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ABSTRACT

Recent advancements in natural language processing have given rise to numerous pre-training language models
in question-answering systems. However, with the constant evolution of algorithms, data, and computing power,
the increasing size and complexity of these models have led to increased training costs and reduced efficiency.
This study aims to minimize the inference time of such models while maintaining computational performance. It
also proposes a novel Distillation model for PAL-BERT (DPAL-BERT), specifically, employs knowledge distillation,
using the PAL-BERT model as the teacher model to train two student models: DPAL-BERT-Bi and DPAL-BERT-
C. This research enhances the dataset through techniques such as masking, replacement, and n-gram sampling
to optimize knowledge transfer. The experimental results showed that the distilled models greatly outperform
models trained from scratch. In addition, although the distilled models exhibit a slight decrease in performance
compared to PAL-BERT, they significantly reduce inference time to just 0.25% of the original. This demonstrates
the effectiveness of the proposed approach in balancing model performance and efficiency.
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Highlight

1. A novel Distillation model on PAL-BERT (DPAL-BERT) is proposed for the question-
answering task.

2. BiLSTM is adopted as the student model to shorten inference time.

3. The PAL-BERT model is used as the teacher model to achieve high accuracy.

4. DPAL-BERT achieves competitive performance and significantly reduces the inference time.
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1 Introduction

In natural language processing (NLP) tasks, deep learning (DL) has gathered considerable
attention and is currently widely used. The advent of pre-trained language models in recent years
has significantly enhanced the technology of question-answering systems. After pre-training the
question-answering system, its transfer learning ability will be stronger, and its application range
will be wider. In the training process of the Question Answering Model, complex models and many
computing resources are needed to extract information from large and highly redundant datasets. In
the experiment, the best models are often large-scale, such as Chat Generative Pre-trained Transformer
(ChatGPT) [1], BERT [2], or even integrated by multiple models [3].

Deploying large models in service environments faces several common challenges, which can sig-
nificantly impede their practicality and efficiency [4–6]. These challenges include: 1. Slower inference
speed, leading to delays in obtaining results and reduced system responsiveness. 2. High demands on
deployment resources, such as memory, make the process resource-intensive. 3. Stringent constraints
are required during deployment to achieve low latency and efficient use of computing resources,
necessitating careful optimization and planning. Due to the rapid development of portable equipment,
some special application situations, such as devices with little memory and low computing capacity,
do not support the online calculation of large models. Hence, it becomes imperative to downscale the
model to ensure performance [7,8].

Currently, the prevalent techniques for compressing models can be broadly categorized into four
groups: (1) parameter pruning and quantization [9], which mainly deletes redundant parameters in the
model; (2) low-rank factorization [10], which uses tensor factorization to estimate the parameters of
neural networks; (3) transferred/compact convolutional filters [11], designed a particular structure of
convolutional filters, which can reduce parameter space and save memory; (4) knowledge distillation.

General experience holds that similar scale models must be maintained to retain similar knowledge
[12]. This indicates that the parameters of a model determine the amount of knowledge contained in the
data captured by the model. This understanding is correct, but the relationship between the parameter
quantity contained in a model and the knowledge quantity that can be captured from the original data
is not a stable linear relationship but a curve form in which, as the parameter quantity increases, the
marginal return gradually decreases. In contrast, even when two models possess identical structures
and equivalent parameters, they can assimilate different types of knowledge when trained on the same
dataset. One of the critical factors is the selection of training methods. An appropriate training method
can help the model capture as much knowledge as possible with a few parameters. This is the primary
idea used in knowledge distillation [6,13,14].

Knowledge distillation fundamentally represents a technique for compressing models [14]. The
fundamental concept of knowledge distillation is to direct the training of a lightweight model using the
trained complex model as a guide and then get a lightweight model with the effect as close as possible
to the complex model while simultaneously reducing the computational burden, decreasing the model
scale and training time. The complex structure of the teacher network can train a suitable probability
distribution, and the small model is the student network. The output probability distribution is
employed to fit the distribution of the teacher network to realize knowledge transfer and performance
improvement. In general, no distinction will be made between the models used in training and
deployment, but there are some inconsistencies between training and deployment.

