. Subsequently, Section 3 outlines
the proposed IoT network traffic analysis framework. Section 4 presents the experimental setup and
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analysis of results to validate the framework’s efficacy, and Section 5 provides the discussion and
conclusions.

2 Related Works

According to the ISO 27400 standard for IoT device communication, encryption of communica-
tion data is recommended [7]. However, this data encryption can present challenges for conventional
rule-based analysis methods. Consequently, a significant amount of current research on network traffic
analysis focuses on the implementation of machine learning or deep learning techniques to manage
encrypted payloads. The objective of this study was to perform experiments in two primary domains:
the detection of C&C server interactions for botnet mitigation and the identification of network traffic.
In this section, we review recent literature on the analysis of IoT network traffic. Table 1 presents
the keywords that were employed to search for relevant studies. These keywords were used to locate
research that employed machine learning for botnet detection or device identification through IoT
network analysis. An additional requirement was imposed to restrict the search to studies published
since 2022.

Table 1: Criteria and keywords for searching related works

Key Objective Criteria

Keyword Botnet detection (“IoT” OR “Internet of Things”) AND (“network analysis” OR
“traffic analysis”) AND (“machine learning” OR “deep
learning” OR “supervised” OR “unsupervised”) AND (“botnet
detection” OR “C2 server detection” OR “C&C server
detection” OR “Command and control server detection”)

Device identification (“IoT” OR “Internet of Things”) AND (“network analysis” OR
“traffic analysis”) AND (“machine learning” OR “deep
learning” OR “supervised” OR “unsupervised”) AND (“device
identification” OR “device fingerprinting”)

Limiters Date Between 2022 and 2024

A total of 1671 studies met the search criteria specified in Table 1. Among these, a notable subset
of 979 studies focused on botnet detection, while 692 studies were associated with device identification.
All collected studies were then subjected to a screening process, and only those that met the following
criteria were selected for further analysis:

• Did the study include concrete experiments and validate performance using appropriate
evaluation metrics?

• Were the features used for model training described explicitly?

• Is it the public study that positions highest for search results sorted by relevance?

2.1 Botnet Detection
Kumar et al. proposed a solution entitled Early Detection of IoT Malware Scanning and CnC

Communication Activity (EDIMA) to identify IoT botnets using eight features [8]. The experiments
employed three classifiers: random forest (RF), support vector machine (SVM), and Gaussian Naïve
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Bayes (GNB). The results indicated that RF achieved exceptional performance, with an accuracy and
F1 score of 1.0.

Geetha et al. developed and implemented a botnet detection model utilizing bidirectional long-
short term memory (Bi-LSTM) [9]. The model was trained on 21 features and achieved an overall
accuracy of 84.8%. However, due to the imbalanced nature of the training dataset, the F1 score was
recorded as only 0.356.

Moorthy et al. extracted 9 features from a dataset consisting of 14 features and compared the
performance of 7 detection models, including a decision tree (DT) [10]. The experiments revealed
that the DT-based model achieved a final accuracy of 92.21%. Conversely, the model with the lowest
performance was SVM, with an accuracy of 51.86%.

Duan et al. devised a resampling technique and botnet detection model by combining DT and
an autoencoder. They selected 20 high-performing features for botnet detection [11]. The experiments
demonstrated that botnets could be detected with 99.20% accuracy and an F1 score of 0.991 was
achieved by addressing noise removal and data imbalances through resampling.

Wei et al. extracted a total of 21 statistical features and converted them into 3-channel RGB
images to develop a network intrusion detection system for botnet detection [12]. The experiments were
conducted using a convolutional neural network (CNN)-based model and revealed that normal traffic
could be detected with an F1 score of 0.9999. Moreover, the analysis of botnet-related anomalous
traffic achieved an average F1 score of 0.9945.

2.2 Device Identification
Thom et al. proposed an academic approach in which they utilized the multi-layer perceptron

(MLP) model along with the Nilsimsa hash function to effectively classify and identify 22 distinct
types of IoT devices [13]. As part of their methodology, the researchers extracted 32 integer values
from the 32-byte hash values produced by the aforementioned hash function for training purposes.
The results of their experiments indicated a promising device identification accuracy rate of 96.9%.

