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ABSTRACT

Driven piles are used in many geological environments as a practical and convenient structural component. Hence,
the determination of the drivability of piles is actually of great importance in complex geotechnical applications.
Conventional methods of predicting pile drivability often rely on simplified physical models or empirical formulas,
which may lack accuracy or applicability in complex geological conditions. Therefore, this study presents a practical
machine learning approach, namely a Random Forest (RF) optimized by Bayesian Optimization (BO) and Particle
Swarm Optimization (PSO), which not only enhances prediction accuracy but also better adapts to varying
geological environments to predict the drivability parameters of piles (i.e., maximum compressive stress, maximum
tensile stress, and blow per foot). In addition, support vector regression, extreme gradient boosting, k nearest
neighbor, and decision tree are also used and applied for comparison purposes. In order to train and test these
models, among the 4072 datasets collected with 17 model inputs, 3258 datasets were randomly selected for training,
and the remaining 814 datasets were used for model testing. Lastly, the results of these models were compared
and evaluated using two performance indices, i.e., the root mean square error (RMSE) and the coefficient of
determination (R2). The results indicate that the optimized RF model achieved lower RMSE than other prediction
models in predicting the three parameters, specifically 0.044, 0.438, and 0.146; and higher R2 values than other
implemented techniques, specifically 0.966, 0.884, and 0.977. In addition, the sensitivity and uncertainty of the
optimized RF model were analyzed using Sobol sensitivity analysis and Monte Carlo (MC) simulation. It can be
concluded that the optimized RF model could be used to predict the performance of the pile, and it may provide a
useful reference for solving some problems under similar engineering conditions.
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1 Introduction

The role of piles is often to transfer structural loads from the upper to the lower geotechnical
layers through the formation media in most engineering environments. Pile driving usually involves
hammering, where the impact forces can generate tensile and compressive stresses within the pile.
When these stresses exceed the resistance strength of the pile materials, it may lead to fracture or
damage of the pile [1,2]. Therefore, maximum tensile stress (MTS), maximum compressive stress
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(MCS), and blows per foot (BPF) are critical technical parameters that must be carefully considered
during pile design and driving processes [3,4]. By predicting these parameters through calculations in
the design phase, the design of the piles can be effectively optimized, achieving a construction that is
both safe and economical.

In early engineering practices, the driving behaviour of piles was often predicted based on the
point mass model from Newtonian mechanics. However, this method, which overlooks many practical
factors, has limited accuracy. In 1931, Isaac [5] discovered that energy is transmitted through the
propagation of impact stress waves in the hammer assembly and the pile, which fundamentally differs
from Newton’s point mass model. In 1960, Smith [6] employed the theory of stress waves to propose
an empirical formula for predicting pile driving characteristics. Although this formula simplifies
the pile into a series of discrete mass points, it ignores the pile’s lateral vibrations and the complex
nonlinear behaviour of the soil. In 1990, Nath [7] introduced the finite element analysis technique
using the “continuous method” for pile driving analysis. While theoretically providing a more detailed
analysis, this approach faces challenges of time consumption and parameter calibration in large-
scale engineering applications. Additionally, traditional methods of pile driving analysis exhibit many
uncertainties and nonlinear responses [8–10], complicating and increasing the uncertainty in problem
analysis. Therefore, it is necessary to develop more accurate predictive models, such as machine
learning models. Machine learning involves learning from historical data and dynamically adjusting
and refining algorithms based on the encountered data patterns rather than strictly adhering to
predetermined static models. This not only enhances the stability of predictions but also improves
accuracy.

In recent years, many researchers have utilized artificial intelligence (AI) algorithms [11–13] such
as support vector machines (SVM) [14], artificial neural networks (ANN) [15–17], and propagation
neural network (BPNN) [18] as effective solutions in geotechnical problems. These research methods
have important guiding significance for engineering design. For example, Das et al. [19] predicted
the bearing capacity of piles through the use of the ANN model. In addition, the SVM model was
proposed by Kordjazi et al. [20] to evaluate the bearing capacity of the pile under axial load conditions.
Later, Zhang et al. [21] evaluated the ultimate bearing capacity of the driven piles using back
BPNN regression model and multivariate adaptive regression splines and performed performance
comparisons on the developed methods [22]. Although machine learning has made significant progress
in addressing geotechnical engineering issues, existing models still exhibit limitations under various
environmental conditions. Training an ANN is often a time-consuming process, largely because it is
difficult to predict at the outset which network structure and parameter configuration will yield the best
performance [23]. Additionally, while SVM demonstrates good accuracy when handling large datasets,
its computational speed can be slow when dealing with complex problems. Concurrently, the random
forest (RF) algorithm is renowned for its robust capability to process and interpret complex and
nonlinear interactions among variables, making it particularly suitable for solving complex engineering
challenges that traditional methods struggle to address [24–26].