Hinton et al. [13] put forward the approach of relevant knowledge distillation as early as 2014. He
proposed that using a “soft label” to perform model distillation can improve the effect of the “student”
model. He reported that the classification prediction probability obtained by the complex model after
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training, although cross-entropy is chosen as a loss function, its score in the correct category considered
by the model will be particularly large, while the score in other categories will be particularly low.
However, this value with a particularly low score still has a relative role; that is, it can represent the
correlation between classes, which cannot be reflected in the original annotation data. For example,
in the MNIST handwritten data recognition dataset, the handwritten font “2” is often very similar to
the handwritten font “3”, but people will only tell it that it corresponds to the label “2”. Such a hard
label results in the model not considering the correlation between handwritten font “2” and “3” in the
input data. Hence, this study designs the concept of “t” (temperature) in the loss function to make a
corresponding scaling for the probability value predicted by the model to enlarge the score results of
other categories in the model and then let the student model learn this corresponding feature in the
distillation stage, to increase the loss of accuracy.

Growing model parameters and slower training speed of pre-training language models make more
scholars begin to study the related work of lightweight pre-training language models. The researcher
of the hugging face proposed the distill BERT model and performed the corresponding knowledge
distillation strategy based on BERT [15]. Finally, under the condition of reducing the parameters of
BERT by 40%, it can still maintain the original accuracy of BERT by 97% and improve the prediction
speed by 60%. The study proposes that in the knowledge distillation stage, in addition to continuing to
follow the “soft label” strategy proposed by Hinton, adding the hidden layer vector between “teacher
BERT” and “student BERT” can also improve the effect of “student BERT”. Huawei Noah Ark
laboratory has proposed the “TinyBERT” [16] model, which has made corresponding innovations
in the relevant characteristics involved in the knowledge distillation strategy. When calculating the
loss function, TinyBERT not only considers the “soft label”, which believes that the parameters of
BERT in the output layer, the hidden layer vector in the transformer structure, and the attention
vector positively affect knowledge distillation. Scholars of Huawei Noah’s Ark believe that BERT’s
original “pre-training fine-tuning” model will cause some difficulty in knowledge distillation, and its
semantic difference between the pre-training stage and fine-tuning [17] stage will result in a “teacher
model” that single-stage knowledge distillation cannot learn well. Therefore, TinyBERT proposed a
two-sided knowledge distillation strategy. Finally, the model parameters of TinyBERT are 7.5 times
lower than the original BERT, and the prediction speed is 9.4 times faster. On average, TinyBERT is
only 3% lower than the original BERT in nine downstream natural language processing tasks.

This study combines the advantages of the high accuracy of the PAL-BERT model [18] with the
short inference time of a small-scale model as BiLSTM [19]. The internal knowledge information of a
large model PAL-BERT is transferred to a small model using the method of knowledge distillation to
shorten the inference time without compromising model performance.

2 Dataset

The Standard Question Answering Dataset (SQuAD) [20] is widely acknowledged as a benchmark
in machine reading comprehension. The dataset comprises a diverse array of elements, including
articles, the corresponding fragments within those articles, and questions paired with answers that are
directly related to these fragments. Therefore, SQuAD 1.1 and SQuAD 2.0 are used as English datasets.
Compared to version 1.1, SQuAD 2.0 expands some simple manually written negative samples other
than automatically generated ones. In addition, machine reading comprehension models must account
for the presence of unanswerable questions. These models should be capable of determining if a
question can be answered based on the provided context. If the context does not support the question,
the model should refrain from providing an answer, enhancing the model’s practical application value.
The so-called “sample” is a problem corresponding to a fragment in an article. In version 2.0, the
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proportion of samples of the SQuAD dataset in the training dataset is about 2:1, and the proportion
of articles that do not contain negative samples and articles that contain negative samples is also 2:1.
However, the development set and test set remove those articles that do not contain negative samples
in version 1.1, making the proportion about 1:1. The number and distribution of samples of SQuAD
are shown in Table 1.

Table 1: Number and distribution of positive and negative samples in the SQuAD dataset

SQuAD1.1 SQuAD2.0

Train

Total samples 87,599 130,319
Negative samples 0 43,498
Total articles 442 442
Articles with negatives 0 285

Development

Total samples 10,570 11,873
Negative samples 0 5945
Total articles 48 35
Articles with negatives 0 35

Test

Total samples 10,570 11,873
Negative samples 0 5945
Total articles 48 35
Articles with negatives 0 35

The new dataset version includes manually labeled “unanswerable” questions, serving as diverse
negative samples. Even if these negative samples have no correct answers, the model can still pay
attention to some relevant texts and give predicted fragments, which seem correct but often wrong,
thus increasing the difficulty of the whole task.