Salman et al. constructed a device identification model by extracting 16 features from network
information collected from 7 IoT devices, using Recurrent Neural Network (RNN), CNN, and a
residual neural network (ResNet) [14]. The experiments displayed an accuracy of 87.4% in identifying
all seven devices. Furthermore, an additional experiment based on manufacturers’ information about
the products improved the accuracy to 94.47%.

Wang et al. conducted experiments to identify 13 types of IoT devices based on 83 features using 4
classifiers: SVM, logistic regression (LR), DT, and RF [15]. The results indicated that the SVM-based
model could classify with an accuracy of 78.27%. They also conducted re-experiments focusing on the
top 10 features with the highest feature importance, resulting in a decreased accuracy of 65.43%.

Osei et al. performed IoT device fingerprinting using DT and an autoencoder for 27 types of IoT
devices [16]. The model was trained on 14 features and successfully classified devices with an accuracy
of 97%. Additionally, the authors demonstrated that the number of features could be reduced to five
while maintaining accuracy.

Koball et al. built and validated a fingerprinting model to identify eight types of IoT devices [17].
They extracted 100 features from a total of 242 and constructed an unsupervised learning model based
on K-means and density-based spatial clustering of applications with noise (DBSCAN). The model
achieved an identification accuracy of up to 96.5% for each device.
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2.3 Summary
In Table 2, previously proposed frameworks are compared with the framework proposed in this

paper. In most cases, the suggested analysis methods depended on protocols. Furthermore, previous
research mainly focused on addressing specific situations, with few attempts to transfer one model to
another completely. This is because the selection of features and preprocessing of values from the input
data depend on the specific problem context. In contrast, the proposed framework includes features
that can be extracted from basic header information, resulting in very low protocol dependency.
The proposed framework is also designed to address a wide range of traffic analysis problems. In
this study, two types of features (stateful and stateless) were combined, which previous studies have
typically used independently. This approach allows for the analysis of a broader range of problem
scenarios compared to existing research. Stateful features can be extracted from packet sequences and
are designed to capture the time-series aspects of traffic, providing a detailed, micro-level view of traffic
activity through a limited set of values. In contrast, stateless features consist of overall session statistics
that do not delve deeply into traffic activity. However, they enable a macro-level analysis of session
information and provide a more comprehensive overview. Therefore, a combination of stateful and
stateless features was applied in this study to present a network analysis framework with low protocol
dependency, and the performance was subsequently evaluated.

Table 2: Comparative analysis of related studies

Objective Literature Years # of features Protocol Type of
feature

Used model

Botnet detection [8] 2022 8 TCP/IP Stateless RF, SVM, GNB
[9] 2022 21 TCP/IP Stateless Bi-LSTM
[10] 2023 9 TCP/IP Stateless DT, autoencoder
[11] 2022 20 TCP/IP Stateless DT
[12] 2023 21 TCP/IP Stateless CNN

Device
identification

[13] 2022 32 Agnostic Stateful MLP
[14] 2022 16 Agnostic Stateful RNN, ResNet, CNN
[15] 2022 83 TCP/IP Stateless SVM, LR, DT, RF
[16] 2022 14 Agnostic Stateless DT, autoencoder
[17] 2023 100 TCP/IP Stateless K-means, DBSCAN

3 Proposed Framework

In this paper, we introduce a framework that aims to address the challenges of botnet detection
and source identification. Machine and deep learning techniques are employed to analyze two types
of features. Subsequently, a thorough analysis of the findings is presented, resulting in comprehensive
insights. Fig. 2 illustrates the proposed framework for IoT network analysis.
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Figure 2: Proposed framework for IoT network analysis

3.1 Data Acquisition
First, traffic data collected from outside the IoT network are preprocessed and converted into the

JSON format. In cases where a substantial number of packet capture files are obtained, the files can be
divided into training and testing data, which could include communication between the same devices.
Consequently, the JSON data consistently contain metadata that denotes session information, training
data, testing data, and labels. The architecture of the resulting JSON file is illustrated in Fig. 3.
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Figure 3: Architecture of the generated JSON file

3.2 Feature Extraction
The proposed framework employs both stateful and stateless features, as elaborated upon in

Section 2. Table 3 provides an inventory of the stateless features, encompassing data distribution
attributes such as packet size or capture time. These stateless features can be derived from three primary
sources: the packet count, packet size, and time interval between packets.

