
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.053437

ARTICLE

Encrypted Cyberattack Detection System over Encrypted IoT Traffic Based on
Statistical Intelligence

Il Hwan Ji1, Ju Hyeon Lee1, Seungho Jeon2 and Jung Taek Seo2,*

1Department of Information Security, Gachon University, Seongnam, 13120, Republic of Korea
2Department of Computer Engineering (Smart Security), Gachon University, Seongnam, 13120, Republic of Korea

*Corresponding Author: Jung Taek Seo. Email: seojt@gachon.ac.kr

Received: 30 April 2024 Accepted: 13 August 2024 Published: 27 September 2024

ABSTRACT

In the early days of IoT’s introduction, it was challenging to introduce encryption communication due to the lack
of performance of each component, such as computing resources like CPUs and batteries, to encrypt and decrypt
data. Because IoT is applied and utilized in many important fields, a cyberattack on IoT can result in astronomical
financial and human casualties. For this reason, the application of encrypted communication to IoT has been
required, and the application of encrypted communication to IoT has become possible due to improvements in
the computing performance of IoT devices and the development of lightweight cryptography. The application
of encrypted communication in IoT has made it possible to use encrypted communication channels to launch
cyberattacks. The approach of extracting evidence of an attack based on the primary information of a network
packet is no longer valid because critical information, such as the payload in a network packet, is encrypted by
encrypted communication. For this reason, technology that can detect cyberattacks over encrypted network traffic
occurring in IoT environments is required. Therefore, this research proposes an encrypted cyberattack detection
system for the IoT (ECDS-IoT) that derives valid features for cyberattack detection from the cryptographic network
traffic generated in the IoT environment and performs cyberattack detection based on the derived features. ECDS-
IoT identifies identifiable information from encrypted traffic collected in IoT environments and extracts statistics-
based features through statistical analysis of identifiable information. ECDS-IoT understands information about
normal data by learning only statistical features extracted from normal data. ECDS-IoT detects cyberattacks based
only on the normal data information it has trained. To evaluate the cyberattack detection performance of the
proposed ECDS-IoT in this research, ECDS-IoT used CICIoT2023, a dataset containing encrypted traffic generated
by normal and seven categories of cyberattacks in the IoT environment and experimented with cyberattack
detection on encrypted traffic using Autoencoder, RNN, GRU, LSTM, BiLSTM, and AE-LSTM algorithms. As
a result of evaluating the performance of cyberattack detection for encrypted traffic, ECDS-IoT achieved high
performance such as accuracy 0.99739, precision 0.99154, recall 1.0, F1 score 0.99575, and ROC_AUC 0.99822
when using the AE-LSTM algorithm. As shown by the cyberattack detection results of ECDS-IoT, it is possible
to detect most cyberattacks through encrypted traffic. By applying ECDS-IoT to IoT, it can effectively detect
cyberattacks concealed in encrypted traffic, promoting the efficient operation of IoT and preventing financial and
human damage caused by cyberattacks.
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Nomenclature

IoT Internet of Things
ECDS-IoT Encrypted Cyberattack Detection System for IoT
IIoT Industrial Internet of Things
SSL Secure Sockets Layer
TLS Transport Layer Security
HTTPS Hypertext Transfer Protocol Secure
DPI Deep Packet Inspection
ICS Industrial Control System
AI Artificial Intelligence
TP True Positive
TN True Negative
FP False Positive
FN False Negative
TPR True Positive Rate
FPR False Positive Rate

1 Introduction

The Internet of Things (IoT) is a technology that aims to make the real world more intelligent by
connecting things without human intervention [1]. IoT has been introduced and used in many fields,
such as smart cities, smart factories, smart farms, energy management, healthcare, smart homes, smart
transportation infrastructure, aviation/space, marine ships, defense, and construction [2]. IoT provides
better services by connecting multiple devices using wired and wireless communication technology [3].
In the early days of IoT’s introduction, it was challenging to introduce encryption communication
due to the lack of performance of each component, such as computing resources such as CPUs and
batteries, to encrypt and decrypt data [4]. Plain text-based communication is a security weakness,
making it vulnerable to various cyberattacks such as reply attacks, sniffing, snooping, and spoofing.
Since IoT is applied and utilized in many vital areas, cyberattacks on IoT can cause astronomical
financial damage and casualties [5]. For this reason, the application of encryption communication to
IoT has been required, and due to the improvement of computing performance of IoT devices and the
development of lightweight cryptography, the application of encryption communication to IoT has
become possible. Currently, encrypted communication based on secure sockets layer (SSL)/transport
layer security (TLS) is essentially applied to most IoT, and encrypted communication has been used
in a majority of IoT [6].

Although encrypted communication has made it possible to respond to cyberattacks caused by
vulnerabilities in plaintext communication, attackers also perform cyberattacks through protected
communication channels. One survey explained that attacks through encrypted channels continued
to increase from 57% in 2020 to 80% in 2021, and more than 85.9% of attacks in 2023 were made using
encrypted channels [7,8].

Detection research has been actively conducted to detect and respond to cyberattacks on IoT
in the existing plaintext communication environment. Cai et al. [9] proposed a CapBad anomaly
detector based on payloads in network packets to detect cyberattacks on the Industrial Internet of
Things (IIoT). CapBad models industrial control protocol packets automatically learns the payload
characteristics of the packets, and detects anomalies based on the learned information. As a result
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of the performance evaluation of CapBad, high performance of ROC_AUC 0.974 was derived.
Kim et al. [10] proposed autoencoder-based payload analog detection (APAD) for anomaly detection
for IIoT. After network collection, the framework derived identifiable information, including payload
as features, and preprocessed it. After that, cyberattacks are detected through an autoencoder-based
anomaly detector. As a result of APAD’s performance evaluation, a high accuracy performance
of 0.944 and recall of 0.983 were derived. Like the previously presented research, most IoT target
cyberattack detection research conducted deep packet inspection (DPI) on network packets to identify
critical information and use it as a feature or use direct or indirect statistical information of payload
as a feature. However, extracting evidence of an attack based on crucial information from a network
packet is no longer valid because critical information, such as the payload in a network packet,
is encrypted by encrypted communication [11]. For this reason, a technology capable of detecting
cyberattacks over encrypted network traffic occurring in IoT environments is required.

This research proposes the Encrypted Cyberattack Detection System for IoT (ECDS-IoT), which
derives valid features through statistical analysis of encrypted traffic and performs cyberattack
detection in encrypted network traffic in the IoT environment. The proposed ECDS-IoT consists of
a statistics-based feature extractor, a feature preprocessor, and a cyberattack detector. The statistics-
based feature extractor derives effective features for cyberattack detection through statistical analysis
of identifiable information and identifies information in encrypted traffic. The feature preprocessor
performs feature selection, normalization, and missing value removal on the features derived by the
statistics-based feature extractor for efficient training of the cyberattack detector and detection of
cyberattacks. Cyberattack Detector learns only normal encryption traffic data and detects cyberat-
tacks by classifying input data into normal encryption traffic and encryption traffic generated by
cyberattacks. In this paper, CICIoT2023 [12], a dataset including TLS-based normal encryption traffic
collected in IoT environments and encryption traffic generated by seven categories of cyberattacks,
is employed to evaluate the cyberattack detection performance of ECDS-IoT. As a result of the
experiment, high performance is derived for the Cyberattack Detector designed based on long short-
term memory based autoencoder (AE-LSTM), such as accuracy 0.99739, precision 0.99154, recall 1.0,
F1 score 0.99575, and ROC_AUC 0.99812. The contribution of this paper is as follows:

– It proposes ECDS-IoT, which has effective feature derivation, feature preprocessing, and
cyberattack detection procedures for cyberattack detection for encrypted traffic generated in
IoT environments.

– ECDS-IoT proposed in this research is trained and validated using CICIoT 2023, a dataset
containing positive encryption traffic generated in IoT environments and encryption traffic
generated by seven categories of cyberattacks, and performs successful cyberattack detection
by deriving high performance such as accuracy 0.99739, precision 0.99154, recall 1.0, F1 score
0.99575, ROC_AUC 0.99812.

– ECDS-IoT derives similar or higher performance in cyberattack detection compared to
existing research on detecting cyberattacks based on crucial information, such as payloads
of network packets.

The remainder of this paper is organized as follows. Section 2 explains the overview of IoT and
possible types of cyberattacks on IoT and analyzes AI-based cyberattack detection technology for
IoT and existing research related to cyberattack detection technology over encrypted traffic. Section 3
presents ECDS-IoT for cyberattack detection over encrypted traffic generated in IoT environments.
Section 4 conducts a performance evaluation on ECDS-IoT and performs a comparative analysis with
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existing research. Section 5 presents and discusses the limitations of our research. Section 6 presents
the conclusions of this research and future work directions.

2 Background and Related works

Sections 2.1 and 2.2 of this section present an overview of IoT and the types of cyberattacks that
can occur against IoT targets, respectively. Section 2.3 analyzes the research on AI-based cyberattack
detection technology for IoT to detect cyberattacks on IoT. Section 2.4 analyzes the research on
cyberattack detection technology over encrypted traffic.

