
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.053462

ARTICLE

FedAdaSS: Federated Learning with Adaptive Parameter Server Selection
Based on Elastic Cloud Resources

Yuwei Xu, Baokang Zhao*, Huan Zhou and Jinshu Su

School of Computer, National University of Defense Technology, Changsha, 410000, China

*Corresponding Author: Baokang Zhao. Email: bkzhao@nudt.edu.cn

Received: 30 April 2024 Accepted: 24 June 2024 Published: 20 August 2024

ABSTRACT

The rapid expansion of artificial intelligence (AI) applications has raised significant concerns about user privacy,
prompting the development of privacy-preserving machine learning (ML) paradigms such as federated learning
(FL). FL enables the distributed training of ML models, keeping data on local devices and thus addressing the
privacy concerns of users. However, challenges arise from the heterogeneous nature of mobile client devices,
partial engagement of training, and non-independent identically distributed (non-IID) data distribution, leading
to performance degradation and optimization objective bias in FL training. With the development of 5G/6G
networks and the integration of cloud computing edge computing resources, globally distributed cloud computing
resources can be effectively utilized to optimize the FL process. Through the specific parameters of the server
through the selection mechanism, it does not increase the monetary cost and reduces the network latency
overhead, but also balances the objectives of communication optimization and low engagement mitigation that
cannot be achieved simultaneously in a single-server framework of existing works. In this paper, we propose
the FedAdaSS algorithm, an adaptive parameter server selection mechanism designed to optimize the training
efficiency in each round of FL training by selecting the most appropriate server as the parameter server. Our
approach leverages the flexibility of cloud resource computing power, and allows organizers to strategically
select servers for data broadcasting and aggregation, thus improving training performance while maintaining
cost efficiency. The FedAdaSS algorithm estimates the utility of client systems and servers and incorporates
an adaptive random reshuffling strategy that selects the optimal server in each round of the training process.
Theoretical analysis confirms the convergence of FedAdaSS under strong convexity and L-smooth assumptions, and
comparative experiments within the FLSim framework demonstrate a reduction in training round-to-accuracy by
12%–20% compared to the Federated Averaging (FedAvg) with random reshuffling method under unique server.
Furthermore, FedAdaSS effectively mitigates performance loss caused by low client engagement, reducing the loss
indicator by 50%.

KEYWORDS
Machine learning systems; federated learning; server selection; artificial intelligence of things; non-IID data

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.053462
https://www.techscience.com/doi/10.32604/cmes.2024.053462
mailto:bkzhao@nudt.edu.cn

610 CMES, 2024, vol.141, no.1

1 Introduction

In recent years, artificial intelligence (AI) technology has made significant progress, and its appli-
cation scope is constantly expanding, covering various fields such as smart homes, voice assistants, and
intelligent decision-making. However, with the widespread promotion of AI applications, the issue of
privacy protection has attracted widespread attention [1]. Many countries and regions have established
corresponding laws and regulations to ensure user privacy, and strictly restrict the use and processing of
data [2]. This undoubtedly poses a challenge to the development of artificial intelligence applications.
In response to this concern, federated learning (FL) has gradually evolved into a privacy-preserving
machine learning paradigm. In this paradigm, mobile devices and Internet of Things (IoT) clients
distributed in different geographical regions can collaborate to train machine learning models while
keeping their respective data on local devices. FL is widely used for a variety of tasks. Examples include
speech recognition, handwriting recognition, and text prediction in the consumer Internet, as well as
collaboration between medical, industrial [3], and communications [4] entities.

In FL training, there are numerous and widely distributed devices, coupled with a certain degree of
heterogeneity in system performance, which leads to significant differences in the success probability of
each client participating in training (hereinafter referred to as engagement). In addition, the client data
participating in federated learning training varies in scale [5], and the data distribution also exhibits
non-independent identically distributed (non-IID) characteristics [6]. These characteristics result in
significant performance loss in federated learning, affecting round-to-accuracy performance, and there
is an issue of optimization target deviation [7,8].

Existing FL optimization methods mainly aim to reduce communication costs and improve train-
ing efficiency by fine-tuning client selection strategies [9], local updates [10,11], and communication
compression [12–16] strategies. However, these methods have not fully addressed the problem of low
engagement. On the other hand, decentralized [17] and asynchronous methods [18–21] can increase
engagement, but synchronization costs are high and convergence speed is slow.

The client selection mechanism has been widely studied and applied to improve training efficiency
reduce communication overhead, and increase the robustness of FL training. The first is the system
utility perspective. Client selection reduces communication pressure on the parameter server, reducing
unnecessary communication and network load, especially in bandwidth-constrained environments.
Mobile devices may have limited computing and storage resources. By selecting clients with sufficient
resources for training, the training process can run smoothly without overburdening resource-
constrained devices. The second is to improve the statistical performance of FL training. Client data
may be heterogeneous, i.e., different clients may have different data characteristics. By selecting clients
that represent the overall data distribution, a better-performing global model can be trained. At the
same time, by selecting clients with high data quality and high computing power to participate in
training, the convergence speed of the model can be accelerated.

With the development of 5G/6G networks and the integration of computing resources through
cloud computing, edge computing and other methods, mobile user-oriented application development
can design more flexible paradigms [22,23]. Based on the widespread distribution of cloud computing
resources worldwide (as shown in Table 1), effective utilization of these resources can optimize the
federated learning process. The parameter server of FL can be set and migrated by a specific server
selection mechanism, which ensures that the overall usage cost does not increase. Selecting the optimal
parameter server according to geographical distribution, network state, and computing resources can
reduce the communication delay of FL training and reduce resource competition, which has been
widely verified in general distributed tasks. On the other hand, we found that server selection can

CMES, 2024, vol.141, no.1 611

improve the FL training process from a statistical utility perspective. This is reflected in two aspects:
first, it can extend the client selection strategy (co-selection), and second, it can be combined with
client selection as an orthogonal method (server selection after client selection), thereby improving the
overall client participation and the training efficiency of federated learning.

Table 1: The top 10 cloud service providers

Cloud service provider Regions Availability zones

1 Amazon web services (AWS) 33 105
2 Microsoft azure 64 126
3 Google cloud platform (GCP) 40 121
4 Alibaba cloud 30 89
5 Oracle cloud 48 58
6 IBM cloud 10 30
7 Tencent cloud 21 65
8 OVHcloud 17 37
9 DigitalOcean 9 15
10 Linode (Akamai) 20 20

We propose an adaptive server selection algorithm FedAdaSS, which differs from the traditional
approach of having a unique fixed parameter server. We adopt an adaptive strategy to select the
optimal server as the parameter server in each training round to optimize the training effect. The
server selection mechanism can be incorporated into existing federated learning training algorithms
as an orthogonal mechanism. In addition to improving FL from system performance as in classical
distributed computing, we have also demonstrated that it can improve statistical performance while
also expanding the client selection policy space.