This study proposed an optimized RF method for the forecast of the MTS, MCS, and BPF
associated with the drivability of the pile. In addition to the optimized RF model and for comparison
purposes, other models have been constructed, including SVM, k-nearest neighbour (KNN), extreme
gradient boosting, and decision tree (DT). The arrangement of this article is as follows. Section 2
introduces RF and optimization methods in detail and briefly describes XGBoost, KNN, support
vector regression (SVR), and DT. Section 3 presents the definition of data and variables. In Section 4,
the training process of the models and their comparisons will be given. Finally, the last section presents
conclusions and recommendations for further research.
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2 Methodology
2.1 Machine Learning Models

RF enhances model generalization and predictive accuracy through the integration of multiple
Decision Trees (DTs) [27,28]. Within the RF model, each tree is trained on a randomly selected subset
of samples and features from the original dataset. This randomness aids the model in better adapting
to diverse data distributions, thereby improving the overall stability and performance of the model [29–
31]. DTs utilize the Mean Squared Error (MSE) to select the optimal splitting point during training,
continuing until no additional features are available or the minimum MSE is achieved. The final
prediction result of the forest is obtained by averaging the predictions from all the trees, the formula
is as follows:

Y (x) = 1
K

K∑
i=1

Yi(x) (1)

where Y is the RF prediction result; K is the number of trees; Y i is the prediction result of the ith
decision tree.

RF regression proves highly effective in analyzing nonlinear and collinear data, particularly as
it does not require the assumption of a specific mathematical model form [31]. In this study, the
RF model integrates multiple DTs to manage the diversity of pile drivability performance data, thus
enabling the analysis and understanding of the drivability parameters of piles under various geological
conditions. Fig. 1 illustrates the process of building the RF model in this study.

Figure 1: Flowchart of RF (RMSE: root mean square error)

In addition to the RF model, this study employs several commonly used regression methods to
predict the drivability of piles, including XGBoost, DT, SVR, and KNN. For a detailed explanation
of these models, readers are referred to previously published literature [32–35].
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2.2 Particle Swarm Optimization
Particle Swarm Optimization (PSO), developed by Eberhart and Kennedy in 1995, is a metaheuris-

tic optimization algorithm inspired by the foraging behaviour of birds. In PSO, each optimization
problem is represented as a “particle” in the search space. Each particle possesses a fitness value
determined by the objective function being optimized and a velocity dictating its direction and distance
of movement. As the optimization progresses, particles adjust their movements to converge toward the
current optimal solutions within the solution space. Suppose that Xi = (xi1, xi2, xi3, . . . , xin) represents
the position vector of particle i, and Vi = (vi1, vi2, vi3, . . . , vin) represents the velocity vector of particle
i [36,37], where n is the dimension size of the optimization problem. To have more control on the
velocity, an inertia weight (W ) can be described in the velocity equation [38]. Then, the speed vector
iteration formula can be presented as follows [39–42]:

νi = Wνi + c1r1 (Pbesti − xi) + c2r2 (Gbesti − xi) (2)

xi = xi + νi (3)

In the above formulas, Pbesti and Gbesti represent the historical best position vector of particle
i and the best position vector in the history of the population, the parameters c1 and c2 are called
learning factors, and r1 and r2 are two random probability values distributed in [0,1], W is the inertia
weight that is used to balance global and local search ability [43].

Through this mechanism, the PSO algorithm continuously learns from its own and the popula-
tion’s historical information, optimizing the search process and gradually converging to the optimal
solution. Additionally, the inertia weight w is an important parameter in PSO as it influences the
velocity update and global search capability of the particles. In this study, the inertia weight w in the
PSO algorithm was varied adaptively. Specifically, the inertia weight w decreases linearly during the
iterations, starting from an initial value wmax = 0.9 and reducing to a final value wmin = 0.4. Fig. 2
illustrates the PSO optimization process.