2.1 Internet of Things (IoT) Overview
IoT refers to a technology network that enables physical objects to exchange information and

interact with each other or with a central server through the Internet. IoT is built around IoT
devices, physical devices such as sensors and actuators that can be managed, and management systems
such as central servers to collect information on the site and control on-site devices [13]. IoT is
applied to each infrastructure to analyze the state of the environment and infrastructure based on the
collected data and automatically deliver necessary commands to field devices based on the analyzed
information, thereby automating the process and increasing productivity. Most IoT devices support
wireless communication, so there are relatively few restrictions on the field application of IoT devices.
For this reason, IoT is applied to various fields such as smart cities, smart factories, smart farms, energy
management, healthcare, smart homes, smart transportation infrastructure, aviation/space, marine
ships, defense, and construction fields to provide better services [3].

Fig. 1 shows the IoT architecture. IoT architecture is composed of a device layer, communication
layer, IoT gateway, IoT platform, and application.

Figure 1: IoT architecture [13]

The device layer includes sensors and actuators located at the site. Sensors are hardware devices
such as temperature/humidity measurement sensors, speed measurement sensors, and brightness
measurement sensors that measure data generated in the surrounding environment or other systems.
An actuator is a hardware device such as a motor, switch, or current control device that performs
operations based on user or management system commands. In the device layer, Sensors and Actuators
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required in each IoT application environment, such as smart cities, smart factories, and energy
management facilities, exist.

The communication layer is a network for data transmission and reception between the device layer,
IoT gateway, and IoT platform. The communication layer is responsible for forwarding and routing
network packets and supports protocols such as IPv4, IPv6, and 6LoWPAN. IoT devices use wireless
communication standards such as Zigbee, Z-Wave, Bluetooth, Wi-Fi, LoraWan, LTE-M, Sigfox, and
MQTT [13]. In the past, IoT has relied on unencrypted communication protocols to accommodate the
limitations of low computing resources and to ensure data availability. However, as cyber threats to
IoT increase, encrypted communication based on SSL, TLS, and Datagram Transport Layer Security
(DTLS) protocols is becoming essential to counter them [14]. More than 62% of IoT information
exchanges are made through TLS/SSL-based encryption communication [6].

IoT gateway can be introduced to solve different communication networks, data communication
protocols, and data format problems of different IoT devices. The IoT gateway can provide an efficient
communication environment by providing a common communication network, data communication
protocol, and data format within a network.

IoT platform provides three functions: device management and connection, data storage and
analysis, and application support, allowing the sensor’s collected data to be monitored and the actuator
to be controlled through the application.

As IoT is applied and used in various fields, cyberattacks on IoT cause economic damage, and
cyberattacks on IIoT existing in the industrial control system (ICS) can cause economic damage and
casualties.

2.2 IoT Cyberattacks Type
IoT is being applied and utilized in various fields for efficiency and automation. However, various

security vulnerabilities exist due to the absence of security measures, a lack of computing resources in
IoT devices, and increased connectivity with various devices. In addition, it has vulnerabilities, such as
physical access to IoT devices. For this reason, it has a different cyberattack vector from the general
IT environment and various security vulnerabilities so that various cyber threats can occur. Table 1
shows the types of cyberattacks that can occur by component in the IoT.

Table 1: Cyberattacks type on IoT [15]

Component Cyberattacks type

IoT devices Sybil attack
Buffer overflow attack
Blueborne attack
Rolling code attack
Brute force attack

IoT Gateway and internal network of the gateway MITM attack
DNS poisoning attack
Wormhole attack
Replay attack
Injection attack

(Continued)
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Table 1 (continued)

Component Cyberattacks type

Control devices and the servers Back doors
Exploits attacks
SQL injection
Weak authentication
DDoS attacks
Malicious applications

Table 1 presents possible cyberattacks on IoT devices, the IoT gateway, the internal network
of the gateway, control devices, and the servers in IoT. These cyberattacks are caused by various
security vulnerabilities, such as the absence of access control means, lack of data encryption, and weak
authentication. As listed in Table 1, various cyber threats to IoT cause much damage, such as economic
and casualties. If encryption communication is applied to prevent cyberattacks, MITM attacks such
as sniffing and spoofing and some cyberattacks, including reply attacks, may be prevented. If an IoT
device using encrypted communication is privileged, hijacked, or infected with malware, most of the
cyberattacks presented in Table 1 can occur through the encrypted channel. Due to the nature of
IoT, it is connected to many devices, but it is challenging to manage the security of all devices, so
the cyberattacks mentioned above are more likely to occur.

For this reason, cybersecurity technology is needed to detect and respond to encrypted cyberat-
tacks in advance by monitoring encrypted network traffic in IoT.

2.3 AI-Based Cyberattack Detection Technology for IoT
Various research has been conducted to detect cyberattacks on IoT. The existing rule-based detec-

tion method for network traffic targets and the signature-based detection method have disadvantages.
The rule-based detection method has a problem: the rule update cycle to respond to rapidly changing
attacks cannot keep up with the speed of change in the attack. The signature-based detection method is
disadvantageous because it cannot detect unknown attacks [16,17]. Anomaly detection research using
artificial intelligence (AI) is conducted to compensate for the weaknesses of these existing anomaly
behavior detection methods and effectively detect network traffic generated in IoT environments.

Chang et al. [18] proposed the Hierarchical Animal Detection Framework for IoT (HADIoT) for
cybersecurity for IoT, which consists of various heterogeneous IoT devices. The operation method
of the framework is that the local edge server preprocesses and normalizes data by referring to the
data pattern unique to each device. The framework performs cyberattack detection on the local area
based on data type, payload, protocol, and port information. After that, the local edge server delivers
the processed data to the cloud server, and the cloud server performs global cyberattack detection
that requires higher computing capacity based on the received data. In this research, performance
verification of HADIoT was performed using the ISCX 2012 [19] dataset, and high cyberattack
detection performance such as a True Positive Rate (TPR) of 0.9812 and False Positive Rate (FPR) of
0.0453 was derived.

Liu et al. [20] proposed a payload-based anomaly detection framework that can be distributed to
IoT edge devices to detect cyberattacks on IoT. This research identified payloads in network packets
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and preprocessed them in a form that can be learned by machine learning and deep learning algorithms
and used them as features. In this research, a CNN-LSTM-based cyberattack detection model was
designed. For the CNN-LSTM-based anomaly detection model, the high performance of F1 score
0.9732 was derived from verifying the cyberattack detection performance using the CICIDS 2017 [21]
and ISCX 2012 [19] dataset.

Alanazi et al. [22] proposed machine learning-based anomaly detection methods such as decision
tree (DT), support vector machine (SVM), K-nearest neighbors (KNN), and linear discrete analysis
(LDA) to detect anomalies for large-scale IoT ecosystems such as IIoT. The proposed anomaly-
based IDS has three stages: preprocessing, feature selection, and anomaly classification. This research
employed minimum redundancy, maximum relevance (MRR), and neighborhood components anal-
ysis (NCA) to reduce the data dimension and improve detection performance. Normal and anomaly
data are classified based on DT, SVM, KNN, and LDA algorithms in the anomaly classification stage.
X-IIoTID [23] is a network traffic dataset collected in the IIoT environment to verify the anomaly
detection method. As a result of the verification, an accuracy 0.9958, sensitivity 0.9959, specificity
0.9958, and F1 score 0.9959 were derived.

Tomar et al. [24] proposed an anomaly detection method based on VGG-16 and VGG-19 models
to detect possible cyberattacks such as infusion attacks, man-in-the-middle attacks, information
gathering, malware attacks, and DDoS/Dos attacks on IoT. In this research, the Edge-IIoT [25]
dataset, including normal network traffic collected from IoT testbeds and network traffic generated
by cyberattacks, was employed to evaluate the cyberattack detection performance of the proposed
cyberattack detection method. As a result of the verification, the anomaly detection performance of
the VGG-19 model resulted in an accuracy of 0.99, and the classification accuracy for 15 cyberattacks
was 0.948.

However, due to the development of IoT devices, they have sufficient computing resources,
and the application of cryptographic communication to IoT is increasing as cyberattacks using
vulnerabilities in plaintext communication increase. X-IIoTID [23] was utilized to verify the work
of Alanazi et al. [22], which uses statistical values of network traffic and includes information from
payloads. Chang et al. [18,20,24] detected cyberattacks based on information about payloads and
messages in network packets. Since the related research presented above detects cyberattacks based on
important information, such as payloads of network packets, it is not easy to apply to the encrypted
communication environment. For this reason, research on cyberattack detection technologies over
encrypted traffic occurring in IoT environments should be conducted.

2.4 Cyberattack Detection Technology over Encrypted Traffic
As various security threats arise due to vulnerabilities in the existing plaintext communica-

tion method, most Internet communication is currently encrypted. However, cyberattacks through
encrypted channels continued to increase from 57% in 2020 to 80% in 2021, with more than 85% of
attacks performed in 2022 through encrypted channels [7,8]. Cyberattacks through encrypted channels
must be detected and responded to, but because critical data in network packets are encrypted,
conventional anomaly detection methods using features extracted through Deep Packet Inspection
(DPI) cannot be applied. Accordingly, research is actively conducted to detect cyberattacks based on
features that can be extracted from encryption traffic.

Chao [26] conducted anomaly detection research for network traffic encrypted by SSL and TLS
communication channels. The researchers entered the encrypted network traffic into Zeek IDS [27],
an open-source intrusion detection system and network analysis framework, for real-time network
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traffic analysis. Since then, the researchers have derived the information of the conn.log (connection
information), x509.log (certificate information), and ssl.log (SSL/TLS information) files generated
by analyzing the network traffic encrypted by Zeek IDS as features. This research used the CTU-
Malware-Captures [28] dataset to verify the proposed methodology. This dataset includes encrypted
normal traffic collected from the Internet environment and dozens of encrypted malware traffic.
An anomaly detection was performed based on log information extracted from the dataset using
a machine learning algorithm, LightGBM-based anomaly detection model. The anomaly detection
model performed binary classification with normal data and Malware data for encrypted traffic and
derived an accuracy performance 0.9409 and an F1 score 0.9222.

