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ABSTRACT

A fluid-structure interaction approach is proposed in this paper based on Non-Ordinary State-Based Peridynamics
(NOSB-PD) and Updated Lagrangian Particle Hydrodynamics (ULPH) to simulate the fluid-structure interaction
problem with large geometric deformation and material failure and solve the fluid-structure interaction problem
of Newtonian fluid. In the coupled framework, the NOSB-PD theory describes the deformation and fracture of
the solid material structure. ULPH is applied to describe the flow of Newtonian fluids due to its advantages in
computational accuracy. The framework utilizes the advantages of NOSB-PD theory for solving discontinuous
problems and ULPH theory for solving fluid problems, with good computational stability and robustness. A fluid-
structure coupling algorithm using pressure as the transmission medium is established to deal with the fluid-
structure interface. The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model
involving large deformation are verified by numerical simulations. The results agree with the analytical solution,
the available experimental data, and other numerical results. Thus, the accuracy and effectiveness of the proposed
method in solving the fluid-structure interaction problem are demonstrated. The fluid-structure interaction model
based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluid-
structure interaction and a promising approach for engineering design and experimental prediction.
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Nomenclature

ρ Fluid density
ρ0 Density in the reference configuration
g Gravity
σ Cauchy stress tensor
p Pressure
I Unit second-order tensor
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τ Viscous stress
μ Dynamic viscosity
ε̇ Rate of shear strain tensor
c0 Reference sound speed
∇ · (·) Non-local divergence operator
∇ ⊗ (·) Non-local gradient operator
∇ × (·) Non-local curl operator
HI Support domain of particle I
ω (xIJ) Kernel function
M Shape tensor
V Volume
h Smoothing length
Δx Initial spacing of the particles
δ Size of the support domain
TI (xIJ) Force state vector acting on particle I
π IJ Artificial viscosity
ξ IJ Relative position
ηIJ Relative displacement
KxI

Shape tensor of material point xI

FXI
Non-local deformation gradient of particle xI

s0 Extreme or critical stretch
s Bond stretch

1 Introduction

Ship and ocean engineering is being vigorously developed due to the strategic needs of maritime
power; the related fields of structural mechanics and hydrodynamics have yielded fruitful results
[1,2]. Typical high-speed hydrodynamic problems such as the high-speed motion of vehicles in the
water, underwater explosion, and structural damage [3] involve complex processes such as transient
strong impact load, large movement of structures, bubble growth, and collapse. These problems are
closely related to the comprehensive performance of modern ships and their weapons and equipment.
However, these are multi-physical field problems involving interaction between moving or deformed
structures and surrounding or internal fluids. In other words, the above-mentioned problems can be
characterized as typical multiphase fluid-solid coupling and vapor-solid-liquid three-phase coupling
problems [4].

Since fluid-structure interaction problems are complex and involve many nonlinear factors,
obtaining analytical solutions through theoretical derivation is often difficult. Numerical simulation
and model tests have become two common ways to analyze fluid-structure interaction problems.
The time cost of test data and the cost of trial and error are high for model tests. In contrast,
numerical simulation has the advantages of low cost, short cycle, and clear physical process, playing
an increasingly important role in ship and ocean engineering.

In recent years, many numerical calculation methods have emerged with the development of
computer technology. Currently, based on different discretization and solution forms, numerical
simulation methods can be classified into grid methods described by Euler, such as volume-of-fluid
(VOF) [5,6], level set method (LS) [7,8], lattice Boltzmann method (LBM) [9,10], and forward tracking
method [11,12]. Furthermore, Lagrangian descriptions of meshless methods are also often used, such
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as Smooth Particle Hydrodynamics (SPH) [13], reproducing kernel particle method (RKPM) [14],
moving particle semi-implicit (MPS) [15], and material point method (MPM) [16]. More recently, the
Updated Lagrangian Particle Hydrodynamics (ULPH) originally proposed by Tu et al. [17] is also
often used. The mesh method suffers from mesh distortion when solving the fluid-structure coupling
problem with large deformation. The latter meshless method benefits from the natural Lagrangian
characteristics and gradually completes particle approximation theory advantages. Moreover, it is not
limited by boundary deformation when simulating large deformation problems [18]. Therefore, it has
been widely used in fluid-structure interaction problems.

ULPH is another meshless particle method successfully implemented to solve fluid dynamics
problems. Inspired by peridynamics [19], RKPM [14], and SPH, the local differential operator in the
Navier-Stokes equations is replaced by a non-local differential operator (NDO). Since the non-local
continuous function space contains a function space much larger than the local continuous function
space, it may capture more physical content than the local continuum CFD method. Compared
with the classical SPH method, ULPH eliminates the tensile instability and the accuracy loss caused
by the kernel approximation. Therefore, ULPH is suitable for describing fluid motion in more
complex flow fields. ULPH employs the updated Lagrangian formulation and selects the current
configuration as the updated reference configuration instead of using the initial configuration as the
reference configuration. Furthermore, ULPH continuously updates the reference configuration during
calculation. The total Lagrangian method defined and described in the initial configuration can be
used instead of using the variables as SPH and molecular dynamics (even the initial configuration can
be chosen as the reference configuration). As pointed out in [20], using the updated configuration as
a reference configuration is advantageous as another rapidly developing meshless method. The basic
idea of peridynamics (PD), proposed by Silling [21], is a non-local continuous theory that uses non-
local integral equations. A discontinuous displacement field can be naturally included in the governing
equations. Hence, it has natural advantages in simulating crack initiation and propagation in materials,
becoming a research hotspot. There are three different branches in peridynamic theory: bond-based
peridynamics (BB-PD) [21], state-based peridynamics (SB-PD) [22] and non-ordinary state-based
peridynamics (NOSB-PD) [23]. Zhou et al. [24] proposed a new fully coupled hydrodynamic model of
bond-based peridynamics to simulate the pressured and fluid-driven fracturing processes in fractured
porous rocks. A complete discretization model and numerical integration algorithm for the ULPH and
BB-PD coupling formulas have been successfully established [25]. These methods were used to simulate
ice-water interaction under impact load, i.e., ice fragmentation and fracture. Yan et al. [26] developed
a set of high-order non-local differential operators in the ULPH framework and applied them to solve
multiphase flow problems [27]. The results show that the ULPH method is more accurate than SPH
in modeling and simulating multiphase flow problems.

