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ABSTRACT

A numerical approach is an effective means of solving boundary value problems (BVPs). This study focuses on
physical problems with general partial differential equations (PDEs). It investigates the solution approach through
the standard forms of the PDE module in COMSOL. Two typical mechanics problems are exemplified: The
deflection of a thin plate, which can be addressed with the dedicated finite element module, and the stress of a
pure bending beam that cannot be tackled. The procedure for the two problems regarding the three standard forms
required by the PDE module is detailed. The results were in good agreement with the literature, indicating that the
PDE module provides a promising means to solve complex PDEs, especially for those a dedicated finite element
module has yet to be developed.
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1 Introduction

Physical problems can usually be attributed to solving PDEs with boundary conditions in a
domain [1–3]. Nevertheless, due to the diversity of equations and the complexity of geometries, specific
problems can only be solved analytically, where the numerical approach becomes the effective means
[4], leading to significant advances in numerical solutions to PDEs.

The finite element method (FEM) has proved to be an effective approach to solving PDEs and
has been widely used in various fields for scientific research and practical applications due to its
advantages in handling complex geometries and boundary conditions. For example, by using the
FEM, Van Vinh et al. [5] solved bending and buckling problems of functionally graded plates, and
Oukaira et al. [6] solved thermal camera problems. Commercial packages have been developed for
various PDEs with dedicated modules to facilitate engineering applications within the framework
of FEM. Zhang et al. [7] examined the harmonic response of particle-reinforced structures using
the harmonic analysis module in ANSYS. Nguyen et al. [8] proposed a polytopal composite finite
element and validated the inf-sup stability for nearly incompressible materials through patch tests.
Iynen et al. [9] performed a 3D turning analysis using the dynamics module in ABAQUS/Explicit.
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Yadav et al. [10] investigated the strains in masonry-filled frames utilizing the MSC NASTRAN
package. Sarkar et al. [11] conducted a crack propagation analysis using the module of solid mechanics
in COMSOL. Although these dedicated modules are convenient for users, they are confined to the
packaged equations.

Another vital approach to solving PDEs is utilizing deep learning [12], which has succeeded in
fields such as image recognition and engineering parameter prediction [13–15], prompting researchers
to use it in scientific computing. Liu et al. [16] proposed a general solver for PDEs using a fully
connected neural network based on labeled data. Sirignano et al. [17] introduced the deep Galerkin
method (DGM) for solving PDEs regarding physical constraints. Raissi et al. [18] proposed a physics-
informed neural network (PINN) for solving PDEs with boundary conditions. These deep learning
approaches are presently applied to the Poisson equation in regular domains [19,20], Burgers and
Naiver-Stokes equations [18,21], as well as intricate PDEs and complex geometries [22,23]. These
applications showcase the good performance of the PINN in simulation acceleration and efficiency
improvement [24,25]. However, training a PINN means solving a non-convex optimization problem;
hence, convergence or a unique solution cannot be guaranteed because of its local minimum [26].

The PDE module offered by COMSOL exhibits significant flexibility in tackling practical
problems governed by PDEs. For example, Yang et al. [27] analyzed the ammonia-hydrogen reaction
problem, whereas Badawi et al. [28] simulated the tilting pad journal bearing. Wijayanti et al. [29]
investigated the thermal decomposition process with thermoelectric effects, and Wang et al. [30]
studied the neutron transport. Yilmaz et al. [31] conducted an optimal analysis based on the Burgers’
equation. Although various problems have been solved, the dedicated procedure still lacks the PDE
module in COMSOL.

This study investigates the PDE module of COMSOL when used for a broader range of differential
equations. It summarizes a procedure with four steps: In Step-1 the PDEs governing the problem are
transferred to the standard form, and in Step-2 the constraints are transferred. In Step-3, the settings
of the global parameters, the governing equations, and the constraints are formatted for the module,
and in Step-4, the problem is solved by selecting the computational parameters, such as mesh and
shape functions. Two typical mechanics problems are illustrated to show the procedure when the PDE
module is adopted. There are two distinct characteristics for the two problems: One is the deflection
problem of a thin plate that can be solved by directly using the dedicated finite element module in
COMSOL, and the other is the stress problem of a pure bending beam that is not associated with a
dedicated module. The results are compared to the literature to indicate how the PDE module can
solve these two problems.

