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ABSTRACT

Effective small object detection is crucial in various applications including urban intelligent transportation and
pedestrian detection. However, small objects are difficult to detect accurately because they contain less information.
Many current methods, particularly those based on Feature Pyramid Network (FPN), address this challenge by
leveraging multi-scale feature fusion. However, existing FPN-based methods often suffer from inadequate feature
fusion due to varying resolutions across different layers, leading to suboptimal small object detection. To address
this problem, we propose the Two-layer Attention Feature Pyramid Network (TA-FPN), featuring two key modules:
the Two-layer Attention Module (TAM) and the Small Object Detail Enhancement Module (SODEM). TAM uses
the attention module to make the network more focused on the semantic information of the object and fuse it
to the lower layer, so that each layer contains similar semantic information, to alleviate the problem of small
object information being submerged due to semantic gaps between different layers. At the same time, SODEM
is introduced to strengthen the local features of the object, suppress background noise, enhance the information
details of the small object, and fuse the enhanced features to other feature layers to ensure that each layer is rich in
small object information, to improve small object detection accuracy. Our extensive experiments on challenging
datasets such as Microsoft Common Objects in Context (MS COCO) and Pattern Analysis Statistical Modelling and
Computational Learning, Visual Object Classes (PASCAL VOC) demonstrate the validity of the proposed method.
Experimental results show a significant improvement in small object detection accuracy compared to state-of-the-
art detectors.

KEYWORDS
Small object detection; two-layer attention module; small object detail enhancement module; feature pyramid
network

1 Introduction

Object detection is a core technology in computer vision, whose task is to recognize the location
and class of a specific object in the image. In recent years, object detection has made great break-
throughs and has been widely used in many real-world applications, including object tracking [1,2],
pedestrian monitoring [3], intelligent driving [4], and various other domains. During this period, many
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object detection algorithms including Faster Region-based Convolutional Neural Network (Faster R-
CNN) [5] and You Only Look Once (YOLO) [6] were proposed. However, the above object detection
algorithms are aimed at general objects. In the real scene, the phenomenon of small objects often
appears due to the different conditions such as the angle and distance of the image shooting. At
present, the conventional object detection algorithm still has some problems such as wrong detection
and missing detection when facing these situations, and the detection accuracy is not ideal.

Small objects are typically defined as those measuring less than 32 × 32 pixels in size [7], accurate
detecting small objects is a very challenging task but is used extensively. Due to their small number
of effective pixels and ease of being submerged by the background, small object detection faces
major challenges, such as difficulties in feature extraction, high positioning accuracy requirements,
uneven samples, and dense distribution of small objects. However, accurate detection of these objects
has widespread applications [8,9]. For example, small object detection can improve the safety of
automatic driving, enabling vehicles to quickly and accurately identify road signs, pedestrians, bicycles,
and other small obstacles, thereby ensuring better driving safety. If these small objects cannot be
accurately detected, driving safety is greatly reduced, and even life safety is endangered. Therefore,
in these application contexts, selecting appropriate methods to detect small objects accurately is very
important.

In recent years, Convolutional Neural Networks (CNN) have been rapidly developed, and many
effective methods have been proposed. Yang et al. [10] proposed a query mechanism to query potential
locations of small objects on different resolution feature maps. Min et al. [11] proposed to detect
small objects by emphasizing object cues and reducing redundant noise. However, these methods
only capture object information at a single level, without considering the connections between the
different layers of the Feature Pyramid Network (FPN). Mahaur et al. [12] added new bottom-up
paths to FPN, and Huang et al. [13] introduced innovative fusion techniques to enhance information
interaction between different layers and fuse multiple layers of information, but they do not make full
use of the bottom layer feature of FPN, which is the key to detecting small objects. In these methods,
most researchers extract multi-scale feature maps to detect small objects, among which FPN [14] is a
common detection method using multi-scale feature maps.

However, although FPN improves the multi-scale performance of small objects, some problems
still affect the further improvement of detection performance. As shown in Fig. 1, different layers
contain different features. The 1/32 scale (high-scale) feature of the FPN emphasizes the seman-
tic information of the object, while the neighboring 1/16 scale (low-scale) output extracts object
boundaries. When these features are fused, the high-level semantic information will find relevant
texture information in the lower level to be fused instead of blindly fused. However, since these lower
layer features do not contain enough semantic information by themselves, but only object boundary
information such as dots, lines, edges, etc., they cannot provide enough semantic guidance for the
higher layer features in the fusion process. The direct fusion of these features without considering the
semantic gaps between different layers will lead to mutual interference of semantic information, which
is not conducive to the effective expression of multi-scale features, and small object information may
be submerged in the interference information.