In addition, the Chinese machine reading comprehension dataset CMRC 2018 [21] is also used in
this research. The dataset content is sourced from Chinese Wikipedia, with manually crafted questions.
The training set comprises about 10,000 pieces of data. The preprocessed data portion is listed in
Table 2. Given the gaps between Chinese and English, it is also a supplement for non-English cases.
Every article provides multiple relevant questions, each accompanied by several manually annotated
reference answers. The six problem types are displayed in Table 3.

Table 2: CMRC 2018 sample quantity

Train Development Test Challenge

Number of questions 10,321 3351 4895 504
Average answers per question 1 3 3 3
Maximum article characters 962 961 980 916
Maximum question characters 89 56 50 47
Maximum answer characters 100 85 92 77
Average article characters 452 469 472 464

(Continued)
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Table 2 (continued)

Train Development Test Challenge

Average question characters 15 15 15 18
Average answer characters 17 9 9 19

Table 3: CMRC2018 question type statistics

Question type Percentage

When 12.8%
Where 12.3%
Who 8.6%
What 7.8%
Why 5.7%
How 1.2%
Others 51.4%

3 Method
3.1 Knowledge Distillation
3.1.1 Soft Label-Based Knowledge Distillation

In the process of knowledge distillation, this study calls the original large model teacher model, the
new small model student model, the label in the training set hard label, the probability output predicted
by the teacher model soft label, and temperature (T) is employed to adjust the hyperparameters of the
soft label, as depicted in Fig. 1.

Figure 1: Soft label-based knowledge distillation
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When training the student model, the KL divergence within the probability distribution of the
output category is added to the loss function for classification tasks. The teacher model output T can
be expressed as PT = softmax(aT), where aT is the previous layer output of SoftMax, and student model
output S can be described as PS = softmax(aS), where aS is the previous layer output. Knowledge
distillation makes the output of the student model PS close to that of the teacher model PT through
loss function. Due to the operation of softmax(aT), the model’s output for a specific class can exhibit a
high probability value nearing 1, while simultaneously displaying low probabilities nearing 0 for other
classes, so that the output is close to single heat coding. Therefore, a temperature parameter τ ≥ 1
is usually added to the operation to make the output distribution more average. At the same time,
smoothing the output of the teacher and student model can obtain as follows:

PT
τ

= softmax
(aT

τ

)
(1)

PS
τ

= softmax
(aS

τ

)
(2)

The loss function of knowledge distillation can be expressed as follows:

Lkd (WS) = (1 − α) ∗ H
(
Ytrue, PS

) + α ∗ KL
(
PT

τ
‖ PS

τ

)

= (1 − α) ∗ H
(
Ytrue, PS

) + α ∗ (
H

(
PT

τ
, PS

τ

) − H
(
PT

τ

))
(3)

where WS is the parameter of the student model; Ytrue is the distribution of real labels; KL, H are
divergence and cross-entropy; α, α ∈ [0, 1] is a hyperparameter, controlling the ratio of the cross
entropy between the model output distribution and the actual label and the diversity within the student
model output and the teacher model output.

3.1.2 Representation-Based Knowledge Distillation

The schematic diagram depicting knowledge distillation based on representation is given in Fig. 2.
This approach compares the output representations of the teacher model’s second layer and the student
model’s second layer. The dimensions of these representations can differ, and the corresponding
relationships between the dimensions can also vary. In order to address this, a linear regression can
be performed to align the output representation of the student model with that of the teacher model.
The loss function for knowledge distillation, as depicted in Eq. (4), captures this alignment process.

Lj
rep (WT , WS) = Ui

T (x; WT)

Ui
T (x; WT)

2 − Uj
S (x; Ws) ∗ Wr

Uj
S (x; W s) ∗ Wr

2

2

(4)

where WT , W s are parameters of the teacher model and student model, respectively; Ui
T , Uj

S are the
calculation functions of the teacher model and student model for input x to Transformer output of
layer i and layer j; Wr is regression parameter matrix.

3.1.3 Attention-Based Knowledge Distillation

The second norm of the feature vector at different positions of the picture output in the
convolution layer can represent the attention distribution of the model to the picture [22]. The self-
attention layer in the transformer structure contains the attention distribution of each input word to
all other words in the text. In a self-attention layer, the attention distribution matrix for all input words
is A ∈ Rl×l, where l is the input text length.
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Figure 2: Representation-based knowledge distillation

The loss of knowledge distillation between the attention matrix of the output of layer i of the
teacher model and the attention matrix of the output of layer j of the student model is as shown in
Eq. (5).