Optimizing server selection is a challenging task. In theory, the optimal choice requires us to obtain
global prior knowledge in advance. However, in the actual training process, we cannot know the current
set of clients in advance. Relying solely on the optimal set of clients per round to select servers can
reduce wall clock time, but it cannot effectively alleviate the problem of optimization target offset.
To this end, this article proposes an adaptive random shuffle strategy that estimates the utility of the
client system and server in each round and then approximately selects the nearest server to accelerate
the training process.

After rigorous theoretical analysis, we have confirmed that the FedAdaSS algorithm converges
under strong convexity and L-smooth assumptions. Within the FLSim framework, we compared
FedAdaSS with the Federated Averaging with random reshuffling (FedAvg+RR) and confirmed
that optimizing the server selection mechanism can reduce the training #round-to-accuracy by
12%–20%. Under communication optimization strategies such as small number of participants and
the large number of local steps, this optimization method shows significant advantages. In addition,
when comparing different engagement levels, FedAdaSS can effectively mitigate the performance loss
caused by low engagement, reducing the loss indicator by 50%.

The key contributions of our work are the following:

• We propose a basic framework for optimizing FL with elastic cloud resources, and analyze the
optimization objectives and trade-offs for server selection.

612 CMES, 2024, vol.141, no.1

• We propose the FedAdaSS algorithm, which is an adaptive server selection algorithm with
dynamic client random shuffling to overcome the problems of dynamic joining and low com-
mitment of clients, thereby increasing the statistical performance, and theoretically analyzing
its convergence.

• We evaluate the adaptability of server selection to common FL optimization methods and the
performance improvement it brings through comparative experiments.

2 Related Work
2.1 Federated Learning

Federated Learning is a distributed machine learning approach that allows multiple participants
(typically devices or organizations) to work together to train a global machine learning model while
maintaining the privacy of their respective data [6]. The key benefit of this approach is that it eliminates
the need to centralize data in a single location, thereby reducing the risk of data leakage and reducing
the need for centralized storage and computational resources [10].

Due to the size of the population and the diversity of user data and devices in FL, each round of
training runs on a customer terminal set (with hundreds of participants), typically requiring hundreds
of rounds (of a few minutes each) and several days to complete. For example, in the case of the
Gboard keyboard, Google conducted weeks of federated training on natural language processing
(NLP) models on 1.5 million devices [6,24]. Due to the large number of devices wide geographical
distribution, and certain heterogeneity of system performance, each client shows great differences
in the success probability of participating in training. Furthermore, client data involved in federated
learning training differ in size and have a non-IID distribution. These factors cause federation learning
performance to suffer a large loss, affect round-to-accuracy performance, and cause optimization
target bias. To address these issues during the cross-device FL training process, existing methods can
be classified into server-centric methods that focus on reducing communication overhead, and client-
centric methods that focus on improving user engagement.

2.2 System Performance Optimization in FL
In the general paradigm of cross-device FL, the unique parameter server broadcasts the model

parameters in each training round and aggregates the model parameters returned by the clients.
However, due to resource constraints, methods such as multiple local updates, client selection, and
communication compression have been proposed to meet the requirements of the parameter server.

The goal of the local update policy is to reduce the frequency of communication and to utilize the
client’s computational resources as much as possible [25], where each device performs multiple local
steps before passing its updates back to the central server. One representative method is the Federated
Averaging algorithm [20], which is an adaption of local-update to parallel stochastic gradient descent
(SGD). The client involved in the training of each round runs a certain number of SGD steps based
on its local data and sends back the local updated parameters to the server, then the pseudo-gradient
for the global model is aggregated from each returned update. Recently, such methods have attracted
a lot of attention, both in terms of theoretical guarantees [11,26], as well as in terms of optimization
for real-world scenarios [1,27–29].

To address network bandwidth constraints and client heterogeneity, FL client selection is an
emerging topic. FL client selection determines which client devices are selected in each training round.
Effective FL client selection schemes can significantly improve model accuracy, increase fairness,
improve robustness, and reduce training overhead [9]. For example, the paper [30] proposed a client

CMES, 2024, vol.141, no.1 613

selection framework called Oort, which improves the time-to-accuracy performance of model training
by prioritizing those clients that have the greatest benefit in improving model accuracy and can
perform training quickly. In addition, Oort allows developers to specify data distribution requirements
during model testing and improve test duration efficiency by carefully selecting clients that meet those
requirements.

Communication compression in FL is also a strategy that reduces data transmission between
client devices and the central server during the training process. Quantization is a popular method
that reduces the precision of model updates, making their transmission size smaller [31,32]. Sketching,
as introduced by [33], provides a more concise alternative by summarizing updates using compact data
structures. This enables approximate, yet significantly smaller representations of the original data.

2.3 Framework Optimization in FL
The training time scheduled by the parameter server is difficult to match with the idle time of the

device, and the effective engagement rate of the client is low. Therefore, new frameworks of FL such as
asynchronous distributed training [34] as well as decentralized federated learning methods have also
been widely studied.

For asynchronous FL, the server updates the global model whenever it receives a local update.
The authors in [35] found empirically that the asynchronous approach is robust to participants
joining in the middle of training rounds and when the federation includes participating devices
with heterogeneous processing capabilities. A new asynchronous federation optimization algorithm
was proposed in [36] to improve the flexibility and scalability of federation learning, where each
newly received local update is adaptively weighted according to its staleness, which is defined as
the difference between the current epoch and the iteration to which the received update belongs.
Furthermore, the authors also prove the convergence guarantee for a restricted family of non-convex
problems. However, the current hyperparameters of the FedAsync algorithm still need to be tuned to
ensure convergence in different environments. As such, the algorithm is still unable to generalize to
the dynamic computational constraints of heterogeneous devices. Synchronous FL is still the most
commonly used method today due to the uncertain reliability of asynchronous FL [37].

Decentralized federated learning is another way to maximize the possibility of the partici-
pant, which distributes the aggregation of model parameters between the neighboring participants
[21,38,39]. Decentralized Federated Learning uses a P2P communication method, it deals with a
dynamic and heterogeneous topology where participants often change their location or role in the
federation. A study compared the communication efficiency of decentralized algorithms, such as
gossip learning, with centralized FL [21]. It found that the best gossip variant had comparable overall
performance to the best centralized FL algorithm. Another challenge in decentralized FL is imbalance
heterogeneity, replacement of weight averaging with mutual knowledge distillation [40] was proposed
to tackle class imbalance.

