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ABSTRACT

Alkali-activated materials/geopolymer (AAMs), due to their low carbon emission content, have been the focus of
recent studies on ecological concrete. In terms of performance, fly ash and slag are preferred materials for precursors
for developing a one-part geopolymer. However, determining the optimum content of the input parameters
to obtain adequate performance is quite challenging and scarcely reported. Therefore, in this study, machine
learning methods such as artificial neural networks (ANN) and gene expression programming (GEP) models
were developed using MATLAB and GeneXprotools, respectively, for the prediction of compressive strength under
variable input materials and content for fly ash and slag-based one-part geopolymer. The database for this study
contains 171 points extracted from literature with input parameters: fly ash concentration, slag content, calcium
hydroxide content, sodium oxide dose, water binder ratio, and curing temperature. The performance of the two
models was evaluated under various statistical indices, namely correlation coefficient (R), mean absolute error
(MAE), and root mean square error (RMSE). In terms of the strength prediction efficacy of a one-part geopolymer,
ANN outperformed GEP. Sensitivity and parametric analysis were also performed to identify the significant
contributor to strength. According to a sensitivity analysis, the activator and slag contents had the most effects
on the compressive strength at 28 days. The water binder ratio was shown to be directly connected to activator
percentage, slag percentage, and calcium hydroxide percentage and inversely related to compressive strength at 28
days and curing temperature.
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1 Introduction

Low carbon-based geopolymers (GP) are plentiful in both strength and durability. When enough
alkaline activator is added (either as an aqueous solution or as a solid powder or grain), the
aluminosilicate material will polymerize to create chemically bound inorganic polymers [1]). These
inorganic polymers share several chemical characteristics with zeolites found in nature, whereas
geopolymer gels are naturally amorphous [2,3]. The primary components of the aluminosilicate
precursor are waste products from various industrial and agricultural processes, which reduce the need
for non-renewable resources and offer a beneficial method of waste utilization. Compared to ordinary
Portland cement (OPC), geopolymers have much lower carbon emissions and energy requirements
while having outstanding working and durability characteristics. A well-formulated geopolymer mix
can reduce carbon emissions and energy usage by up to 80% and 60%, respectively [4,5].

The chemical makeup and reaction of the source materials significantly impact the final products’
characteristics and the geopolymer’s eco-performance. As an illustration, the final product in the case
of calcium-rich precursors (such as Class C fly ash (CFA) and Blast furnace slag (BFS) is calcium
aluminate gel (C-S-H), which provides relatively high strength but low durability in comparison
to sodium alumino-silicate gel (N-A-S-H), which is obtained through geo-polymerization of silica
and alumina-rich precursors (such as class F fly ash, lithium slag) [6–8]. Furthermore, the geo-
polymerization reaction is frequently triggered by heat since precursors rich in silica and alumina are
not very reactive. Therefore, to induce hardening at room temperature, they are commonly utilized
in conjunction with highly reactive calcium-rich precursors [9]. Geopolymers can be divided into two
groups based on the kind of alkali: Conventional geopolymer and one-part geopolymer. Both types of
geopolymer have similar source materials and mechanical properties. The one-part geopolymer is more
environmentally friendly and practically feasible because it uses a powdered activator rather than the
highly corrosive alkaline solution used in conventional geopolymer [10,11]. However, it cannot be easy
to acquire desirable qualities and ecological benefits due to the diversity and varied composition of the
source materials. According to published studies, the type and content of source materials, additives,
water binder ratio, curing temperature and time, and curing temperature and period are the essential
characteristics that determine the properties and environmental performance of geopolymer [12].