Figure 2: PSO optimization flowchart
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2.3 Bayesian Optimization
Bayesian optimization (BO) differs from traditional gradient-based methods in that it uses a

Gaussian process model to reveal the hidden relationships between hyper-parameters and the loss
function. In the Bayesian tuning process, suppose a set of hyper-parameter combinations X =
(x1, x2, . . . , xn) (xn represents the value of a hyper-parameter), and this set of hyper-parameters and
the loss function f (x) that we need to optimize have a functional relationship [44]. When the value
of x∗ is taken, the optimal Y = f (x∗) can be obtained. The first thing to mention is the fact that
the Gaussian process is a normal distribution. It can then be assumed that this process of finding
the optimal parameters is a Gaussian process [45,46]. The core steps of the BO algorithm are as
follows: First, the sample point D = {(Xt1, Yt2)} is used to estimate and update the Gaussian process
f (x) ∼ GP (E (x) , K (x, x,)). Then, the acquisition function EI(x) is then used to guide the new
sampling.

EI (x) = (
μ (x) − f

(
x+) − ξ

)
ϕ (Z) + σ (x) φ (Z) (4)

Z = μ (x) − f (x+) − ξ

σ (x)
(5)

where ϕ is the cumulative distribution function of the standard normal distribution, φ is the probability
density function of the standard normal distribution, and ξ is a non-negative parameter that controls
the trade-off between exploration and exploitation.

BO, in principle, models the hidden relationship between hyperparameters and the loss function
using a Gaussian process. This fitted function provides guidance on optimal parameters for the next
iteration. By continuously adding sample points, the posterior distribution of the objective function
is updated for a given optimized objective function [47,48]. For more comprehensive insights and
discussions, other studies available in the literature can be found [49,50]. Fig. 3 illustrates the process
of BO.

Figure 3: BO flowchart
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3 Materials
3.1 Database for Modelling

This article collected a database of more than 4000 piles from the North Carolina project [51],
which have been used in construction projects. The input of this database contains 17 characteristic
parameters (concerning the information of hammer, hammer cushion material, pile information, and
soil information), and the output is three target parameters (i.e., MCS, MTS, and BPF). The frequency
distributions of the MCS, MTS, and BPF are shown in Fig. 4. It can be seen in Fig. 4 that MCS is
approximately normally distributed, while MTS and BPF show skewed distributions and are skewed
to the side where the data is small. The input and output parameters with their ranges are described in
Table 1. Moreover, the correlation analysis between the influencing factors is also performed in Fig. 5.
Fig. 5 shows the correlation coefficients between the variables. The closer the correlation coefficient is
to 0, the worse the correlation between the two variables.
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Figure 4: Frequency distribution of each output variable: (a) MCS data, (b) MTS data, and (c) BPF
data
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Table 1: Summary of variables definition

Number Parameter Description Operation

X1 Hammer weight (kN) (1.76–7.00)
Hammer

Inputs

X2 Energy (kN∗m) (17.60–75.43)

X3 Area (m2) (225.00–416.00)

Hammer cushion material
X4 Elastic modulus (GPa) (175.00–540.00)
X5 Thickness (m) (1.00–7.00)
X6 Helmet weight (kN) (0.89–7.74)

X7 Length (m) (9.84–100.06)

Pile information
X8 Penetration (m) (9.84–100.10)
X9 Diameter (m) (12.00–14.00)
X10 Section area (m2) (11.50–21.40)
X11 L/D (8.43–100.10)

X12 Quake at toe (0.10–0.33)

Soil information
X13 Damping at shaft (s/m) (0.05–0.25)
X14 Damping at toe (s/m) (0.06–0.25)
X15 Shaft resistance (%) (10.00–95.00)
X16 Ultimate pile capacity Qu (kN) (31.00–650.00)
X17 Stroke (m) (3.36–11.35)

MCS Maximum compressive stress (3.18–61.23)
OutputMTS Maximum tensile stress (0–31.77)

BPF Blow per foot (2.30–299.80)