2.4 Limitations of Current Works
Existing system performance optimization methods, whose core goal is to reduce communica-

tion overhead, mainly use multiple local updates, client selection, and communication compression
methods, but these methods are assumed to have better results when all clients effectively complete
training and all have a high probability of participation. In the actual system, the client, due to its
task, can not do more than an effective synchronization to the free time for training, so the total
training engagement is low, slowing down the total training time; on the other hand, due to the

614 CMES, 2024, vol.141, no.1

client’s data distribution of the phenomenon of non-IID, low engagement leads to the intensification
of this imbalance phenomenon, which makes the distribution of training data is different from the
distribution of the objective function, resulting in the training objective bias.

The methods proposed to solve the low engagement problem, such as asynchronous training
and P2P training, have not been widely used in practical systems due to their characteristics, longer
convergence times, and higher communication costs. Therefore, to solve the above contradiction,
we propose a federated learning framework based on elastic cloud server resources, which improves
the participation of clients and extends the policy framework of client selection by providing server
selection when client selection, and on this basis, we propose a server selection method that supports
dynamic client RR, FedAdaSS, which proves that server selection can be used as an orthogonal method
to existing state-of-the-art (SOTA) methods and provides statistical performance improvement.

3 Overview

In this paper, the standard formulation of Federated Learning is considered as a finite sum
minimization problem:

min
x∈Rd

[
f (x) � 1

|C|
∑
c∈C

fc(x)

]
, (1)

where C is the client set. fc(x) = Eξ∼Dc [l(x; ξ)] corresponds to the average local loss of the current
model parameterized by x ∈ R

d over the training data Dc located on client c. In the real scenario,
the participants are mainly geographically distributed and have numerous mobile devices. When these
devices participate in training, it is difficult to ensure that each mobile client can continuously and
stably participate in the training process due to the variety of usage scenarios and user behaviors.

We assume that the FL training organizer has automatic control over the creation and destruction
of server resources. Modern cloud platforms have their application programming interface (API) to
support the automatization, and many interfaces can hide the differences between multiple clouds
and provide a unified resource lifecycle control interface. During the training process, there is a
global orchestrator role that can be performed by a separate server. The orchestrator selects the
server responsible for the next round of training (parameter broadcasting and aggregation) and the
participating clients, i.e., the orchestrator is responsible for maintaining and updating the FL state
information.

Since servers in the same region on the cloud platform have relatively consistent network and
computing resources. For simplicity, we assume that each region of one cloud has one selectable server,
as shown in Fig. 1, and the selection described in this article includes the entire lifecycle process of
creation, maintenance, and eventual destruction.

As shown in Fig. 2, the basic framework of FL includes server selection. The FL task is planned by
the orchestrator as a whole, where the server set is all cloud servers available for selection (as mentioned
earlier, including the entire lifecycle management), and the client set is all mobile clients participating in
FL. This article mainly discusses learning and training tasks in a synchronous federation that involves
multiple global rounds. In each round, the orchestrator selects the parameter server for that round,
which is responsible for parameter distribution and aggregation. Then, some kind of client selection
mechanism selects some clients to participate in the training. After the selected server distributes the
model parameters to the clients, the clients use local data to perform several rounds of local steps,
typically the SGD process. Then the parameter server collects the results returned by the clients, usually

CMES, 2024, vol.141, no.1 615

the clients that successfully returned within a certain time threshold, and calculates the weighted
average of the returned weights as the result of this round. The above steps are repeated until the model
meets a certain requirement, such as a fixed number of rounds, or the accuracy reaches a threshold.

Figure 1: Elastic cloud resources controlled by orchestrator

Figure 2: The architecture of federated learning with server selection

Due to factors such as location distance and network quality, the bandwidth between clients and
servers in different regions is different, the success rate of participating in training is also different, and
the distribution of server training success rate among different clients is also different. We can assume
that the success rate of clients under the same server is approximately a power-law distribution. Server
selection based on optimized latency can improve the wall time of FL training. At the same time,
server selection can cooperate with client selection, which not only expands the policy space of client
selection but also further improves the effect of client selection with the existing state of the art, thus
statistically improving training efficiency.

616 CMES, 2024, vol.141, no.1

4 Server Selection Method in Federated Learning
4.1 General Optimization Objectives of FL

In the system design process of federated learning, the first metric to focus on is time-to-accuracy,
which has two main influencing factors, (i) System utility factors: the training process includes
the actual available performance of both client-side and server-side participants, and the quality of
network among them. These physical metrics will affect the actual running time of the system. (ii)
Algorithm and data factors: by adjusting the hyper-parameters in the training process, as well as the
use of client selection algorithms, as a way to affect the round-to-accuracy performance of the training,
to further reduce the training time in the same environment and system setup.

To achieve the above objectives. From a system optimization perspective, the main constraints are
the unreliability of computing resources of clients and restricted network resources. Client selection
methods are firstly involved to ensure that the training can be carried out continuously, and secondly,
to reduce the communication overhead, methods such as local update and communication compression
are further used.

From the client’s perspective, the primary constraint is the lack of engagement; due to the uncon-
trollable synchronization of training time and the passive selection mechanism from the parameter
server, the client’s arithmetic availability and training time cannot occur simultaneously, resulting in
the client arithmetic that participates in federated learning to be a very small fraction of the total
arithmetic. In addition, due to possible single-point-of-failure issues and privacy considerations, the
use of distributed algorithms can provide better hence protection. Therefore, clients expect to use
asynchronous or decentralized methods to achieve this goal.

4.2 Optimal Server Selection Requirements
All servers that can be created by cloud platforms in different regions are taken as a server set,

and the orchestrator selects one server as a parameter server, which is responsible for parameter
broadcasting, collecting local update results from different clients, and calculating the final result of
this round. To illustrate the importance of server selection, we discuss the requirements for optimal
server selection in a state-of-the-art client selection scenario.

Concerning all data samples for training planning, Random Reshuffling of the training data at
the beginning of each epoch is a successful technique for optimizing the empirical risk minimization
process in standard SGD process analysis. In FL training, the current state-of-the-art approach also
introduces the RR process, but the difference is that this process is defined on the client arrangement,
as shown in Fig. 3, which requires that in a meta-epoch consisting of multiple rounds of global training,
each client is selected at most once, and in the next meta-epoch all clients are randomly reshuffled to
enter training.