Researchers are increasingly relying on predictive models to estimate the strength and other
characteristics of cement-based composites since they reduce resource waste, experiment repetition,
and time consumption [13,14]. By examining and forecasting several facets of the material, machine
learning can help assess how well concrete can be designed. Based on their composition, curing
conditions, and other pertinent variables, machine learning algorithms can be trained on historical
data to predict concrete’s compressive strength, durability, and other performance characteristics.
Relationships between various parameters can be found using regression models, which aid in mixture
design optimization for desired qualities. The prediction of strength and other properties of cement-
based materials has previously been made using a variety of machine learning (ML) approaches,
including decision trees (DT), AdaBoost, support vector machines (SVM), gene expression program-
ming (GEP), random forests (RF), and artificial neural networks (ANN) [15–17]. In forecasting the
strength characteristics and other parameters of cement-based composites, these models have shown
good performance [18]. However, only a tiny amount of research has been done on geopolymer
strength prediction using machine learning algorithms [19–23].
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GEP was used by Ali Khan et al. [24] to forecast the compressive strength of geopolymer concrete.
The algorithm was said to have predicted the behavior of geopolymer concrete accurately. Similar
findings relating to the GEP algorithm’s effective modeling capabilities for geopolymer concrete were
also reported in other studies [25,26]. To calculate the mechanical strength of geopolymer concrete
using bottom ash and fly ash, Aneja et al. [22] used an ANN-based model. According to the report,
the compressive strength of the geopolymer was successfully predicted by the ANN model. Several
other researchers have used the AAN technique to forecast compressive strength using other input
variables and datasets, and they saw encouraging results [27,28]. However, all of this earlier research
used conventional geopolymer, and there is no information in the literature about the application of
ANN and GEP to forecast the strength of one-part geopolymer. Moreover, the one-part geopolymer’s
reaction mechanism and behavior are significantly different from conventional geopolymer [29]; the
machine learning models developed for conventional geopolymer cannot be applied to one-part
geopolymer. Therefore, it is necessary to build a machine learning model for strength prediction
and mix proportioning of one-part geopolymer. In this study, GEP and ANN are utilized to predict
the compressive strength of a one-part geopolymer. Additional parametric and sensitivity analysis is
performed to identify the most significant parameters and their respective impact.

2 Research Methodology

This article encompasses machine learning models for predicting the compressive strength of
one-part geopolymer concrete. The data was obtained from the published literature presented in
Section 2.1. The key parameters influencing the compressive strength of one-part geopolymer were
identified. The models (ANN and GEP) were trained several times to obtain their best hyperparam-
eters for the specific problem (Step 1). Based on hyperparameter tuning, the input data was trained
(Step 2). The validation data were also used to verify the reliability of the model. The discussion of
Steps 1 and 2 is provided in Sections 2.2 and 2.3. After the training, the performance of the models
was evaluated using correlation and error indices (Step 3, Section 3.1). Finally, the sensitivity and
parametric analysis were obtained based on the trained model to see the influence of each input
parameter (Step 4, Section 3.2). The methodology flow chart is given in Fig. 1.

2.1 Database Description
The database is made up of 28 days of compressive strength results (28-d) for several geopolymer

mixtures that were gathered from the previously published research articles which studied the proper-
ties of one-part geopolymer cement [30–35] and some studies which analyzed the microstructure and
properties of one-part geopolymer concrete [35–41], in addition to published articles which discussed
the effects of admixtures on mix design of one-part geopolymer concrete [42–48]. The collection
includes 171 records for one-part GP compressive strength results. The input variables selected for
this experiment include fly ash concentration (% by weight), slag content (% by weight), calcium
hydroxide content (% by weight), sodium oxide dose (% by weight), water binder ratio, and curing
temperature (°C). The input variables were selected on the basis of data preprocessing in the form of
Pearson’s correlation analysis, which showed the importance of the given attributes. The distribution
of the input variables significantly impacts the model’s capacity to generalize. Frequency histograms
were generated for each variable in the chosen database of one-part geopolymer, as shown in Fig. 2.
The histograms show the magnitude of the respective input variable (in terms of bin range) on the x-
axis, whereas the frequency of each bin range is shown on the y-axis. The distribution of the data shows
even distribution for the fly ash concentration, slag content, and w/b ratio. The other parameters are a
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little skewed, which is also evident from the statistics in Table 1. However, the statistics of the variation
in the data are within the allowable limits, as explained below.
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Figure 1: Flow diagram of the methodology of this study
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Figure 2: Histogram of input and output variables (a) Fly ash concentration (%) (b) Slag content (%)
(c) Na2O (%) (d) w/b ratio (e) Curing temperature (°C) (f) Compressive strength (MPa)
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The determined statistical properties of the database are displayed in Table 1. The highest, lowest,
and average input and output values show that the database has a variety of data, suggesting that the
developed model will be applicable in a wide range of situations. Each input parameter’s standard
deviation was also determined. In contrast, the standard deviation of Ca(OH)2, Na2O dose, and
w/b ratio is minor, showing that most data points are near average. The Mode values for the given
inputs show that 50%, 0%, 0%, 4%, 0.4 and 25°C most frequently appeared in the data for fly ash
concentration, slag content, calcium hydroxide content, sodium oxide dose, water binder ratio, and
curing temperature, respectively. The standard deviation of FA, BFS, curing temperature, and 28-d
compressive strength is substantial, indicating that data points are widely spread. The dataset’s shape
was evaluated using the skewness and kurtosis measures. Kurtosis in the −10 to +10 range has been
previously reported to indicate that the data is well-shaped for the probability distribution [49]. All of
the database’s input and output variables have kurtosis values that fall within the previously specified
range. While kurtosis for FA, BFS, w/b ratio, and 28-d compressive strength is negative, it indicates
that the tail of the data is on the left side of the distribution curve for these variables. Conversely,
kurtosis for Ca(OH)2, Na2O dosage, and curing temperature is favorable, suggesting that the tail of
the data is on the right side of the distribution curve for these variables.