2 Standard Forms in the PDE Module
2.1 Standard Forms of Governing Equations

The PDE module in COMSOL provides three standard forms of governing equations [32]. The
first one is called coefficient form, which has the standard form as follows:

ea

∂2u
∂t2

+ da

∂u
∂t

− ∇ · (c∇Tu + αu − γ
)+ β · ∇Tu + au = f (1)

where ea, da, c, α, γ , β, a, and f are independent of the argument u, but their dimensions are case-
dependent; ∇ is the row gradient vector.
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The second one is called general form, which has the standard form as follows:

ea

∂2u
∂t2

+ da

∂u
∂t

+ ∇ · � = F (2)

where � is the generalization of the third term in Eq. (1), which can be a column vector or matrix,
dependent on the components of u. The source term F in Eq. (2) can depend on u this time,
different from the source term f in (1), and ea and da can be physically interpreted as mass coefficient
and damping coefficient. Because of these changes, Eq. (2) applies to more complicated governing
equations than Eq. (1).

Since Eqs. (1) and (2) are both in the form of PDEs, the two forms fall into the strong one.

The third one is called weak form, which has the standard form as follows:∫
�

weaks dV +
∫

∂�

weakb dS = 0 (3)

where weaks and weakb are the weak form in domain Ω and that on boundary ∂Ω, respectively.

In general, PDEs no higher than the second order can be transferred to one of the three forms.
The orders should be reduced for higher-order PDEs by introducing some transitional arguments. As
for the derivation of weak form Eq. (3) for PDEs, the subject termed the variational principle must be
involved [33].

2.2 Standard Forms of Constraints
For the Dirichlet boundary condition and the Robin boundary condition on ∂Ω [34], the standard

forms of constraints is

Ri (u)|∂Ω = 0 (4)

where Ri (u) is the expression for i-th constraint and may depend on u and/or its gradients. One
constraint, such as Eq. (4), can only be prescribed at a point on the boundary ∂Ω.

For the case with dependent governing equations, supplementary constraints are often pointwise
prescribed in the domain Ω or on the boundary ∂Ω. For this case, the standard forms of constraint is
as follows:

Pi (u)|Ω/∂Ω = 0 (5)

With Eq. (5), multiple constraints can be defined at a point in the domain or on the boundary,
therefore enriching the customary boundary conditions in Eq. (4).

3 Implementation Procedure of Practical Problems
3.1 Deflection Analysis of thin Plate Bending

This section studies the deflection of the thin plate bending. Fig. 1 indicates that the dimension
of the square thin plate is 1 × 1 × 0.01 m. The material of the plate is homogeneous and isotropic
with Young’s modulus E = 2 × 1011 Pa, and Poisson’s ratio ν = 0.3, and the four sides are simply
supported.
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Figure 1: Bending problem of a square thin plate

3.1.1 Standardization of Governing Equations and Boundary Conditions

Under the Kirchhoff hypothesis, the PDE governing the deflection w (x, y) of thin plate bending
is [35]

∇2∇2w (x, y) = q/D (6)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator; D = Eh3/12
(
1 − ν2

)
is the flexural rigidity;

q = −7×103 Pa is the downward distributed load on the plate. As described in Section 2.1, transitional
arguments w1 and w2 are introduced to reduce the fourth-order Eq. (6) as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇2 (w1 + w2) = q/D

∂2

∂x2
w (x, y) = w1

∂2

∂y2
w (x, y) = w2

(7)

Hence, the argument u = (w, w1, w2) is composed of three components for this problem.

Thus, the second-order Eq. (7) can be re-arranged as follows:

∇ · [c1∇Tg1 c2∇Tg2 c3∇Tg3

]
uT = ua + f (8)

where c1, c2, c3 and a are matrices; g1, g2, g3 and f are row vectors.