Table 3: List of stateless features

Name Category Data type Description

sPackets Packet
count

Integer Number of packets sent
rPackets Integer Number of packets received
Ratio Float Ratio of direction (sent/total)
sTotalSize Packet size Integer Total sent packet size
rTotalSize Integer Total received packet size
sMinSize Integer Minimum sent packet size
rMinSize Integer Minimum received packet size
sMaxSize Integer Maximum sent packet size
rMaxSize Integer Maximum received packet size
sAvgSize Float Average sent packet size

(Continued)
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Table 3 (continued)

Name Category Data type Description

rAvgSize Float Average received packet size
sVarSize Float Variance of sent packet size
rVarSize Float Variance of received packet size
sMinInterval Time

interval
between
packets

Float Minimum time interval between sent packets
rMinInterval Float Minimum time interval between received packets
sMaxInterval Float Maximum time interval between sent packets
rMaxInterval Float Maximum time interval between received packets
sAvgInterval Float Average time interval between sent packets
rAvgInterval Float Average time interval between received packets
sVarInterval Float Variance of the time interval between sent packets
rVarInterval Float Variance of the time interval between received packets

Table 4 provides an enumeration of the stateful features. Although there are fewer stateful features
than stateless features, they can facilitate a more comprehensive analysis due to the time-series
attributes of certain features. It should be noted that both the proposed stateful and stateless features
exhibit a limited reliance on specific protocols, allowing applicability in diverse network environments.

Table 4: List of stateful features

Name Data type Description

Length Integer Length of captured packets as recorded in the header
Actual length Integer Actual length of captured packets
Protocol String Protocol name
Delta time Float The time interval from the previous packet
Direction Boolean Packet transmission direction

Gathering data from all packets within a session is deemed superfluous when extracting packet-
based features for the purpose of training and testing data. As indicated by Lopez-Martin et al., the
collection of only 5 to 15 packets per session does not significantly impede the performance of network
analysis [18]. Consequently, this research focuses solely on extracting packet features from the initial
eight packets of each file. In instances where a file contains fewer than eight packets, the feature
count is preserved by padding the remaining spaces with null, zero, or one, based on their inherent
characteristics. The extraction process of stateful features is illustrated in Fig. 4.

Algorithm 1 presents the pseudocode for a preprocessing module designed to extract features
in an academic context. Each packet from a network traffic file is classified and stored based on
similar sessions using the session classifier module. The classification of a packet into a session is
determined by comparing four factors: the protocol, source identifier, destination identifier, and
additional identifier. If the target packet is found to belong to a previously identified session, it is
added to that session in chronological order. However, if the packet is not recognized as part of an
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existing session, it is recorded as the initial communication of a new session. After classifying all the
packets, both stateful and stateless features are extracted from each session.

Figure 4: Process of stateful feature extraction

Algorithm 1: Preprocessing module
1: INPUT: Network traffic files (e.g., pcap and pcapng) as files
2: OUTPUT: StatefulFeatures, StatelessFeatures
3: Sessions = []
4: StatefulFeatures= []
5: StatelessFeatures = []
6: for files in file, do
7: for packet in file, do
8: session_classifier(Sessions, packet)
9: end for
10: end for
11: for session in Sessions,
12: StatefulFeatures.append(StatefulFeatures_extractor(session))
13: StatelessFeatures.append(StatelessFeatures_extractor(session))
14: end for
15: return (StatefulFeatures, StatelessFeatures)

3.3 Analysis Using Machine Learning
Various algorithms were trained on two different types of features obtained through preprocess-

ing. The stateful features, collected from each of the eight packets within a session, are represented as
2D data due to their time-series nature. Consequently, deep learning algorithms specifically designed
to manage time-series data (such as RNN or CNN) are suitable for training. In comparison, the
stateless features lack time-series characteristics and can be represented as 1D data for each session.
This renders them suitable for analysis using machine learning algorithms such as RF or extreme
gradient boosting (XGBoost), which have a simpler structure compared to deep learning.