3.2 Performance Assessment
If the model’s training and test performance cannot be quantitatively evaluated, it is difficult

to measure the quality of the model [52,53]. In general, the accuracy of the regression model is
quantitatively evaluated by using indicators such as root mean square error (RMSE) and coefficient of
determination (R2). In theory, when RMSE is equal to 0 and R2 is 1, the model is considered perfect.
The RMSE is the square root of the ratio of the squared sum of deviation of the observed value to the
true value and the number m of observations [54,55]. Use it to measure the deviation between predicted
and true values. Therefore, the prediction ability of the model increases as the RMSE value decreases.
The smaller the RMSE value, the better the prediction ability of the model. The R2 of the model is
often used as a measure of the predictability of the model. The value of R2 represents the percentage
of the square of the correlation between the predicted and actual values of the target variable. A model
with an R2 value of 0 indicates that it is completely unpredictable for the target variable while a model
with an R2 value of 1 can perfectly predict the target variable. The relevant equations of RMSE and
R2 are as follows [56,57]:

RMSE =
√

1
N

∑N

i=1

(
yî − yi

)2

(6)
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R2 = 1 −
1
N

∑N

i=1

(
yi − yî

)2

1
N

∑N

i=1

(
yi − yi

)2
(7)

where yi represents the observed value, the yî is the predicted value of the model, ȳi represents the
average of the observed values, and N denotes the number of samples in the training or testing stages.

Figure 5: Correlation analysis between influencing factors

3.3 Models Development
In this study, various machine learning methods were employed to predict the drivability of piles.

Following a performance comparison, several optimization techniques were applied to fine-tune the
parameters of the RF model. The main modelling and optimization steps can be summarized as
follows:

1. Data preprocessing: Before model construction, relevant input parameters were selected
through correlation assessment. For predicting different pile drivability parameters, the output
variables underwent a logarithmic transformation, and missing values were removed. The
constructed dataset comprised 4072 samples, with 80% allocated to the training set for model
training and the remaining 20% assigned to the test set for model validation.

2. Model construction: Initially, models were built without optimization, using default hyperpa-
rameters for RF, SVR, KNN, XGBoost, and DT. RMSE and the coefficient R2 were selected



CMES, 2024, vol.141, no.1 879

as the performance evaluation metrics. Models were trained on the training set and evaluated
on the test set, with performance metrics recorded for each model in their initial state.

3. Hyperparameter optimization: BO and PSO methods were employed to optimize three hyper-
parameters of the RF model: the maximum number of features (max_feature), the number of
estimators (n_estimators), and the minimum number of samples required to split an internal
node (min_samples_split). The distribution of each hyperparameter during the optimization
process was illustrated for the three prediction targets (MCS, MTS, and BPF).

4. Model comparison: Using the optimized hyperparameter configurations, the models were
retrained and tested. The optimized models were then compared with the initial models to
analyze their performance, discuss their generalization capabilities, and evaluate their fit to
the data.

4 Results and Discussion

In this section, the performance of the initial unoptimized models, including RF, SVR, KNN,
XGBoost, and DT, is first evaluated to identify the best-performing model. Subsequently, BO and PSO
are applied to fine-tune the hyperparameters of the selected optimal model. Finally, the performance
of the optimized model is compared with the other models to determine the most effective model for
predicting MCS, MTS, and BPF.

4.1 Predictive Performance of the Initial Model
Tables 2–4 present the evaluation performance metrics, including R2 and RMSE, for the con-

structed initial models predicting MCS, MTS, and BPF, respectively. Each model’s performance on
the training and test sets was evaluated using a scoring system to identify the optimal model.

Table 2: Model performance evaluation and ranking for MCS

Model (MCS) Training Testing

RMSE R2 RMSE
score

R2 score RMSE R2 RMSE
score

R2 score Total
score

RF 0.027 0.986 4 4 0.066 0.926 4 4 16
KNN 0.105 0.801 1 1 0.131 0.709 1 1 4
XGBoost 0.06 0.934 3 3 0.059 0.941 5 5 16
SVR 0.081 0.881 2 2 0.072 0.912 3 3 10
DT 0.001 1.0 5 5 0.102 0.825 2 2 14