Clients
Meta-epoch 2Meta-epoch 1

Round 4Round 3Round 2Round 1

C1 C3 C6 C2 C4 C5 C2 C3 C5 C1 C4 C6

C1 C2 C3

C4 C5 C6

Random Reshuffling of clients at each meta-epoch

Figure 3: Random reshuffling of clients in FL training scheduling

CMES, 2024, vol.141, no.1 617

To further increase the round-to-accuracy performance, we can utilize the importance sampling
method to prioritize high-utility clients [30,41], where the importance of each data point’s contribution
to training can be quantified using the L2-norm of the gradient. Assuming that each client x has a
training sample set of Bx, the importance of each client can be defined as

Ux � |Bx|
√

1
|Bx|

∑
k∈Bx

‖∇f (k)‖2. (2)

Optimal server selection can be quantified as selecting the most efficient server. After selecting
clients by RR and quantifying the utility per client, we can compute the utility of each server. Due
to the different geographic distributions of clients and servers, the network states of different client-
server combinations are inconsistent. Assuming that the success rate of the training process between
different clients and servers is defined as P(x, y), and assuming that the set of clients in each round
is Ct, and the selected server corresponding to each round is yr, the final utility of a server and client
co-selection in one meta-epoch is defined as the expectation the importance value sum of all client
participated in training:

Util �
R∑

t=1

∑
x∈Cr

P(x, y)Ux,
R⋃

t=1

Ct = C and Ci ∩ Cj = ∅, ∀i 	= j. (3)

The client sets in each round of one meta-epoch do not intersect, and the union of the client sets
Ct in each round covers all clients.

The optimal server selection mechanism should be the one that maximizes the utility in Eq. (3).
In addition, the timing of the federated learning training provided by the parameter server from
the client’s perspective should be matched as closely as possible with the time available for the
client’s arithmetic, thus minimizing the partial participant problem. This requirement is equivalent
to maximizing the number of FL client participants, consistent with the optimization goal.

Algorithm 1: FedAdaSS: Adaptive Server Selection in Federated Learning
1: Input: client step size η > 0, client set that could join the training C, Server set S, sample size K,

initials model x0 ∈ R
d, number of rounds T

2: Procedure at Orchestrator
3: Cignored ← ∅
4: for each round t = 0, 1, . . . , T do
5: Cactive ← UpdateActiveClientSet(C) �Adaptive clients random reshuffling
6: if

∣∣Cactive\Cignored

∣∣ < K then
7: Cignored ← ∅
8: end if
9: select a cohort Ct ⊂ Cactive\Cignored, |Ct| = K uniformly at random

10: st ← ServerSelect(Ct,S)

11: initialize server st with current xt and Ct

12: get xt+1 from procedure of selected server and clients
13: Cignored ← Cignored ∪ Ct

14: end for
15: functionSERVERSELECT(Ct, S)

(Continued)

618 CMES, 2024, vol.141, no.1

Algorithm 1 (continued)
16: for all s ∈ S do
17: Util(s) ← ∑

c∈Ct
P(c, s)Util(c)

18: end for
19: st,∗ ← arg max

s∈S
Util(s) �Server selection with utility estimation

20: return st,∗
21: end function
22: Procedure of Selected Server and Clients at Round t
23: broadcast xt to all clients from sever st

24: for each c ∈ Ct in parallel do
25: compute xc

t with local training

26: Util(c) ← |Bx|
√

1
|Bx|

∑
k∈Bx

‖∇f (k)‖2

27: send �c
t ← xc

t − xt and Util(c) to server st

28: end for
29: xt+1 ← xt − ηg

|Ct|
∑

c∈Ct
�c

t

30: push the xt+1 and Util(c) of all clients in Ct to orchestrator

4.3 Trade-Offs and Adaptive Server Selection Method
4.3.1 Adaptive Clients Random Reshuffling

In cross-device FL deployment, client joining and exiting are unpredictable. We cannot obtain the
client set in advance, nor can we guarantee that it will remain unchanged during training. As a result,
it is not possible to reshuffle all clients beforehand and select the optimal server in advance. There
is no strict meta-epoch boundary in this case, so we cannot obtain a meta-epoch client permutation
in advance according to the RR defined on the static client set. Therefore, we introduce an adaptive
client random reshuffling method in FedAdaSS.

As shown in Fig. 4, before each round of training, FedAdaSS will update the current set of clients,
remove the clients selected in previous rounds, and randomly select clients from the remaining set for
this round. Server selection will also depend on the results of the current round of client selection.
We approximate that choosing the optimal server in each round achieves a global relative superiority.
The algorithm implements random reshuffle by dynamically maintaining the remaining unselected
clients. trained clients are added to the set Cignored at the end of each round, and K clients are randomly
selected from the set Cactive\Cignored at the beginning of the round. when Cactive\Cignored is empty, it can be
approximated as the end of a global epoch, and reset Cignored to the empty set and continue the above
steps.

4.3.2 Server Selection with Utility Estimation

For the utility computation of clients and sever, Util(c) takes the value from the gradient obtained
in the current round, and we can not get the utility of each client in advance before choosing the current
server and training. However, due to the adaptive reshuffling process, each client only participates in
training once per epoch, while the sequential relationship between client utilities, due to the positive
correlation between utility and data size, does not change significantly over the multiple training

CMES, 2024, vol.141, no.1 619

epochs. Thus, our updated client utility for each epoch can be used as an estimate of that client’s
utility for the next epoch of server selection.

Figure 4: The main loop and adaptive random reshuffling of clients in FedAdaSS

4.3.3 Division of Roles and Cooperation in the Procedure

After introducing the two main computational processes in the Algorithm 1, we will introduce
the interaction process in the FedAdaSS algorithm. As described in Section 3, we split the roles in
FedAdaSS into orchestrator, parameter server, and client.

The orchestrator is responsible for maintaining the client collection and the server collection. The
server collection is obtained during initialization, and the currently available clients are updated before
each round of client selection. The orchestrator arranges each round of FL training in turn. In a given
round t, the orchestrator first computes and selects the server st and clients Ct of the current round,
and initializes the server st using the result and the parameters of the model of the previous round.
Its communication overhead is not large, corresponding to a constant multiple (maybe including the
intermediate state of optimization) of the communication between the server and one client. Then,
FedAvg is executed between the server and the client, and the orchestrator retrieves the training results
for that round from the server.

620 CMES, 2024, vol.141, no.1

The server is initialized by the orchestrator through the cloud platform API, and the server obtains
the client set of the current round and the current model parameters during initialization. Thereafter,
the server process is similar to that in generic FL, where the server broadcasts the current model
parameters xt to all clients in Ct. Each client performs multiple local steps, returning resulting model
parameters Cc

t and client utility Util(c). The server then computes xt+1 ← xt − ηg/|Ct| · ∑
c∈Ct

�c
t and

returns all results to the orchestrator. The orchestrator then ends the life cycle of the server. The system
implementation and training method of the client are consistent with the general federated learning
process, and there is no need to provide redundant additional descriptions here.

5 Convergence Analysis
5.1 Preliminaries

The loss function of client c is composed of single losses f j
c (x) where j corresponds to j-th data

points with the current model parameterized by x. We assume that client c has access to an oracle
that, when given input (j, x), returns the gradients ∇f j

c (x) as an output. We donate [l] � {1, 2, . . . , l}
for any l ∈ N. To show the convergence of our methods, we adopt the standard assumptions in convex
optimization, which are commonly used in the previous works [42].