It follows from Eq. (7) that:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c1 =
[

1 0
0 1

]
c2 =

[
1 0
0 0

]
c3 =

[
0 0
0 1

]

g1 = (0 1 1
)

g2 = (1 0 0
)

g3 = (1 0 0
)

a =
⎡
⎣0 0 0

0 1 0
0 0 1

⎤
⎦ f = (q/D 0 0

)
(9)

Correspondingly, the terms � and F in the standard form Eq. (2) are

� = [c1∇Tg1 c2∇Tg2 c3∇Tg3

]
uT =

⎛
⎜⎝

∂w1

∂x
+ ∂w2

∂x
∂w
∂x

0

∂w1

∂y
+ ∂w2

∂y
0 ∂w

∂y

⎞
⎟⎠ (10)
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and

F = ua + f = ( q

D
w1 w2

)
(11)

Eq. (10) indicates that both � and F can be articulated in terms of each component of u. In
addition, for this static problem, the mass coefficient ea and the damping coefficient da will vanish
in Eq. (2).

The simply supported boundary conditions on the four sides yield{
w (0, y) = 0, w1 (0, y) = 0; w (1, y) = 0, w1 (1, y) = 0
w (x, 0) = 0, w2 (x, 0) = 0; w (x, 1) = 0, w2 (x, 1) = 0 (12)

Thus, the terms Ri in Eq. (4) are⎧⎪⎪⎨
⎪⎪⎩

R1 = (w w1 0) on x = 0
R2 = (w w1 0) on x = 1
R3 = (w w2 0) on y = 0
R4 = (w w2 0) on y = 1

(13)

3.1.2 Establishing the Expression Input

After Eqs. (8) and (10) are obtained, it is imperative to establish the corresponding expressions for
setting the PDE module.

First, the global parameters are set. Then, the International System of Units (SI) is chosen, and
Young’s modulus “E” is 2E11Pa, the Poisson’s ratio “nu” is 0.3, the thickness of plate “h1” is 0.01 m,
“q” is −7E3Pa, and the flexural rigidity “D” in Eq. (6) is accordingly calculated.

Next, the equation parameters are set. Based on Eqs. (8) and (2), the number of components of
argument u is set to 3, signifying “w” (w), “w1” (w1), and “w2” (w2) in meter. The expression inputs
in COMSOL are related to Eqs. (10) and (11) are listed in Table 1. In this table, “wx”, “w1x”, “w2x”,
“wy”, “w1y”, and “w2y” represent the partial derivatives for x and y according to the grammar rules
in COMSOL, and “[1/m2]” is the dimensional adjustment to guarantee the actual unit 1/m of the
components “w1” and “w2” in the row vector u.

Table 1: Expression inputs of the second standard form for the deflection analysis problem

Item Value or expression Item Value or expression

Γ11 w1x + w2x Γ21 w1y + w2y
Γ12 wx Γ22 0
Γ13 0 Γ23 wy
F1 q/D F2 w1 [1/m2]
F3 w2 [1/m2]

3.1.3 Meshing the Plate and Choosing the Shape Functions

This study uses the quadtree refinement technique to mesh the square plate to examine the impact
of mesh size on the solution accuracy. For the discretization setting in COMSOL, the free quadrilateral
mesh option is first added to generate quadrilateral meshes, and the maximum and minimum sizes are
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then set to the same h in the mesh size option to obtain a uniform mesh. Fig. 2 shows the generated
meshes with h decreases consecutively from 0.1 (a) to 0.05 (b), 0.025 (c), and 0.0125 (d).

(a) h = 0.1 (b) h = 0.05 (c) h = 0.025 (d) h = 0.0125

Figure 2: The meshes for the bending problem of square thin plate

In addition, to determine the impact of shape functions on the resolution of the PDE module,
the linear shape functions (LSF) and the quadratic shape functions (QSF) are adopted for the four
different meshes when setting the chosen physics.