Table 3: Model performance evaluation and ranking for MTS

Model (MTS) Training Testing
RMSE R2 RMSE

score
R2 score RMSE R2 RMSE

score
R2 core Total

score

RF 0.245 0.964 4 4 0.493 0.853 5 5 18
KNN 0.643 0.751 3 3 0.742 0.667 2 2 10
XGBoost 0.674 0.726 2 2 0.584 0.794 4 4 12

(Continued)
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Table 3 (continued)

Model (MTS) Training Testing
RMSE R2 RMSE

score
R2 score RMSE R2 RMSE

score
R2 core Total

score

SVR 0.764 0.648 1 1 0.747 0.663 1 1 4
DT 0.007 1.0 5 5 0.615 0.771 3 3 16

Table 4: Model performance evaluation and ranking for BPF

Model (BPF) Training Testing

RMSE R2 RMSE
score

R2 score RMSE R2 RMSE
score

R2 score Total
score

RF 0.116 0.986 4 4 0.184 0.969 5 5 18
KNN 0.235 0.942 2 2 0.294 0.907 1 1 6
XGBoost 0.225 0.947 3 3 0.21 0.953 4 4 14
SVR 0.297 0.908 1 1 0.287 0.911 2 2 6
DT 0.002 1.0 5 5 0.215 0.95 3 3 18

In predicting MCS, despite the DT model performing perfectly on the training set, its performance
significantly declined on the test set (R2 = 0.825, RMSE = 0.102), indicating a severe overfitting issue.
The KNN model also showed poor performance on the test set in terms of R2 and RMSE, suggesting
its ineffectiveness in handling high-dimensional data. The XGBoost model achieved a relatively high
R2 (0.941) on the test set, but its overall score was slightly lower than that of the RF model. In contrast,
the RF model exhibited an R2 of 0.926 and an RMSE of 0.066 on the test set, with the highest overall
score of 18 points, demonstrating outstanding performance.

In predicting MTS, the RF model again demonstrated its stability and efficiency. On the test set,
the RF model achieved an R2 of 0.853 and an RMSE of 0.493, with a total score of 18 points. Although
the DT model showed excellent performance on the training set (R2 = 1.0, RMSE = 0.007), its R2

dropped to 0.771, and RMSE increased to 0.615 on the test set, indicating overfitting. Both the KNN
and SVR models performed poorly on the test set, further highlighting the advantages of the RF
model.

In predicting BPF, while the DT model showed the best R2 and RMSE on the training set, its
performance on the test set was inferior to that of the RF model. The RF model achieved an R2 of
0.941 and an RMSE of 0.235 on the test set, with a total score of 14 points. The XGBoost model
performed well in predicting BPF, with an R2 of 0.953 and an RMSE of 0.210 on the test set, but its
overall score remained lower than that of the RF model.

In summary, the RF model demonstrated the best performance in predicting MCS, MTS, and
BPF. Therefore, we will focus on hyperparameter optimization of the RF model to further enhance its
predictive performance.
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4.2 Determination of Hyper-Parameters of Model
To have a better model development, BO, PSO, and random search methods were used to optimize

the hyperparameters in the RF model. The optimization process was conducted on the training set,
and the average RMSE was calculated using 5-fold cross-validation to obtain the optimal parameter
combination. The optimization processes of different methods were compared using kernel density
estimation.

Kernel density estimation is used in probability theory to estimate the unknown density function
and belongs to one of the non-parametric test methods. The kernel density estimation method is
intuitively a smoothed histogram. Through the kernel density estimation chart, the distribution
characteristics of the data sample itself can be seen relatively intuitively, and the density of the data
at any position can be characterised. The ordinate is an estimated value of the kernel density, which
indicates the possibility of taking values near a certain value on the x-axis.

Fig. 6 shows the distribution of each hyper-parameter optimization selection process conducted
in the kernel density map under the three predicted targets. Where “tpe” stands for “Tree-structured
Parzen Estimator,” a BO method that guides the search for the best parameters by modelling the
distributions of good and bad hyper-parameters. When the predicted label is MCS, the maximum pos-
sible value of max_feature during parameter optimization is between 0.5 and 0.75, where max_feature
represents the percentage of features that RF needs to consider. Then, the maximum possible value
of the parameter n_estimators is between 75 and 100, where n_estimators represent the subtree
of the RF. The maximum possible value of the parameter min_samples_split is around 5, where
min_samples_split is a condition that restricts the subtree from continuing to divide. If the number
of samples of a node is less than this value, it will not try to select the best feature to divide. When the
predicted label is MTS, the maximum possible value of max_feature is between 0.8 and 1.0. Then,
the maximum possible value of n_estimators is around 100, and the maximum possible value of
min_samples_split is between 0 and 5. When the predicted label is BPF, the maximum possible value
of max_feature is about 0.8. The maximum possible value of n_estimators is also about 100, and the
maximum possible value of min_samples_split is between 0 and 5.