Moreover, as shown in Fig. 1, since CNN utilizes pooling layers and convolution layers repeatedly
to extract semantic information, small objects may be lost during the down-sampling process, for
example, the small object can no longer be observed in (c). Therefore, the high layers of FPN do not
contain enough small object information, and the low layers, especially the bottom layer, have the most
abundant small object information. Fig. 1 shows that in a common FPN detector, the direct fusion of
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features across scales still reduces the small object detection accuracy. Therefore, further research on
small object detection is necessary, as it can enhance the performance of the network. Therefore, we
consider strengthening the close connection between different layers and enhancing the characteristics
of high-level small objects to improve the representation ability of small objects, and to improve the
effect of small object detection.

Figure 1: The motivation for this work. (a) is the original image, (b) and (c) come from the 1/16 and
1/32 scales of the ResNet backbone

Inspired by the above observations, we propose a Two-layer Attention Feature Pyramid Network
(TA-FPN). Unlike previous FPN-based approaches, TA-FPN fully utilizes the information of each
feature layer, deepening the connection between neighboring layers while using the bottom layer
to enhance the small object features of other layers. On the one hand, we propose a Two-layer
Attention Module (TAM), which utilizes the attention module to make the network more attentive
to the semantic information of the objects and integrates it into the lower layers for mitigating the
semantic gaps between different layers so that each layer contains similar semantic information.
One advantage of TAM is that it not only focuses on the object region at a single feature layer but
also fuses the feature information of two adjacent layers. On the other hand, to compensate for the
insufficient information on high-level small objects caused by downsampling, a novel Small Object
Detail Enhancement Module (SODEM) is adopted to strengthen local features of objects, suppress
background noise, supplement information details of small objects, and fuse the enhanced features to
other feature layers. This ensures each layer is rich in small object information, enhances the utilization
of small objects, further strengthens the small object feature representation of each layer, and finally
improves the accuracy of small object detection. This module can focus part of the attention of high-
level features on small object information, which helps express small object feature information.

The attention should be drawn to the fact that TAM employs dilated convolutions with varying
dilation rates across multiple branches to capture both local and global contextual information. This
approach enables the extraction of semantic information at different levels, thereby better representing
the comprehensive information of objects. At the same time, the module uses a local attention
mechanism to make the fused features pay more attention to local features, which helps in the accurate
detection of small objects. The SODEM extensively leverages the abundant small object information
in the bottom layer of the FPN and inputs high-resolution features into each feature layer, allowing it
to preserve details of small objects.

The main contributions of this paper can be summarized as follows:

(1) We propose a Two-layer Attention Module to extract rich semantic information and make the
adjacent layers contain similar semantic information by fusing to the lower layers, so as to alleviate the
semantic gaps between different layers, and at the same time make the network focus on small objects,
and improve the accuracy of small object detection.
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(2) We propose an efficient Small Object Detail Enhancement Module, which strengthens the
local features, inhibits the background noise, enhances the information details of the small object, and
fuses the enhanced features into other feature layers to ensure that each layer is rich in small object
information, thus further strengthens the small object feature expression of each layer.

(3) Experimental results on MS COCO and PASCAL VOC datasets show that TA-FPN effectively
improves the performance of small object detection.

2 Related Work
2.1 Generic Object Detection

Existing detectors based on CNN are primarily classified into one-stage and two-stage detectors.
The typical two-stage detector [15,16] generates a region of interest (ROI) and then uses a classifier
and regression to refine the ROI. Mask R-CNN [17] uses a segmentation branch with a RoIAlign layer
that significantly improves detection performance. Cascade R-CNN [18] is a cascaded object detection
algorithm based on Faster R-CNN, it introduces multiple cascading stages. These two-stage detectors
are computationally expensive and slow to detect. To solve this problem, single-stage detectors directly
utilize feature maps for detection, which effectively improves the detection speed. YOLOv3 [19] mainly
changed the activation function of class prediction from Softmax to Sigmoid of logistic regression
and removed the previous width and height square root. Moreover, YOLOv3 predicted a set of class
probabilities for each bounding box. Modified the rules of positive and negative sample selection.
YOLOv7 [20] designed several trainable bag-of-freebies, and proposed a planned model structure re-
parameterization method, adjusting the number of channels so that the detector greatly improves
the detection accuracy without increasing the amount of computation, but there is no appropriate
sensitivity field to detect small objects. Despite the good improvement in object detection accuracy,
small object detection is still an unsolved challenge, because the general object detection measurement
is all scales and detectors dedicated to small objects still need more development.