Assumption 1. The functions f j
c (x) are Lc-smooth for all c ∈ C, j ∈ [|Dc|]; i.e., there is an Lc > 0

such that for any c, j, x, y

‖∇f j
c (x) − f j

c (x)‖ ≤ Lc‖x − y‖. (4)

Assumption 2. The functions f j
c (x) are μc-strongly convex for all c ∈ C, j ∈ [|Dc|]; i.e., there is an

μc > 0 such that for any c, j, x, y

〈∇f j
c (x), y − x〉 ≤ −

(
f j

c (x) − f j
c (y) + μc

2
‖x − y‖

)
. (5)

FedAdaSS introduces the RR of clients, and analysis of existing RR shows that it cannot converge
to a certain exact value. Through analysis of the shuffling radius upper bound brought by RR, it can
be proved that it converges to a certain neighborhood related to σ 2

rad. We use the notions of shuffling
variance, introduced by Mishchenko et al. [43] for the analysis, Given a static stepsize η > 0 and a
permutation π of [n], the intermediate points x1

∗, x2
∗, . . . , xn

∗ is

xi
∗ � x∗ − η

i∑
j=1

∇fπj(x∗), i = 1, . . . , n. (6)

The shuffling radius σ 2
rad(η) is

σ 2
rad(η) � max

i∈[n]

[
1
η2
Eπ

[
Dfπi

(xi
∗, x∗)

]]
, (7)

where Df (x, y) = f (x) − f (y) − 〈∇f (y), x − y〉 is the Bregman divergence associated with f . Due to
our use of dynamic client rearrangement, the corresponding shuffling radius is equivalent to the RR
process of each data point. With the combination of L-smooth of f and the definition of xi

∗, we could
get the bound of shuffling radius (for a detailed proof, see Appendix A).

Lemma 1. (Shuffling radius bounds). For all η > 0, we get the upper bound of shuffling radius
σ 2

rad.

σ 2
rad ≤ nLmax

2

(
n‖∇f (x∗)‖2 + 1

2
σ 2

∗

)
, (8)

CMES, 2024, vol.141, no.1 621

where σ 2
∗ is the gradient variance at the optimum σ 2

∗ � 1
n

∑
i∈[n]‖∇fi(x∗) − ∇f (x∗)‖2. Since f is Lmax-

smooth and ∇f (x∗) = 0, we get that

σ 2
rad ≤ nLmax

4
σ 2

∗ . (9)

5.2 Convergence Guarantees
After defining the variance quantities and assuming that each f j

c is μ-strongly convex which
is commonly satisfied in machine learning applications as in l2 regularized linear regression and l2

regularized logistic regression, we can get the result that the optimization term decreases linearly. The
exponential is the product of the number of data points of each client N, the number of communication
rounds in each global epoch R, and the number of global epochs T . Since the cohort and data points on
each client are sampled without replacement for each round, the statistical term scales proportionally
to the squared step size η2. The formal statement of the theorem follows.

Theorem 1. Assume that functions f j
c are Lc-smooth and μc-strongly convex for each c and j. If

η ≤ 1
Lmax

, then the iterates generated by the Algorithm 1 satisfy

E
[‖xT − x∗‖2

] ≤ (1 − ημ)NRT‖x0 − x∗‖2 + 2η2

μ
σ 2

rad. (10)

The results show the exponential rate of convergence to a neighborhood of size
2η2

μ
σ 2

rad and can

be adjusted to accommodate dynamic client shuffling, with the only requisite modification being the
alteration of the rates and convergence analysis. Detailed proof can be found in the Appendix B.

6 Evaluation
6.1 Experimental Methodology

To demonstrate that FedAdaSS can effectively provide both random reshuffling and partial
participant mitigation in large-scale client scenarios, we perform experimental verification in addition
to theoretical analysis. Due to the lack of large-scale client validation conditions, we use simulation
experiments for validation and expand FLSim [44] to provide a server selection mechanism as the
experimental framework, simulating 10 candidate servers in the experiment. We used the CIFAR10
dataset to simulate 100 clients and split the data into IID and non-IID methods for experiments.
The non-IID group splits the sample size according to a power law distribution. To account for the
heterogeneity of clients, as shown in Fig. 5, we generate the training success probability of each client
to one server according to the power law distribution. In the comparative experiment, to demonstrate
the performance of server selection under different network conditions, we set the average success rate
of client generation to p = 75%–95%.

6.2 Comparisons Results
To demonstrate the improvement of statistical utility in FL process by server selection and to

enhance existing client selection methods, we choose the state-of-the-art method, i.e., client RR
(FedAvg+RR), as a comparison. The overall results show that FedAdaSS can reduce the number of
rounds to reach the same accuracy value (#round-to-accuracy) by approximately 12% to 20% under
the same environmental parameters,

622 CMES, 2024, vol.141, no.1

Figure 5: Distribution of probability of successful communication

Next, we will compare different environmental parameters (IID/non-IID, average success rate p,
number of clients per round k, local steps N) to study the characteristics and causes of server selection
performance improvement.

6.2.1 Increasing Training Speed

Fig. 6 compares the decline curves of the loss function for different numbers of participants in each
training round. It can be seen that as the number of participants increases, the loss function decreases
faster. This indicates that increasing the number of participants can reduce the #round-to-accuracy.
Under the same k setting, it can be seen that FedAdaSS accelerates training speed by 5%–10%, which
is more significant at low engagement levels.

Figure 6: Training loss of FedAdaSS and FedAvg+RR

CMES, 2024, vol.141, no.1 623

In addition, as shown in Fig. 7, under the setting of non-IID, a lower number of training clients has
a greater impact on convergence. At this time, adding server selection can also accelerate convergence
speed by 10%–20%. This improvement is more significant with the fewer number of clients and less
engagement.

Figure 7: Accuracy of aggregation of each training round on non-IID data and with
p = 75% and p = 90%

6.2.2 Mitigating Low Engagement of Clients

Fig. 8 compares the accuracy training curves under the same machine learning parameter con-
figuration but different communication success probability settings. It can be seen that compared to
the FedAvg+RR method, the FedAdaSS method has a smaller negative impact on the decrease in
engagement. Due to the dropout strategy, the actual number of client participants is the same under
different methods. However, under the same method, the impact of low engagement may not have been
added to the training, resulting in a reduction in effective training data. It can be seen that after joining
the server selection, the decrease in accuracy under the same setting was alleviated by increasing the
participation opportunities of these low-probability clients, resulting in a 3% increase in tie values.
In addition, under the high local steps setting set to reduce communication overhead, the impact of
low engagement on #round-to-accuracy is more pronounced, resulting in an increase of about 50% in
#round-to-accuracy. At this point, using FedAdaSS can reduce this loss to about 20%.