3.2 Stress Analysis of Pure Bending Beam
3.2.1 Standardization of Governing Equations and Boundary Conditions

This section investigates the stress of a pure bending beam. Fig. 3 indicates that the beam is three-
dimensional, with a length of 0.1 m and a square cross-section of 0.01 × 0.01 m. The two ends are
subjected to a linearly distributed load px varying with the thickness coordinate z, equivalent to the
pure bending moment at the two ends. The material is the same as the plate in Fig. 1.

Figure 3: Model of the stress problem of pure bending beam

The equilibrium equations for this problem are [36]

σij, j + fi = 0 (14)

where σij and fi are the stress tensor and the body force vector, respectively; the indices in Latin letters
like i and j range from 1 to 3 with the summation convention for the repeated ones.

For an isotropic material, the constitutive relation is

εij = (1 + ν)

E
σij − ν

Θ

E
δij (15)

where � = σkk is the trace of stress tensor; εij is the strain tensor.
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In addition, the strain tensor accommodates the following compatibility equations:

εij,kl + εkl,ij − εik,jl − εjl,ik = 0 (16)

Eqs. (14)–(16) are the PDEs for the stress analysis of a pure bending beam. Upon substituting
Eq. (15), in terms of stresses, Eq. (16) is reformulated as follows:(
σij,kl + σkl,ij − σik,jl − σjl,ik

) = ν

(1 + ν)

(
δij�,kl + δkl�,ij − δik�,jl − δjl�,ik

)
(17)

By setting l = k, it follows from Eq. (17) that

σij,kk + 1
(1 + ν)

Θ,ij − σik,jk − σjk,ik = ν

(1 + ν)
δijΘ,kk (18)

On the other hand, Eq. (14) yields

σik,jk = (σik,k

)
,j
= −fi,j (19)

Upon substituting Eqs. (19) and (18) is further expressed as follows:

∇ · ∇T
σij + 1

(1 + v)
θ,ij = − v

(1 − v)
δijfk,k − (fi,j + fj,i

)
(20)

If the case of free body force (fi = 0) is considered, Eq. (20) becomes

∇ · ∇T
σij + k�,ij = 0 (21)

where k = 1/ (1 + v).

If σij is denoted by u = (σ11, σ22, σ33, σ12, σ23, σ31), Eq. (21) becomes

∇ · ∇Tu + ∇ · [c1∇T c2∇T c3∇T c4∇T c5∇T c6∇T
] · (c0uT

) = 0 (22)

where the matrices ci (i = 1 ∼ 6) are⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c1 =
⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦ c2 =

⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦ c3 =

⎡
⎣0 0 0

0 0 0
0 0 1

⎤
⎦

c4 =
⎡
⎣0 1 0

0 0 0
0 0 0

⎤
⎦ c5 =

⎡
⎣0 0 0

0 0 1
0 0 0

⎤
⎦ c6 =

⎡
⎣0 0 0

0 0 0
1 0 0

⎤
⎦

(23)

and the row vector c0 is

c0 = (k k k 0 0 0
)

(24)
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Eq. (22) is not consistent with the first standard form Eq. (1). In contrast, the terms in the second
standard form Eq. (2) are


 = ∇Tu + [c1∇Tc2∇Tc3∇Tc4∇Tc5∇Tc6∇T ](c0uT)

=

⎛
⎜⎜⎜⎜⎜⎝

∂σ11

∂x
+ k

∂�

∂x
∂σ22

∂x
∂σ33

∂x
∂σ12

∂x
+ k

∂�

∂y
∂σ23

∂x
∂σ31

∂x
∂σ11

∂y
∂σ22

∂y
+ k

∂�

∂y
∂σ33

∂y
∂σ12

∂y
∂σ23

∂y
+ k

∂�

∂z
∂σ31

∂y
∂σ11

∂z
∂σ22

∂z
∂σ33

∂z
+ k

∂�

∂z
∂σ12

∂z
∂σ23

∂z
∂σ31

∂z
+ k

∂�

∂x

⎞
⎟⎟⎟⎟⎟⎠

(25)

and

F = (0 0 0 0 0 0
)

(26)

On the other hand, this study introduces the following notions:

{∇1} = {∂/∂x, ∂/∂y, ∂/∂z, ∂/∂x, ∂/∂y, ∂/∂z}T

{∇2} = {∂/∂x, ∂/∂y, ∂/∂z, ∂/∂y, ∂/∂z, ∂/∂x}T
(27)

and σ = (σ11, σ22, σ33, σ12, σ23, σ31).

