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ABSTRACT

Partial Differential Equation (PDE) is among the most fundamental tools employed to model dynamic systems.
Existing PDE modeling methods are typically derived from established knowledge and known phenomena, which
are time-consuming and labor-intensive. Recently, discovering governing PDEs from collected actual data via
Physics Informed Neural Networks (PINNs) provides a more efficient way to analyze fresh dynamic systems
and establish PED models. This study proposes Sequentially Threshold Least Squares-Lasso (STLasso), a module
constructed by incorporating Lasso regression into the Sequentially Threshold Least Squares (STLS) algorithm,
which can complete sparse regression of PDE coefficients with the constraints of l0 norm. It further introduces
PINN-STLasso, a physics informed neural network combined with Lasso sparse regression, able to find underlying
PDEs from data with reduced data requirements and better interpretability. In addition, this research conducts
experiments on canonical inverse PDE problems and compares the results to several recent methods. The results
demonstrated that the proposed PINN-STLasso outperforms other methods, achieving lower error rates even with
less data.

KEYWORDS
Physics-informed neural network; inverse partial differential equation; Lasso regression; scientific machine
learning

1 Introduction

Dynamic systems are ubiquitous, and Partial Differential Equations (PDE) are the primary tools
utilized to describe them. Examples include the Navier-Stokes equation for the motion of fluids, the
Burgers’ equation for the propagation of waves, and the Schrödinger equation for the motion of
microscopic particles [1–4]. Common PDE problems can be categorized into forward and inverse
problems [5]. The forward problem refers to solving the PDE to obtain analytical or numerical
solutions, allowing for a comprehensive system exploration. Traditionally, these problems are solved
by numerical methods such as finite difference and finite element methods, which often entail heavy
computational burdens [6]. However, the inverse problem aims to extract several governing PDEs to
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accurately describe a complex dynamic system based on abundant real experimental or operational
data. Existing methods typically accomplish this by deriving from known physical principles like
conservation laws or minimum energy principles, which often require substantial human resources
and are hard to achieve [7].

Due to the rapid development of computer science and deep learning, Physics Informed Neural
Networks (PINNs) have become widely applied in solving forward and inverse PDE problems [8,9].
Deep Neural Networks (DNN) are recognized for their powerful universal approximation capabilities
and high expressivity, making them popular for solving PDE-related problems [10,11]. However,
dealing with high-dimensional complex systems can not be exempt from the curse of dimensionality
[7]. PINN integrates mathematical models, such as commonly known PDEs or boundary conditions,
directly into the network architecture to address this issue. This is achieved by reinforcing the loss
function with a residual term derived from the governing equation, which acts as a penalizing term,
restricting the space of acceptable solutions and avoiding fitting DNN solely through the available
data [12,13].

1.1 Related Work
The inverse PDE problems addressed in this work mainly focus on scenarios where abundant

measure data is available for a specific dynamic system governed by some PDEs [14]. Without loss of
generality, the PDE description can be formulated as follows:

ut = F
[
1, u, u2, · · · , ∇u, ∇2u, u · ∇u · · · ; λ

]
(1)

where u = u (x, t) is the latent solution of the PDE; ut is the time derivate term; ∇ standards for
gradient operation; F [·] is a complex nonlinear function composed of u and its derivate term and λ

implies all known parameters.

The primary objective in inverse PDE problems can be regarded as to find the F [·] that optimally
fits both the collected data and the physics laws [8,9]. An earlier idea on data-driven inverse PDE
problem was to compare the experimental data’s numerical differentiations with analytic derivatives
of candidate functions and apply the symbolic regression and the evolutionary algorithm to determine
the nonlinear dynamical system [15,16]. Recently, Rudy et al. [17–19] shifted their focus towards sparse
regression techniques. They used sparsity-promoting techniques by constructing an overcomplete
dictionary comprising several simple functions and their derivatives, constituting the governing PDEs’
components. Thus, they proposed sequential threshold ridge regression (STRidge) to select candidates
that most accurately represent the data.