Table 1: Descriptive statistics of the input variables used in the modeling process

Parameter Minimum Mode Median Mean Maximum Standard
deviation

Skewness Variance Kurtosis

Fly ash (%) 0 50 60 62.72 100 31.90 −0.64 1017.69 −0.47
Slag (%) 0 0 40 34.95 100 31.45 0.61 989.34 −0.57
Ca(OH)2 (%) 0 0 0 1.24 12 3.21 2.31 10.28 3.64
Na2O (%) 0.27 4 5 5.24 18.6 2.63 1.89 6.92 6.62
w/b ratio 0.2 0.4 0.35 0.34 0.5 0.06 −0.38 0.00 −0.24
Curing
Temperature (°C)

20 25 25 32.02 90 17.17 1.68 294.76 1.57

28-d compressive
strength (MPa)

0.2 38 38.7 43.97 96.7 24.18 0.21 584.70 −0.98

2.2 GEP-Based Prediction Modeling
Ferreira suggested the GEP model, which combines the fixed-length simple linear chromosomes

of genetic algorithms and the parse trees system of gene programming [50]. Function set, terminal
set, control parameters, fitness functions, and terminal conditions are the prerequisites for using
GEP. Fig. 3 displays the stages involved in GEP analysis. The first step is to give each input a set
of chromosomes with a specified length. These chromosomes are expressed in expression trees in
the subsequent step, and the fitness of each expression tree is assessed. Following the application of
the reproduction process (crossover, replication, and genetic mutation), the most suitable individuals
are selected. Until the ideal answer is found, this iteration process is continued. The GEP model’s
applicability for issues like mix design optimization, among others, is a result of its capacity to create
straightforward mathematical equations to predict desired results based on input parameters.
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Figure 3: Schematic layout of GEP model [22]

The software GeneXproTools Version 5 was used to carry out the GEP modeling process [51].
The modeling environment was first given a 171-point dataset with variables identified as both
inputs and goal variables. The data was split into a 70% training set and a 30% validation set
using random partitioning. Many parameter values were systematically adjusted in order to create
a high-performance model. The root-mean-square error (RMSE) was selected as the fitness function,
allowing for the modification of factors like head size, chromosome count, and gene number. Genetic
parameters, such as recombination operators, RIS transposition, IS transposition, and mutation
likelihood, were established based on hyperparameter tuning (Table 2). The addition was defined as the
linking function between expression trees (ETs), and addition, subtraction, division, square root, and
squared multiplication were the linking functions inside ETs. Iterative refining of the model was carried
out until it attained optimal fitness, at which point further improvements in correlations and error
indices were insignificant. To avoid overfitting, the validation data’s performance was continuously
assessed. The modeling procedure came to an end when optimal performance was attained.