Eq. (22) is thus re-expressed as follows:

∇2σ + k {∇1} � {∇2} � = 0 (28)

where � is the Hadamard product operator.

From the calculus of variation, it follows from Eq. (28) that∫
�

∼
σ

T (∇2σ + k {∇1} � {∇2} �
)

dV = 0 (29)

where
∼
σ is the row form of trial functions corresponding to σ .

Integration by parts, Eq. (29) yields.∫
�

[
−∼

σ
T

,i σ ,i − k
(
{∇1}T � ∼

σ
T {∇2} �

)]
dV +

∫
∂�

[(∼
σ

T

σ ,i

)
ni + k

(∼
σ

T � {∇1}T
�
)

{n1}
]

dS = 0 (30)

where ni = nx, ny or nz and {n1} = {nx, ny, nz, nx, ny, nz

}T
.

The terms in the third standard form Eq. (3) are

weaks = −∼
σ

T

,i σ ,i − k
[
{∇k}T � ∼

σ
T {∇l} �

]
=

6∑
j=1

weakj (31)

and

weakb =
(∼
σ

T

σ ,i

)
ni + k

(∼
σ

T � {∇l}T
�
)

{nk} (32)
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where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

weak1 = −
(∼
σ 11,1σ11,1 + ∼

σ 11,2σ11,2 + ∼
σ 11,3σ11,3

)
− k
[∼
σ 11,1

(
σ11,1 + σ22,1 + σ33,1

)]

weak2 = −
(∼
σ 22,1σ22,1 + ∼

σ 22,2σ22,2 + σ̃22,3σ22,3

)
− k
[∼
σ 22,2

(
σ11,2 + σ22,2 + σ33,2

)]

weak3 = −
(∼
σ 33,1σ33,1 + ∼

σ 33,2σ33,2 + ∼
σ 33,3σ33,3

)
− k
[∼
σ 33,3

(
σ11,3 + σ22,3 + σ33,3

)]

weak4 = −
(∼
σ 12,1σ12,1 + ∼

σ 12,2σ12,2 + ∼
σ 12,3σ12,3

)
− k
[∼
σ 12,1

(
σ11,2 + σ22,2 + σ33,2

)]

weak5 = −
(∼
σ 23,1σ23,1 + ∼

σ 23,2σ23,2 + ∼
σ 23,3σ23,3

)
− k
[∼
σ 23,2

(
σ11,3 + σ22,3 + σ33,3

)]

weak6 = −
(∼
σ 31,1σ31,1 + ∼

σ 31,2σ31,2 + ∼
σ 31,3σ31,3

)
− k
[∼
σ 31,3

(
σ11,1 + σ22,1 + σ33,1

)]

(33)

Next, the prescription of boundary conditions is discussed.

This study emphasizes that the weak form weakb in Eq. (32) vanishes on the boundary ∂� in the
proposed case because the boundary conditions will be directly prescribed for the relevant boundaries.

The following boundary conditions are described on the six faces of this beam structure:{
σ11 (x, y, z) = px on x = 0 or 0.1
σij (x, y, z) = 0 elsewhere (34)

where px = p0 (z − h1/2) with h1 = 0.01 m and p0 = 105 Pa.

Eq. (21) is indeterminate because the six equations are not independent. Hence, as the supple-
mentary constraints, Eq. (14) must be adopted. However, if the constraints are applied pointwise in
the domain Ω, the cost must significantly increase to reduce the solution efficiency. In virtue of this,
considering the harmonic nature of σij,j + fi (see Eq. (19)), the pointwise constraints (14) in the domain
Ω are replaced by the pointwise constraints (5) on boundary ∂Ω [36] as

Pi = σij,j + fi (35)

3.2.2 Establishing the Expression Input

Following the same steps in Section 3.1.2, this study sets the global parameters such as “E”, “nu”
and “p0” = 1E5 Pa.