However, these tasks still involve manually designing the differentiation operator and treating the
whole process as conventional convex or nonconvex optimization, leading to representation errors.
Raissi et al. [8] pioneered the concept of PINN, which embeds known physics law into deep neural
networks to express PDEs. PINN can be seen as a universal nonlinear function approximator and
excels in searching for nonlinear functions that satisfy the constraint conditions in the modeling
process of PDEs by utilizing physics laws to constrain the training process and convergence of neural
networks.

However, PINN still lags in accuracy and speed and struggles to handle the curse of dimension-
ality. In order to overcome these challenges, abundant works based on PINN have been undertaken
[5,20–23]. Chen et al. [24] proposed a method for physics-informed learning of governing equations
from limited data. It leverages pre-trained DNN with an Alternating Direction Optimization (ADO)
algorithm. In this approach, DNN works as a surrogate model, while STRidge acts as the sparse
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selection algorithm. Long et al. [25,26] combined numerical approximation of differential operators
by convolutions with a symbolic multi-layer neural network for model recovery to learn the underlying
PDE model’s differential operators and the nonlinear response function. They also proved the feasibil-
ity of using convolutional neural networks as alternative models [25–28]. Rao et al. [29] proposed the
Physics encoded Recurrent Convolutional Neural Network (PeRCNN), which performs convolutional
operations on slices of collected data. They introduced the Pi-block for cascading convolution and
recursive operations. In addition, they employed STRidge to implement PDE modeling and extended
its application to various tasks. Huang et al. [30,31] treated data as robust principal components and
outliers, optimizing the distribution of each part by convex optimization derivation and using STRidge
as the sparse dictionary matching algorithm. Numerous methods nowadays continue to adopt the
paradigm of combining PINN with sparse regression, particularly STRidge [32–36].

1.2 Our Method
STRidge plays a vital role in existing methods based on sparse dictionary regression. As proposed

by Rudy et al. [17], STRidge combined the threshold least squares (STLS) and Ridge regression
sequentially. STRidge can deal with the challenge of correlation in the data to some extent by
substituting ridge regression for least squares in STLS. However, Ridge regression tends to retain the
influence of all features rather than selecting some of them, especially when confronted with multiple
related features. Hence, it still exhibits some shortcomings in dealing with high-dimensional multi-
collinearity issues.

This study proposes Physics Informed Neural Network-Sequentially Threshold Least Squares-
Lasso (PINN-STLasso), where Lasso Regression is incorporated into STLS. This new sparse regres-
sion module, STLasso, is integrated into the PINN framework to handle highly correlated data
effectively. Using STLasso and PINN separately for sparse coefficients and DNN parameters, the
governing equation of a dynamic system can be accurately determined by only a few observation data.
The main contributions of the study are as follows:

(1) A novel module, STLasso, is proposed for sparse regression. The sparse coefficients, crucial
for representing the discovered PDE, are computed through STLasso.

(2) A framework of PINN-STLasso is constructed. The sparse regression and DNN parameters
are trained separately within the framework, improving the interpretability of the overall process.

(3) Experiments on canonical inverse PDE problems are conducted. The obtained results demon-
strate that the proposed PINN-STLasso is superior to several recent relevant methods in terms of
accuracy and efficiency.

The rest of this paper is organized as follows. Section 2 introduces the proposed STLasso and
PINN-STLasso. Experiments on canonical inverse PDE problems are presented in Section 3 to
demonstrate their performance. Finally, conclusions are drawn in Section 4.