In summary, FedAdaSS can firstly improve client engagement compared to the singular server
method, thus increasing the number of clients involved in training per round, thus reducing rounds to
accuracy. Second, FedAdaSS improves the fairness of each client’s participation, allowing the random
reshuffling process to cover a larger number of clients, making it possible to achieve a better gradient
representation in a global epoch, and thus reducing round-to-accuracy. And since the number of local
steps in FL is relatively large, adding RR can effectively improve the training performance. Therefore,
it is demonstrated that FedAdaSS can be effectively combined with existing methods to accelerate the
training process of federated learning.

624 CMES, 2024, vol.141, no.1

Figure 8: Final average accuracy of the training and round-to-accuracy with different settings of the
probability of successful communication (p = 75%–95%)

7 Conclusions

Federated learning training involves a large number of geographically distributed devices, and
the heterogeneity of system performance leads to significant differences in clients’ engagement levels.
In addition, the client’s data have different scales and distributions, which are not independent and
identically distributed, resulting in significant performance loss in federated learning, affecting the
round-to-accuracy performance, and there is an optimization target bias problem. We propose a
basic framework for optimizing using optional computing power servers in federated learning and
analyze the optimization objectives and trade-offs for server selection. A self-adaptive server selection
algorithm FedAdaSS with random shuffling is proposed to overcome the dynamic joining and low
engagement issues of clients, and its effectiveness is theoretically analyzed. Through comparative
experiments, we demonstrate that FedAdaSS can reduce round to accuracy and alleviate performance
losses caused by low engagement.

Acknowledgement: The authors wish to express their appreciation to the reviewers for their helpful
suggestions which greatly improved the presentation of this paper.

Funding Statement: This work was supported in part by the National Natural Science Foundation of
China under Grant U22B2005, Grant 62372462.

Author Contributions: The authors confirm their contribution to the paper as follows: study conception
and design: Yuwei Xu, Baokang Zhao; data collection: Huan Zhou, Baokang Zhao; analysis and
interpretation of results: Yuwei Xu, Huan Zhou; draft manuscript preparation: Yuwei Xu, Baokang
Zhao, Jinshu Su. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: All data used in the experimental process was generated using the
FLSim simulator, which is perfectly reproducible following the instructions of Section 6.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

CMES, 2024, vol.141, no.1 625

References
1. Bao G, Guo P. Federated learning in cloud-edge collaborative architecture: key technologies, applications

and challenges. J Cloud Comput. 2022;11:4.
2. Kotsehub N, Baughman M, Chard R, Hudson N, Patros P, Rana O, et al. FLoX: federated learning with

FaaS at the edge. In: 2022 IEEE 18th International Conference on e-Science (e-Science); 2022; Salt Lake
City, UT, USA: IEEE. p. 11–20.

3. Wang X, Garg S, Lin H, Hu J, Kaddoum G, Piran MJ, et al. Toward accurate anomaly detection in industrial
internet of things using hierarchical federated learning. IEEE Internet Things J. 2022 May;9:7110–9. doi:
10.1109/JIOT.2021.3074382.

4. Wang X, Hu J, Lin H, Garg S, Kaddoum G, Piran MJ, et al. QoS and privacy-aware routing for 5G-enabled
industrial internet of things: a federated reinforcement learning approach. IEEE Trans Ind Inform. 2022
Jun;18:4189–97. doi: 10.1109/TII.2021.3124848.

5. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, et al. Towards federated learning
at scale: system design. Proc Mach Learni Syst. 2019;1:374–88.

6. Banabilah S, Aloqaily M, Alsayed E, Malik N, Jararweh Y. Federated learning review: fundamen-
tals, enabling technologies, and future applications. Inform Process Manag. 2022 Nov;59:103061. doi:
10.1016/j.ipm.2022.103061.

7. Sattler F, Wiedemann S, Muller KR, Samek W. Robust and communication-efficient federated
learning from non-i.i.d. data. IEEE Trans Neural Netw Learn Syst. 2020 Sep;31:3400–13. doi:
10.1109/TNNLS.5962385.

8. Luo K, Li X, Lan Y, Gao M. GradMA: a gradient-memory-based accelerated federated learning with
alleviated catastrophic forgetting. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR); 2023; Vancouver, BC, Canada: IEEE. p. 3708–17.

9. Fu L, Zhang H, Gao G, Zhang M, Liu X. Client selection in federated learning: principles, challenges, and
opportunities. IEEE Internet Things J. 2023;10:1

10. Gholami P, Seferoglu H. DIGEST: fast and communication efficient decentralized learning with local
updates. IEEE Trans Mach Learn Commun Netw. 2024;1.

11. Glasgow M, Yuan H, Ma T. Sharp bounds for federated averaging (Local SGD) and continuous perspective.
In: International Conference on Artificial Intelligence and Statistics; 2022; PMLR. p. 9050–90.

12. Yang HH, Liu Z, Quek TQS, Poor HV. Scheduling policies for federated learning in wireless networks.
IEEE Trans Commun. 2020 Jan;68:317–33. doi: 10.1109/TCOMM.26.

13. Foley P, Sheller MJ, Edwards B, Pati S, Riviera W, Sharma M, et al. OpenFL: the open federated learning
library. Phys Med Biol. 2022 Nov;67:214001. doi: 10.1088/1361-6560/ac97d9.

14. Oh K, Zhang M, Chandra A, Weissman J. Network cost-aware geo-distributed data analytics system. IEEE
Trans Parallel Distrib Syst. 2022 Jun;33:1407–20. doi: 10.1109/TPDS.2021.3108893.

15. Chahoud M, Otoum S, Mourad A. On the feasibility of federated learning towards on-demand client
deployment at the edge. Inf Process Manag. 2023 Jan;60:103150. doi: 10.1016/j.ipm.2022.103150.

16. Grudzień M, Malinovsky G, Richtárik P. Improving accelerated federated learning with compression and
importance sampling. arXiv preprint arXiv:2306.03240, 2023. doi:10.48550/ARXIV.2306.03240.

17. Li Z, Lu J, Luo S, Zhu D, Shao Y, Li Y, et al. Towards effective clustered federated learning: a peer-to-peer
framework with adaptive neighbor matching. IEEE Trans Big Data. 2022:1–16.

18. Guan Y, Liu X, Ren T, Niu J. Enabling communication-efficient federated learning via distributed
compressed sensing. In: IEEE INFOCOM 2023-IEEE Conference on Computer Communications; 2023;
New York City, NY, USA: IEEE. p. 1–10.