Niu et al. [29] conducted anomaly detection research targeting network traffic encrypted by SSL
and TLS communication channels. In this research, a new dataset was created by mixing the MTA
dataset [30], MCFP [31], and CTU-13 [32], which are datasets containing cryptographic network
traffic. After that, the encrypted traffic data set was inputted into the Zeek IDS to generate conn.log,
x509.log, and ssl.log, and the information was used as a feature. In this research, an anomaly detection
model based on Improved Adaptive Random Forests (IARF), a machine learning algorithm, was
proposed to detect anomalies in the encrypted traffic. The anomaly detection model performed binary
classification with normal data and Malware data for encrypted traffic and derived the performance
of precision 0.9966, recall 0.9967, and F1 score 0.9966.

Alzighaibi [33] conducted anomaly detection research targeting network traffic encrypted by
the hypertext transfer protocol secure (HTTPS) communication channel. This research employed a
CIRA-CIC-DoHBrew-2020 [34] dataset derived using DNS-over-HTTPS Analyzer (DoHlyzer), a
capture and statistics-based feature extraction tool for HTTP traffic. The dataset contains https traffic
generated by multiple applications and HTTPS encryption traffic caused by cyberattacks. The feature
of this dataset contains non-encrypted data in HTTPS traffic and statistical numerical values based
on it. In this research, binary classification was performed on the stacking algorithm-based anomaly
detection model combining Random Forest (RF) and DT using the extracted statistics-based features,
and account 0.999 and F1 score 0.999 were derived.

Bahlali et al. [35] conducted anomaly detection research on HTTPS, SSH, and TLS encrypted
traffic. This research extracted statistics-based features from the encrypted traffic dataset, including
HTTPS, TLS, and secure shell (SSH), using CICFlowmeter [36], an open source for capturing and
statistics-based feature extraction for network traffic. This research used UNSW-NB15 [37] and
CSE-CIC-IDS2018 [38] datasets with normal and anomaly HTTPS, TLS, and SSH encrypted traffic
to evaluate anomaly detection performance. This research devised a fully-supervised autoencoder
architecture with custom reconstruction loss (DAE-CRL) to model network traffic effectively, and
an anomaly detection model based on the architecture was developed. As a result of the experiment,
an average accuracy 0.942 and an average F1 score 0.9482 were derived.

Zhao et al. [39] conducted anomaly detection research to detect malicious code behavior per-
formed in an encrypted communication environment. In this research, statistics-based features were
derived using a flow statistical classifier to extract statistical values for network traffic encrypted by
TLS. In this research, binary classification was performed on the anomaly detection model based on
the ensemble learning algorithm using the extracted statistics-based features, and high cyberattack
detection performance, such as TRP of 0.95 and FPR of 0.08, was derived.

Ferriyan et al. [40] proposed a malicious traffic detection technique over TLS-encrypted traffic
based on Word2Vec. In this research, packet-level features were derived from TLS-encrypted network
traffic. The research derived the TLS/SSL version (version), the list of cipher suites in the client hello
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or server hello (cipher), the extension length of the client hello or server hello (ext_len), the elliptic
curves of the client hello (elliptic_curves), the point formats of the elliptic curves (ec_point_formats),
and the payload length of each packet (len), in words, that can be identified from the network packets
generated during the TLS handshake. Each word was tokenized by applying Word2Vec technology to
the derived words, and the tokens were input to malicious traffic classification models based on LSTM
and BiLSTM algorithms to detect malicious traffic. To validate the method proposed in this research
used CTU-Malware-Capture and Jason Stroschein’s public GitHub malware dataset, which contains
malicious encrypted network packets caused by Zeus, Cobalt, and Trickbot, and detected an average
classification performance F1 score 0.891.

Although various types of cyberattack detection research are conducted on cryptographic traffic,
consideration of the IoT environment and generated cyberattacks is not included, so it is unclear
whether it applies to the IoT environment. As the application of encrypted communication for
cybersecurity is increasing in the IoT environment, there is a possibility that a cyberattack performed
hidden in encrypted communication may occur. For this reason, research for cyberattack detection
over encrypted traffic occurring in IoT environments should be conducted.

Table 2 provides an overview of the contributions and limitations of related work on AI-
Based Cyberattack Detection Technology for IoT and Cyberattack Detection Technology over
Encrypted Traffic.

Table 2: Summary of related research

Objective Ref. Contribution Limitation

Detect cyberattacks in IoT
environments

[18] • Proposed framework for
detecting cyberattacks on
IoT based on data type,
payload, protocol, and port
information

• Unable to detect new
types of cyberattacks

• Unable to detect
cyberattacks on
encrypted traffic

[20] • Payload-based cyberattack
detection method that can
be deployed on machine
learning-based IoT edge
devices

• Unable to detect
cyberattacks on
encrypted traffic

[22] • Proposed a cyberattack
detection system for IoT
using statistical-based
information, including
payload information based
on machine learning
algorithm

• Unable to detect new
types of cyberattacks

• Unable to detect
cyberattacks on
encrypted traffic

(Continued)
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Table 2 (continued)

Objective Ref. Contribution Limitation

[24] • Proposed method for
detection technique for
cyberattacks and malware
in IoT based on VGG-16
and VGG-19 using payload
information

• Unable to detect new
types of cyberattacks

• Unable to detect
cyberattacks on
encrypted traffic

Detect cyberattacks carried out via
encrypted traffic

[26] • Proposed a log
information-based feature
extraction method and
LightGBM-based
cyberattack detection
system over encrypted
traffic

• Unable to detect new
types of cyberattacks

[29] • Proposed a log
information-based feature
extraction method and
IARF-based cyberattack
detection system over
encrypted traffic

• Unable to detect new
types of cyberattacks

[33] • Proposed a cyber-attack
detection system over
encrypted traffic based on
a statistical-based encrypted
traffic feature extraction
method using DoHlyzer and
a stacking algorithm

• Difficulty detecting
sophisticated payload
forgery attacks

[35] • Proposed a cyber-attack
detection system over
encrypted traffic based on
a statistical-based encrypted
traffic feature extraction
method using
CICFlowmeter and a
DAE-CRL flamework

• Difficulty detecting
sophisticated payload
forgery attacks

(Continued)
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Table 2 (continued)

Objective Ref. Contribution Limitation

[39] • Proposed flow statistical
classifier for statistical
feature extraction for TLS
network traffic

• Difficulty detecting
sophisticated payload
forgery attacks

• Unable to detect new
• Propose a framework for

cyberattack detection over
encrypted traffic utilizing
statistical features based on
ensemble learning

types of cyberattacks

[40] • Proposed a packet-level
feature extraction scheme
and Word2Vec-based word
embedding scheme for TLS
network traffic

• Difficulty detecting
sophisticated payload
forgery attacks

• Proposed a malicious traffic
detection method over
encrypted traffic using
LSTM and BiLSTM-based
packet-level features

3 ECDS-IoT (Encrypted Cyberattack Detection System for IoT) Structure

Section 3 describes a cyberattack detection system targeting encrypted traffic in an AI-based
IoT environment. In some fields where IoT is applied, such as industrial control systems (ICS)
and weapon systems, data availability is critical because a single command or network packet can
play an essential role in operation. If a firewall or intrusion prevention system (IPS) is applied to
such an environment, normal data can be falsely detected as cyberattack data, and the data may
be blocked, significantly negatively impacting operations. For this reason, it is necessary to detect
cyberattacks on IoT and enable managers to take appropriate action. The proposed technique detects
cyberattacks occurring in IoT environments based on learning information about normal encryption
traffic occurring in IoT communication environments. As the frequency of cyberattacks on the IoT
environment increases and cyberattacks performed hidden in encrypted communication occur due
to the application of encrypted communication, it is necessary to apply a system to detect encrypted
cyberattacks. Therefore, developing and applying an Encrypted Cyberattack Detection System for IoT
(ECDS-IoT) that extracts valid features from encrypted traffic and detects cyberattacks based on them
is necessary. Section 3.1 provides an overview of the detection of cyberattacks targeting the encryption
traffic in the IoT environment. Section 3.2 describes extracting essential information for learning AI
models and anomaly detection from encryption traffic. Section 3.3 describes feature preprocessing for
features extracted from encrypted traffic to increase cyberattack detection efficiency and performance.
Section 3.4 introduces how to detect encrypted traffic caused by cyberattacks in encrypted traffic that
occur in a normal state.
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3.1 Overview
Fig. 2 shows the overview of ECDS-IoT, which detects cyberattacks over encrypted traffic

generated in IoT environments based on the AI proposed in this research. ECDS-IoT consists of
statistics-based feature extraction, feature preprocessing, and cyberattack detection steps to detect
encrypted traffic in IoT environments. ECDS-IoT extracts statistics-based features of metadata and
traffic in addition to key data that are encrypted and unidentifiable within encrypted traffic collected in
IoT environments. After that, the input features are preprocessed to increase the learning and anomaly
detection accuracy and efficiency of the AI-based cyberattack detection model. The preprocessed
features are entered into the cyberattack detector based on AI algorithms. The cyberattack detector
classifies the input encrypted traffic data as normal and cyberattack data.