Lj
attn (WT , Ws) = ∥∥Attni

T (x; WT) − Attnj
S (x; WS)

∥∥2
(5)

where Attni
T , Attnj

S are the calculation functions of the teacher model and student model for self-
attention input to layer and layer, respectively.

The schematic diagram of attention-based knowledge distillation is shown in Fig. 3.

Figure 3: Schematic diagram of attention-based knowledge distillation

Combined with these three knowledge distillation methods, this study simultaneously adds the
losses of the above three knowledge distillations to the training objectives so the student model can
learn the teacher model from multiple angles. The loss of mixed knowledge distillation is given in
Eq. (6).
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L (WT , W s) = Lkd (W s) + β
∑

j

ηjLj
rep (WT , W s) + γ

∑
j

ηjLj
attn (WT , W s) (6)

where β, γ are hyperparameters controlling the proportion of the loss of middle layer representation
and attention in the final loss function, respectively; ηj, ηj ∈ [0, 1] is the weight of knowledge distillation
loss in different layers.

3.2 Design of Knowledge Distillation Model Based on PAL-BERT
3.2.1 Distillation Scheme

Although ALBERT (A Lite BERT)-based models have considerably fewer parameters than the
original BERT model, they are still too large for practical online applications. In addition, although
ALBERT’s model compression is evident during training, it does not reduce inference time during
the inference stage. For offline data processing scenarios, where time requirements are generally less
demanding, the ALBERT [23] model can be effectively employed due to its significant performance
gains. However, further compression of the model is crucial to reduce inference time for online tasks.
This study optimizes the PAL-BERT model using the method of knowledge distillation, reducing
inference time while preserving accuracy as much as possible. PAL-BERT is a first-order pruning
model proposed based on the ALBERT model, demonstrating outstanding performance in question-
answering tasks. PAL-BERT can provide good efficiency while maintaining high performance, which
is ideal for teacher models as it requires processing a large amount of input data and generating high-
quality outputs for student model learning.

At present, most knowledge distillation based on a pre-training language model often needs to
be carried out in the pre-training stage or fine-tuning stage. For example, the knowledge distillation
strategy adopted in distilling BERT is to distill knowledge while pre-training, and the obtained student
model is directly used for fine-tuning each downstream task. In TinyBERT [16], it proposes a two-stage
distillation strategy. In the pre-training task stage, knowledge distillation is performed through large-
scale unsupervised corpus to obtain the student model in the general field. Then, during fine-tuning,
the general student model obtained in the previous step is employed for knowledge distillation to
obtain the student model finally used for specific downstream tasks.

This study refers to the knowledge distillation strategy of the above literature [24–26], and
combined with the current QA scene, it is considered that the distillation strategy can be conducted in
the fine-tuning stage. The specific process uses the original pre-training model to get the teacher model
in the downstream task fine-tuning and then keeps all the trainable parameters unchanged. Then, the
trained teacher model is employed to facilitate the training of the student model, enabling the latter
to acquire the pre-existing knowledge possessed by the former. Unlike previous methods that perform
knowledge distillation during pre-training, this paper introduces a strategy that applies distillation
during the fine-tuning stage for QA. This approach is more efficient because the already pre-trained
model requires less time to adapt to the task. The fine-tuning process allows the model to concentrate
on QA-specific patterns, enhancing the distillation’s relevance and effectiveness. Additionally, distil-
lation in pre-training aims to maintain model portability, which is unnecessary for our focused QA
scenario. By distilling knowledge directly related to QA during fine-tuning, this study ensures that
only the essential knowledge is transferred, optimizing the training process.

In this process, the teacher model is the source of knowledge and success for the student model,
which acts as the recipient. The specific structure is depicted in Fig. 4. Distillation loss refers to loss
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calculated with both the student and teacher models, which are the representation loss and attention
loss, while student loss refers to loss only correlated with the student model, which is Lkd.

Figure 4: Knowledge distillation structure

The knowledge distillation process typically comprises two stages: the original model training
stage and the small model training stage. During the former, the focus is on training the teacher model,
characterized by its complexity and ability to effectively capture information from the original data.
It can even consist of multiple separately trained models. In the latter stage, the objective is to train
the student models, which are typically smaller with fewer parameters and a simpler model structure.