The proposed framework involves a decision-making process based on the outcomes derived from
these features. Algorithm 2 presents the pseudocode for an ensemble process that combines the results
from these two types of features. If the labels indicated by the two results are the same, they are selected
as the outcome. If the labels differ, an ensemble is performed using the soft voting technique, which
involves both models. The mathematical expression for this concept is articulated as follows: Given
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N labels, the final probability set Pfinal, that any one session can possess, produced by the ensemble
decider, about the probability set Pstateful derived from stateful features and the probability set Pstateless

derived from stateless features, is defined in Eq. (1). This allows for a comprehensive analysis based
on both the overall stateless information of the session and the stateful information derived from each
packet.

Algorithm 2: Ensemble determiner
1: INPUT: ProbFromStateful, ProbFromStateless, Label
2: OUTPUT: FinalPrediction
3: FinalPrediction = []
4: StatefulMaxIdx = ProbFromStateful.index(max(ProbFromStateful))
5: StatelessMaxIdx = ProbFromStateless.index(max(ProbFromStateless))
6: if Label[StatefulMaxIdx] == Label[StatelessMaxIdx], then
7: FinalPrediction.append(Label[StatefulMaxIdx])
8: Else
9: for i = 0 to len(ProbFromStateful), do
10: AverageProb.append((ProbFromStateful[i]+ProbFromStateless[i])/2)
11: end for
12: FinalPredictionIdx = AverageProb.index(max(AverageProb))
13: FinalPrediction.append(Label[FinalPredictionIdx])
14: end for
15 return FinalPrediction

Pfinal =
{

Pstatefuli + Pstatelessi

2

∣∣∣∣ i ∈ {1 · · · N}} (1)

3.4 Analysis
The conclusions derived from the results of the network analysis play a crucial role in determining

the outcome. In this study, a range of metrics were employed to assess the effectiveness of the proposed
framework, including accuracy, precision, recall, and the F1 score. Accuracy measures the proportion
of correct predictions to total predictions and is a commonly used performance metric. However,
this should not be the sole basis for evaluation because it can be influenced by true negatives and
could result in exaggerated accuracy values. To address this limitation, precision and recall are used as
complementary performance metrics, placing significant emphasis on true positives. Consequently,
a comprehensive evaluation of these metrics is required. Finally, the F1 score is derived from a
consideration of precision and recall and is particularly sensitive to cases where either precision or
recall approaches zero.

A confusion matrix is employed to calculate accuracy, precision, recall, and the F1 score. The
confusion matrix is a machine learning performance evaluation metric, represented in a tabular
format. It includes the following components: True Positives (TP), which is the count of instances
where the model correctly identifies positive input data as positive; True Negatives (TN), which is
the count of instances where the model correctly identifies negative input data as negative; False
Positives (FP), which is the count of instances where the model incorrectly identifies negative input
data as positive; and False Negatives (FN), which is the count of instances where the model incorrectly
identifies positive input data as negative. Eqs. (2)–(5) illustrate the calculations for accuracy, precision,
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recall, and the F1 score based on these values of TP, TN, FP, and FN.

Accuracy = TP + TN
TP + TN + FP + FN

(2)

Precision = TP
TP + FP

(3)

Recall = TP
TP + FN

(4)

F1 score = 2 × Precision × Recall
Precision + Recall

(5)

4 Experiments

The experiments were conducted in two categories: proactive detection of IoT botnet attacks
targeting C&C servers and identifying network traffic data sources to validate the framework efficacy
proposed in Section 3.

4.1 Botnet Detection
This experiment was conducted to detect botnet attacks targeting IoT devices, as illustrated

in Fig. 5.