Despite the success in the problem of coupling BB-PD with ULPH, the interaction between two
material points in the bond-based peridynamics depends only on the deformation of the bond between
that material point. This assumption restricts the Poisson ratio of the solid model. Therefore, solving
typical FSI-based problems by coupling PD with ULPH is still difficult. Since ULPH-NOSBPD has
a good potential for structural analysis, combining their advantages is an important research topic.
This work is motivated to develop a ULPH-NOSBPD method that simultaneously handles complex
fluid flows, large structural deformations, and even failures.
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2 Numerical Approach
2.1 Update Lagrangian Particle Hydrodynamics for Newtonian Fluids
2.1.1 Governing Equations

In this paper, the fluid is assumed to be weakly compressible without considering thermal effects.
Energy changes have a minor influence on the fluid characteristics when the pressure peak of the
weakly compressible fluid is below 1 GPa. Thus, the fluid is considered to be isentropic. The fluid
dynamics formulation can be solved using the Navier-Stokes equations. The Navier-Stokes equations
can describe the relationship between a fluid’s velocity, pressure, density, and temperature. The Navier-
Stokes equations are a set of coupled differential equations that can theoretically be solved using
calculus methods for a given flow problem.

In the Lagrangian form, the governing equations for the isentropic flow comprise mass and
momentum conservation laws. The general form of the governing equations [28] is written as follows:

Dρ

Dt
= −ρ∇ · v (1)

Dv
Dt

= 1
ρ

∇ · σ + g (2)

where D/Dt represents the material time derivative, v represents the velocity vector, ρ is the fluid
density, g is the gravity acceleration (9.81 m/s2 is used in the present paper), and σ represents the
Cauchy stress tensor [26], i.e., the summation of a pressure term −pI (hydrostatic stress or volumetric
stress) and a viscosity term (deviatoric stress):

σ = −pI + τ (3)

where I is the unit second-order tensor. The viscous stress τ is expressed as follows:

τ = 2με̇ (4)

where μ is the dynamic viscosity and ε̇ is the rate of shear strain tensor as follows:

ε̇ = 1
2

[∇ ⊗ v + (∇ ⊗ v)T
] − 1

3
(∇ · v) I (5)

The above Navier-Stokes equations are non-closed at this stage. Additional state equations must
be added to establish the connection between pressure p and density ρ. The Tait equation [29] can be
connected to solve the Navier-Stokes equations for the weakly compressible fluid. In the paper, the
evolution of the pressure from the density is determined by following a linearized form of the Tait
equation as the equation of state, as follows:

p = c2
0ρ0

γ

[(
ρ

ρ0

)γ

− 1
]

(6)

where ρ0 is the density in the reference configuration and γ is the characteristic index coefficient
(equal to 7 for water). Parameter c0 is the reference sound speed to control the compressibility of the
fluid, which should satisfy the density variation of less than 1%. To satisfy the weakly compressible
properties, it is necessary to use the reference sound speed [27] as follows:

c0 ≥ 10 max
(√

pmax/ρ0, Umax

)
(7)
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where the maximum expected pressure and velocity in the computational domain are represented by
pmax and Umax. The true sound speed in the fluid is not used to increase the time step size and improve
the computational efficiency.

2.1.2 Optimal Non-Local Differential Operators

Calculating gradient and divergence in the flow field is a key part of computational fluid dynamics
because the continuity equation is solved through the divergence of the velocities. However, the
momentum equation is solved by the stress divergence and the velocity gradient. Eqs. (1)–(3) are the
governing equations in local form. The grid-like numerical methods divide the entire computational
domain into grids and apply local theory ideas to solve the governing equations numerically. For the
meshless method, it is necessary to discretize the entire computational domain into particles. Each
particle has the properties of density, mass, pressure, and velocity. Then, the governing equations are
discretized using the idea of non-local theory.

In the ULPH framework [17], the non-local differential operator is used instead of the local
operator to calculate divergence, gradient, and curl:

∇I · (•) :=
∫
HI

ω (xIJ) (� (•)) · (
M−1

I xIJ

)
dVJ , (8)

∇I ⊗ (•) :=
∫
HI

ω (xIJ) (� (•)) ⊗ (
M−1

I xIJ

)
dVJ , (9)

∇I × (•) :=
∫
HI

ω (xIJ)
(
M−1

I xIJ

) × (� (•)) dVJ (10)

where operators (∇ ·(•)), (∇⊗(•)), and (∇×(•)) represent the non-local divergence, gradient, and curl
operators, respectively; HI represents the support domain of particle I , as shown in Fig. 1, subscript J
denotes the family member of particle I , and xIJ = xJ −xI . The symbol (•) represents the arbitrary field
and Δ (•) := (•)J −(•)I is the finite difference operator. The function ω (xIJ) is the kernel function that
must meet specific criteria (this function will be discussed later). Lastly, M is the shape tensor defined
in the current configuration or the updated configuration [17]:

MI :=
∫
HI

ω (xIJ) xIJ ⊗ xIJdVJ (11)

The computational domain of ULPH is discretized as a sequence of particles with physical
properties. The above non-local differential operator can be discretely rewritten as:

∇I · (•) =
N∑

J=1

ω (xIJ) (� (•)) · (
M−1

I xIJ

)
VJ (12)

∇I ⊗ (•) =
N∑

J=1

ω (xIJ) (� (•)) ⊗ (
M−1

I xIJ

)
VJ (13)

∇I × (•) =
N∑

J=1

ω (xIJ)
(
M−1

I xIJ

) × (� (•)) VJ (14)
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Figure 1: Non-local theoretical models

The discretized form of the shape tensor Eq. (11) is reformulated as:

MI =
N∑

J=1

ω (xIJ) xIJ ⊗ xIJVJ . (15)

2.1.3 DiscreteForm of Governing Equations

In ULPH, the current configuration Ωn at the time t = tn is chosen as the reference configuration,
as described in [17,26], as shown in Fig. 1. The referential configuration is continuously updated as
the computation proceeds. Therefore, the governing equations below are calculated under the current
configuration.