2.2 Small Object Detection
Because of the small size of the small objects, it is relatively clear in high resolution, so most of

the small object detection methods detect small objects on high-resolution feature maps. Bai et al. [21]
proposed to super-distinguish ROI, but many ROIs still require a lot of calculation. Unlike super
revolution (SR) for ROI, feature-level SR directly processes features with super-resolution, reducing
the amount of computation but lacking direct supervision. Noh et al. [22] proposed a direct supervision
method for small-scale objects during the training process. Bosquet et al. [23] proposed to combine an
object generator based on Generative Adversarial Networks (GANs) with image restoration and image
blending techniques to obtain high-quality synthetic data, which can generate small objects from large
objects. Deng et al. [24] proposed to rebuild a high-resolution additional feature layer, especially for
small object detection outside the original pyramid structure, but there was no effective information
exchange among the feature layers. To deepen the connection between different layers, Min et al. [25]
proposed to highlight low-level small goals by filtering redundant semantics and using detailed context
information to detect small objects. Although the above methods have improved the performance of
small object detection, they have not fully utilized the bottom feature of FPN. In our work, based on
FPN, we pay more attention to the connection between different layers, especially between adjacent
layers and between the bottom layer and other layers, because the bottom layer is the key to detecting
small objects.
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2.3 Detection with Multi-Scale Features
Utilizing multi-scale features is an effective approach to mitigate the issues caused by object scale

variations, the representative method is FPN. At present, many frameworks based on FPN have been
extended, which greatly improves the performance of object detection. Liu et al. [26] proposed a path
aggregation network to enhance the information of the bottom layer through the bottom-up path of
FPN. To balance the features of various layers, Pang et al. [27] proposed to provide equal weights to
the features at each level. To make the most of each layer of information, Tan et al. [28] introduced a
weighted bidirectional feature pyramid network (BiFPN), which enables fast feature fusion, uniformly
scaling the resolution of all features. These FPN-based methods improve the precision of small object
detection but do not focus on the semantic gaps between the feature layers in the top-down process.
Inspired by them, we design a new network that alleviates the semantic gaps between different layers
and provides small object information for each layer.

3 Proposed Method

To address the decrease in small object detection accuracy caused by the semantic gaps in the
direct fusion of features at different scales and the loss of small objects during downsampling, we
propose a Two-layer Attention Feature Pyramid Network (TA-FPN), as shown in Fig. 2. TA-FPN
comprises the Two-layer Attention Module (TAM) and the Small Object Detail Enhancement Module
(SODEM). On the one hand, TAM is responsible for extracting advanced semantic information,
which is subsequently integrated into lower layers, making the model more focused on the object
region, and mitigating the semantic gaps. On the other hand, SODEM aims to fully utilize the bottom
layer information within the FPN, ensuring that each layer is enriched with abundant small object
information to enhance small object detection accuracy. In this section, we introduce the proposed
TA-FPN, which can be considered as an integration of FPN in Section 3.1, TAM in Section 3.2, and
SODEM in Section 3.3. Section 3.4 is the loss function of TA-FPN.

Figure 2: Overall architecture of TA-FPN. It comprises a two-layer attention module (TAM) and a
small object detail enhancement module (SODEM). Conv denotes dilation convolution

3.1 Framework of Proposed Method
We mainly use ResNet [29] as BackBone, which is because the problem of gradient vanishing or

gradient explosion may occur when the network depth increases, thus affecting the model accuracy,
which the ResNet can address well. ResNet mainly consists of residual blocks, which are composed of
multiple cascaded convolutional layers and a shortcut connection. After fusing the output values of
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these two parts, the output is obtained through the Rectified Linear Unit (ReLU) activation function.
To better detect small objects, we adopt the framework of FPN after ResNet extracts image features.

The low layers of FPN usually have high resolution, which is beneficial for small object local-
ization. Additionally, the high layers obtain more semantic information but the spatial resolution is
compromised. However, FPN fails to account for the semantic gaps between different layers, and
direct fusing these features causes the semantic information to interfere with each other, and a large
number of small object information is submerged in the interference information. A lot of small object
information is lost in downsampling, which decreases the detection accuracy of small objects.

To address these problems, we proposed TA-FPN. Fig. 2 provides an overview of our algorithm.
On the one hand, the Two-layer Attention Module is designed to accentuate crucial areas within the
image, suppress noise in regions like the background, and bolster feature representation for small
objects. Additionally, it enhances the connectivity between different layers, mitigating semantic gaps
that may exist between these layers. On the other hand, the Small Object Detail Enhancement Module
leverages the bottom layer of the FPN to offer a wealth of information related to small objects to the
other layers, thereby enhancing the accuracy of small object detection.