Figure 2: Overview of encrypted cyberattack detection system for IoT (ECDS-IoT)

3.2 Statistics-Based Feature Extraction
Statistics-based feature extraction refers to a statistical method used to summarize and describe

the main features and patterns of data. Unlike non-encrypted traffic, encrypted traffic does not contain
information that can be intuitively identified without decryption. However, due to the general network
environment in which the key employed to encrypt data is unknown, cyberattack detection must rely on
identifiable information and statistical features in network traffic without decryption. In the research
on cyberattack detection over encrypted traffic, there are methods for extracting logs from encrypted
traffic and detecting cyberattacks based on them. In addition, there is a method to derive packet-
level features, which are unencrypted information in encrypted packets, and detect cyberattacks based
on them. Finally, methods exist to extract statistical information from encrypted network traffic as
features and detect cyberattacks. The method of cyberattack detection through log collection requires
a separate device to collect logs, and it may be challenging to derive meaningful features depending
on the log generation criteria. The packet-level feature-based cyberattack detection method may have
a very low detection rate for some cyberattacks because there is very little identifiable information in
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encrypted packets, making it difficult to construct a meaningful feature set. For this reason, a statistics-
based feature is required based on identifiable information, excluding encrypted data within the
encrypted network traffic. These extracted statistics-based features encapsulate the behavior patterns
of encrypted traffic flows, facilitating model training and validation for anomaly detection without
compromising encryption, which is a powerful approach for network security in encrypted packet
environments. The procedure for deriving these statistics-based features is as follows: First, statistics-
based feature extractors collect raw network traffic data, including encrypted network traffic, and
identify identifiable information such as source IP, destination IP, source port, destination port, port
number, and protocol. The network traffic is then classified based on the information identified earlier.
After that, basic data correction tasks such as duplicate packet removal, timestamp-based alignment,
and packet filtering are performed on the classified network traffic. Statistical analysis then generates
features such as flow duration (total and average), packet count (total and average), byte count (total
and average), packet size statistics (average, standard deviation, minimum, maximum), time statistics
between arrivals (average, standard deviation), protocol distribution (e.g., ratio of TLS, SSH), and port
distribution (emphasizing source and destination port usage patterns). Since these characteristics are
not information in the packet payload, they do not provide direct evidence of cyberattacks. However,
these statistics-based features can be used to train or verify anomaly detection models by providing
abstract information about network flows. The method of extracting some statistics-based features
from encrypted network traffic is shown in Algorithm 1.

Algorithm 1: Statistics-based feature extraction
Input:

P: Set of k network packets. Each packet pt includes {source_IP, destination_IP,
source_port, destination_port, port_number, protocol, packet_size, timestamp}

Output:
F : Dictionary containing sets of statistical features for each of the n flows, where
key is the flow identifier f , and value is the statistical features φf of that flow.

Step 1. Initialization
F ← empty set;

Step 2. Packet Classification
For t = 1 to k do

fid←(pt.source_IP, pt.destination_IP, pt.source_port, pt.destination_port,
pt.protocol);

If fid /∈ F :
Ffid

← {packetsize ← empty set, timestamp ← emptyset, count = 0};
else

Ffid
.packet_size ∪ pt.packet_size;

Ffid
.timestamp ∪ pt.timestamp;

Ffid
.count ← Ffid

.count + 1;
Step 3. Statistical Calculation

For j = 1 to n do
τ ← {τz|τz ← Fj.timestampz, 1 ≤ z ≤ |Fj.timestampz|} with τz ≤ τz + 1;
Dj ← τlast − τfirst;
Nj ← Fj.count;
Bj ← ∑

(Fj.packet_size);
(Continued)
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Algorithm 1 (continued)

λj ← Dj

Nj

;

μsize ← 1
Nj

∑
(Fj.packet_size);

σ 2
size ← 1

Nj

∑
((Fj.packet_size − μsize)

2);

IATj ← [τj − τj−1];

μIAT ← 1
Nj

∑
(IATj);

σIAT ← 1
Nj

∑
(IATj − μIAT)2;

φj ← (Dj, Nj, Bj, λj, μsize, σ 2
size, μIAT , σIAT);

Fj ← φj;
Step 4. Return Results

Return F

As can be seen in Algorithm 1, the collected network packets are classified based on the fid

(source_IP, destination_IP, source_port, destination_port, port_number, protocol) of each packet to
generate each packet set, Ffid

. Thereafter, the total packet_size, timestamp, and the number of packets
of Ffid

are calculated. To extract the statistics-based features for each Ffid
, τ , which is an ascending order

sorting result for the timestamp of Ffid
is derived. IAT , which is the transmission time of a packet, and

D, which is the connection duration of Ffid
, are derived. And N, which is the total number of packets

of Ffid
, and B, which is the sum of the total packet sizes of Ffid

, is derived. And λ, which is the number
of packets per unit time of Ffid

, is derived. Thereafter, based on the previously derived information,
statistics-based information such as μsize, which is the average of the packet size in Ffid

, σ 2
size, which is

the variance of the packet size in Ffid
, and μIAT , which is the IAT average of Ffid

, and σIAT , which is the
IAT variance of Ffid

is derived. Based on this statistics-based information derivation method, more
statistics-based information can be derived by applying it to the forward packet set and the reverse
packet set, and based on this information, statistics-based feature extraction is possible.

3.3 Feature Preprocessing
Data preprocessing is applied to clean data, normalize data, and filter a subset of features. The

feature preprocessing step is very important because noise in the data can degrade performance [41].
Most datasets contain noise data and missing data and may contain data that may adversely affect
model training and cyberattack detection. In addition, preprocessing should be performed because
only specific data types can be input to learn an anomaly detection model and anomaly detection. Data
preprocessing enables AI models to train data efficiently and detect cyberattacks. Data preprocessing
methods include the removal of missing values, feature selection, and normalization.

Feature selection is an essential process for identifying and selecting the most relevant and infor-
mative features from the set of available features. Using Feature Selection can improve the efficiency
and effectiveness of machine learning and deep learning by reducing computational complexity and
the risk of overfitting. It also improves the interpretability of the model, making it easier to understand
and explain why certain features contribute to the detection of cyberattacks. Finally, it helps alleviate
the curse of dimensionality that can arise from work with high-dimensional data [42].
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Removal of missing values refers to a method of filling in missing values in data. For missing
values, the sample size of the data becomes smaller than intended, and consequently, the reliability
of the research results is impaired. In addition, biased results can be generated when deducing
populations based on these samples [43], which can compromise the reliability of the data. For this
reason, removing missing values is an essential process of feature preprocessing. There is a method of
replacing missing values with the average of data categories in which missing values exist. In addition,
there are methods of replacing missing values with random values and replacing values derived by
predicting missing values with missing values [44].

Normalization means standardizing different data categories of each feature within a dataset.
The different data categories of each feature in the dataset can cause a decrease in the performance
of learning and cyberattack detection of the AI model and a decrease in efficiency, so normalization
is an essential step. As a type of normalization, there is min-max normalization, which converts the
range of features to a consistent range between 0 and 1. In addition, z-score normalization converts
the range of different features to a consistent range between −1 and 1.

3.4 Cyberattack Detection
The cyberattack detector detects a cyberattack based on information identifiable in encryption

traffic and statistical analysis information about it. The cyberattack detector learns only the statistics-
based feature extracted from normal encryption traffic. The learned cyberattack detector performs
cyberattack detection for encryption traffic based on normal encryption traffic information. The
supervised learning-based anomaly detection system has the advantage of being able to classify attack
types within an attack and a relatively high anomaly detection rate. However, it is very difficult to
collect datasets to be used for learning by performing actual cyberattacks on most IT infrastructure
environments, including IoT environments, to develop a cyberattack detection system [45]. In addition,
the supervised learning-based cyberattack detection system has the disadvantage of being unable
to detect and classify new cyberattacks other than the learned cyberattack type. For this reason,
cyberattack detectors use a method of learning only normal data collected in the IoT environment. The
cyberattack detector learns to derive the smallest error possible for normal data. If such cyberattack
data is input to the cyberattack detector, a relatively large error value is derived by the statistics-based
feature information of the cyberattack data different from the normal data, and if the derived error
value is greater than the set Threshold, the data is detected as cyberattack data.

4 Evaluation

Section 4 evaluates the ECDS-IoT proposed in Section 3 using a dataset containing cryptographic
traffic collected in the IoT environment. Section 4.1 describes the dataset containing encrypted
traffic collected from the IoT environment used in the experiment, the feature extraction method for
encrypted traffic, and feature preprocessing. Section 4.2 presents the experimental environment and
model structure. Section 4.3 describes various evaluation indicators to evaluate the performance of
ECDS-IoT. Section 4.4 verifies the cyberattack detection performance of ECDS-IoT. In addition, this
section presents answers to the following research questions (RQ):

– (RQ 1) How does ECDS-IoT understand and learn normal data flow in encrypted traffic?

– (RQ 2) How can ECDS-IoT classify encrypted traffic into normal traffic and traffic from
cyberattacks?

– (RQ 3) Does ECDS-IoT maintain its detection performance compared to the cyberattack
detection model targeting non-encrypted traffic that occurs in the existing IoT environment?
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4.1 Dataset Description
The proposed ECDS-IoT was learned and validated in this research using CICIoT2023 [12].