2 The Proposed PINN-STLasso
2.1 STLasso

As described in Section 1, an effective solution to the inverse PDE problem often involves utilizing
a well-constructed sparse dictionary � = [1, u, u2, · · · , ∇u, ∇2u, u · ∇u · · · ]. This study attempts to find
a sparse coefficient Λ, such that

Residual : ut − ΘΛ → 0 (2)
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With the help of the Universal Approximation theorem, a DNN can be employed to represent the
latent solution u (θ) of PDEs, whose derivative is ut(θ). θ is adjustable parameters of the network. The
constructed u (θ) and ut (θ) are required to simultaneously satisfy the results of collected measurements
and adhere to known spares rules based on the thought of PINN. Thus, the loss function of the whole
network is

Lloss = Lmeasurement + αLsparse + β ‖�‖0 (3)

where commonly

Lmeasurement = 1
Nm

‖u (θ) − um‖2
2

Lsaprse = 1
Ns

‖ut (θ) − ��‖2
2 (4)

α, β are weights of different loss, ‖·‖i (i = 0, 1, 2) refers to li norm. Nm and Ns is the number of
used data in each process.

Two kinds of parameters exist to be adjusted in this process: DNN parameters θ and sparse
coefficient �. Generally, the optimization will be done individually, which means fixing one while
training another. Common methods, such as ADO, recurrently adjust θ and �, resulting in a delay in
training speed. On the other hand, noticing that norm is applied to ensure the sparsity of �, l0, but
directly solving l0 norm is Non-deterministic Polynomial-hard (NP-hard) and unfixable. Generally,
it uses convex relaxation-based techniques to transform the l0 norm minimization problem into an l1

norm minimization problem, such as l1 regularization. Then, the loss function of the sparse regression
part will be

min
�

‖ut − ��‖2
2 + ‖�‖1 (5)

It fits the traditional paradigm of Least Absolute Shrinkage and Selection Operator (Lasso)
regression. Accordingly, this study proposes the STLasso module. The STLasso module is incor-
porated into the training process of DNN, using sparse regression without the need of recurrent
optimization by integrating Lasso regression into STLS and forming a module. The detailed process
of STLasso is depicted in Algorithm 1 and Algorithm 2.

Algorithm 1: STLasso (Θ, ut, tol, iters)

1: �̂ = arg min� ‖ut − ��‖2
2 + ‖�‖1 # Lasso Regression

2: biginds =
{

i :
∣∣∣�̂i

∣∣∣ ≥ tol
}

# choose indexes bigger than tolerance

3: �̂ [∼ biginds] = 0 # hard threshold
4: �̂ [biginds] = STLasso (� [ : , biginds] , ut, tol, iters − 1) # call with fewer indexes

Return: �̂

Algorithm 2: TrainSTLasso (�, ut, �tol, STiters, iters)

1:
ut → [

ut
train, ut

validation
]

� → [
�train, �validation

] # Split the data into training and validation sets

(Continued)
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Algorithm 2 (continued)

2:
�best = (�train)

−1 utrain
t

errorbest = ∥∥�test�best − utest
t

∥∥2

2
+ ‖�best‖1

# Get an initial guess

3: tol = �tol # Adjust tolerance to find the best prediction

4: for iter in range(iters):
# Train and evaluate performance
� = STLasso (�train, ut

train, tol, STiters)
error = ∥∥�validation� − uvalidation

t

∥∥2

2
+ ‖�‖1

if error ≤ errorbest:
errorbest = error
�best = �

tol = tol + �tol

else:
tol = max ([0, tol − 2�tol])

�tol = 2�tol

iters − iter
tol = tol + �tol

Return: �best

2.2 PINN-STLasso
Inspired by literature [24], this study proposes the PINN-STLasso by integrating previously

demonstrated STLasso into PINN. Fig. 1 depicts the schematic architecture of the entire network
to solve an inverse PDE problem. In addition, unlike common methods that recurrently optimize θ

and Λ, the proposed method can directly train two parameters separately. Specifically, our method
focuses directly on reducing the loss (6).