3.2 Two-Layer Attention Module
FPN directly combines features from different layers without considering the semantic gaps

between them. This will lead to the generation of redundant information, thereby diminishing the
expressive capacity of multi-scale features, and small objects can be easily submerged. For this problem,
we propose the Two-layer Attention Module (TAM), which extracts higher-level semantic information
and integrates it into the lower-level layers, ensuring that neighboring layers contain consistent
semantic information, thus mitigating semantic discrepancies. TAM comprises two key components:
the Residual Attention Module serves to preserve high-level semantic information, while the Local
Attention Module directs the model’s focus more toward small objects. We will now provide a detailed
introduction of each component.

In TAM, to enhance the extraction of high-quality semantic information for integration into
the lower layers, one common approach is to increase the size of the convolutional kernel. This can
extract more global features to get the global semantic information. However, using a large, fixed-
size convolutional kernel can pose a problem, as this can result in fixed receptive fields and high
computational complexity. To overcome this problem, we employ dilation convolution with varying
dilation rates. This approach enables us to acquire multi-scale semantic information without sacrificing
resolution. The proposed Two-layer Attention Module is shown in Fig. 3, which has two inputs, a
higher-level feature Ci ∈ RCi×Hi×Wi and a lower-level feature Ci−1 ∈ RCi−1×Hi−1×Wi−1 .

Specifically, to extract the rich semantic information of the high-level feature Ci, it can be
first passed through a three-branch convolutional block, in which each branch contains dilation
convolutions with different convolution rates (such as r = 1, 3, 5), and they can extract multi-scale
semantic information from different receptive fields. The large dilation convolution rate leads to a
larger receptive field, which contains more contextual information and facilitates the detection of small
objects. We can represent the extracted semantic information R∗(x) as:

R∗(x) = R1(x) + R3(x) + R5(x) (1)

where R1, R3, R5 respectively denote dilation convolution with dilation convolution rates of 1, 3, 5.
Then the residuals are noted, and the residuals are connected so that the pre-convolutional features
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are preserved. we can produce the feature map RAM(x) as follows:

RAM(x) = B(Conv2(R(B(Conv1(x))))) (2)

where B denotes the batch specification layer and R denotes the ReLU activation function. Finally, we
can obtain the enhanced features C∗

i .

C∗
i = σ(R∗(Ci) + RAM(R∗(Ci))) ⊗ R∗(Ci) (3)

where σ denotes the sigmoid activation function.

Figure 3: The framework of the two-layer attention module. The residual attention module can preserve
high-level semantic information containing the main object and fuse it into lower layers to alleviate
existing semantic gaps. The local attention module can make the model focus on small objects and
improve the accuracy of small object detection

To enhance the small object features, we propose a local attention channel. We employ pointwise
convolution (PWConv) as the context aggregator for the local channel, which only considers point
channel interactions at each spatial location. After the up-sampled features have passed through the
point convolution and normalization modules, we obtain an attention map that is specifically geared
towards small objects as follows:

LCAM(x) = B(PWConv2(R(B(PWConv1(x))))) (4)

where B denotes the Batch Norm layer, R denotes the ReLU activation function, and PWConv denotes
dot convolution. Then obtain a feature map Fi−1 that focuses on the information of the small objects
by passing the sigmoid activation function. The Fi−1 is formulated as:

Fi−1 = σ(LCAM(Ci−1 + C∗
i )) ⊗ (Ci−1 + C∗

i ) (5)

where σ denotes the sigmoid activation function.
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3.3 Small Object Detail Enhancement Module
Small objects usually have only a few pixels in the images, so their feature information is relatively

limited and easy to confuse with the background, resulting in difficult detection. At the same time,
because the common feature extraction networks usually adopt downsampling operations to reduce
spatial redundancy in feature maps and obtain high-dimensional feature representations, this further
exacerbates the loss of small object information. The bottom features usually contain rich local texture
information, which is essential for small object detection.

Therefore, we propose the Small Object Detail Enhancement Module (SODEM) to fully utilize
the bottom feature information of FPN. Specifically, the bottom feature maps that have undergone
fewer downsampling operations and have higher resolutions are sequentially fused into the higher-level
feature maps that are rich in semantic information but have lower resolutions. This fusion strategy can
fully utilize the bottom feature maps, making the higher-level feature maps also contain the key texture
information of small objects. On this basis, small object detection is performed, effectively improving
the detection accuracy of the network. The introduction of SODEM enables the network to better deal
with information loss, achieving performance improvement in small object detection.

The Small Object Detail Enhancement Module (SODEM) is shown in Fig. 4, where C2 and Fi serve
as inputs, and the output feature layer will contain rich small object information. Firstly, local texture
information containing small object information is extracted from C2 by using 1 × 1 convolution.
The 1 × 1 convolution can highlight the local features of the object, allowing for more effective
extraction of small object information. In addition, the module uses the convolutional layer to extract
the local features of the objects and uses the ReLU function to help the model learn complex feature
representations, retaining only the object features, which improves the clarity and recognizability of
the features without being interfered by the background noise. Then, 1 × 1 convolution is used again
to make the extracted features consistent with the number of channels in the Fi feature layer, and
downsampling the extracted features.