CICIoT2023 consists of a normal network packet collected in an IoT environment consisting of
105 IoT devices that communicate based on Z-wave, Zigbee, and Wi-Fi, and a network packet
caused by cyberattacks of seven types (DDoS, DoS, Recon, Web-based, Brute Force, Spoofing, and
Mirai). This dataset includes encryption network packets generated by TLS 1.2 based encryption
communication. ECDS-IoT performs the statistics-based feature extraction presented in Section 3.2
to derive a feature for detecting a cyberattack in the encrypted traffic target. ECDS-IoT used a
CICFlowmeter for statistics-based feature extraction. CICFlowMeter is an open source designed
to extract statistics-based features from raw packet data [36]. CICFlowMeter captures statistics for
different traffic flows, including packet count, byte count, duration, and packet transmission time
statistics [46]. CICFlowmeter derives the data size distribution within the encrypted flow by calculating
statistics such as mean, median, and standard deviation for the previous function. In addition, it
generates features such as average packet length, packet length change, and entropy by considering
the packet length distribution. CICFlowmeter generated 82 features in total. Missing values were
replaced with zeros to remove missing values for the 82 features generated by the CICFlowmeter. These
features include statistical and metadata-based features such as IP addresses, MAC addresses, and port
numbers. These features were excluded from the dataset because it was limited to the environment
from which the dataset was extracted and had a negative aspect in that it considered the generalization
of the system. In addition, non-correlated features were excluded from the dataset by performing a
correlation analysis between features. Fig. 3 shows 66 features in the data range used in this experiment
after feature selection among the extracted statistical-based features.

Fig. 3 indicates that the statistics-based feature derived through statistical analysis based on
information that can identify encrypted traffic using CICFlowmeter has various data categories.
Different data categories for each feature are likely to have a negative effect, such as increasing the
amount of computation and blurring the importance of each feature when learning and detecting
anomalies in the cyberattack detection model. To solve this problem, the feature preprocessor used
Max-Abs scaling to unify the range of data between −1 and 1 for all features. The equation for deriving
the Max-Abs calculated value x′

i for feature X with n data is the same as Eq. (1) [47]:

x
′
i = xi

max(|x1|, |x2|, |x3|, . . . , |xn|) (1)

In Eq. (1), xi means all values of X, |xi| means the absolute value of xi, and is the of
max(|x1| , |x2| , |x3| , . . . , |xn|) means the largest value of xi.

ECDS-IoT used 19,331 train data (normal data: 19,331) and 14,578 test data (normal: 10,119,
backdoor_Malware: 498, browserhijacking: 500, commandinjection: 500, DDoS-SlowLoris: 500,
DDoS-SlowLoris: 500, DictionalyBruteForce: 500, DNS_Spoofing: 500, Uploading_attack: 500,
sqlinjection: 501, XSS: 460) for learning and validation. For the verification and testing of ECDS-
IoT, cyberattack data was inserted by selecting some sections within the normal data section.

4.2 Experimental Setup
In this section, we describe the experimental environment used to experiment with the perfor-

mance of the proposed ECDS-IoT.
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Figure 3: Visualization result of observation data of each feature

Computational environment. This experiment used the Ubuntu 20.04.6 LTS operating system and
was conducted in the Intel(R) Xeon(R) Silver 4216 CPU @ 2.10 GHz, 64 GB RAM, Tesla V100S
PCIe 32 GB GPU, and python3 development environment.

Hyper-parameter settings. In this experiment, this study used autoencoder, recurrent neural
network (RNN), gated recurrent unit (GRU), long short-term memory (LSTM), bidirectional LSTM
(BiLSTM), and LSTM-based autoencoder (AE-LSTM) algorithms to implement a cyberattack
detector in ECDS-IoT that detects cyberattacks based only on information from learned normal data.
Autoencoder was designed as an encoder and decoder consisting of a dense layer with 66,64,32,16,8
nodes, respectively. The RNN model was designed as an RNN layer with 66,64,32 nodes and a dense
layer with 32 nodes. The GRU model was designed as 3 GRU layers with 66 nodes and a dense layer
with 66 nodes. The LSTM model was designed as 3 LSTM layers with 66 nodes and dense layers with
66 nodes. The BiLSTM model was designed as 1 BiLSTM layer with 66 nodes and a dense layer with
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66 nodes. AE-LSTM was designed with an Encoder and Decoder consisting of LSTM layers with 66,
64, and 32 nodes, respectively. The Autoencoder used ReLU as the activation function of each layer
and tanh as the layer’s activation function for the rest of the models. This study used Adam as the
optimizer for all models and applied a learning rate of 0.001.

4.3 Assessment Indicators
In this experiment, accuracy(2), recall(3), precision(4), F1 score(5), and receiver operating char-

acteristic area under the curve (ROC-AUC) were used as performance measurement indicators of the
anomaly detection model. Accuracy defines the ratio of the number of correctly classified data to the
total number of data. It is an evaluation index for whether the detection system correctly classifies
normal data and anomaly data as anomaly data in the collected data. Recall is the ratio of the number
of anomalies divided by the total number of intrusions, and it is an evaluation index that evaluates how
well the data to be detected was found. Precision is an evaluation index that evaluates the ratio of actual
anomaly data among data predicted as anomaly data in the system. The F1 score is an evaluation index
employed to measure the model’s overall accuracy. ROC_AUC is an evaluation index representing the
rate of change of TPR and FPR. The evaluation indicators are calculated as follows:

Accuracy = TP + TN
TP + FP + TN + FN

(2)

Recall = TP
TP + FN

(3)

Precision = TP
TP + FP

(4)

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

4.4 ECDS-IoT Performance Evaluation
This section evaluates the detection performance for each cyberattack detection algorithm pre-

sented in Section 4.2. All algorithms learned only the data derived from normal encrypted traffic, and
the cyberattack detection performance was verified using the test data set. Fig. 4 shows the learning
and validation loss of each cyberattack detection model. Each model was learned by dividing 19,331
normal data (train data) into train data and validation data. Train data and validation data were split
at a 9:1 ratio. Each model trains train data every epoch and derives the validation loss of the model
based on validation data. Each model was trained in a way that reduces validation loss by modifying
the weight of the deep learning node. The epoch of all models was set to 1000, and early stopping was
applied to stop model training at the point when validation loss no longer decreased.

In Fig. 4, the blue line represents train loss, and the orange line depicts validation loss. Fig. 4
indicates that all models were trained to have a validation loss close to zero. The validation loss
of 0.0015 for the Autoencoder model, 0.0009108 for the RNN model, 0.0006489 for the GRU
model, 0.0005192 for the LSTM model, 0.0009203 for the BiLSTM model, and 0.0000271 for the
AE-LSTM model.
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Figure 4: Loss of each cyberattack detection model

Table 3 explains how ECDS-IoT understands and trains about the flow of encrypted traffic.

Table 3: Answers to research question 1

RQ 1 How does ECDS-IoT understand and learn the flow of normal data in encrypted traffic?

As mentioned in Section 4.1, this study derived a statistics-based feature for the
encrypted traffic dataset. It derived identifiable features with or without packet
encryption, such as the number of transmission packets per hour, the maximum
transmission time of the packet, and the maximum active time before the flow went idle.
The packet’s length is changed by being padded by performing packet encryption, but
the degree of padding is different for each type of packet, and thus, the corresponding
information can be used as a weak characteristic of the packet. For this reason, this
research derived features such as maximum packet length, minimum packet length, and
packet length average. Each model for cyberattack detection understands only the data
flow and characteristics of normal data by learning the range of data, trends, and
correlation information for each feature for normal traffic in the dataset shown in Fig. 3.
The cyberattack detection model learned in this way detects data that differs more than
a certain level from the information of the learned normal data as cyberattack data.

Figs. 5–10 are the results of cyberattack detection on test datasets containing cryptographic traffic
using Autoencoder, RNN, GRU, LSTM, BiLSTM, and AE-LSTM-based ECDS-IoT, respectively.
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Figure 5: ECDS-IoT (Autoencoder) cyberattack detection

Figure 6: ECDS-IoT (RNN) cyberattack detection

Figure 7: ECDS-IoT (GRU) cyberattack detection
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Figure 8: ECDS-IoT (LSTM) cyberattack detection

Figure 9: ECDS-IoT (BiLSTM) cyberattack detection

Figure 10: ECDS-IoT (AE-LSTM) cyberattack detection
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The blue point in Figs. 5–10 represents normal data, and the orange point depicts cyberattack
data. As can be seen in Figs. 5–10, the detection results of all cyberattack detectors show a large
difference so that normal data (blue point) and cyberattack data (orange point) can be identified.
The red straight line represents a threshold for anomaly behavior detection. Each figure shows
Autoencoder, RNN, GRU, LSTM, BiLSTM model, and AE-LSTM model classified normal data
(blue point) and cyberattacks (orange point) based on threshold values. The threshold value was
set to the value when the precision and recall of the anomaly detection model were the same. High
precision means that false detections of normal data are low, and high recall means that false detections
of anomaly data are low [48]. Since these two performance indicators are usually in a trade-off
relationship, in this research, we derived thresholds in the same way as above to consider both
performances without bias [49]. ECDS-IoT detects data as cyberattack data when the error between
the expected and actual output values is higher than the Threshold for each model.