19. Zhang F, Liu X, Lin S, Wu G, Zhou X, Jiang J, et al. No one idles: Efficient heterogeneous federated
learning with parallel edge and server computation. In: International Conference on Machine Learning;
2023; Honolulu, Hawaii, USA: PMLR. p. 41399–413.

https://doi.org/10.1109/JIOT.2021.3074382
https://doi.org/10.1109/TII.2021.3124848
https://doi.org/10.1016/j.ipm.2022.103061
https://doi.org/10.1109/TNNLS.5962385
https://doi.org/10.1109/TCOMM.26
https://doi.org/10.1088/1361-6560/ac97d9
https://doi.org/10.1109/TPDS.2021.3108893
https://doi.org/10.1016/j.ipm.2022.103150
https://doi.org/10.48550/ARXIV.2306.03240

626 CMES, 2024, vol.141, no.1

20. McMahan B, Moore E, Ramage D, Hampson S, Arcas BA. Communication-efficient learning of deep
networks from decentralized data. In: Artificial intelligence and statistics; 2017; PMLR. p. 1273–82.

21. Beltrán ETM, Pérez MQ, Sánchez PMS, Bernal SL, Bovet G, Pérez MG, et al. Decentralized federated
learning: fundamentals, state of the art, frameworks, trends, and challenges. IEEE Commun Surv Tutorials.
2023;25:2983–3013. doi: 10.1109/COMST.2023.3315746.

22. Barbarossa S, Sardellitti S, Lorenzo PD. Communicating while computing: distributed mobile cloud
computing over 5G heterogeneous networks. IEEE Signal Process Mag. 2014 Nov;31:45–55. doi:
10.1109/MSP.2014.2334709.

23. Messaoud S, Bradai A, Ahmed OB, Quang PTA, Atri M, Hossain MS. Deep federated Q-learning-
based network slicing for industrial IoT. IEEE Trans Ind Inform. 2021 Aug;17:5572–82. doi:
10.1109/TII.2020.3032165.

24. Hard A, Rao K, Mathews R, Ramaswamy S, Beaufays F, Augenstein S, et al. Federated learning for mobile
keyboard prediction. arXiv preprint arXiv: 81103604. 2018 Nov.

25. Zhang T, Gao L, He C, Zhang M, Krishnamachari B, Avestimehr AS. Federated learning for the internet
of things: applications, challenges, and opportunities. IEEE Internet of Things Magazine. 2022 Mar;5:24–9.
doi: 10.1109/IOTM.004.2100182.

26. Li X, Huang K, Yang W, Wang S, Zhang Z. On the convergence of fedavg on non-iid data. arXiv preprint
arXiv:190702189. 2019.

27. Lim WYB, Luong NC, Hoang DT, Jiao Y, Liang YC, Yang Q, et al. Federated learning in mobile
edge networks: a comprehensive survey. IEEE Commun Surv Tutorials. 2020 Feb;22:2031–63. doi:
10.1109/COMST.9739.

28. Roy S, Chergui H, Sanabria-Russo L, Verikoukis C. A cloud native SLA-driven stochastic federated
learning policy for 6G zero-touch network slicing. In: ICC 2022—IEEE International Conference on
Communications; 2022; Seoul, Republic of Korea: IEEE. p. 4269–74.

29. Shi W, Zhou S, Niu Z, Jiang M, Geng L. Joint device scheduling and resource allocation for
latency constrained wireless federated learning. IEEE Trans Wirel Commun. 2021 Jan;20:453–67. doi:
10.1109/TWC.7693.

30. Lai F, Zhu X, Madhyastha HV, Chowdhury M. Oort: efficient federated learning via guided participant
selection. In: 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21);
2021; p. 19–35.

31. Reisizadeh A, Mokhtari A, Hassani H, Jadbabaie A, Pedarsani R. FedPAQ: a communication-efficient
federated learning method with periodic averaging and quantization. In: International Conference on
Artificial Intelligence and Statistics; 2020; PMLR. p. 2021–31.

32. Shlezinger N, Chen M, Eldar YC, Poor HV, Cui S. UVeQFed: universal vector quantization for federated
learning. IEEE Trans Signal Process. 2021;69:500–14. doi: 10.1109/TSP.78.

33. Rothchild D, Panda A, Ullah E, Ivkin N, Stoica I, Braverman V, et al. FetchSGD: communication-efficient
federated learning with sketching. In: International Conference on Machine Learning; 2020; PMLR.
p. 8253–65.

34. Lian X, Zhang W, Zhang C, Liu J. Asynchronous decentralized parallel stochastic gradient descent. In:
International Conference on Machine Learning; 2018; Stockholm, Sweden: PMLR. p 3043–52.

35. Sprague MR, Jalalirad A, Scavuzzo M, Capota C, Neun M, Do L, et al. Asynchronous federated learning
for geospatial applications. In: Joint European Conference on Machine Learning and Knowledge Discovery
in Databases; 2018; Dublin, Ireland: Springer. p. 21–8.

36. Xie C, Koyejo S, Gupta I. Asynchronous federated optimization. arXiv preprint arXiv:190 303934. 2013
Mar.

37. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, et al. Advances and open problems
in federated learning. Found Trends Mach Learn. 2021;14:1–210. doi: 10.1561/2200000083.

https://doi.org/10.1109/COMST.2023.3315746
https://doi.org/10.1109/MSP.2014.2334709
https://doi.org/10.1109/TII.2020.3032165
https://doi.org/10.1109/IOTM.004.2100182
https://doi.org/10.1109/COMST.9739
https://doi.org/10.1109/TWC.7693
https://doi.org/10.1109/TSP.78
https://doi.org/10.1561/2200000083

CMES, 2024, vol.141, no.1 627

38. Lalitha A, Kilinc OC, Javidi T, Koushanfar F. Peer-to-peer federated learning on graphs. arXiv preprint
arXiv:190111173. 2019 Jan.

39. Warnat-Herresthal S, Schultze H, Shastry KL, Manamohan S, Mukherjee S, Garg V, et al. Swarm
learning for decentralized and confidential clinical machine learning. Nature. 2021 Jun;594:265–70. doi:
10.1038/s41586-021-03583-3.

40. Li C, Li G, Varshney PK. Decentralized federated learning via mutual knowledge transfer. IEEE Internet
Things J. 2022 Jan;9:1136–47. doi: 10.1109/JIOT.2021.3078543.

41. Wang S, Yang S, Li H, Zhang X, Zhou C, Xu C, et al. PyramidFL: a fine-grained client selection framework
for effiicient federated learning. In: 28th ACM Annual International Conference on Mobile Computing
and Networking, MobiCom 2022; 2022; Sydney, NSW, Australia: Association for Computing Machinery.
p. 542–55.

42. Horváth S, Sanjabi M, Xiao L, Richtárik P, Rabbat M. Fedshuffle: recipes for better use of local work in
federated learning. arXiv preprint arXiv: 220413169. 2022.