Figure 5: Botnet identification experiment flow

4.1.1 Data Acquisition

Network traffic data collected from three different types of botnets (Kaiten, Mirai, and Qbot)
were employed to identify botnet infections by analyzing their communication with C&C servers [19].
This dataset consisted of communication traffic data between IoT devices that had been infected by
the aforementioned botnets and C&C servers, but this dataset only provides preprocessed data and
does not provide information about the detailed behavior of the C&C server. A proportion of the
communication data was obtained from a securely isolated virtual sandbox environment for training
and testing. The malware and C&C server code used utilized the mirai source code uploaded to the
GitHub public repository [20]. Table 5 provides detailed information regarding the final dataset that
was used in the experiment aimed at detecting C&C servers and identifying botnet infections.
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Table 5: List of data for botnet detection

Label Source # of sessions

Benign [19] and manually collected traffic 75
Kaiten [19] 28
Mirai [19] and manually collected traffic 36
Qbot [19] 17

4.1.2 Feature Extraction

The experiment included preprocessing steps to extract the two types of features in the proposed
framework. Each packet was categorized into sessions based on the collected IP addresses, ports, and
protocols. 21 stateful features and five stateless features were then extracted from each session.

Fig. 6 presents a box plot of each label, allowing a visual assessment of the potential impact of
the stateful features proposed in this study on classification. However, it should be noted that certain
stateful features, such as direction and protocol, have limited values that can be extracted from the
dataset, rendering their representation in a box plot unsuitable. The statistical data displayed in the
box plot indicates that abnormal traffic generally exhibits less dispersed data compared to normal
traffic. This is probably because communication with the C&C server typically occurs periodically
and in an automated manner. In contrast, normal traffic data demonstrates higher entropy due to the
diverse communication patterns that arise from different situations.

Figure 6: Box plot for botnet detection
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4.1.3 Analysis Using Machine Learning

Two independent models were developed that employed ensemble techniques involving machine
and deep learning models. A machine learning model was created to analyze stateless features using
two algorithms: RF and XGBoost. In addition, two deep learning algorithms (CNN and LSTM)
were designed to process 2D data and possessed distinct characteristics. The final decision was made
through a soft voting ensemble decision-maker, which considered the accuracy of both models.

The training processes of the models varied depending on the selected algorithm. The model for
stateful features was automatically generated with optimal hyperparameters using the Keras_tuner
library. In contrast, the model for stateless features was selected as the final model based on
the highest analysis performance utilizing GridSearchCV. Table 6 displays the layer structure and
configuration values of the model for analyzing stateful features, while Table 7 presents the structure
of GridSearchCV for analyzing stateless features. The unit value in the Dense layer of Table 6, referred
to as “Number of classes,” is determined by the problem context and training data. This represents
the number of classes the final model needs to analyze. There are four classes in the botnet detection
experiment, as mentioned in Table 5.

Fig. 7 depicts the epoch-loss graph generated during the data training phase of the experiment.

Table 6: Range of hyperparameter values for Keras_tuner

Type Layers Hyperparameter Range of values

CNN Conv1D Filters 4–32 (steps of 4)
Conv1D Filters 4–32 (steps of 4)
Flatten – –
Dense Units 8–32 (steps of 4)
Dropout Probability 0.2–0.5 (steps of 0.1)
Dense Units Number of classes

LSTM LSTM Units 8–64 (steps of 4)
Dropout Probability 0.2–0.5 (steps of 0.1)
Dense Units 4–32 (steps of 4)
Dense Units Number of classes

Table 7: Range of parameter values for GridSearchCV

Type Parameter Range of values

RF n_estimators [100, 200, 300]
max_depth [None, 10, 20, 30]
min_samples_split [2, 4, 6]
min_samples_leaf [1, 2, 4]

XGBoost n_estimators [100, 200, 300]
max_depth [3, 5, 7]
learning_rate [0.01, 0.1, 0.3]
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Figure 7: Epoch-loss graph for botnet detection

4.1.4 Prediction Analysis

Table 8 presents a comparison of the performance metrics for an experiment conducted on
detecting C&C server communications using the proposed framework. The metrics were calculated
using the macro-average method to address the data imbalance issues that occur during training and
evaluation in a multiclass problem scenario. The RF algorithm alone achieved the highest accuracy
in resolving this problem. Nevertheless, the average performance metrics obtained from the proposed
framework did not demonstrate substantial deviations in accuracy when compared to the RF model
in isolation.