Figs. 5–10 show that the autoencoder, RNN, GRU, LSTM, and BiLSTM models have more false
positives that misclassified normal data as cyberattack data based on Threshold than AE-LSTM
models. This means that the AE-LSTM model learned the characteristics of normal data better than
other models. As a result of the detection of cyberattack data, it can be confirmed that Autoencoder,
RNN, GRU, LSTM, BiLSTM, and AE-LSTM models all detected all cyberattack data based on
Threshold. This means all models are well-trained to derive small error values for normal data, and
large error values are derived for unlearned cyberattack data. The low number of detections that fail
to detect cyberattacks in cyberattack detection is a huge advantage. Table 4 shows the cyberattack
detection performance of Autoencoder, RNN, GRU, LSTM, BiLSTM, and AE-LSTM.

Table 4: Cyberattack detection performance metrics for each algorithm

Model algorithm Accuracy Precision Recall F1 score ROC_AUC

Autoencoder 0.99259 0.97635 1.0 0.98803 0.99466
RNN 0.99224 0.97528 1.0 0.98748 0.99441
GRU 0.99368 0.97978 1.0 0.98978 0.99545
LSTM 0.99375 0.98 1.0 0.98989 0.99550
BiLSTM 0.99588 0.98672 1.0 0.99331 0.99703
AE-LSTM 0.99739 0.99154 1.0 0.99575 0.99812

Fig. 11 is a visualization of the performance of each algorithm by performance indicator to
compare the cyberattack detection performance of Autoencoder, RNN, GRU, LSTM, BiLSTM, and
AE-LSTM.

Fig. 12 visually shows the results of the ROC_AUC performance indicator of each cyberattack
detection model.

Table 4 and Figs. 11 and 12 indicate that the AE-LSTM model derived the highest performance on
all evaluation metrics. All models derived performance of 0.99924 accuracy, 0.98672 precision, 0.98748
F1 score, and 0.99441 ROC_AUC, and all models derived recall 1.0, confirming that all encrypted
traffic caused by cyberattacks was detected.
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Figure 11: Cyberattack detection performance comparison

Figure 12: ROC_AUC of each cyberattack detection model

ECDS-IoT is learned to minimize the error of the predicted output value and the actual output
value based on information on learned normal data, such as the range of data by feature, correlation
by feature, and flow of normal data. If cyberattack data with characteristics different from normal
data are entered into these models, a relatively large error is derived and detected as a cyberattack.
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Fig. 13 compares the normal distribution of features in which the normal distribution of statistics-
based features extracted from normal traffic and the normal distribution of statistics-based features
extracted from encrypted traffic caused by cyberattacks are similar. Fig. 14 compares the normal
distribution of features in which the normal distribution of statistics-based features extracted from
normal traffic and the normal distribution of statistics-based features extracted from encrypted traffic
caused by cyberattacks are very different.

Figure 13: Features that match the benign normal distribution and the cyberattack normal distribution
(partial)

The blue line in Figs. 13 and 14 represents the normal distribution of normal data features, and
the red line represents the normal distribution of attack data features. As can be seen in Fig. 13, among
the statistics-based features extracted based on statistical analysis in encrypted traffic for the learning
and verification of ECDS-IoT, there is a characteristic that the range of feature values of normal
data and cyberattack data is similar. On the other hand, as shown in Fig. 14, there are features with
different averages of the normal distribution of feature values and features with significantly different
probability densities.

Table 5 explains how ECDS-IoT classifies normal traffic and cyber attack traffic based on the
flow information of encrypted traffic.



CMES, 2024, vol.141, no.2 1543

Figure 14: Features that do not match the benign normal distribution and the cyberattack normal
distribution (partial)

Table 5: Answers to research question 2

RQ 2 How can ECDS-IoT classify encrypted traffic into normal traffic and traffic from
cyberattacks?

As shown in Figs. 13 and 14, the categories and flows of normal and cyberattack data
features in the dataset vary. Some features of normal and cyberattack data show the
same data pattern, while others do not. The results of comparing normal distributions
with only one feature are not available as a basis for cyberattack detection, but several
features with different normal distributions can be used as a basis for cyberattack
detection. Since the correlation between features also affects cyberattack detection,
different normal distributions of data in each feature can be used as a basis for
cyberattack detection.

4.5 Comparative Study
In this section, we compare and analyze ECDS-IoT and other research. Since there is no existing

research on the detection of cyberattacks targeting the IoT environment, this study compares ECDS-
IoT with research of IoT cyberattack detection or anomaly detection over encrypted traffic. It
compares cyberattack detection algorithms, detection performance (accuracy, F1 score), whether



1544 CMES, 2024, vol.141, no.2

cyberattacks targeting IoT are detected, and whether cyberattacks targeting encrypted traffic are
detected. Table 6 compares the existing research and the proposed model.

Table 6: Comparison of existing models, including ours

Reference Method Accuracy F1 score IoT
cyberattack
detection

Detect
cyberattacks
on encrypted
traffic

Liu et al. [20] CNN-LSTM 0.9987 0.9992 O X
Alanazi et al. [22] Decision Tree 0.9958 0.9959 O X
Tomar et al. [24] VGG-19 0.99 – O X
Chao [26] LightGBM 0.9409 0.9222 X O
Alzighaibi [33] Stacking 0.999 0.999 X O
Bahlali et al. [35] Deep

autoencoder
0.9730 0.9732 X O

Ferriyan et al. [40] LSTM – 0.891
(Average)

X O

Ours
(ECDS-IoT)

AE-LSTM 0.9973 0.9957 O O

This research proposed ECDS-IoT to detect cyberattacks in encrypted traffic in IoT environments.
There is no related work on detecting cyberattacks over encrypted traffic in IoT environments. For
this reason, we compared the proposed ECDS-IoT to research for IoT Cyberattack detection (CNN-
LSTM model [20], Decision Tree model [22], and VGG-16 model [24]), and research for detecting
cyberattacks on encrypted traffic (LightGBM model [26], Stacking model [33], Deep Autoencoder
[35] and LSTM [40]), as shown in Table 6.

Research related to IoT Cyberattack detection (CNN-LSTM model [18], Decision Tree model [20],
and VGG-16 model [22]) has derived high cyberattack detection rates, such as 0.9987 accuracy and
0.9959 F1 score, by detecting cyberattacks targeting IoT environmental network traffic. This research
aims to classify and detect various cyberattacks that occur in IoT environments, but because they use
payload-based data to detect cyberattacks, they are challenging to apply to encrypted communication
environments. Research related to cyberattack detection over encrypted traffic (LightGBM model
[26], Stacking model [33], Deep Autoencoder [35], and LSTM [40]) showed high cyberattack detection
performance, such as 0.999 accounting and 0.999 F1 score. However, the cyberattack detection method
using packet-level features showed relatively low cyberattack detection and classification performance
[40]. This is presumed to be due to the low amount of information identifiable in the encrypted packet,
so the detection rate of malicious traffic by some types of malicious code is close to zero. Research
related to cyberattack detection over encrypted traffic aim to detect cyberattacks carried out by hiding
in encrypted traffic. However, they do not include consideration of IoT environments and cyberattacks
in IoT, so it is unclear whether they are applicable to IoT environments. The ECDS-IoT presented in
this research is designed to detect cyberattacks performed by being hidden from encryption traffic
generated in IoT environments. As a result of evaluating the performance of cyberattack detection on
encrypted traffic generated in the IoT environment, our proposed ECDS-IoT derived high cyberattack
detection characteristics such as 0.9973 accuracy and 0.9957 F1 score. The cyberattack detection
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performance of ECDS-IoT is comparable to or better than that of cyberattack detection research on
unencrypted traffic in existing IoT environments. This means that ECDS-IoT’s cyberattack detection
performance on encrypted traffic is not inferior to existing research that detects cyberattacks based
on plain network packet-level features. It also outperforms existing research on detecting cyberattacks
on encrypted traffic. For these reasons, ECDS-IoT can effectively detect cyberattacks with encrypted
communications when applied to IoT environments.

Table 7 summarizes the performance comparison results of ECDS-IoT with research of IoT
cyberattack detection and research on anomaly detection over encrypted traffic.

Table 7: Answers to research question 3

RQ 3 Does ECDS-IoT maintain its detection performance compared to the cyberattack
detection model targeting non-encrypted traffic in the existing IoT environment?

Our proposed ECDS-IoT derives a level of F1 score similar to that of high accuracy as a
result of comparison with the research of non-encrypted traffic cyberattack detection in
the IoT environment. In addition, most of the performances are similar to or higher than
those suggested in previous research when compared to the cyberattack detection model
aimed at detecting cyberattacks over encrypted traffic. As a result of the derivation of
such cyberattack detection performance, ECDS-IoT, which performs cyberattack
detection over encrypted traffic generated in the IoT environment, shows that it does not
fall off in terms of cyberattack detection performance of existing research that performs
cyberattack detection for non-encrypted traffic in IoT environments, and it also shows
that the cyberattack detection performance over encrypted traffic is not lagging behind.

5 Limitations

This research proposed ECDS-IoT to detect cyberattacks over encrypted traffic in IoT environ-
ments. ECDS-IoT has effectively detected cyberattacks over encrypted traffic in the IoT environment
and achieved high performance, but some limitations exist. This section discusses these limitations:

– ECDS-IoT derived high performance on datasets containing encrypted traffic collected in
IoT environments. However, the effectiveness of cyberattack detection in real-world IoT
environments, where new IoT devices are introduced frequently, and network flows vary
depending on operational purposes, remains uncertain.