Based on the above non-local differential operators and peridynamic theory [19], the continuous
equation can be obtained in the non-local discrete form in the ULPH framework by substituting the
non-local divergence operators Eq. (12) into the continuous equation Eq. (1):

DρI

Dt
= −ρI

N∑
J=1

ω (xIJ) (vJ − vI) M−1
I xIJVJ , (16)

where VJ is the volume of the fluid particle, VJ = mJ/ρJ , m is the mass of the fluid particle, and ω (xIJ)

is the kernel function. Selecting the kernel function is related to the numerical simulation’s accuracy,
efficiency, and stability. In this paper, the Gaussian kernel function [30] is adopted to all simulations
as the influence function ω and is defined as:

ω (r, h) = αd

(
e−(r/h)2 − C

)
r ≤ δ, (17)

where r is the distance between two neighboring particles I and J, h is the smoothing length typically
set to h = 1.2Δx (Δx is the initial spacing of the particles), δ (δ = 3h) is the size of the support domain
of the particle, d is the spatial dimension, C is generally set to e−9, and the normalized coefficient αd is
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a coefficient associated to spatial dimension and the smoothing length:

αd = 1
hdπ d/2 (1 − 10e−9)

. (18)

According to the state-based peridynamic theory, the non-local form of the momentum equation
[22] can be defined as:

ρI

DvI

Dt
=

∫
HI

(TI (xIJ) − TJ (xJI)) dVJ + b, (19)

where TI (xIJ) and TJ (xJI) denote the force state vector acting on particles I and J, and b is the external
body force:

TI (xIJ) = ω (xIJ) σ IM
−1
I xIJ , (20)

TJ (xJI) = ω (xJI) σ JM−1
J xJI . (21)

Since ω (xIJ) = ω (xJI) and xJI = −xIJ , Eqs. (20) and (21) are substituted into Eq. (19). The
momentum equation can be written as [31]:

ρI

DvI

Dt
=

∫
HI

ω (xIJ)
(
σ IM

−1
I + σ JM−1

J

)
xIJdVJ + b. (22)

The discrete form of the momentum equation is given by:

ρI

DvI

Dt
=

N∑
J=1

ω (xIJ)
(
σ IM

−1
I + σ JM−1

J

)
xIJVJ + b. (23)

The symmetry between the particles can be guaranteed using the σ IM
−1
I + σ JM−1

J form in the
momentum equation. Hence, the conservation of linear momentum and the conservation of angular
momentum are guaranteed.

In the Cauchy stress tensor expression defined by Eq. (2), the pressure p can be calculated through
the Tait equation of state in Eq. (6). According to the Tait equation of state, the density determines
the pressure of the fluid. Therefore, a small change in density will cause a large pressure oscillation.
For the fluid-structure interaction problems, pressure instabilities and density oscillations may occur
in the fluid particle duration simulation. The density filter algorithm [32] is adopted to avoid this issue
and obtain a stable and smooth pressure field, as follows:

ρnew
I =

∑
J ω (xIJ) mJ∑
J ω (xIJ) VJ

, (24)

where ρnew
I is the corrected density. Moreover, the corrections are performed every twenty steps to

reduce computation costs and avoid artificial diffusions.

The rate of shear strain tensor ε̇ in the proposed ULPH method can be written in a discrete form:

ε̇I =
((

N∑
J=1

ω (xIJ)
mJ

ρJ

vIJ ⊗ xIJ

)
M−1

I

)sym

− 1
3

(
N∑

J=1

ω (xIJ)
mJ

ρJ

vIJ · (
M−1

J xIJ

))
I. (25)

An artificial viscosity term can be added to the right-hand side of the equation of motion to
reduce unphysical or numerical oscillations and enhance stability when simulating impact/penetration
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problems. In this work, the Monaghan [13] type artificial viscosity function is used in the computation.
It is modified in [31] to obtain the artificial viscosity formula in the ULPH framework as follows:

ΠI = αhc0ρ0

N∑
J=1

ω (xIJ) πIJM−1
I xIJVJ , (26)

where α is the coefficient of the artificial viscosity term that ranges from 0 to 0.5 depending on the
problem, the term π IJ is expressed as follows:

πIJ =
⎧⎨
⎩

vIJ · xIJ

|xIJ|2 + (0.1h)
2 , vIJ · xIJ < 0

0, otherwise
. (27)

Therefore, the discretized motion governing the equation of ULPH after applying artificial
viscosity can be rewritten as follows:

ρI

DvI

Dt
=

N∑
J=1

ω (xIJ)
(
σ IM

−1
I + σ JM−1

J

)
xIJVJ + ΠI + b. (28)

2.2 Basic Concepts and Formulations of Non-Ordinary State-Based Peridynamics
In peridynamic theory, the research object in the spatial domain R is discretized into a series

of peridynamic particles containing all physical information, such as position, velocity, and density.
For every particle XJ (J = 1, 2, 3, . . . , nI) there is a neighborhood of radius δ in space. The horizon is
denoted asHx, as shown in Fig. 2. The particle interacts with every particle XJ (J = 1, 2, 3, . . . , nI) in its
neighborhood, u is the displacement vector of the particle, ξ IJ is the relative position, i.e., ξ IJ = XJ −XI ,
and the relative displacement is denoted by ηIJ , where ηIJ = u [xJ , t] − u [xI , t], as illustrated in Fig. 2.