L = 1
Nm

‖u (θ) − um‖2
2 + 1

Ns

(‖ut (θ) − ��‖2
2 + ‖�‖1

)
(6)

Figure 1: Schematic architecture of the network
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Fig. 2 illustrates the training process of the proposed PINN-STLasso. Treating STLasso as an
independent module can be inserted into networks more flexibly. An additional Lasso regression

operation �̂ : = lasso
(
�, ut; �̂

)
is introduced between pretraining and formal training, which can

accelerate the convergence of the DNN during formal training. Different colored blocks are utilized
to denote their roles respectively, where brown ones operate on sparse coefficients � and those yellow
corresponding to adjustments on the surrogate DNN model’s parameters θ . This network architecture
provides a more precise visualization of the overall decision-making process, thereby improving the
interpretability of the overall process.

Figure 2: Illustration of training process of PINN-STLasso

3 Experiments

This study conducted experiments on two canonical PDEs’ inverse problems, the Burgers equation
and the Navier-Stocks equation, using scarce data. In addition, it applied the proposed method to
experimental conditions to illustrate its effectiveness.

3.1 Burgers Equation
The Burgers equation is a nonlinear partial differential equation that simulates the propagation

and reflection of shock waves, commonly found in simplified fluid mechanics, nonlinear acoustics,
and gas dynamics, whose general form can be expressed as follows (7):

ut = −uux + νuxx (7)

where u is flow velocity; x and t corresponding to spatial and temporal dimension; ν is the diffusion
coefficient, which is 0.1 in this experiment. In this experiment, the data is extracted from the open
dataset of the literature [17], which u is discretized into 256 spatial grid points for 101-time steps
with a Gaussian initial condition, forming a data size of R256×101. Specifically, 10 points are randomly
selected to simulate ten randomly placed sensors. They are used for DNN training, and 50,000
collection points are generated by Latin hypercube sampling for sparse regression, which is only
3.19% of the data used in the literature [17]. Based on the aforementioned experimental requirements,
16 candidate functions � ∈ R

16×1 are utilized to reconstruct the PDE, consisting of polynomial
terms, derivatives, and their multiplication. Thus, the constructed sparse dictionary will be � ={
1, u, u2, u3, ux, uux, u2ux, u3ux, · · · , u3uxxx

}
. The setting of the sparse dictionary can be very flexible, to

some extent, depending on prior knowledge and experience. 10% random noise is added to the data to
simulate actual measurement errors. During the training process, the network went through 10,000
times Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B) Pretraining. In formal
training, the ADO process takes ten iterations for sparse regression and 1000 times optimization with
Adam in each epoch.

Table 1 presents a comparison of the proposed PINN-STLasso with several recent methods for
inverse PDE problems in terms of reconstruction error, including Physics Informed Neural Network-
Sparse Regression (PINN-SR) [24], Partial Differential Equation-Find (PDE-Find) [17]. As the
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proposed method can handle sparse data, whereas other methods can fail under similar conditions,
the error values are directly extracted from corresponding studies. Nonetheless, the proposed PINN-
STLasso outperforms other methods, even with less data. All errors are computed by Eq. (8).

η =
∥∥∥�̂ − �

∥∥∥
2

‖�‖2

(8)

where �̂ and � stands for detected value and ground truth. Fig. 3 compares the reconstructed Burgers
equation with the ground truth.

Table 1: Comparison of the proposed methods with several recent methods in finding burgers equation.
ut = −uux + 0.1uxx is ground truth

Method Error Found PDE

PINN-STLasso 0.15% ± 0.06% ut = −0.999uux + 0.099uxx

PINN-SR [24] 0.88% ± 0.03% ut = −1.009uux + 0.099uxx

PDE-Find [17] 0.8% ± 0.6% ut = −1.010uux + 0.103uxx

DLrSR [31] 1.271% ± 0.960% ut = −0.956uux + 0.101uxx

Figure 3: Comparison of predicted burgers equation with ground truth

3.2 Navier-Stocks Equation
Navier-Stokes (NS) equations are commonly employed to describe the motion equation of

momentum conservation in viscous incompressible fluids. The NS equation can determine the fluid
flow with certain initial and boundary conditions. In this study, the NS equation is utilized to model
a 2D fluid flow passing a circular cylinder with the local rotation dynamics, as shown in Fig. 4, where
partial data used in the modeling process is highlighted by a red box, whose general form is

wt = − (u · ∇) w + v∇2w (9)
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where w is the spatiotemporally variant vorticity; u = {
ux, uy