Figure 4: The framework of the small object detail enhancement module

Without this module, directly fusing the bottom features into the higher-level features would cause
the noise in C2 to be directly transmitted to the higher-level features, which could submerge small
object information and affect other meaningful semantic information. This design ensures that the
resulting feature map X contains both small object information and avoids noise interference. The
bottom feature representation is denoted as C2 ∈ RC×H×W . Other feature layers are denoted as Fi ∈
RCi×Hi×Wi . The extracted feature map X ∈ RCi×Hi×Wi can be represented as:

X = B(Conv(R(B(Conv(C2))))) + C2 (6)

where B(·) denotes the Batch Norm layer and Conv(·) is the 1 × 1 convolution, R(·) denotes the ReLU
activation function.
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Next, the extracted features are fused with the Fi feature layer to ensure that this feature layer
contains rich small object features, and the resulting feature map X ∗ ∈ RCi×Hi×Wi can be expressed as:

X ∗ = X ⊕ Fi (7)

where ⊕ denotes element addition.

Then, a 3 × 3 convolution is used to minimize the influence of the aliasing effect. Finally, the
output is residually concatenated with Fi, which preserves the feature information before fusion, and
the output Pi ∈ RCi×Hi×Wi of the SODEM module can be obtained:

Pi = Conv3(X ∗) ⊕ Fi (8)

where Conv3(·) is a 3 × 3 convolution.

This module realizes the full extraction and utilization of small object features through a series of
effective operations.

3.4 Loss Function
For detection, we employ the loss function:

L(pi, ti) = 1
Ncls

∑
Lcls(pi, p∗

i ) + λ
1

Nreg

∑
p∗

i Lreg(ti, t∗
i ) (9)

where Lcls is the classification loss function, Lreg is the regression loss function. Ncls represents the
number of all samples in a mini-batch, and Nreg represents the number of anchor box locations. Since
the difference between Ncls and Nreg is too large in practice, the weight of cls and reg is roughly equal
by using the parameter λ to balance them.

(1) The classification loss function is defined as follows:

Lcls(pi, p∗
i ) = −[p∗

i log(pi) + (1 − p∗
i )log(1 − pi)] (10)

where pi is the probability of anchor i is an object. The p∗
i is 1 if the anchor is positive, and 0 otherwise.

(2) The regression loss function is the smoothL1 loss, that is:

Lreg(ti, t∗
i ) =

∑
smoothL1(ti − t∗

i ) (11)

smoothL1(x) =
{

0.5x2 if |x| < 1
|x| − 0.5 otherwise (12)

where ti represents the 4 coordinates of the predicted bounding box, t∗
i represents the coordinates of

the real box.

For boundary box regression, the regression parameters of the following four coordinates are
used:

tX = x − xa

wa

, ty = y − ya

ha

(13)

tW = log
(

w
wa

)
, th = log

(
h
ha

)
(14)

t∗
X = x∗ − xa

wa

, t∗
y = y∗ − ya

ha

(15)
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t∗
X = log

(
w∗

wa

)
, t∗

x = log
(

h∗

ha

)
(16)

where x, y, w, and h denote the center coordinates, width, and height of the box. Variables x, xa, and
x∗ are for the predicted box, anchor box, and ground-truth box, respectively.

4 Experiments

To verify the effectiveness of TA-FPN, we first performed experiments on MS COCO and
Pascal VOC datasets and compared them with other state-of-the-art methods. Then, we did ablation
experiments to demonstrate the effectiveness of each module proposed. The details are as follows.

4.1 Datasets and Evaluation Metrics
4.1.1 Datasets

We experiment with our method on MS COCO and PASCAL VOC.

MS COCO. MS COCO consists of more than 200 k images, and we use 115 k images for training
and 5 k images for testing. MS COCO faces two main challenges in object detection: (1) Small objects:
about 65% of the objects are smaller than 6% of the image size; (2) Objects with different lighting and
shapes.

PASCAL VOC. We also apply our algorithm to another popular dataset, PASCAL VOC, which
contains 20 different object classes and many small objects. VOC 2012 contains 11 k images and we
use half for training and half for testing.

4.1.2 Evaluation Metrics

In this paper, we use the following evaluation metrics: AP, AP50, AP75, APS, APM , and APL.

AP is a widely used evaluation metric. The calculation of AP is based on the precision-recall curve,
which can be represented by:

AP =
∫

P(R)dR (17)

AP50 and AP75 denote the detection accuracy when the IoU is 0.5 and 0.75, respectively. IoU can
be expressed as:

IoU = area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(18)

where Bp is the predicted box, and Bgt denotes the ground truth.