The teacher model used in this study is PAL-BERT, and the student models include BiLSTM and
TextCNN [27]. The distillation model based on PAL-BERT is named DPAL-BERT.

3.2.2 Data Augmentation

In the task of knowledge distillation, a small dataset cannot effectively let the teacher network
express all its information. Therefore, many unlabeled data with the prediction results of the teacher
network are needed to expand the dataset so that effective knowledge can be fully displayed.

Data augmentation in NLP is much more difficult than in image processing. Image data can
generate near-natural images by rotating, adding noise, or other deformations. However, if a sentence
in natural language processing is manually operated, the fluency of the sentence becomes lower, and
this approach does not play a prominent role in NLP.

In order to expand the amount of data, the method of modifying sentences is employed in a
manner similar to the occlusion language model in BERT. It referred to the data augmentation method
in [28] and made some modifications. There are three data augmentation methods:

1. Masking. For each word in the text, a symbol <mask> would replace it with a certain
probability pmask. It helps to understand the contribution of different words in the text to the label.

2. Replacing. For a word in the text, it is replaced with another randomly sampled synonym with
a certain probability psyn.
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3. N-gram sampling. For text data, an n-gram is randomly sampled with a certain probability png,
n ranges from 1 to 5. This method randomly selects a sequence of n consecutive words (an n-gram)
from the text, and all other words are masked or removed. It is an extreme masking approach.

The specific use process is as follows: for the text to be processed, each position is iterated based
on the uniform distribution. For each word ω, a real number Xi is randomly generated between 0 and
1. If Xi < pmask, it will be masked. If pmask < Xi < pmask + psyn, it will be replaced. Provide for masking
and replacing both operations; once one rule is satisfied, the other is ignored. After the iteration, the
processed samples are sampled at all locations with probability png Finally the comprehensive example
is extended to the dataset as unlabeled data. For each data, this study iterates it n times to obtain up
to n samples and discards the repeated samples.

4 Experiments and Results

For experiments, two variants of DPAL-VERT models are built: DPAL-BERT-Bi and DPAL-
BERT-C. Both models adopt the PAL-BERT model [18] as the teacher network. BiLSTM [19] and
TextCNN [27] are used as the student network for constructing DPAL-BERT-Bi and DPAL-BERT-C,
respectively. For the parameters of the data augmentation part, pmask = psyn = 0.1, png = 0.25, n = 10.

4.1 Optimizing Random Masking for Adjacent Word Segmentations
This section introduces an optimization technique involving the application of masks to adjacent

word segments instead of random individual words. The masking step is to sample a subset Y from
the word set X and replace it with another word set. In ALBERT, a subset is randomly selected to find
out Y , and the selection of each word is independent. The subset Y accounts for 15% of the word set
X . 80% of the words in the subset Y are substituted by [MASK], and 10% of the words are replaced
by random words according to the unigram distribution, leaving 10% unchanged.

In this study, the model subset Y is obtained by selecting adjacent word segmentation, and the
scale and masking method of the model are unchanged. Specifically, for each word sequence X =
(x1, . . . , xn), words are selected by iteratively sampling the word segmentation of the text until the
masking scale (15% of the whole word set) is reached and a subset is formed. The process begins by
sampling the length of each word segment from a geometric distribution I ∼ Geo(p), where p is set to
0.2. This sampling determines the number of words in each segment. To ensure manageable segments,
the maximum allowable length of any given word segment is ten words. The geometric distribution
is skewed and tends to shorten word segmentation, with an average word segmentation length of 3.8
words. The starting point of word segmentation is randomly selected. Combined with the above text
length, the subset Y can be obtained by sampling.

4.2 Ablation Study on T and α

In the distillation model, two hyperparameters T and α must be determined during the experiment.
Grid search is applied to find the best α ∈ [0.1, 0.2, . . . , 0.9] and T ∈ [1, 2, 3] with DPAL-BERT-Bi
model to find the best hyperparameters. The experimental results of the impact of two parameters on
the final accuracy are listed in Table 4.