}
is the velocity of the fluid in

two dimensions; ν is the kinematic viscosity, which is 0.01 in this experiment. Similar to Burgers’
equation, 500 points, consisting of

{
ux, uy, w

}
and 60 times steps’ records, are randomly selected

to simulate randomly placed sensors. They are used for DNN training with 60,000 collection
points generated by Latin hypercube sampling for sparse regression, which is only 10% of data
used in [17]. The size of the protentional sparse library is � ∈ R

60×1, in the form of � ={
1, ωx, ωy, ωxx, ωyy, uωx, vωx, ωωx, · · · , u2ωx, v2ωx, ω2ωx

}
, consisting of polynomial terms, derivatives,

and their multiplication. 10% random noise is also added. During the training process, the network has
gone through 5000 times pretraining with Adam optimizer and 10,000 times L-BFGS-B Pretraining.
In formal training, the ADO process takes ten iterations for sparse regression and 1000 times
optimization with Adam in each epoch. 20,000 Adam optimizations were used in the post-training
phase.

Figure 4: Dynamic model used in this work

Table 2 shows a comparison of several methods in NS equation reconstruction problems. PDE-
Find fails to get a result in the 10% noise condition. Therefore, the presented result is in 1% noise
condition. Despite using less data, the proposed PINN-STLasso still outperforms other methods in
complex problems. Fig. 5 compares the predicted Navier-Stokes equation with the ground truth at a
specific time.

Table 2: Comparison of the proposed methods with several recent methods in finding NS equation.
wt = −uxwx − uywx + 0.01wxx + 0.01wyy is ground truth

Method Error Found PDE

PINN-STLasso 0.80% ± 0.75% wt = −0.999uxwx − 0.992uywx + 0.0099wxx + 0.0099wyy

PINN-SR [24] 1.22% ± 0.69% wt = −0.996uxwx − 0.991uywx + 0.010wxx + 0.010wyy

PDE-Find [17] 7.00% ± 6.00% wt = −0.988uxwx − 0.983uywy + 0.0107wxx + 0.0083wyy
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Figure 5: Comparison of predicted Navier-Stokes equation with ground truth in a specific time: (a)
Ground truth of Navier-Stokes equation (b) Model prediction result of Navier-Stokes equation

3.3 Experimental Reaction-Diffusion Equation
This study conducts an experiment to discover the governing equation of a cell migration and

proliferation process to demonstrate the performance of the proposed STLasso on complicated
systems and actual experimental situations. The data used in the experiment is collected from vitro cell
migration (scratch) assays, which remain sparse and noisy. With cells distributed in wells as uniformly
as possible, results for initial cell densities of 14,000, 16,000, 18,000, and 20,000 cells per well are
collected. After seeding, cells are grown overnight for attachment and some growth. To quantify the
cell density profile, in each record node, images captured by high-precision cameras are uniformly
divided with a width of 50 μm, from which manual cell counting is employed to estimate the cell
density at positions x = 25, 75, 125, · · ·, 1925 μm ∈ R

1x38. After seeding, cells are grown overnight
for attachment and some growth. Images of the collective cell spreading are recorded every two hours
for 48 h. This research will use cell density distributions at different time instants, specifically, 12, 24,
36, and 48 h after seeding. Three identically prepared experiments are replicated for each cell density,
and their mean is considered the final result. The specified description of the experimental data can
be found in the literature [37].

This study aims to discover PDEs that can describe the changes in cell concentration under
different cell densities. Based on known prior knowledge, the process of cell migration and proliferation
can be viewed as a typical Reaction-Diffusion process with migration as cell reaction and proliferation
as growing diffusion. Thus, we assume that the PDEs describing this process hold the general form of
Eq. (10).