In addition to the AP, MS COCO can also be used to detect small, medium, and large objects,
which are respectively denoted by using APS (Small), APM (Medium), and APL (Large) (the definitions
are given in Table 1). Since we are a small object detector, we focus more on APS.

4.2 Implementation Details
All the experiments are implemented on PyTorch, and the GPU is an NVIDIA GTX 1080 Ti. We

put the improved TA-FPN into Faster R-CNN, where ResNet is the backbone. In this experiment,
SGD was used as the optimizer. During the experiment, we trained 15 epochs, the initial learning
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rate was set to 0.01, and the learning rate was reduced by 1/3 after every 3 epochs. The experimental
parameters setting are shown in Table 2.

Table 1: Definitions of large, medium, and small objects

Object size (pixels)

Large − ≥ 96 × 96
Medium 32 ×32 ≤ − ≤ 96 × 96
Small − ≤ 32 × 32

Table 2: Experimental parameters

Parameters Implication Value

Batch size Data batch size 4
Lr Learning rate 0.01
Weight decay Model weight attenuation 0.0001
Epochs Number of training iterations 15
Optimizer / SGD

4.3 Comparisons with State-of-the-Arts
We conducted experiments on the COCO dataset and compared it with other detectors, and the

results are shown in Table 3. When ResNet-50 and ResNet-101 as BackBone, Faster R-CNN with TA-
FPN achieves an accuracy of 38.5% and 40.4%, and when using the more powerful feature extractor
ResNeXt-101, our network achieves an accuracy of 42.6%. In addition, as can be seen in the APS, APM ,
and APL columns, the method also shows a substantial improvement in accuracy for small objects
when compared to the Faster R-CNN base network, and achieves the best results when compared
to other detectors. The medium objects, which are also slightly smaller in size, also outperform all
other detectors, and the method does not give optimal results for large objects mainly because the
network focuses more on localized information which may lead to the loss of some global information,
nevertheless, the detection accuracy is a significant improvement. Furthermore, our method not only
outperforms variants of FPN for small object detection (e.g., Path aggregation network (PANet) [26],
Attentional feature pyramid network (AFPN) [25], Channel enhancement feature pyramid network
(CEFPN) [30], and Hierarchical activation network (HANet) [31]), but also outperforms state-of-the-
art multiscale detection methods (e.g., Graph feature pyramid network (GraphFPN) [32], Extended
feature pyramid network (EFPN) [24] and Multiple spatial residual network (MSRNet) [33]).

Table 3: Comparison with state-of-the-art methods on COCO dataset

Method Backbone AP AP50 AP75 APS APM APL

SSD512 [34] (2016) ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
RefineDet512 [35] (2017) ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4

(Continued)



724 CMES, 2024, vol.141, no.1

Table 3 (continued)

Method Backbone AP AP50 AP75 APS APM APL

RetinaNet800 [36] (2017) ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2
YOLOv3 [19] (2018) Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9
Cascade R-CNN [18] (2018) ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2
PANet [26] (2018) ResNet-50 37.5 58.6 40.8 21.5 41.0 48.6
FCOS [37] (2019) ResNet-50 36.6 56.0 38.8 21.0 40.6 47.0
Libra R-CNN [27] (2019) ResNet-50 38.6 60.6 42.0 22.4 41.3 47.7
Libra R-CNN [27] (2019) ResNeXt-101 43.0 64.2 46.9 25.2 45.9 54.1
AugFPN [38] (2020) ResNet-50 38.8 61.5 42.0 23.3 42.1 47.7
AugFPN [38] (2020) ResNet-101 40.6 63.3 44.0 24.2 44.1 51.0
GraphFPN [32] (2021) ResNet-101 42.1 61.3 46.1 23.6 41.1 53.3
EFPN [24] (2022) ResNet-50 38.2 / / 22.7 41.0 49.4
AFPN [25] (2022) ResNet-50 38.5 61.1 41.9 22.0 42.6 49.2
AFPN [25] (2022) ResNet-101 40.2 62.5 43.6 24.2 44.3 52.0
CEFPN [30] (2022) ResNet-50 38.8 60.5 41.9 22.5 41.7 48.1
CEFPN [30] (2022) ResNet-101 40.9 62.5 44.4 23.5 44.2 51.4
MSRNet [33] (2023) ResNet-50 38.6 60.6 42.4 21.9 43.1 54.1
HANet [31] (2024) ResNet-50 39.6 62.1 43.6 22.3 41.6 50.3
Faster R-CNN w/FPN [5] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN w/TA-FPN ResNet-50 38.5 60.3 41.7 22.5 41.6 47.5
Faster R-CNN w/TA-FPN ResNet-101 40.4 61.9 44.2 23.3 44.0 51.9
Faster R-CNN w/TA-FPN ResNeXt-101 42.6 64.6 47.0 25.2 46.0 53.8

Note: If not otherwise noted in this section, the bolded text indicates the optimal outcome.