Figure 2: Schematic diagram of the non-ordinary state-based peridynamics theory

In continuum mechanics, the equations of motion of a continuum with general dynamic motion
are [33]:

ρ0

..
u = ∇X · PT + ρ0b, (29)

where ρ0 is the current material density,
..
u is the acceleration of material point, ∇X denotes the

divergence of the first Piola-Kirchhoff stress P concerning the reference configuration, and b is the
body force density. In peridynamics, the above balance equation of linear momentum is replaced by a
non-local integral equation:

ρ0

..
u = L (x, t) + ρ0b. (30)
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In the NOSB-PD theory [22], L(x, t) is a non-local integration of force density vector f (x, x′):

L = ∫
V

f
(
xA, xB

)
dVxB

= ∫
HxI

[
TI

(
ξ IJ , YI

(
ξ IJ

)) − TJ

(
ξ JI , YJ

(
ξ JI

))]
dVXB ,

(31)

where TI

(
ξ IJ , YI

(
ξ IJ

))
is the force vector state acted on material point XI due to material point XJ ; the

same principle applies TJ

(
ξ JI , YJ

(
ξ JI

))
. Then, the governing equations of motion are rewritten in the

NOSB-PD form as:

ρ0

..
u =

∫
HxI

[
TI

(
ξ IJ , YI

(
ξ IJ

)) −TJ

(
ξ JI , YJ

(
ξ JI

))]
dVJ + ρ0b, (32)

where T is the force-vector state related to the stress of the first Piola-Kirchhoff; the unit of the force
state is N/m6.

T [xI , t]
〈
ξ IJ

〉 = ω
(
ξ IJ

)
PxI

K−1
xI

〈
ξ IJ

〉
, (33)

where K−1
xI

in Eq. (33) represents the inverse of the KxI
and KxI

is the shape tensor of the material point
XI defined as:

KxI
=

∫
HxI

ω
(
ξ IJ

)
ξ IJ ⊗ ξ IJdVxJ

, (34)

Parameter PxI
in Eq. (33) is the first Piola-Kirchhoff stress tensor associated with the Cauchy

stress tensor σ :

PxI
= J σ xI

F−T
xI

, (35)

where J = det FXI
, and FXI

is the non-local deformation gradient of the particle XI defined as follows:

FxI
=

∫
HxI

[
ω

(
ξ IJ

)
Y

〈
ξ IJ

〉 ⊗ ξ IJ

]
dVxJ

K−1
I . (36)

2.2.1 Constitutive Update under Finite Deformation

The zero-energy mode [34] in the NOSBPD model did have considerable significance to the
computational stability and numerical accuracy. In our work, we have employed a kind of finite
deformation algorithm which is proposed and used in previous work [35]. In the experience of our
computations, this algorithm is capable of zero-energy control when used with the elastic model,
Drucker-Prager constitutive model [35], with consideration of material fracture and failure.

Finite deformation happens during solid structure failure, and the Hughes–Winget algorithm [36]
calculates Cauchy stress as a nonlinear formula when there is finite deformation. According to the
continuum mechanics, by using displacement increment �u, a material point can be transformed from
its previous position in the current configuration of a solid body at time step n (xn) to its updated
position at time step n + 1 (xn+1). Consider the one-parameter family of configurations at the time step
n + α as follows:

xn+α = (1 − α) xn + αΔu (37)

α takes the value 0.5 in this work. Eq. (36) is the peridynamics formulation of the first derivative
of the position vector x under the reference configuration. According to the same derivation, the
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deformation gradient at the current configuration xn+α can be derived as:

Fn+α = ∂xn+α

∂X
=

⎛
⎝ ∑

J∈HXI

ω (|ξ |) (
xJ,n+α − xI ,n+α

) ⊗ ξ

⎞
⎠ · K−1 (38)

Meanwhile, the gradient of displacement increment Δu with respect to the reference configuration
can be written as:

C = ∂ (Δu)

∂X
=

⎛
⎝ ∑

J∈HXI

ω (|ξ |) (ΔuJ − ΔuI) ⊗ ξ

⎞
⎠ · K−1 (39)

Therefore, the gradient of Δu at the configuration (xn+α) can be derived by the chain rule as:

G = (∂Δu)

∂xn+α

= C · F−1
n+α

(40)

where G is the incremental deformation gradient, which can be written as the strain increment and the
rotation increment:

γ = (
G + GT)

/2 (41)

ω = (
G − GT)

/2 (42)

Therefore, the effective stress increment can be calculated by the following equation:

Δσ = De : γ (43)

Finally, the constitutive update equation in the large deformation formula can be rewritten as
follows:

σ n+1 = σ̂ n + Δσ (44)

σ̂n = RT · σn · R (45)

R = I + (I − αω)
−1 · ω (46)

2.2.2 Failure Criterion

When the relative position between two particles meets certain conditions, their interaction will
disappear forever, destroying the bond. A bond-breaking indicator μ [37,38] is introduced to describe
the fracture of bonds:

μ (XI , t, ξ) =
{

1 s (t, ξ) < s0

0 otherwise , (47)

where s0 is the extreme or critical stretch for a given bond, and s is the bond stretch defined as s =
(|ξ + η| − |ξ |)/|ξ |:
s0 = √

5G0/(9Kδx), (48)

where G0 represents energy release rate [39].
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In peridynamics, enabling failure at the bond level is one of its advantages leading to unambiguous
local damage ϕ at a material point XI defined as:

ϕ (XI , t) = 1 −
∫

HxI
μ (XI , t, ξ) dVXJ∫

HxI
dVXJ

. (49)

2.3 The Solid Boundary Conditions
When the ULPH method is used to numerically simulate problems related to fluid dynamics,

there will be boundary types such as free surface, solid wall, and periodic boundaries. As shown in
Fig. 3a, the support domain of fluid particles near the boundary will be truncated by the boundary,
causing calculation errors and affecting the calculation accuracy. Therefore, investigating problems
with boundaries requires special treatment at the boundaries.