Table 8: Results of botnet detection experiments

Algorithm Accuracy Precision Recall F1 score

Random forest (RF) 96.61% 0.9594 0.9667 0.9619
XGBoost 96.05% 0.9495 0.9623 0.9538
CNN 64.97% 0.7202 0.7197 0.5849
LSTM 45.20% 0.3535 0.4483 0.3302
Ensemble (RF+CNN) 98.31% 0.9796 0.9823 0.9806
Ensemble (RF+LSTM) 96.05% 0.9423 0.9690 0.9540
Ensemble (XGBoost+CNN) 95.48% 0.9448 0.9590 0.9500
Ensemble (XGBoost+LSTM) 96.05% 0.9577 0.9623 0.9587

Fig. 8 presents a confusion matrix that illustrates the outcomes of the ensemble method, which
combined RF and LSTM. The results demonstrate the optimal performance in botnet detection within
the conducted experiment under the proposed framework. However, Table 4 confirms that although
the botnet detection experiment was successful, an imbalance was exhibited due to insufficient botnet
session data. This imbalance could potentially introduce bias in the results. To address this issue, it
is suggested to collect additional malicious traffic data and conduct further experiments using an
expanded dataset. This approach would enable refining the results to mitigate the aforementioned
problem.
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Figure 8: Confusion matrix for botnet detection

Fig. 9 illustrates a graphical depiction of feature importance, shedding light on the impact of state-
less features trained with RF and XGBoost on real-world multi-classification problems. The analysis
uncovers that the rMinSize feature holds the utmost significance in both models. This discovery implies
that conducting network analysis based on the minimum length of collected incoming packets is a
valid method for identifying communication with the C&C server. Furthermore, both models assign
higher importance to packet size as opposed to the time interval between packets. This is likely because
Communication with the C&C server tends to occur less frequently, to emulate typical communication
patterns.

Figure 9: Importance of stateless features from botnet detection experiments

4.2 Device Identification
Fig. 10 illustrates the experiment to identify device sources in an IoT network.
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Figure 10: Device identification experiment flow

4.2.1 Data Acquisition

In this study, we obtained communication data from nine different types of IoT devices to perform
device identification using the CIC IoT dataset 2022 [21]. Moreover, a distinct network environment
was established to gather traffic data from four types of IoT devices that were not present in the dataset,
to acquire information about these devices. Fig. 11 illustrates the specific configuration of the IoT
environment that was arranged for this experiment.

Figure 11: IoT network environment configured for experimental purposes
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Table 9 presents a comprehensive list of the devices that were the focus of the IoT device
identification experiment. Significantly, the number of packets obtained from these devices exhibited
notable variations. It is important to acknowledge that employing the entirety of this data might
potentially undermine the performance of the experiment due to an imbalance in the data during
the training phase. Nonetheless, this study undertook a modest approach to address the issue of data
imbalance by exclusively training on the initial eight packets from each session.

Table 9: List of devices to identify

Device name Source # of packets

1 AeoTec button CIC IoT dataset 2022 399
2 AeoTec motion sensor CIC IoT dataset 2022 403
3 AeoTec multipurpose sensor CIC IoT dataset 2022 1816
4 AeoTec water leak sensor CIC IoT dataset 2022 749
5 Aqara door sensor Manually collected 67
6 Aqara switch Manually collected 2617
7 Aqara temperature/humidity sensor Manually collected 155
8 Philips hue white CIC IoT dataset 2022 3759
9 Sengled smart plug CIC IoT dataset 2022 793
10 SmartThings button CIC IoT dataset 2022 409
11 SmartThings multipurpose sensor Manually collected 1928
12 SmartThings smart bulb CIC IoT dataset 2022 7234
13 Sonoff smart plug CIC IoT dataset 2022 387

4.2.2 Feature Extraction

The preprocessing techniques employed in this experiment for feature extraction were predomi-
nantly consistent with those used in previous experiments. However, due to the inclusion of targeted
devices that used the Zigbee protocol, the session-determining algorithm was enhanced to incorporate
identification and classification based on personal area network identification. This additional step
facilitated the extraction of a cohesive 26-dimensional vector from devices employing different
protocols.