Fig. 5 shows some examples of detection results in MS COCO dataset. FPN occasionally misses
some objects, such as some small objects. In contrast, the performance of TA-FPN is improved and
it is able to detect more objects, especially small objects, compared to the FPN baseline. For example,
in the first row, (a) is the original image, and (b) is the result detected by the FPN baseline, it can be
found that the people in the near distance (large objects) can be detected, while the people and boats
in the far distance (small objects) are not detected. (c) is the result detected by the TA-FPN, which
not only detects people in the near distance but also detects people and boats in the far distance. In
addition, to clearly show the performance of TA-FPN, (d) shows the difference between the FPN and
TA-FPN detection results, which clearly shows that TA-FPN has better detection ability for small
objects. Meanwhile, TA-FPN is also more robust in the face of object appearance changes or being
occluded. For example, the second row (a) is the original image, and (b) is the result detected by the
FPN baseline, which can only detect a person with complete object features due to the FPN alone can
not focus on small object features. (c) is the result detected by TA-FPN, due to the introduction of
TAM to make the model more focused on small objects and SODEM to make small object features
richer, TA-FPN can also detect people with small and incomplete object features due to occlusion.
Meanwhile, TA-FPN also has a better detection effect when facing environmental changes, as in the
result of the third row, it can still detect people with unclear features in the distance.
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Figure 5: Detection results of proposed TA-FPN: (a) is the original image; (b) is the detection result
after FPN; (c) is the result after TA-FPN; and (d) is the objects of TA-FPN detection more than FPN.
Different colors represent different categories
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Meanwhile, we compare the accuracy of TA-FPN with the FPN baseline in the PASCAL VOC
dataset. Using ResNet-50 as BackBone, TA-FPN improves the accuracy of small object detection from
20.4% to 22.1%, and AP from 78.3% to 79.1%, which is improved 1.7% and 0.8%, respectively, which
proves the effectiveness of TA-FPN.

4.4 Ablation Studies
We also analyzed the effect of each module of TA-FPN on the PASCAL VOC dataset. We

conducted experiments on Faster R-CNN with ResNet-50 as BackBone and gradually added the Two-
layer Attention Module and the Small Object Detail Enhancement Module. The overall experiments
are shown in Table 4. The results show that both TAM and SODEM alone can improve the small object
detection accuracy, and when they act synergistically, the improvement effect is more significant. The
specific experimental results are analyzed as follows:

Table 4: The effectiveness of our proposed TAM and SODEM on the PASCAL VOC dataset

TAM SODEM mAP APS FPS

78.3 20.4 10.5√
78.8 21.0 9.1√
78.6 21.7 9.8√ √
79.1 22.1 8.9

Effect of the Two-Layer Attention Module. There are semantic gaps between different layers of the
FPN, and direct fusion of these features without considering the semantic gaps will generate much
redundant information, and small objects can easily be drowned in noise. TAM can generate accurate
semantic information from the higher layers to be passed to the lower layers so that the neighboring
layers contain similar semantic information. Table 4 shows that the Two-layer Attention Module
improves APS on the baseline by 0.6% and the average accuracy mAP by 0.5%. This suggests that
the method facilitates the highlighting of possible object regions and mitigates the semantic dilution
caused by the top-down process of the feature pyramid network and the semantic gaps that exist
between different layers.

Effect of the Small Object Detail Enhancement Module. Small object features are often sparse and
vulnerable to being submerged in noise. Common feature extraction networks can exacerbate the loss
of small object features, primarily due to downsampling. This leads to lower accuracy in small object
detection. The Small Object Detail Enhancement Module leverages the rich small object information
present in the bottom layer of FPN. It accurately extracts detailed small object features and injects them
into each layer of the network to enhance small object detection accuracy. As Table 4 illustrates, the
Small Object Detail Enhancement Module improves small object detection accuracy over the baseline
by 1.3%. This enhancement underscores the module’s capacity to enrich small object features across
the network’s layers.

Effect of Different Dilation Convolution Rates. To further analyze the effect of different dilation
convolution rates on the detection results, we conducted experiments to illustrate this, as shown
in Table 5. To accurately detect small objects, we used a 3 × 3 convolutional and set the dilation
convolution rate from 1 to 5 to adjust the size of the receptive field. Since we use a three-branch
convolutional block, we chose three dilation convolution rates. The results show that the best results
can be achieved when the dilation convolution rate is 1, 3, and 5. The possible reason for this is that the
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dilation rate settings of 1, 3, and 5 can cover a larger number of objects in the sensory field, whereas
settings of 1, 2, and 3 (or 3, 4, and 5) result in information redundancy because they only cover a larger
amount of local information (or a larger amount of global information).