Fig. 5 indicates that the optimal configuration for the hyperparameters is achieved with a
combination of T = 2 and α = 0.5. Hence, these values are adopted as the standard settings for
these hyperparameters in all subsequent experiments.
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Table 4: Experimental results of different combinations of parameters T and α

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T = 1 0.751 0.769 0.786 0.791 0.793 0.766 0.763 0.762 0.761
T = 2 0.775 0.790 0.789 0.801 0.795 0.784 0.769 0.752 0.751
T = 3 0.735 0.748 0.763 0.745 0.767 0.756 0.743 0.736 0.748
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Figure 5: Model performance on varying T and α

The impact of varying the temperature parameter, particularly when it is increased to 3, can be
understood in terms of its effect on the student network’s attention to negative labels during training.
When the temperature is low, less attention is paid to negative labels, especially those significantly lower
than the average value. However, as the temperature rises, the relative importance of these negative
labels increases, causing the student network to focus more on them.

Although negative labels contain helpful information, particularly those with values significantly
above the average, the training process of the teacher network often introduces substantial noise in
these labels. This noise tends to reduce the reliability of information from negative labels, especially
as their values decrease. Hence, an excessively high-temperature value can lead to a decrease in the
student network’s accuracy.

The following selection rules can be applied to optimize the use of the temperature parameter
in training: 1. A higher temperature should be used when learning from negative labels that carry
meaningful information. 2. A lower temperature is preferable to minimize the influence of noise on
negative labels.

The data augmentation technique employed in this study can generate a substantial volume of
unlabeled data, significantly expanding the dataset used for training. The impact of data augmentation
on the performance is shown in Table 5.

Table 5: Impact of data enlargement on model performance

Models Precision Recall F1

With data enlargement 0.803 0.791 0.785
Without data enlargement 0.766 0.748 0.753

Table 5 indicates that incorporating data augmentation, coupled with the addition of unlabeled
data to the training process, results in a performance improvement, with an accuracy increase of
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approximately 4%. This shows that applying unlabeled data augmentation in knowledge distillation is
very necessary. A plausible explanation for this enhancement is that using a large volume of unlabeled
data allows for a more comprehensive representation of relevant knowledge from the larger model.
Then, the smaller model can learn more effectively, improving overall performance. The effectiveness
of this approach is further evidenced by the prediction results on the SQuAD 2.0 and CMRC 2018
development sets, as detailed in Tables 6 and 7, respectively.

Table 6: SQuAD 2.0 development set sample forecast results example

[article] In 2014, economists with the Standard & Poor’s rating agency concluded that the
widening disparity between the US’s wealthiest citizens and the rest of the nation had slowed its
recovery from the 2008–2009 recession and made it more prone to boom-and-bust cycles. To
partially remedy the wealth gap and the resulting slow growth, S&P recommended increasing
access to education. It estimated that if the average United States worker had completed just one
more year of school, it will add $105 billion in growth to the country’s economy over five years.
[question 1] How much potential economic growth could the US amass if everyone went through
more schooling?
Reference answer 1: $105 billion
[Forecast Answer] $105 billion
[question 2] What is the United States at risk for because of the recession of 2008?
Reference Answer 1: boom-and-bust cycles
[Forecast Answer] boom-and-bust cycles
[question 3] Who concluded that the rising income inequality gap was not getting better?
Reference Answer 1: Standard & Poor
Reference Answer 2: economists with the Standard & Poor’s rating agency
[Forecast Answer] <No Answer>
[question 4] What is the United States at risk for because of the recession of 2000?
Reference Answer 1: <No Answer>
[Forecast Answer] <No Answer>

Table 7: CMRC 2018 development set sample forecast result example

[article] Electrostatic induction is the redistribution of charge in an object due to the influence of
external charge. This phenomenon was discovered by British scientists John Canton and Swedish
scientists in 1753 and 1762, respectively. Normal substances have the same amount of positive and
negative charges, so they are generally uncharged. If a charged object is placed close to an
uncharged conductor, such as a piece of metal, the charge on the conductor will be redistributed.
For example, if a positively charged object is brought close to a metal, the negative charge on the
metal will be attracted, and the positive charge will be repelled. This leads to a negative charge in
the part of the metal close to the external charge and a positive charge in the part far away from
the external charge.

(Continued)
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Table 7 (continued)

[question] When was electrostatic induction discovered?
Reference Answer 1: 1753 and 1762
Reference Answer 2: It was discovered in 1753 and 1762
[Forecast Answer] 1753 and 1762

4.3 Model Performance of DPAL-BERT
To evaluate the model performance and robustness of the proposed DPAL-BERT, two variants of

DPAL-BERT models, DPAL-BERT-Bi and DPAL-BERT-C, are tested in the CMRC dataset. Results
are given in Table 8.