– In this research, only the cyberattack detection performance of ECDS-IoT was discussed.
When ECDS-IoT is applied to actual IoT environments, it can have negative effects, such as
reducing the operability of IoT environments due to increased computational overhead for
feature extraction and cyberattack detection in encrypted traffic.

– ECDS-IoT extracts statistical features from encrypted traffic and uses them to detect
cyberattacks. However, it fails to account for potential limitations or biases in the feature
extraction process.

The dataset employed in this research to evaluate the performance of ECDS-IoT in detecting
cyberattacks over encrypted traffic includes encrypted traffic generated by 33 cyberattacks in seven
categories on an IoT testbed consisting of 105 IoT devices. The IoT environment performs communica-
tion utilizing TCP, UDP, SSL, and TLS communication protocols, including network traffic. The IoT
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environment includes more devices, and various communication protocols are applied and utilized.
It is necessary to include more IoT devices and use data collected in different environments with
different communication protocols to address the limitations presented in this section. In addition,
an IoT testbed should be built, and research should be conducted to apply the cyberattack detection
system over encrypted traffic to the testbed. The problems that can occur in the IoT environment, such
as increased computational overhead for feature extraction and cyberattack detection in encrypted
traffic, can be identified.

6 Conclusions

Research on cyberattack detection technology based on AI is actively conducted for IoT cyber-
security. However, most existing studies use a method of extracting features based on the primary
information of plaintext network packets and detecting cyberattacks using them. As cyberattacks
using IoT’s plaintext communication vulnerabilities increase, encrypted communication methods
are applied to many IoT environments. Based on the application of the encrypted communication
method, significant information on network packets and others is encrypted. For this reason, it
has become difficult to apply a cyberattack detection method for IoT that detects cyberattacks
based on crucial information such as payload in network packets. In addition, research that has
performed the purpose of cyberattack detection over encrypted traffic is not considered for IoT
environments and cyberattacks that occur, making it challenging to apply them to IoT environments.
Therefore, this research proposes ECDS-IoT, a cyberattack detection system over encrypted traffic
in IoT environments. ECDS-IoT determines identifiable information on encrypted traffic collected in
the IoT environment and extracts statistics-based features through statistical analysis of identifiable
information. ECDS-IoT understands information about normal data by learning only statistics-
based features extracted from normal data. Based on this learning information, data showing a
specific difference from normal data is detected as cyberattack data. This research uses CICIoT
2023, which includes normal encryption network packets and cyberattack encryption network packets
collected from IoT environments that communicate based on Z-wave, Zigbee, and Wi-Fi, to evaluate
the cyberattack detection performance of ECDS-IoT. It derives statistics-based features using a
CICFlowmeter for the dataset. Afterward, a cyberattack detection model is implemented utilizing
Autoencoder, RNN, GRU, LSTM, BiLSTM, and AE-LSTM algorithms. This study evaluates the
performance of the cyberattack detection model using statistics-based features and derives 0.99739
accuracy, 0.99154 precision, 1.0 recall, and 0.99575 F1 score from the AE-LSTM-based cyberattack
detection model.

Future works will develop the necessary technologies for the advancement and field application of
ECDS-IoT by collecting real-time network traffic for encrypted communication IoT and conducting
cyberattack detection research on real-time collected encrypted traffic.

Acknowledgement: None.

Funding Statement: This work was supported by the Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-
0-00493, 5G Massive Next Generation Cyber Attack Deception Technology Development).

Author Contributions: Conceptualization, Il Hwan Ji; methodology, Il Hwan Ji and Ju Hyeon Lee;
experiments and validation, Il Hwan Ji and Seungho Jeon; writing, Il Hwan Ji; writing—review



CMES, 2024, vol.141, no.2 1547

and editing, Ju Hyeon Lee, Seungho Jeon, and Jung Taek Seo. All authors reviewed the results and
approved the final version of the manuscript.

Availability of Data and Materials: All the data used and analyzed is available in the manuscript.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Mohamed M. A comparative study on Internet of things (IoT): frameworks, tools, applications and future

directions. J Intell Syst Internet Things. 2020;1(1):13–39.
2. Khanna A, Kaur S. Internet of things (IoT), applications and challenges: a comprehensive review. Wirel

Pers Commun. 2020;114:1687–762. doi:10.1007/s11277-020-07446-4.
3. Dargaoui S, Azrour M, El Allaoui A, Amounas F, Guezzaz A, Attou H, et al. An overview

of the security challenges in IoT environment. Adv Technol Smart Environ Energy. 2023;151–60.
doi:10.1007/978-3-031-25662-2_13.

4. Rana M, Mamun Q, Islam R. Lightweight cryptography in IoT networks: a survey. Future Gener Comput
Syst. 2022;129:77–89. doi:10.1016/j.future.2021.11.011.

5. Djenna A, Harous S, Saidouni DE. Internet of things meet internet of threats: new concern cyber security
issues of critical cyber infrastructure. Appl Sci. 2021;11(10):4580. doi:10.3390/app11104580

6. Zscaler. Zscaler ThreatLabz 2023 Enterprise IoT & OT Threat Report 2023. Available from:
https://www.zscaler.com/resources/2023-threatlabz-enterprise-iot-ot-threat-report. [Accessed 2024].

7. Zscaler. Spoiler: New ThreatLabz Report Reveals over 85% of Attacks Are Encrypted. 2022. Available from:
https://www.zscaler.com/blogs/security-research/2022-encrypted-attacks-report. [Accessed 2024].

8. Zscaler. Zscaler ThreatLabz 2023 State of Encrypted Attacks Report 2023. Available from:
https://www.zscaler.com/resources/2023-threatlabz-state-of-encrypted-attacks-report. [Accessed 2024].

9. Cai J, Wang Q, Luo J, Liu Y, Liao L. Capbad: content-agnostic, payload-based anomaly detector for
industrial control protocols. IEEE Internet Things J. 2021;9(14):12542–54. doi:10.1109/JIOT.2021.3138534.

10. Kim S, Jo W, Shon T. APAD: autoencoder-based payload anomaly detection for industrial IoE. Appl Soft
Comput. 2020;88:106017. doi:10.1016/j.asoc.2019.106017.

11. Wang W, Zhu M, Zeng X, Ye X, Sheng Y. Malware traffic classification using convolutional neural network
for representation learning. In: 2017 International Conference on Information Networking (ICOIN), 2017;
Da Nang, Vietnam: IEEE. doi:10.1109/ICOIN.2017.7899588.

12. Neto ECP, Dadkhah S, Ferreira R, Zohourian A, Lu R, Ghorbani AA. CICIoT2023: a real-
time dataset and benchmark for large-scale attacks in IoT environment. Sensors. 2023;23(13):5941.
doi:10.20944/preprints202305.0443.v1.

13. Domínguez-Bolaño T, Campos O, Barral V, Escudero CJ, García-Naya JA. An overview of
IoT architectures, technologies, and existing open-source projects. Int Things. 2022;20:100626.
doi:10.1016/j.iot.2022.100626.

14. Jaloudi S. Communication protocols of an industrial internet of things environment: a comparative study.
Fut Internet. 2019;11(3):66. doi:10.3390/fi11030066.

15. Mann P, Tyagi N, Gautam S, Rana A. Classification of various types of attacks in IoT environment. In: 12th
International Conference on Computational Intelligence and Communication Networks (CICN), 2020;
Bhimtal, India: IEEE. doi:10.1109/CICN49253.2020.9242592.

https://doi.org/10.1007/s11277-020-07446-4
https://doi.org/10.1007/978-3-031-25662-2_13
https://doi.org/10.1016/j.future.2021.11.011
https://doi.org/10.3390/app11104580
https://www.zscaler.com/resources/2023-threatlabz-enterprise-iot-ot-threat-report
https://www.zscaler.com/blogs/security-research/2022-encrypted-attacks-report
https://www.zscaler.com/resources/2023-threatlabz-state-of-encrypted-attacks-report
https://doi.org/10.1109/JIOT.2021.3138534
https://doi.org/10.1016/j.asoc.2019.106017
https://doi.org/10.1109/ICOIN.2017.7899588
https://doi.org/10.20944/preprints202305.0443.v1
https://doi.org/10.1016/j.iot.2022.100626
https://doi.org/10.3390/fi11030066
https://doi.org/10.1109/CICN49253.2020.9242592


1548 CMES, 2024, vol.141, no.2

16. Bacon M. New Mirai Variant Attacks Apache Struts Vulnerability. https://www.techtarget.com/search
security/news/252448779/New-Mirai-variant-attacks-Apache-Struts-vulnerability. [Accessed 2018].

17. Kolias C, Kambourakis G, Stavrou A, Voas J. DDoS in the IoT: mirai and other botnets. Computer.
2017;50:80–4. doi:10.1109/MC.2017.201.

18. Chang H, Feng J, Duan C. HADIoT: a hierarchical anomaly detection framework for IoT. IEEE Access.
2020;8:154530–9. doi:10.1109/ACCESS.2020.3017763.

19. UNB. Intrusion detection evaluation dataset (ISCXIDS2012). Available from: https://www.unb.ca/
cic/datasets/ids.html. [Accessed 2024].

20. Liu J, Song X, Zhou Y, Peng X, Zhang Y, Liu P, et al. Deep anomaly detection in packet payload.
Neurocomputing. 2022;485:205–18. doi:10.1016/j.neucom.2021.01.146.