Table 5: The effectiveness of different dilation rates on the two-layer attention module (TAM)

Method Dilations mAP APS

1 2 3 4 5

Baseline 78.3 20.4
√ √ √

78.5 20.8
TAM

√ √ √
78.8 21.0√ √ √
78.5 20.7

Effect of Fusing Different Layers. To further assess which layer of the Small Object Detail
Enhancement Module is fused to have the greatest impact on small object detection, we conducted
experiments to illustrate this, as shown in Table 6. The table reveals that accuracy is consistently
improved for each layer fusion, with the most significant improvement observed when fusing the
F3 and F4 layers of FPN. The likely reason for this is that these two layers initially contain less
information related to small objects, and this module effectively supplements them with rich small
object information, leading to a significant improvement in accuracy. Conversely, when fusing the F5
layer, the effect is less satisfactory due to excessive downsampling. The effect improvement is also not
significant when fusing the F2 layer which produces more redundant information. Notably, involving
all layers in the fusion results in the most substantial improvement in small object accuracy.

Table 6: The effectiveness of fusing different layers on the small object detail enhancement module

Method Layers mAP APS

F2 F3 F4 F5
Baseline 78.3 20.4

√
78.6 20.9√
78.4 21.5√
78.5 21.3√
78.5 20.5√ √
78.6 20.9√ √
78.5 21.2√ √
78.4 21.0√ √
78.5 21.4

SODEM
√ √

78.5 21.2√ √
78.5 21.0√ √ √
78.5 20.5√ √ √
78.6 21.2√ √ √ √
78.6 21.7
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4.5 Experimental Results Analysis
To provide a more intuitive visualization of the effectiveness of TA-FPN, we have visualized some

of the features demonstrating the roles of the Two-layer Attention Module and the Small Object Detail
Enhancement Module. As shown in Fig. 6, (a) is the original image, (b) is the result after normal FPN,
(c) is the result after adding TAM, and (d) is the result after TAM and SODEM.

Figure 6: Experimental results of the feature maps: (a) is the original image; (b) is the feature map after
FPN; (c) is the feature map with the addition of TAM; (d) is the feature map after TAM and SODEM

Since this is a small object detector, we focus on the small objects in the image. Specifically, we
observe the small ball in the upper right corner of the second image, which cannot be effectively
observed from (b) due to too much noise. As shown in (c), the semantic gap between different layers is
mitigated due to the addition of missing information, which prevents objects, especially small objects,
from being submerged in conflicts when different layers are fused. And using the local attention makes
the network pay more attention to the small object area, so we can see the approximate location
of the small ball, but there are still some noise and residual shadows affecting the specific localization
of the small ball. As shown in (d), since SODEM supplements the small object information, it makes
the small object more prominent, and without the interference of noise and residual shadows, the
specific position of the ball can be observed and localized. This experiment effectively highlights the
influence of each module on the detection process.

4.6 Time Complexity
We tested the time complexity of TA-FPN as shown in Table 4. When using ResNet-50 backbone,

the Faster R-CNN with TA-FPN can reach 8.9 FPS and the Faster R-CNN with FPN can reach
10.5 FPS. The computing cost of our method is increased by about 15.2%. The inference speeds
of TAM and SODEM are 9.1 FPS and 9.8 FPS, respectively, and the individual action of each
module slightly increases the computing cost. The experimental results show that TAM and SODEM
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significantly improve the performance of small object detection, but only increase a small portion of
the computational resources.

5 Conclusions

In this work, we proposed a feature pyramid-based architecture called the Two-layer Attention
Feature Pyramid Network, which comprises two integral components: a Two-layer Attention Module
and a Small Object Detail Enhancement Module. TAM reduces the semantic gaps between different
layers by implementing two-layer fusion, making the features fully fused, and highlighting the small
object region to improve detection accuracy. SODEM maximizes the utility of FPN’s features,
especially the bottom layer feature, and fuses the rich small object information into other feature
layers to strengthen the small object feature and improve the detection accuracy of small objects.
Our experiment results demonstrate the competitiveness of TA-FPN on both the MS COCO and
PASCAL VOC datasets. Furthermore, ablation experiments underscore the effectiveness of each of
the modules in detecting small objects. We hope that our work will contribute to further advancements
in small object detection. In future research, we will study more deeply how to refine the small object
features further when densely arranged and validate the generalization ability of our method in various
backbone architectures and other vision-related tasks. Meanwhile, the design of a lightweight model
structure will also be explored for easy deployment at the edge end to meet the needs of more practical
scenarios.
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