Based on Eq. (22), the argument u has six components, (s11, s22, s33, s12, s23, and s31),
representing six components (σ11, σ22, σ33, σ12, σ23, σ31) of the stress tensor, respectively.

For the second standard form, the conservation flux � is a 3 × 6 matrix as Eq. (25), and the source
term F is a 1 × 6 row vector as Eq. (26). The expression inputs to COMSOL are listed in Table 2.
Each expression follows the grammar rules in COMSOL. In addition, to simplify �, Θ is denoted
by the symbol “h” and “d(h, x)”, for example, signifies the partial derivative of “h” with respect to
coordinate x.

Similarly, it can obtain the expression inputs based on Eqs. (31) and (33) for the third standard
form, which is summarized in Table 3 with test (s11x), for example, signifying the derivative of s11 test
function with respect to x based on the grammar rules in COMSOL.
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Table 2: Expression inputs of the second standard form for the stress analysis problem

Item Expression Item Expression

Γx1 s11x + k ∗ d(h, x) Γx4 s12x + k ∗ d(h, y)
Γy1 s11y Γy4 s12y
Γz1 s11z Γz4 s12z
Γx2 s22x Γx5 s23x
Γy2 s22y + k ∗ d(h, y) Γy5 s23y + k ∗ d(h, z)
Γz2 s22z Γz5 s23z
Γx3 s33x Γx6 s31x
Γy3 s33y Γy6 s31y
Γz3 s33z + k ∗ d(h, z) Γz6 s31z + k ∗ d(h, x)

Table 3: Expression inputs of the third standard form for the stress analysis problem

Item Expression

weak1 -test(s11x) ∗ s11x-test(s11y) ∗ s11y-test(s11z) ∗ s11z−1/(1 + nu) ∗ test(s11x) ∗ (s11x +
s22x + s33x)

weak2 -test(s22x) ∗ s22x-test(s22y) ∗ s22y-test(s22z) ∗ s22z−1/(1 + nu) ∗ test(s22y) ∗ (s11y +
s22y + s33y)

weak3 -test(s33x) ∗ s33x-test(s33y) ∗ s33y-test(s33z) ∗ s33z−1/(1 + nu) ∗ test(s33z) ∗ (s11z +
s22z + s33z)

weak4 -test(s12x) ∗ s12x-test(s12y) ∗ s12y-test(s12z) ∗ s12z−1/(1 + nu) ∗ test(s12x) ∗ (s11y +
s22y + s33y)

weak5 -test(s23x) ∗ s23x-test(s23y) ∗ s23y-test(s23z) ∗ s23z−1/(1 + nu) ∗ test(s23y) ∗ (s11z +
s22z + s33z)

weak6 -test(s13x) ∗ s13x-test(s13y) ∗ s13y-test(s13z) ∗ s13z−1/(1 + nu) ∗ test(s13x) ∗ (s11z +
s22z + s33z)

Based on Eq. (4), boundary conditions (34) are prescribed through the following settings:

1) Select the two faces of x = 0 and x = 0.1, and set the boundary constraints as

R1 = (s11 − p0* (z − h1/2) s12 s31 0 0 0
)

(36)

2) Select the two faces of y = 0 and y = 0.1, and set the boundary constraints as

R2 = (s12 s22 s23 0 0 0
)

(37)

3) Select the two faces of z = 0 and z = 0.01, and set the boundary constraints as

R3 = (s31 s23 s33 0 0 0
)

(38)



CMES, 2024, vol.141, no.1 181

Based on Eq. (5), pointwise constraints (35) are prescribed on the six faces of beam through the
settings as⎧⎨
⎩

P1 = s11x + s12y + s31z
P2 = s12x + s22y + s23z
P3 = s31x + s23y + s33z

(39)

3.2.3 Meshing the Beam and Choosing the Shape Functions

For this three-dimensional problem, four meshes with consecutively decreasing size are examined.
In COMSOL, a three-dimensional mesh is accomplished through a sweeping technique. Hence, the free
quadrilateral mesh option is first added on x = 0 as the boundary selection for the option over which
a uniform mesh is generated by setting the mesh size h. The swept option is then added on x = 0 as the
source face and on x = 0.1 as the destination face by setting the same h. Fig. 4 depicts the generated
meshes. When h decreases consecutively from 0.01 (a) to 0.005 (b), 0.0025 (c), and 0.00125 (d).