Figure 3: The sketch of different solid boundary treatment methods

For the traditional particle method, there are three main effective methods for solid wall boundary
processing: repulsive boundary method [13], mirror particle boundary [32], and fixed ghost boundary
[40], as shown in Fig. 3b. Since the repulsive boundary method has only a single layer of boundary par-
ticles and does not address the problem of nuclear truncation, it may produce unphysical perturbations
to the flow field pressure. The mirror particle boundary must dynamically generate virtual particles at
each step, reducing the computational efficiency. Hence, the mirror particle boundary is only suitable
for regular plane or right-angle boundaries. Moreover, it is difficult to determine the position of the
mirrored virtual particle for complex boundaries. Hence, the fixed ghost boundary method is adopted
in the current work.

The fixed ghost boundary method sets three to four layers of virtual boundary particles at the
boundary to simulate wall conditions, which does not need to mirror the generated particles in each
time step and complements the support domain of fluid particles to ensure that there is no kernel
truncation problem. The physical variables of the fixed ghost boundary particles are interpolated from
the neighboring fluid particles, thus ensuring effective interaction with the adjacent fluid particles.
With the fixed ghost boundary method, various boundary conditions, including no-slip or free-slip
boundary conditions, can be flexible-handled, leading to more accurate and stable fluid simulations
[31,41]. The viscous force between ghost and fluid particles is trivial for the free-slip solid boundary
condition. For the no-slip solid boundary condition, a virtual velocity vs is introduced to implement
the interaction of the dummy particles of the fluid particles as follows:

vs = 2Ûvs − ṽI , (50)
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where subscript S represents the ghost particle, Ûvs represents the prescribed velocity of the solid ghost
particle I , and ṽI represents the interpolation from the neighboring fluid particles as [40]:

ṽI =
∑Nf

J=1 vJω (xIJ)∑Nf
J=1 ω (xIJ)

, (51)

where Nf refers to the number of neighborhood fluid particles within the horizon of a solid ghost
particle I . The viscous force between solid wall particles and fluid particles can be obtained by
substituting Eq. (50) into the viscous force calculation formula.

The pressure ps of the solid virtual particle can also be determined by interpolating its neighboring
fluid particles. Moreover, the pressure of the solid wall particle can be regularized using the Shepard
kernel [40]. Hence, the final calculation formula for the pressure of the solid wall particle can be
obtained as follows:

ps =
∑Nf

f =1 pf ω
(
xsf

) − (g − ai) · ∑Nf
f =1 ρf xsf ω

(
xsf

)
∑Nf

f =1 ω
(
xsf

) , (52)

Eq. (52) shows that only the fluid particles in the support domain are considered in the interpo-
lation calculation of the solid wall particle pressure. In Eq. (52), ai is the acceleration of the solid wall
boundary [25].

For the fixed solid wall boundary condition, the acceleration of the wall particle is set to ai = 0.
Based on the pressure of the solid particle obtained by interpolation, the density of the solid particle
can be evaluated by the equation of state [25]:

ρI = pI

c2
0

+ ρ0. (53)

Subsequently, the mass of the solid particle can be obtained as:

mI = ρIV0, (54)

where V0 is the initial volume of a solid particle.

2.4 Time Integration Scheme
After discretization of the fluid-structure coupling model, additional solution strategies and

updated algorithms are required to meet the accuracy and stability requirements during calculation
and computer program implementation of the boundary conditions. This section focuses on the time
integration method for explicit dynamical equations and the combined solution strategy for fluid and
solid solvers.

Choosing the appropriate time integration method will also significantly affect the running
efficiency of the program. The velocity and displacement of the solid particle for the solid part of
PD calculated in this paper are updated by the Velocity-Verlet time integration method with given
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boundary conditions and initial conditions:

.
u
[

xi, t + Δt
2

]
= .

u [xi, t] + Δt
2

× ..
u [xi, t]

u (xi, t + Δt) = u (xi, t) + Δt × .
u

[
xi, t + Δt

2

]
,

.
u [xi, t + Δt] = .

u
[

xi, t + Δt
2

]
+ Δt

2
× ..

u [xi, t + Δt]

(55)

where Δt is the time step, u̇ and u are the velocity and displacement vectors, respectively. The size
of the time step t should satisfy the CFL condition to maintain the stability and accuracy of the
simulation [25].

In this study, the predictor-corrector method was used for the ULPH time integration of the fluid
part (divided into two stages) due to the nature of the updated Lagrangian particle hydrodynamics
algorithm:

In the prediction step In the correction step⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ
n+ 1

2
I = ρn
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2

(
dρ

dt

)n
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2
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I + Δt
2

(
dv
dt

)n

x
n+ 1

2
I = xn

I + Δt
2
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2
I
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2
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I + Δt
(

dv
dt

)n+ 1
2

.

xn+1
I = xn

I + Δtvn+1
I

(56)

3 NOSB-PD with ULPH Coupling Scheme

In this study, the partition decoupling solution method is used to solve the governing equations of
the fluid-structure coupling system. The fluid and solid parts are solved separately by their solvers for
the partition decoupling solution. Moreover, the data are exchanged through the coupling interface to
meet the coupling conditions. The NOSB-PD theory is utilized in the solid region to describe the
material behavior of solids due to its ease of handling damage or rupture processes. In contrast,
the ULPH is used to model fluids. Therefore, a key step is dealing with the coupling interface in
the computational domain of PD-ULPH to guarantee the transfer of force and deformation. Fig. 4
illustrates the PD-ULPH coupling scheme based on virtual particles.

Figure 4: Schematic illustration of the PD-ULPH coupling scheme
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The force transfer mechanism from ULPH particles to PD particles is first considered. It is
assumed there is a NOSB-PD particle A near the interface whose horizon contains a ULPH particle
B. When the force state TA

(ξ , Y (ξ)) of particle A is computed, the force state of the solid particle is
calculated separately, ignoring the fluid particles in the immediate neighborhood. Only the forces of
solid particles on solid particles in the support domain are considered.

There are usually two approaches to the force exerted by a fluid particle on a solid particle.
A convenient approach is implementing the analysis from the continuum perspective. The forces
exerted on solid bodies can be calculated by integrating the stresses along the solid (structures) surface
(boundary) [42].