Fig. 12 presents a box plot displaying the extracted labels to visually assess the impact of the
stateful features proposed in this study on classification. The box plot reveals that there was a resem-
blance in the communication patterns of specific products, particularly those produced by AeoTec.
It should be noted that manufacturers commonly advise connecting their devices with coordinators
from the same manufacturer, resulting in comparable communication styles [22]. While this similarity
could complicate detailed analysis, it can also serve as evidence of the product’s manufacturer, which
is especially valuable when dealing with unfamiliar devices.

4.2.3 Analysis Using Machine Learning

The model training process for this experiment was conducted in the same manner as the
procedure for identifying botnet infections. The configuration values used for the Keras_tuner library
and the GridSearchCV module for model training are the same as those presented in Tables 6 and
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7. Fig. 13 presents a plot of the epoch-loss graph generated during the data training phase of this
experiment.

Figure 12: Box plot for device identification

Figure 13: Epoch-loss graph for device identification

4.2.4 Prediction Analysis

Table 10 presents a comprehensive performance evaluation of the device identification experi-
ment. The findings suggest that the average performance was comparatively lower than the results
obtained from the botnet detection experiment. Nevertheless, certain outcomes achieved through the
implementation of the proposed ensemble techniques exhibited greater accuracy in comparison to
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those obtained from a single model. This enhancement was attributed to employing the ensemble
method, which allowed for the integration of varying conclusions from each model.

Table 10: Results of device identification

Algorithm Accuracy Precision Recall F1 score

Random forest (RF) 86.36% 0.7260 0.7305 0.7166
XGBoost 84.66% 0.7136 0.7186 0.7117
CNN 46.02% 0.3186 0.2651 0.2335
LSTM 43.18% 0.1500 0.2464 0.1816
Ensemble (RF+CNN) 86.93% 0.7220 0.7158 0.7103
Ensemble (RF+LSTM) 86.93% 0.7602 0.7491 0.7366
Ensemble (XGBoost+CNN) 84.66% 0.7136 0.7186 0.7117
Ensemble (XGBoost+LSTM) 84.66% 0.7136 0.7186 0.7117

The lower accuracy of the device identification experiment compared to the botnet detection
results can be assessed from two perspectives. First, inherent similarities could exist depending on the
device manufacturers and models within the data. Fig. 14 presents the confusion matrix derived from
the model combining the RF and CNN, which displayed the highest accuracy. This confusion matrix
suggests that although the overall accuracy for products from AeoTec was approximately 67.86%, the
individual accuracy rates were lower. This implied the need for a more stringent and refined analysis
of devices from the same manufacturer and training on a larger dataset. Despite having a greater
variety of preset labels, the limited dataset also contributed to performance degradation. This is a
common problem in supervised learning, where a large, well-prepared dataset is necessary for higher
performance. Continuous data collection from a more diverse range of devices would be expected to
improve accuracy beyond the levels achieved in this experiment.

Fig. 15 presents an assessment of the importance of features in real-world multi-classification
problems. The analysis highlights the significance of stateless features learned by both RF and
XGBoost models. Similar to the botnet detection experiment, it is clear that the XGBoost model places
greater emphasis on packet size compared to the RF model. Importantly, the experiment indicates that
communication with the C&C server primarily reveals classifiable information in incoming packets.
However, this study also demonstrates that IoT devices extract valuable information from the packets
they transmit to external entities. This finding is further corroborated by the RF model, which suggests
that features extracted from transmitted packets generally carry greater importance than those derived
from received packets.