(a) h = 0.01 (b) h = 0.005 (c) h = 0.0025 (d) h = 0.00125

Figure 4: The meshes for the pure bending beam problem

The setting of shape functions is the same as in Section 3.1.3.

4 Results and Discussion
4.1 Results for the Deflection of thin Plate Bending

For this thin plate bending problem, this study can get the Levy series solution [36] as the reference.

Section 3.1 completed the PDE module settings for the solution to the deflection of thin plate
bending. The argument u can be obtained for this problem using the default settings of the stationary
solver. The results are shown in Fig. 5. The QSF and the LSF can give satisfactory deflection for the
four meshes.

In order to show the mesh-dependent convergence, this study examines the L2-error norm (RE)
in deflection as

RE =
√√√√ N∑

i=1

(wi
PDE − wi

Ref)
2
/

√√√√ N∑
i=1

(wi
Ref)

2 (40)

where N is the total number of nodes in the mesh; wi
PDE and wi

Ref are the results from the PDE module
and the reference solution.

The RE is depicted in Fig. 6, where L is the length of the square thin plate. The error norms
decrease monotonically for both the QSF and the LSF as the mesh size h reduces.
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Figure 5: Results comparison of the deflection of thin plate bending

Figure 6: Variation of RE with the mesh size for the deflection of thin plate bending

4.2 Results for the Stress of the Pure Bending Beam
For a pure bending problem, from the fundamental mechanics of materials, the reference solution

for the normal stress σ11 in the cross-section is linear along the thickness as

σ11 = z/h1 ∗ 500 (MPa) (41)

Section 3.2 completed the PDE settings for this problem for the second standard form as Eqs. (25)
and (26), and the third standard form as Eq. (30).

Fig. 7 illustrates the results obtained using the default stationary solver. It indicates that the
distribution and the magnitude are correct only for the LSF. Variation of the RE in stress σ11 is depicted
in Fig. 8 as compared to the reference, where L is the length of the beam. The results converge with
the reference for the LSF but not the QSF.



CMES, 2024, vol.141, no.1 183

Figure 7: Results comparison of the pure bending problem

Figure 8: Variation of RE with the mesh size for the stress of pure bending beam

If the results from the PDE module are used under the finest mesh in Fig. 4d at h = 0.00125 as
the new reference and re-evaluate the RE in stress σ11 for the QSF, the blue plot (marked by QSF-
R) is obtained as shown in Fig. 8. This indicates that the results converge per se as the mesh size
decreases when using the QSF, which differs from the solution of a pure bending beam. This is due to
the inappropriate prescription of the pointwise constraints Eq. (39) when the arguments (stresses in
the proposed case) within each element are interpolated with the QSF.

5 Conclusion

This study investigates the three standard forms of PDE module in COMSOL and their applica-
tion to two mechanics problems. The results agree very well with the literature. The current research
indicated that the PDE module can be employed to address problems to which the FEM is not
applicable as long as the problem is transferred to one of the three standard forms.
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In the stress analysis of a pure bending beam, the second-order compatibility equations are the
governing equations, while the first-order equilibrium equations are the supplementary constraints.
In addition, the current practice indicates that care must be considered for the shape functions when
supplementary constraints are enforced on the boundary.

The limitation of this paper lies in that, while extending the applicable scope, the threshold is
elevated for the user of the PDE module, and expertise in various aspects is hence required, such as
formulation skills, knowledge of calculus of variations, and assessment of results in convergence and
accuracy.
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