The other approach involves directly applying the pressure of the neighboring fluid particles in
the support domain of the solid particle to the fluid particle, obtaining the force of the fluid acting on
the solid. This approach is adopted here, where A represents the surface area of the solid particle.

FB
p =

Nf∑
B=1

pBAA

VA

xAB

|xAB| (57)

A similar situation to the one mentioned above occurs when a peridynamic particle A is located
inside the support zone of a ULPH particle. When the interaction force acting on a ULPH particle
is calculated and induced by a peridynamic particle, the peridynamic particle is considered a ULPH
particle. As a result, this particle is involved in the equation’s computation of the shape tensor and the
spatial velocity gradient tensor of the fluid particle. Therefore, the peridynamic particle participates
in calculating every conservation law for that ULPH particle. For example, for the ULPH particle B,
its linear momentum equation reads as:

ρB

DvB

Dt
=

N∑
A=1

ω (xBA)
(
σ BM−1

B + σ AM−1
A

)
xBAVA + ΠB + b (58)

For a peridynamic particle A, which is treated as a ULPH particle, it is necessary to obtain its
pressure and velocity v when using Eq. (3) to calculate σ A. Its pressure is interpolated from the ULPH
particle in the neighborhood to obtain Eq. (52). The density and mass are obtained via Eqs. (53)
and (54), and the velocity is calculated from Eq. (50). Therefore, a fixed ghost boundary condition
generates interaction between virtual particle A and fluid particle. Moreover, solid particles will
provide fluid-solid boundaries for fluid particles. Lastly, the pressure interpolated on the solid will
generate repulsive forces for fluid particles, preventing particles from penetrating each other.

It is worth mentioning that the shape tensor of the liquid will become an ill-conditioned matrix
in this coupling method due to the influence of the solids in its neighborhood. A small disturbance
will cause a large change in the inverse of the shape tensor when inverting the ill-conditioned shape
tensor, affecting the calculation accuracy. Therefore, the fluid is calculated in the current configuration
when calculating the shape tensor. Moreover, the solid in the neighborhood is also in the current
configuration. Lastly, the solid should remove the influence of the fluid in the neighborhood and
be calculated in the initial configuration.

4 Validation, Application, and Discussion

This chapter verifies the solid and fluid parts through numerical examples, confirming the
effectiveness of the proposed coupling algorithm and the entire ULPH-NOSBPD framework. Then,
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the accuracy and stability of the constructed fluid-structure coupling method are compared through
numerical modeling and simulation analysis of fluid-structure coupling problems.

4.1 A Cantilever Beam Subjected to Concentrated Load
The quasi-static problem with a two-dimensional cantilever subjected to a concentrated force is

considered to verify the effectiveness of the solid solver. Considering the quasi-static problem, the slow
loading of the concentrated force on the solid structure is adopted.

The initial geometry and a peridynamic model of the beam are shown in Fig. 5. At the same time,
the configuration parameters are summarized in Table 1. For the present beam, the analytical solution
for deflection of the midpoint of the free end can be given as [43]:

s (L) = −F
(

L3

EI
+ 3L

2GA

)
, (59)

Figure 5: Initial geometry of the cantilever beam: (a) initial geometry model; (b) peridynamic model

Table 1: Physical and numerical parameters for the cantilever beam

Parameters Values

L 1 (m)
H 0.2 (m)
Solid density ρs 2400 (kg/m3)
Poisson coefficient 0.3
Young’s modulus E 22 (GPa)
Particle spacing Δx 0.01 (m)
Time increment Δt 5 × 10−6 (s)

The concentrated load is represented by F , and the bending and shear stiffnesses are represented
separately by EI and GA.

As shown in Fig. 6, the displacement fields calculated by the near-field dynamic model and
the finite element calculation model are compared to the concentrated load of the two-dimensional
cantilever beam. It can be observed that the displacement fields obtained by the two methods are
consistent.
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Figure 6: (a) horizontal and vertical displacements given by FEM [43], (b) the corresponding peridy-
namics results

It can be concluded that the NOSB-PD structure solver proposed in this study can qualitatively
and quantitatively simulate the elastic solid problem. Hence, this structure solver will be used later in
the fluid-structure interaction model.

4.2 Water Column Collapse Problem in a Tank
The ULPH solver is validated by simulating the famous water column collapse problem in a tank.

The length and height of the water column are taken as L = H = 57 mm, while the tank’s length is 4H.
The geometric model of the problem is the same as in Sun et al.’s work [44], as shown in Fig. 7. Both
sides and bottom boundaries are slip-free; the relevant parameters are shown in Table 2.

Figure 7: Initial geometric configuration of the water column collapse problem in a tank
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Table 2: Physical and numerical parameters

Parameters Values

L 0.057 (m)
H 0.057 (m)
Water density ρw 1000 (kg/m3)
Artificial viscosity coefficient α 0.02
Reynolds number 120
Particle spacing Δx 0.001 (m)
Time increment Δt 5×10-6 (s)
Sound speed 40 (m/s)

Fig. 8 shows the contour map of the pressure field every 0.1 s. At each instance, the ULPH solver
accurately captures the pressure gradient distribution and the surface profile of the water before
and after hitting the left solid wall boundary. The solver is also highly consistent compared to the
results of SPH [44,45]. It can be seen that the pressure field and free surface profile of the current
ULPH algorithm pressure simulation agree with the simulation results by Rahimi et al. [45]. A further
comparison of the water flow is also given in Fig. 9. The graph in this figure shows the non-dimensional
horizontal change of the waterfront toe.