ρt = γρxx + F (ρ) (10)

where ρ is cell density; γ is aiming diffusion coefficient to be found; F (ρ) is underlying nonlinear
reaction function.

Similar to the previous experimental design, a sparse dictionary with nine candidate function
terms

{
1, ρ, ρ2, ρ3, ρx, ρxx, ρρx, ρ2ρx, ρ3ρxx

}
is established to perform coefficient regression. Table 3 lists



394 CMES, 2024, vol.141, no.1

the results of all cell densities that were discovered. These results follow the Reaction-Diffusion (RD)
equation form ρt = γρxx + αρ + βρ2, which conforms to the Fisher-Kolmogorov model preset [37].

Table 3: Found PDEs under various cell densities. Full-field error is the mean of error between
measurements and predictions at every time recorder nodes

Cell densities (cell/μm2) Full field error Found PDE

14,000 0.0902 ρt = 965.094ρxx + 0.0784ρ − 48.201ρ2

16,000 0.0855 ρt = 668.841ρxx + 0.0708ρ − 46.106ρ2

18,000 0.0885 ρt = 511.801ρxx + 0.0641ρ − 42.588ρ2

20,000 0.0954 ρt = 509.233ρxx + 0.0655ρ − 46.478ρ2

The measurements and prediction in different time nodes (12, 24, 36, and 48 h) are depicted as
shown in Fig. 6a–d to more intuitively demonstrate the relationship between the discovered equations
and measured values. Prediction is derived for each found PDE considering the measurement at
0 h initial and ρx (x = 0, t) = ρx (x = 1900, t) = 0 a boundary condition. In each individual
experiment, only 38 pieces of measurement were used, which is extremely scarce and can fail for
most other methods. Experimental results showed that the proposed PINN-STLasso can successfully
discover equations and demonstrate relatively high accuracy.

Figure 6: (Continued)
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Figure 6: (Continued)
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Figure 6: Discovery results for cell migration and proliferation under different cell densities, (a) 14,000
cells per well; (b) 16,000 cells per well; (c) 18,000 cells per well; (d) 20,000 cells per well. In all figures,
dots represent measurement, and lines depict prediction

3.4 Discussion
This study conducts experiments on several canonical inverse PDE problems and real experi-

mental conditions. Results and comparison indicated that the proposed PINN-STLasso outperforms
existing methods in the following aspects:

1) Based on the idea of calculating equation coefficients through the sparse regression method
STLasso, which introduces known physical prior knowledge into the computational process. Specifi-
cally, in PINN-STLasso, the training of surrogate models and the formation of the sparse dictionaries
are guided by physical priors, significantly reducing the demand for training data and enhancing the
robustness of data noise in this method.

2) The sparse regression and DNN parameters are trained by different network parts, improving
the overall process’s interpretability. Unlike most common methods based solely on deep networks,
PINN-STLasso takes DNN, specifically, Multi-layer Perceptron, as a surrogate model. With the
help of the universal approximate rule, the role of surrogate DNN can be interpreted as a nonlinear
approximation of the original solution. In contrast, Lasso sparse computing is a clear iterative solution
process with a completely transparent calculation principle and process. Accordingly, the proposed
PINN-STLasso is very superior in terms of interpretability.

4 Conclusion

This research proposes PINN-STLasso, a method incorporating Lasso Regression into Physics-
Informed Neural Networks for solving Inverse PDE problems. A sparse regression module, STLasso,
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is established for optimizing sparse parameters by combining Lasso and STLS. STLasso is then
inserted into PINN to identify PDE expressions from observations. Experiments conducted on
canonical PDE systems demonstrate that the proposed PINN-STLasso outperforms several recent
methods regarding prediction accuracy.

However, there still exist several challenges in this research to be further explored: Lasso regression
cannot address problems in complex domains, such as the Schrödinger equation, requiring the
development of specialized methods; for highly complicated problems, such as the Reaction-Diffusion
process, the DNN-based method still performs poorly, necessitating further exploration of related
issues.
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