Table 2 lists the genetic operators and input setting parameters that were chosen in accordance
with previously released information for comparable analysis.
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Table 2: Hyperparameter tunning of ANN and GEP model

Description Parameters Value

Database description Training data points 120
Validation data points 51

Genes 3
No. of chromosomes 100
Head size 10
Linking function Addition
Function set +, -, ∗, /, ∧2, ∧(1/3)
Constants per gene 10

GEP model Mutation rate 0.00138
Inversion rate 0.00546
The transposition rate of IS 0.00546
Transposition rate of RIS 0.00546
Composition rate of gene 0.00277
Transposition rate of gene 0.00277

Type Neural Network
Hidden neurons number 10

ANN model Training algorithm LMBP
Maximum iterations 200
Data division 70/30

2.3 ANN-Based Prediction Modeling
One of the most extensively used approaches for data mining and machine learning is the artificial

neural network (ANN), a technology based on the biological neural network of the human brain [52].
In contrast to typical computational models, ANN models can learn from the database the underlying
complicated nonlinear relationship between the dependent and independent variables. They also do
not need specified limitations or assumptions. The ANN model is adequate for situations requiring
massive datasets due to its parallel processing capability. The nodes in an ANN model are arranged
in three different layers: An input layer, an output layer, and hidden layers. Multi-layered networks
typically offer greater accuracy than single-layered networks. The best-concealed layer is found using
the trial-and-error method. The three main layers of an artificial neural network (ANN) are input,
hidden, and output. Here, the input attributes were introduced into the ANN network in array form
in MATLAB. The input layer supported six distinct input parameters. The inputs were partitioned into
70% training and 30% validation data. Trial-based hyperparameter tweaking was used to determine
the ideal setup, which included 10 hidden neurons in a single hidden layer. Due to its quick convergence
and excellent accuracy properties, the Levenberg-Marquardt backpropagation technique was utilized
for the training dataset. Table 2 lists the hyperparameters for the ANN model.
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2.4 Validation Method
In order to verify the effectiveness of the models, a variety of validation procedures were used in

this study, including correlation (R), relative root mean square error (RRMSE), root mean square error
(RMSE), mean absolute error (MAE), and relative squared error (RSE). The values of these statistical
indices are calculated using Eqs. (1) to (5). In the given equations, ai is the experimental result of the
ith output and ai is the mean of experimental results, bi is the predicted result of the ith output, bi is
the mean of predicted results, and n is the total no. of data points.

These statistical criteria have also been employed in earlier research to evaluate the precision of AI
models [53,54]. A more accurate model frequently has lower RMSE and MAE values. On the other
hand, a model is considered to be more precise when the R-value is close to 1. A value of R-value
greater than 0.8 denotes a significant correlation between expected and experimental results [55]. R-
value assesses the linear dependency between independent and dependent variables.

RMSE =
√∑n

i=1 (ai − bi)
2

n
(1)

RRMSE = 1
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√∑n
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2

n
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3 Results and Discussion
3.1 Performance Evaluation of Various Models

Key statistical indices, such as R, RMSE, RRMSE, RSE, and MAE, have all been used to assess
the efficacy of the generated models thoroughly. Table 3 displays the equivalent values for these indices
for the GEP and ANN models on the training and validation datasets. For the GEP model, the training
and validation datasets have correlation coefficients (R) of 0.82 and 0.81, respectively. This suggests
that there is a fair correlation between the input and output variables [56]. On the other hand, with
values of 0.96 and 0.90 for the training and validation datasets, respectively, the ANN model shows
noticeably higher correlation coefficients. These high R-values indicate a strong correlation between
the input and output variables, highlighting the ANN model’s more extraordinary predictive ability
over the GEP model.

Upon examining the validation dataset, the GEP model produces values for RMSE, RRMSE,
RSE, and MAE that are, respectively, 14.95, 0.32, 0.35, and 11.21. By contrast, the ANN model yields
far lower values—that is, 8.93 for RMSE, 0.25 for RRMSE, 0.18 for RSE, and 5.85 for MAE—for
these error metrics. This discrepancy in error indices highlights the ANN model’s improved predictive



534 CMES, 2024, vol.141, no.1

performance even more, especially in its capacity to generate precise forecasts for data that has never
been observed before.

Table 3: Error indices values for GEP and ANN model

Statistical measures
GEP ANN

Range/Ideal values
Training Validation Training Validation

R 0.82 0.81 0.96 0.90 (0-1)/1
RMSE 13.45 14.95 6.73 8.93 (0-∞)/0
RRMSE 0.31 0.32 0.15 0.25 (0-∞)/0
RSE 0.33 0.35 0.09 0.18 (0-∞)/0
MAE 10.03 11.21 4.79 5.85 (0-∞)/0

To put it briefly, the analysis of these statistical indices highlights the advantages of the ANN
model over the GEP model, emphasizing the latter’s inability to forecast outcomes on the validation
dataset with the former’s superior accuracy and dependability.