43. Mishchenko K, Khaled A, Richtárik P. Random reshuffling: simple analysis with vast improvements. Adv
Neural Inf Process Syst. 2020;33:17309–20.

44. Meta. Federated Learning Simulator (FLSim). Meta Res. 2022 Jun. Available from: https://github.com/
facebookresearch/FLSim. [Accessed 2022].

45. Mishchenko K, Khaled A, Richtárik P. Proximal and federated random reshuffling. In: International
Conference on Machine Learning; 2022; Baltimore, MD, USA: PMLR. p. 15718–49.

Appendix A. Proof of Lemma Shuffling Radius Bounds

Proof 1. First, we have to introduce the lemma appears in [43,45], which describes the variance of
sampling multiple vectors from a finite set of vectors without replacement. Supposed that there are
vectors X1, . . . , Xn ∈ R

d. We define the average as X and the population variance as σ 2. Xπ1
, . . . , Xπk

are sampled uniformly from {X1, . . . , Xn} without replacement, and X π is their average. The average
and variance of sampling is

E
[
X π

] = X ,

E

[∥∥X π − X
∥∥2

]
= n − k

k(n − 1)
σ 2. (11)

Since fc is Lc-smooth and the definition of xi
∗, we can get the bound from Bregman divergence in

Eq. (7).

E
[
Dfπi

(xi
∗, x∗)

] ≤ E

[
Lπi

2
‖xi

∗ − x∗‖2

]
≤ Lmax

2
E

[‖xi
∗ − x∗‖2

]

= η2Lmax

2
E

⎡
⎣

∥∥∥∥∥
∑
j∈[i]

∇fπj(x∗)

∥∥∥∥∥
2
⎤
⎦

= η2Lmaxi2

2
E

⎡
⎣

∥∥∥∥∥1
i

∑
j∈[i]

∇fπj(x∗)

∥∥∥∥∥
2
⎤
⎦ .

(12)

https://doi.org/10.1038/s41586-021-03583-3
https://doi.org/10.1109/JIOT.2021.3078543
https://github.com/facebookresearch/FLSim

628 CMES, 2024, vol.141, no.1

Let Xc � ∇fc(x∗), then we have X π = 1
j

∑
j∈[i] Xπj and X = ∇f (x∗), with Eq. (11) we get

E
[
Dfπi

(xi
∗, x∗)

] ≤ η2Lmaxi2

2
E

[∥∥X π

∥∥2
]

= η2Lmaxi2

2

(
‖∇f (x∗)‖2 + n − i

i(n − i)
σ 2

∗

)
.

(13)

With definition of shuffling radius and i ≤ n, we get

σ 2
rad ≤ nLmax

2

(
n ‖∇f (x∗)‖2 + 1

2
σ 2

∗

)
. (14)

�

Appendix B. Proof of Theorem 5.1

Proof 2. Using μ-convexity and L-smoothness of f , we have:
μ

2

∥∥xk
m,∗ − xk

m,t

∥∥2 ≤ Dfm

(
xk

m,∗, xk
m,t

)
E

[∥∥∇fm(xk
m,t) − ∇fm(x∗)

∥∥] ≤ 2LDfm

(
xk

m,t, x∗
)

.

With the inequality, we have:

E

[∥∥xk,j+1
m,t − xk,j+1

m,∗
∥∥2

]
≤(1 − ημ)E

[∥∥xk,j
m,t − xk,j

m,∗
∥∥2

]
+ 2ηE

[
Dfm

(
xk,j

m,t, x∗
)]

− 2η(1 − ηL)E
[
Dfm

(
xk,j

m,t, x∗
)]

.
(15)

Using the definition of σ 2
rad and η ≤ 1

L
, we get following bound:

E

[∥∥xk,j+1
m,t − xk,j+1

m,∗
∥∥2

]
≤ (1 − ημ)E

[∥∥xk,j
m,t − xk,j

m,∗
∥∥2

]
+ 2η3σ 2

rad. (16)

Unrolling the recursion, we have:

E

[∥∥xk,n
m,t − xk,n

m,∗
∥∥2

]
≤ (1 − ημ)N

E
[∥∥xk

t − xk
∗
∥∥] + 2η3σ 2

rad

N−1∑
j=0

(1 − ημ)j. (17)

CMES, 2024, vol.141, no.1 629

With the K recursion of epochs and clients selection involved:

E

[∥∥xk+1
t − xk+1

∗
∥∥2

]
= E

⎡
⎣

∥∥∥∥∥ 1
C

∑
m∈Ct

xk
m,t −

1
C

∑
m∈Ct

xk
m,∗

∥∥∥∥∥
2
⎤
⎦

≤ 1
C

∑
m∈Ct

E

[∥∥xk
m,t − xk

m,∗
∥∥2

]

≤ 1
C

∑
m∈Ct

(
(1 − ημ)N

E

[∥∥xk
t − xk

∗
∥∥2

]
+ 2μ3σ 2

rad

N−1∑
j=0

(1 − ημ)j

)

= (1 − ημ)N
E

[∥∥xk
t − xk

∗
∥∥2

]
+ 2μ3σ 2

rad

N−1∑
j=0

(1 − ημ)j.

(18)

Since xt+1 = xK
t and x∗ = xK

∗ , the recursion index r can be unrolled:

E
[‖xt+1 − x∗‖2

] = E

[∥∥xK
t − xK

∗
∥∥2

]

≤ (1 − ημ)NK
E

[‖xt − x∗‖2
] + 2μ3σ 2

rad

N−1∑
j=0

(1 − ημ)j

K−1∑
k=0

(1 − ημ)kN.
(19)

Unroll the recursion for index t and apply the property described before:

E
[‖xT − x∗‖2

] ≤ (1 − ημ)NKT ‖x0 − x∗‖2 + 2μ3σ 2
rad

N−1∑
j=0

(1 − ημ)j

K−1∑
k=0

(1 − ημ)kN

T−1∑
t=0

(1 − ημ)tKN

≤ (1 − ημ)NKT ‖x0 − x∗‖2 + 2μ3σ 2
rad

NKT−1∑
j=0

(1 − ημ)j

≤ (1 − ημ)NKT ‖x0 − x∗‖2 + 2η2

μ
σ 2

rad.

(20)

�

	FedAdaSS: Federated Learning with Adaptive Parameter Server Selection Based on Elastic Cloud Resources
	1 Introduction
	2 Related Work
	3 Overview
	4 Server Selection Method in Federated Learning
	5 Convergence Analysis
	6 Evaluation
	7 Conclusions
	References
	
	Appendix A. Proof of Lemma Shuffling Radius Bounds
	Appendix B. Proof of Theorem 5.1