Figure 8: (Continued)
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Figure 8: Contour plot of the pressure field and surface evolution of the fluid by: (a) ULPH, and (b)
SPH [45]

Figure 9: Comparison of the simulated and tested [45] time evolution of the waterfront

4.3 A Sloshing Tank
The ULPH single-phase flow model is utilized to investigate the tank sloshing problem in this

section. The model parameters of the numerical example are set according to the experiment of
Faltinsen et al. [46] The length of the rectangular tank is L = 1.73 m, the height is D = 1.15 m,
and the water depth in the tank is H = 0.5 m at the initial time, as shown in Fig. 10. At the free
surface, a measurement point FS1 is set at 0.05 m from the left wall of the liquid tank, which is used to
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record the evolution of the water surface height over time. The fluid density in the rectangular tank is
ρ = 1000 kg/m3, and the gravitational acceleration is g = 9.81 m/s2. The Reynolds number is 120, the
speed of sound is 30 m/s, and α is 0.1. The rectangular liquid tank is excited by a regular sinusoidal
excitation in the horizontal direction (x-axis). The motion velocity of the rectangular liquid tank [47] is:⎧⎨
⎩u (t) = −2π

T
A0 sin

(
2π

T
t
)

v (t) = 0
, (60)

where A0 = 0.032 m is the amplitude and T = 1.875 s is the period. The initial particle spacing of the
computational domain is �x = 0.01 m. This example is simulated for 6 s, and the reference sound
speed is set to c0 = 40 m/s.

Figure 10: Sketch of the initial setup of the sloshing tank

Fig. 11 shows the evolution of the sloshing liquid level and the distribution of the pressure field in
the tank at different times under horizontal excitation. The tank moves back and forth in the horizontal
direction under periodic external excitation, causing the water in the tank to move back and forth and
produce large liquid surface deformation. The water pressure field in the figure is smooth, without
pressure oscillation. Moreover, the distribution of particles at the liquid surface is continuous, without
non-physical gaps. Therefore, the stability and accuracy of the ULPH fluid model when simulating
large deformation-free surface flow problems can be confirmed.

Fig. 12 shows the evolution of the water surface height at the measured point over time and
compares it with the experimental results of Faltinsen et al. [46]. It can be seen that the ULPH measured
results agree with the experimental data.

4.4 Breaking Dam Impacting on An Elastic Plate
Dam-break flows impacting elastic plates are modeled to demonstrate the effectiveness of the FSI

framework proposed in this work for violent free-surface flows interacting with deformable structures.
Dam-break plates have been extensively simulated as an appropriate benchmark to validate numerical
models of FSI problems [44,45,48,49].
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Figure 11: The development of the free surface and pressure field distribution of the rectangular tank
sloshing at different times under horizontal excitation

Figure 12: The change of the water surface height with time at the measurement point FS1

Fig. 13 shows the initial appearance of this model, with water of width L and height 2L initially
located on the left and bottom walls. The distance between the two vertical walls is 4L. An elastic
baffle is fixed at the bottom end at a distance of L from the water column; the top of the baffle is free,
and the bottom is fixed. The water column collapses rapidly and rushes towards the right boundary
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under the force of gravity. Strong FSI occurs when the flow front collides with the baffle. In this case,
baffles are considered as ideal elastomers. The material and fluid parameters of the baffle are shown
in Table 3.

Figure 13: Geometric configuration of the water impact on an elastic plate

Table 3: Physical and numerical parameters

Parameters Values

L 0.146 (m)
H 0.08 (m)
a 0.012 (m)
Solid density ρ 2500 (kg/m3)
Poisson coefficient 0.08
Young’s modulus E 1 (MPa)
Particle spacing Δx 0.002 (m)
Time increment Δt 5 × 10−6 (s)
Sound speed 60 (m/s)
Reynolds number 120
Artificial viscosity coefficient α 0.1

Fig. 14 shows the simulation of the dam-break flow impacting the baffles, the fluid’s pressure
distribution, and the structure’s deformation obtained using other numerical models. The results show
that the coupled model successfully reproduces the pressure field and structural deformation near the
fluid-solid interface. Moreover, the flow state, pressure distribution, and structural deformation are
consistent with the results of SPH-PD [44,45,48,49] simulation and PFEM [50] simulation.

Fig. 15 shows the evolution of the horizontal displacement of the free end of the baffle, i.e., point
A in Fig. 13. Once the wavefront of the burst dam reaches the elastic plate, the pressure at the lower
part of the fluid-elastic plate interaction area increases rapidly, maximizing the elastic plate deflector.
At this stage (0.15–0.23 s), the free end of the elastic plate undergoes high-speed deformation. As
the fluid moves on the plate, its deflection decreases with the fluid pressure, followed by a rebound.
The water column flowing down the baffle eventually hits the vertical wall on the right side. Here,
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the impact on the hard wall produces a violent splash, undergoes a regional instantaneous pressure
increase, and finally gradually falls due to gravity.

Figure 14: Dam break flow impacting the baffle based on different numerical models

Figure 15: Comparison of the predicted evolution of the horizontal displacement of point A based on
different numerical models [44,45,48–50]

The Drucker-Prager model [51] was introduced into the solid solver established by NOSB-PD to
simulate the impact of water flow on the geotechnical baffler and consider the damage problem of the
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solid in the solid constitution in the previous section with a critical bond stretch ratio of s0 = 0.069. The
simulation’s other parameters were identical to [52]. The parameters in the Drucker-Prager constitutive
are given in Table 4. Fig. 16 shows simulation snapshots of the dam-break flow propagation and the
brittle fracturing of the baffle. The pressure distribution in the water and the displacement in the x-
direction field near the baffle were obtained.

Table 4: Soil mechanical parameters of Drucker-Prager constitutive

Mechanical parameter Value

Density ρ 2500 (kg/m3)
Young’s modulus E 30 (MPa)
Poisson’s ratio 0.25
Dilation angle ψ 0◦

Friction angle ϕ 13◦

Cohesion c 5 (KPa)

Figure 16: (Continued)
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Figure 16: Snapshot of the pressure and displacement in the x-direction obtained by the proposed
method

4.5 Interaction of a Dam-Break Wave with an Elastic Sluice Gate
The second FSI validation example for the ULPH-PD coupled model is the interaction between

the dam-break flow and the elastic gate, first investigated experimentally and numerically by
Yilmaz et al. [53]. The initial geometry of the model is shown in Fig. 17. The height of the water
column is 0.2 m, and the width is 0.5 m. The water column is initially in a static state. An elastic gate
is placed 0.3 m away from the water column; the length of the elastic gate is 0.125 m, and the width is
0.007 m. The material and specific fluid parameters of the elastic gate are shown in Table 5.