Table 8: Comparison of results of knowledge distillation models

Models Precision Recall F1

DPAL-BERT-Bi 0.803 0.791 0.785
DPAL-BERT-C 0.786 0.778 0.776

BiLSTM and TextCNN are trained from scratch without a word vector to evaluate the effec-
tiveness of knowledge distillation. The obtained results are listed in Table 9. This study reveals that
knowledge distillation significantly outperforms the small models trained without word vectors.
BiLSTM and TextCNN, when trained directly on the dataset, achieve a maximum accuracy of only
67.7%. It indicates the challenges small models face in capturing the intricacies of diverse samples.
In contrast, after applying knowledge distillation, the accuracy of the distilled models exceeds 80%,
which is nearly 13% higher than the small models and about 4% higher than traditional models utilizing
word vectors. Through the above experiments, the knowledge distillation demonstrates a remarkable
efficiency in enhancing the accuracy of smaller models.

Table 9: Performance of BiLSTM and TextCNN without word vectors

Models Precision Recall F1

BiLSTM 0.677 0.594 0.683
TextCNN 0.661 0.678 0.615

4.4 Inference Speed Comparison
Table 10 compares the number of parameters and inference time between the distilled model

DPAL-BERT-Bi and the teacher model PAL-BERT. The inference time is the duration required to
process the dataset using the trained models. For a fair comparison, the batch size for both models is
set to 32. The results reveal that the DPAL-BERT-Bi model has nearly 20 times fewer parameters than
the PAL-BERT model. In addition, its inference time is substantially lower. Specifically, the distilled
model’s inference process is approximately 423 times faster than that of the PAL-BERT model.
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Table 10: Comparison of parameters and inference time between distillation model and original large
mode

Models Parameter quantity (millions) Inference time (seconds)

PAL-BERT 19 88836
DPAL BERT-Bi 0.97 210

5 Discussion

The knowledge distillation method has many advantages, such as shallowing the depth of the
model, significantly reducing the computational cost, and directly accelerating the model without
specific hardware requirements. Developing more methods based on knowledge distillation and
exploring how to improve its performance is paramount. Using the method of knowledge distillation,
the PAL-BERT model was employed as the teacher network, with BiLSTM and TextCNN serving
as the student networks to develop two models, DPAL-BERT-Bi and DPAL-BERT-C, and the
effectiveness of the method was verified through experiments.

Knowledge distillation successfully facilitates knowledge transfer from the large model PAL-
BERT to the small models such as BiLSTM and TextCNN. After knowledge distillation, the accuracy
is 13% higher than training directly on the small model. However, it is essential to acknowledge the
inherent limitations in the representational capacity of smaller models compared to more complex
ones like ALBERT. Although a significant portion of knowledge from PAL-BERT is transferred to
BiLSTM, some knowledge remains untransferred. This limitation is represented in the performance
of the distilled small models, which, despite being markedly better than the outcomes of direct training
or traditional word vectorization, still do not match the performance level of PAL-BERT.

Nevertheless, the primary advantage of the proposed DPAL-BERT is the substantial reduction
in inference time while retaining as much computational accuracy as possible. The distilled model
requires only the computation time typical of smaller models, significantly speeding up the inference
process compared to the original large model. DPAL-BERT-Bi, which employs knowledge distillation,
reduces its parameter count by nearly 20 times compared to the original model, and the inference speed
increases by approximately 423 times.

6 Conclusion

This study applies knowledge distillation to BERT-based models to reduce the inference time.
Based on PAL-BERT, the DPAL-BERT-Bi and DPAL-BERT-C models are introduced. Experiments
show a significant improvement in model performance compared to smaller models trained from
scratch without using word vectors. There is an enhancement in effectiveness compared to smaller
models trained either directly or after using word vectors. Although the performance after distillation
is slightly lower than PAL-BERT, the model’s inference time is greatly reduced. This acceleration is
especially beneficial for online applications, where the slight trade-off in performance is outweighed
by substantial gains in processing speed.

However, there are still some limitations in the research. In terms of knowledge distillation, this
study only uses soft labels, but in the following research, other features in the model can be introduced,
such as hidden layer vector in the transformer or feature representation of the embedded layer. These
can be further studied in combination with question-answering scenarios.
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