Figure 6: (Continued)
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Figure 6: Hyper-parameter kernel density maps during optimization: (a) MCS data, (b) MTS data,
and (c) BPF data

It can be observed that the BO method demonstrates distinct peaks in the selection of hyper-
parameters, whereas the density distributions for the random search and PSO methods are more
uniform. Specifically, the BO method exhibits a stronger tendency toward certain values in the three
hyper-parameters, indicating its higher effectiveness in optimizing these parameters. Additionally, the
average optimization times for the BO, PSO, and random search methods are 453, 211, and 319 s,
respectively. Considering both optimization effectiveness and time cost, the BO and PSO methods
have been chosen as the primary optimization techniques for the subsequent model refinement. The
relationship between the loss value and each hyper-parameter in the iterative optimization process can
be seen in Fig. 7.

Figure 7: (Continued)
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Figure 7: Relationship between parameter range and loss during optimization: (a) MCS data, (b) MTS
data, and (c) BPF data

4.3 Comprehensive Analysis between Models
After optimizing the RF model using PSO and BO methods, we conducted a detailed comparative

analysis of the performance of all models. Figs. 8–10 show the scatter distributions of the training and
testing datasets for each regression model with MCS, MTS, and BPF as the predicted parameters,
respectively. It can be seen that the optimized RF model outperforms the other models in all three
prediction tasks. Whether on testing data or training data, its scatter distribution is very tight,
demonstrating excellent predictive accuracy. The small performance discrepancy between the training
and testing sets indicates that most models have strong generalization ability without over-fitting or
under-fitting. The performance of XGBoost and SVR models is also good but slightly inferior to the
optimized RF model in terms of predictive accuracy and consistency. KNN and DT models perform
poorly across all three prediction tasks, with their scatter distributions being more dispersed and
showing larger prediction errors.
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Figure 10: Comparison of predicted and measured values of each model for BPF: (a) testing data and
(b) training data

Furthermore, combining the previous frequency distribution of the labels, the distribution of the
model scatter should also be related to the distribution of the data itself. On account of the MCS
data being roughly normally distributed, the fact is that its scatter plot data fits well. The MTS data
is non-normally distributed, so its scatter distribution is not as tight as MCS. The comparison of
the performance test results of each model is more intuitive and clearer in the bar chart presented in
Fig. 11. Obviously, from different sub-sections of the results in Fig. 11, the optimized RF model is
considered the optimal predictive technique in the predictions of MCS, MTS, and BPF.
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Figure 11: Evaluation indicators for each model: (a) MCS data, (b) MTS data, and (c) BPF data

4.4 Sensitivity and Uncertainty Analysis
Sobol sensitivity analysis is a global sensitivity analysis method used to quantitatively evaluate the

influence of model input variables on output variables [58]. This method calculates the contribution
of each input variable and its interactions with the model output by decomposing the variance of the
output variable. The first-order sensitivity index measures the direct impact of a single input variable
on the output variable, while the total sensitivity index measures the total contribution of an input
variable to the output variable, including its interaction effects with other variables.
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In this study, Sobol sensitivity analysis was used to evaluate the optimized models, and Fig. 12
shows the influence of each input variable on the prediction outputs for MCS, MTS, and BPF.
In Fig. 12a, X16 and X17 exhibit significantly higher sensitivity indices, indicating that these two
variables have the most substantial impact on MCS prediction. In Fig. 12b, the total sensitivity index
is significantly higher than the first-order sensitivity index, indicating that MTS is influenced by the
interactions between variables in the model. Among them, X13 and X17 are the most influential
variables in the model. In Fig. 12c, X16, as the variable with the highest sensitivity index, is nearly
close to 1, while the other variables are relatively low, indicating that X16 dominates the influence on
BPF. Additionally, in the predictions of MCS, MTS, and BPF, X16 and X17, representing ultimate
pile capacity and stroke, respectively, are the primary influencing variables, both direct effects and
interactions with others variable.