Figure 17: Geometric configuration of the interaction between a dam-break wave and an elastic sluice
gate

Fig. 18 compares the results of the PD-ULPH coupled model of this problem with the experimen-
tal results. The PD-ULPH model can predict the water-free surface’s position and the elastic gate’s
deformation. Moreover, the pressure field and horizontal displacement field are also smooth. At t =
0 s, the solid wall on the right is released, and the water column collapses. After 0.2 s, the fluid starts
to impact the elastic gate, and the outlet formed by the hydraulic pressure of the elastic gate gradually
increases. The outlet gradually decreases with water pressure when it reaches the maximum value.
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Table 5: Physical and numerical parameters

Parameters Values

Solid density ρ 1250 (kg/m3)
Poisson coefficient 0.4
Young’s modulus E 4 (MPa)
Particle spacing Δx 0.004 (m)
Time increment Δt 5 × 10−6 (s)
Sound speed 60 (m/s)
Reynolds number 120
Coefficient α 0.05

Figure 18: (Continued)
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Figure 18: Comparison frames of the experimental [53] and numerical results at various time steps

Fig. 19 shows the horizontal displacement comparison at measurement point A. The coupled
simulation results agree with the experimental measurement data [53].

Figure 19: Time histories of horizontal displacements at the measurement point A

4.6 Dam Break Flow through an Elastic Gate
A dam-break flow through an elastic gate is a classic FSI validation case. Antoci et al. [54]

investigated this experimentally and numerically, including the configuration and elastic deformation
of the dam-break flow. In addition, other numerical models investigated this case, such as the SPH-PD
model [43,44].

Fig. 20 illustrates the initial geometry of this model. The water column is initially stationary, and
an elastic plate is placed at the outlet with the top end fixed and the lower end free. The plate deforms,
and the water column starts to collapse due to the hydrostatic pressure applied by the water column.
Then, the water flows through the gate to the right boundary. The geometric and configuration
parameters are shown in Table 6.



CMES, 2024, vol.141, no.1 517

Figure 20: Model configuration for the dam break test through an elastic gate

Table 6: Physical and numerical parameters

Parameters Values

H 0.14 (m)
L 0.079 (m)
W 0.1 (m)
a 0.005 (m)
Solid density ρ 1100 (kg/m3)
Poisson coefficient 0.47
Young’s modulus E 7.8 (MPa)
Particle spacing �x 0.001 (m)
Time increment �t 5 × 10−6 (s)
Sound speed 30 (m/s)
Reynolds number 120
Artificial viscosity coefficient α 0.08

Fig. 21 compares the numerical results of the proposed ULPH-PD model with the experimental
results previously published by Antoci et al. [54]. The fluid’s pressure contours and the elastic gate’s
displacement field are plotted. The proposed model accurately reproduces the experimental process,
including the evolution of the water level and the deformation of the elastic gate. Furthermore, the
pressure and horizontal displacement fields are also smooth. In the simulation, the high-pressure point
is mainly located in the lower right corner of the water tank and the narrow outlet at the bottom of
the elastic plate. In addition, the water outlet formed by the elastic plate due to water pressure is also
gradually reduced due to the gradual decrease of water pressure and the rebound of the elastic plate.
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Moreover, the horizontal and vertical displacements at the bottom of the elastic plate are presented
in Fig. 22 and compared with experimental and other simulation results. Good agreement between
the current results and experiments indicates better performance of the proposed ULPH-PD model in
dealing with the FSI problem.

Figure 21: (Continued)
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Figure 21: comparison of experimental photographs [54] with snapshots of the proposed numerical
model

Figure 22: Comparison of displacements at the bottom center point of the elastic gate with different
coupling approaches [43,44,54–56]: (a) horizontal displacement, and (b) vertical displacement

5 Conclusions

The FSI problem was modeled using two grid-free methods in this study–the recently developed
Updated Lagrangian Particle Hydrodynamics (ULPH) method and the Non-Ordinary State-Based
Peridynamics (NOSB-PD) method. The fluid and solid phases were modeled by NOSB-PD and ULPH
respectively in this numerical framework. The two solvers were coupled by partition coupling, solving
the interaction problem between the fluid and the deformable structure. Since ULPH was proposed
based on the PD and combined with SPH, both have similarities in non-locality and form and unique
advantages in fluid-structure interaction problems.

In the validation phase, the fluid solver modeled using ULPH was validated through two
benchmark cases: The water column collapse problem in the tank and the liquid tank sloshing problem.
A benchmark test of a cantilever subjected to a concentrated force at one end was performed to verify
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the accuracy of the solid solver modeled using NOSB-PD. Moreover, the model’s accuracy was verified
according to the load-deflection results. Then, FSI benchmarks without failure were performed,
including dam-break flow impacting the elastic plate, dam-break through an elastic gate, and dam-
break flow impacting the elastic gate. The simulation results agree with other sources’ experimental
and numerical results regarding structure deformation and flow pattern. In addition, the pressure and
displacement fields are also quite smooth, indicating that the proposed ULPH-PD method is accurate
and reliable. Finally, the Drucker-Prager constitutive model was used in the NOSB-PD model and
applied to the problem of dam-break flow impacting the elastic plate. The model was used to solve
and analyze the FSI problem with structural deformation and failure.

The proposed FSI solver requires further enhancement to adapt to practical engineering appli-
cations. Suitable turbulence models should be developed for fluid solvers, while solid solvers should
simulate the deformation and failure of complex solid structures, so the advantages of non-ordinary
state-based peridynamics should be combined with the constitutive under classical continuum mechan-
ics for further study.
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