4.3 Summary
To evaluate the effectiveness of the proposed framework in addressing common challenges in net-

work analysis, performance evaluations were conducted in two distinct scenarios. The findings clearly
demonstrate that the classifier, which combines both types of models simultaneously, outperforms the
individual models. Fig. 16 presents a visual comparison of the performance between the single model
and the ensemble model in each experiment. The depicted single model in the figure represents the one
with the highest accuracy among the four individual models used in each experiment. In cases where
two models demonstrate the same level of accuracy, the model with the superior F1 score is selected
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and depicted in the figure. This selection methodology is consistently applied to the ensemble model
as well.

Figure 14: Confusion matrix for device identification

Figure 15: Importance of stateless features from device identification experiments
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Figure 16: Comparison of the performance between the single model and the ensemble model

The performance graphs indicate that, despite the fact that the proposed framework may not show
a significant improvement in accuracy, the conditional soft voting technique used in the ensemble
process effectively reduces false positives. This reduction leads to a maximum increase of 0.02 in the
F1 score. As a result, the network analysis model based on the proposed framework demonstrates the
potential to address false positives that may occur in conventional network analysis frameworks.

Additionally, our observations indicate that the performance remains relatively consistent, regard-
less of the various problem scenarios considered in this study. This consistency suggests that the
framework, which incorporates both stateful and stateless features, has the potential to become a
versatile IoT network analysis framework and tool. With further consideration and experimentation,
its performance could be significantly improved.

5 Discussion

In this study, we implemented and validated the proposed framework using established datasets
and network traffic data from an authentic IoT environment. To assess the effectiveness of the
framework, we employed confusion matrices and numerical evaluation metrics. Interestingly, although
the framework did not demonstrate superior performance in specific scenarios, it effectively addressed
various well-known network analysis problems. This suggests that a single ensemble model, trained
on general features, can effectively solve diverse network analysis problems without the need for
additional fine-tuning procedures. However, since this study focused exclusively on botnet infection
detection and device identification, future research should aim to validate the framework’s efficacy
in addressing a broader range of issues. Furthermore, although the deep learning model exhibited
relatively low average performance in analyzing stateful features, the combined utilization of both
stateful and stateless features resulted in higher accuracy compared to solely using the machine
learning model for analyzing stateless features. This indicates that enhancing the performance of the
stateful features analysis model in future research could significantly improve the overall performance
of the ensemble decision-maker.

Also, the impact of stateless features on IoT network analysis has been examined through feature
importance analysis. This analysis was facilitated by evaluating the stateless features using decision
tree-based models such as RF and XGBoost. In contrast, models like CNN and LSTM, which were
employed for analyzing stateful features, encounter difficulties in determining the relative importance
of individual features in network analysis.
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To enhance performance and enhance our comprehension of feature influence, further research
will be conducted. This research will encompass additional analyses aimed at precisely identifying
which features exert the most significant impact. We anticipate that this approach will yield valuable
insights into the optimal number of packets per session required to effectively extract stateful features
and the appropriate weight to assign to each feature. Ultimately, this will contribute to achieving higher
overall performance in IoT network analysis.

6 Conclusion

This paper introduces a machine-learning framework for analyzing network traffic in IoT security
incidents. Two experiments were conducted to validate the framework’s effectiveness in identifying and
responding to breaches in IoT security. The first experiment focused on detecting botnet infections by
identifying communications with command-and-control servers, while the second experiment aimed to
identify the sources of these artifacts for device identification. The results demonstrated that the use of
ensemble techniques in the device identification scenario improved the overall performance of traffic
analysis. This suggests that the parallel analysis approach proposed in this study, which incorporates
both stateful and stateless features, allows for a more comprehensive evaluation. Therefore, the
proposed framework has the potential to address other problem scenarios beyond those investigated
in this study. To further enhance the framework, future research should involve conducting additional
experiments using different protocols and devices, as well as validating its efficacy in diverse scenarios.

It is important to note that all algorithms used in the proposed framework are supervised learning
algorithms. As a result, their effectiveness in analyzing unknown attacks and devices may be limited.
One possible solution could be to build machine learning models using larger datasets. However,
creating datasets that encompass the exponentially increasing number of IoT devices poses significant
challenges. Thus, future research should explore the use of unsupervised learning algorithms to include
scenarios involving zero-day attacks and lesser-known devices.
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