21. UNB. Intrusion detection evaluation dataset (CIC-IDS2017). Available from: https://www.unb.ca/cic/
datasets/ids-2017.html. [Accessed 2024].

22. Alanazi R, Aljuhani A. Anomaly detection for industrial internet of things cyberattacks. Comput Syst Sci
Eng. 2023;44(3):2361–78. doi:10.32604/csse.2023.026712.

23. Al-Hawawreh M, Sitnikova E, Aboutorab N. X-IIoTID: a connectivity-agnostic and device-agnostic
intrusion data set for industrial Internet of Things. IEEE Internet Things J. 2021;9(5):3962–77.
doi:10.1109/JIOT.2021.3102056.

24. Tomar K, Bisht K, Joshi K, Katarya R. Cyber attack detection in IoT using deep learning techniques. In:
6th International Conference on Information Systems and Computer Networks (ISCON), 2023; Mathura,
India: IEEE. doi:10.1109/ISCON57294.2023.10111990.

25. Ferrag MA, Friha O, Hamouda D, Maglaras L, Janicke H. Edge-IIoTset: a new comprehensive realistic
cyber security dataset of IoT and IIoT applications for centralized and federated learning. IEEE Access.
2022;10:40281–306. doi:10.1109/ACCESS.2022.3165809.

26. Chao D. A mining policy based malicious encrypted traffic detection scheme. In: Proceedings of the 2020
9th International Conference on Computing and Pattern Recognition, 2020; Xiamen, China. p. 130–5.
doi:10.1145/3436369.3436479.

27. Tiwari A, Saraswat S, Dixit U, Pandey S. Refinements in Zeek intrusion detection system. In: 2022
8th International Conference on Advanced Computing and Communication Systems (ICACCS), 2022;
Coimbatore, India: IEEE. doi:10.1109/ICACCS54159.2022.9785047.

28. Lab S. CTU-malware-capture-botnet. Available from: https://www.stratosphereips.org/datasets-malware.
[Accessed 2024].

29. Niu Z, Xue J, Qu D, Wang Y, Zheng J, Zhu H. A novel approach based on adaptive
online analysis of encrypted traffic for identifying Malware in IIoT. Inform Sci. 2022;601:162–74.
doi:10.1016/j.ins.2022.04.018.

30. Duncan DB. Malware traffic analysis. Available from: https://www.malware-traffic-analysis.net/. [Accessed
2024].

31. Garcia S, Zunino A, Campo M. Malware capture faculity project. Available from: https://mcfp.weebly.com/.
[Accessed 2024].

32. Lab S. The CTU-13 dataset. Available from: https://www.stratosphereips.org/datasets-ctu13. [Accessed
2024].

33. Alzighaibi A. Detection of DoH traffic tunnels using deep learning for encrypted traffic classification.
Computers. 2023;12(3):47. doi:10.3390/computers12030047.

34. MontazeriShatoori M, Davidson L, Kaur G, Lashkari AH. Detection of DoH tunnels using time-series
classification of encrypted traffic. In: 2020 IEEE International Conference on Dependable, Autonomic
and Secure Computing, International Conference on Pervasive Intelligence and Computing, International
Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology

https://www.techtarget.com/searchsecurity/news/252448779/New-Mirai-variant-attacks-Apache-Struts-vulnerability
https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1109/ACCESS.2020.3017763
https://www.unb.ca/cic/datasets/ids.html
https://doi.org/10.1016/j.neucom.2021.01.146
https://www.unb.ca/cic/datasets/ids-2017.html
https://doi.org/10.32604/csse.2023.026712
https://doi.org/10.1109/JIOT.2021.3102056
https://doi.org/10.1109/ISCON57294.2023.10111990
https://doi.org/10.1109/ACCESS.2022.3165809
https://doi.org/10.1145/3436369.3436479
https://doi.org/10.1109/ICACCS54159.2022.9785047
https://www.stratosphereips.org/datasets-malware
https://doi.org/10.1016/j.ins.2022.04.018
https://www.malware-traffic-analysis.net/
https://mcfp.weebly.com/
https://www.stratosphereips.org/datasets-ctu13
https://doi.org/10.3390/computers12030047


CMES, 2024, vol.141, no.2 1549

Congress (DASC/PiCom/CBDCom/CyberSciTech), 2020; Calgary, Canada: IEEE. doi:10.1109/DASC-PI-
Com-CBDCom-CyberSciTech49142.2020.00026.

35. Bahlali AR, Bachir A, Cheriet A. Malicious encrypted network traffic detection using deep auto-encoder
with a custom reconstruction loss. In: 2023 International Symposium on Networks, Computers and
Communications (ISNCC), 2023; Doha, Qatar: IEEE. doi:10.1109/ISNCC58260.2023.10323710.

36. Lashkari AH, Gil GD, Mamun MSI, Ghorbani AA. Characterization of tor traffic using time based
features. In: Proceedings of the 3rd International Conference on Information Systems Security and Privacy,
2017; Porto, Portugal: SciTePress. vol. 1. doi:10.5220/0006105602530262.

37. Moustafa N, Slay J. UNSW-NB15: a comprehensive data set for network intrusion detection systems
(UNSW-NB15 network data set). In: 2015 Military Communications and Information Systems Conference
(MilCIS), 2015; Canberra, Australia: IEEE. doi:10.1109/MilCIS.2015.7348942.

38. Sharafaldin I, Lashkari AH, Ghorbani AA. Toward generating a new intrusion detection dataset and intru-
sion traffic characterization. In: Proceedings of the 4th International Conference on Information Systems
Security and Privacy (ICISSP 2018), 2018; Funchal, Portugal. p. 108–16. doi:10.5220/0006639801080116.

39. Zhao C, Li S, Wu X, Han W, Tian Z, Chen M. A novel malware encrypted traffic detection framework
based on ensemble learning. In: 2021 IEEE Sixth International Conference on Data Science in Cyberspace
(DSC), 2021; Shenzhen, China: IEEE. doi:10.1109/DSC53577.2021.00097.

40. Ferriyan A, Thamrin AH, Takeda K, Murai J. Encrypted malicious traffic detection based on Word2Vec.
Electronics. 2022;11(5):679. doi:10.3390/electronics11050679.

41. Hnamte V, Najar AA, Nhung-Nguyen H, Hussain J, Sugali MN. DDoS attack detection and
mitigation using deep neural network in SDN environment. Comput Secur. 2024;138:103661.
doi:10.1016/j.cose.2023.103661.

42. Chahid I, Elmiad AK, Badaoui M. Data preprocessing for machine learning applications in healthcare: a
review. In: 2023 14th International Conference on Intelligent Systems: Theories and Applications (SITA),
2023; Casablanca, Morocco: IEEE. doi:10.1109/SITA60746.2023.10373591.

43. Kwak SK, Kim JH. Statistical data preparation: management of missing values and outliers. Korean J
Anesthesiol. 2017;70(4):407. doi:10.4097/kjae.2017.70.4.407.

44. Hutcheson G. Missing Data: data replacement and imputation. J Model Manag. 2012;7(2):221–33.
45. He K, Kim DD, Asghar MR. Adversarial machine learning for network intrusion detection systems: a com-

prehensive survey. IEEE Commun Surveys & Tut. 2023;25(1):538–66. doi:10.1109/COMST.2022.3233793.
46. Draper-Gil G, Lashkari AH, Mamun MSI, Ghorbani AA. Characterization of encrypted and vpn traffic

using time-related. In: Proceedings of the 2nd International Conference on Information Systems Security
and Privacy (ICISSP), 2016; Rome, Italy. doi:10.5220/0005740704070414.

47. Yang N-C, Sung K-L. Non-intrusive load classification and recognition using soft-voting ensemble learning
algorithm with decision tree, K-nearest neighbor algorithm and multilayer perceptron. IEEE Access.
2023;11:94506–20. doi:10.1109/ACCESS.2023.3311641.

48. Al Razib M, Javeed D, Khan MT, Alkanhel R, Muthanna MSA. Cyber threats detection in smart
environments using SDN-enabled DNN-LSTM hybrid framework. IEEE Access. 2022;10:53015–26.
doi:10.1109/ACCESS.2022.3172304.

49. Sun X, Wang H. Adjusting the precision-recall trade-off with align-and-predict decoding for grammat-
ical error correction. In: Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics, 2022; Dublin, Ireland: Association for Computational Linguistics. vol. 2, p. 686–93.
doi:10.18653/v1/2022.acl-short.77

https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00026
https://doi.org/10.1109/ISNCC58260.2023.10323710
https://doi.org/10.5220/0006105602530262
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1109/DSC53577.2021.00097
https://doi.org/10.3390/electronics11050679
https://doi.org/10.1016/j.cose.2023.103661
https://doi.org/10.1109/SITA60746.2023.10373591
https://doi.org/10.4097/kjae.2017.70.4.407
https://doi.org/10.1109/COMST.2022.3233793
https://doi.org/10.5220/0005740704070414
https://doi.org/10.1109/ACCESS.2023.3311641
https://doi.org/10.1109/ACCESS.2022.3172304
https://doi.org/10.18653/v1/2022.acl-short.77

	Encrypted Cyberattack Detection System over Encrypted IoT Traffic Based on Statistical Intelligence
	1 Introduction
	2 Background and Related works
	3 ECDS-IoT Encrypted Cyberattack Detection System for IoT Structure
	4 Evaluation
	5 Limitations
	6 Conclusions
	References