Figure 12: Sobol sensitivity analysis results for each model: (a) MCS, (b) MTS, and (c) BPF

Monte Carlo (MC) simulation is a numerical technique that uses random sampling for uncertainty
analysis and risk assessment. By conducting numerous random samples and repeated experiments,
MC simulation can generate distributions of variables, thereby quantifying the uncertainty in model
predictions [59]. In this study, an optimized RF model was used for MC simulation to explain the
model’s uncertainty. A total of 1000 simulations were conducted to ensure the robustness and reliability
of the results.

Fig. 13 shows the comparison of the outputs for MCS, MTS, and BPF between the MC simulation
and the optimized RF model. In the figure, the green represents the results generated by the MC sim-
ulation, and the orange represents the results produced by the optimized RF model. The distribution
shapes of the optimized RF model’s predictions are very similar to those of the MC simulation results.
This similarity indicates that the model’s performance under different input conditions aligns with
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the expected distribution, enhancing confidence in the model’s predictive reliability. Specifically, the
median and interquartile range of the optimized RF model’s predictions are close to those of the MC
simulation results, suggesting that both sets of predictions share similar central tendencies and degrees
of dispersion. The similarity in the peak positions, widths, and shapes of the two results indicates
that the model can capture the main characteristics of the input data and generate stable predictions,
demonstrating good stability and reliability of the model.

Figure 13: Distribution of prediction results before and after MC simulation, (a, c and e): training
data; (b, d and f): testing data
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4.5 Limitations and Future Research
Accurate prediction of pile drivability can effectively optimize pile design, achieving construction

that is both safe and economical. In this study, we utilized BO and PSO to perform hyperparameter
tuning on the RF model to evaluate and predict pile drivability. However, there are several limitations
that need to be addressed in future research:

(1) The optimized RF model significantly improves prediction accuracy and stability. However, as
the dimensionality of the optimization search space increases, the computational complexity
and resource consumption of BO increase significantly, while PSO tends to get trapped in local
optima and is sensitive to parameter settings. Therefore, in practical applications, the specific
characteristics of the problem should be considered comprehensively when selecting the most
suitable optimization strategy, balancing the pros and cons of each method.

(2) Future research can incorporate data from various engineering contexts, including different
geological regions, soil types, and construction conditions, to provide a broader validation and
prediction scope for the model. By introducing more diverse datasets, the predictive capability
of the model will become more generalized, offering stronger support for pile drivability
predictions under complex geological conditions.

(3) To further enhance the performance and applicability of the model, future research can attempt
to hybridize different optimization algorithms. By combining the strengths of various algo-
rithms, the limitations of a single algorithm can be overcome. Additionally, new optimization
algorithms, such as those based on deep learning or adaptive optimization, should be explored
and developed to improve the model’s performance in high-dimensional spaces.

5 Conclusions

This study applied the RF machine learning model optimized by BO and PSO to predict the
MCS, MTS, and BPF of the pile under various relevant factors. The established data set contains
4072 samples, of which 80% were used to train the models, and the remaining 20% were utilized to
test the models. Then, the performance of the established RF was compared with the KNN, SVR,
XGBoost, and DT models. In this study, RMSE and R2 were selected and calculated as two of the
most popular performance indices in predictive models. It was found that the performance prediction
of the optimized RF is higher than that of other implemented techniques. Meanwhile, it also proved
that when the sample feature dimension is high, the RF model can still train the model effectively.
It was shown that it has small generalization errors and strong generalization ability when solving
such problems, and it can accurately reflect the complex relationship between piling and related
parameters. In the test results, when predicting MCS, the RMSE and R2 of the optimal PF-PSO are
0.044 and 0.966, respectively. In predicting MTS, the RMSE and R2 of the optimal PF-Baye are 0.438
and 0.884, respectively. In predicting BPF, the RMSE and R2 of the optimal PF-Baye are 0.146 and
0.977, respectively. The above results showed that the RF optimization model using PSO and BO is
an effective method to solve some complex engineering problems and can also provide a reference for
other similar engineering problems in the future.
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