Fig. 4 presents the overall evaluation of the complete database and shows the absolute errors of
the predictions made by the GEP and ANN models in addition to the outcomes of experimental trials.
This figure comprehensively represents the absolute errors in both models. Upon closer inspection, it
becomes clear that the absolute errors for the GEP and ANN models both lie within a reasonable
range, suggesting that they are generally capable of making correct predictions for the provided data.
For both the GEP and ANN models, the average absolute error—a critical performance indicator
—is 10.52 and 6.07 MPa, respectively. This significant variation in average absolute error validates the
ANN model’s higher prediction accuracy than the GEP model. Since the difference between the values
of R and error indices for the training and validation data is more significant in the case of the ANN
model, it can be argued that the ANN model is slightly more overfitted than the GEP model.

Moreover, it is significant that both models show similar absolute maximum errors, even though
the ANN forecasts have a noticeably lower incidence rate of maximum errors. This implies that, in spite
of the ANN model’s generally improved performance, the GEP model occasionally achieves equivalent
accuracy levels, especially when it comes to absolute maximum errors. The examination of average
and maximum absolute errors, along with the display of the whole database in Fig. 2, supports the
conclusion that the ANN model performs better than the GEP model in terms of prediction accuracy.
It is important to note, nevertheless, that both models exhibit respectable accuracy within a reasonable
range, with the GEP model occasionally outperforming the others in terms of absolute maximum
errors.

Fig. 5 displays the 28-d compressive strength values such that experimental values are plotted on
the x-axis and the predicted values on the y-axis. The observation is coupled with an ideal fit and a
linear fit of ANN and GEP models. The proximity of the regression line to the perfect fit line and the
proximity of the slope to unity are two indicators of models shown in this figure [53]. Fig. 5 shows
that the regression line for the 28-d compressive strength result is very close to the perfect fit line,
demonstrating that the ANN model accurately captured the effect of all input parameters. As can be
observed, the GEP model’s projected compressive strength findings are significantly less accurate than
those of the ANN model.
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Figure 4: Absolute error representation of (a) GEP and (b) ANN model

Figure 5: Performance comparison of (a) GEP model (b) ANN model

3.2 Sensitivity Analysis
For sensitivity analysis, a simulated database was created in the form of a separate matrix such

that the first variable was changed in equal intervals between its extremes, and the remaining values
were maintained at their average values; then, the second parameter was altered while keeping first,
third, fourth, fifth and sixth parameter constant at their average values, and so on. The average
values of input variables were taken as constant for the parametric study already revealed in Table 1.
The database created was tested on the basis of a trained model to predict the target variables. The
ANN model was used for sensitivity and parametric evaluation owing to its substantial accuracy
performance compared to the GEP model. The results obtained for each input parameter were used
to calculate the sensitivity of the parameter. For instance, 20 equal intervals were used for the first
parameter, fly ash concentration, and the values of compressive strength obtained were used to find
the range (maximum-minimum). Similar calculations were made for all the six variables. The range
for each parameter was divided by the sum of all ranges to obtain the sensitivity of the variable in
terms of percentages. Numerous academics have previously employed this technique to undertake
sensitivity analysis [57,58]. Using the sensitivity analysis method described above, the impact of each
input parameter on the 28-d strength forecasting of one-part geopolymer was assessed for this study.
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The contribution of each parameter to the anticipated 28-d strength of one part geopolymer is
shown in Fig. 6. The dosage of sodium oxide (Na2O) has the most significant influence (38.73%)
on the prediction of the 28-d strength of the one-part geopolymer. This outcome is consistent
with earlier research on conventional geopolymers and other experimental studies using analogous
materials. It has been previously stated that the amount of alkaline activator directly correlates to the
dissolution of precursors [59]. As a result, it makes sense that sodium oxide contributes the most to the
28-d strength of one part geopolymer. Slag content makes the second largest (31.47%) contribution
to predicting 28-d strength, following the Na2O concentration. One-part geopolymer’s compressive
strength is significantly impacted by the production of additional reaction products (calcium silicate
hydrate gel and calcium alumino-silicate hydrate gel) in geopolymer systems as a result of the inclusion
of slag [60,61]. Fly ash and curing temperature both make a sizable 17.27% and 9.02% contribution,
respectively, to the prediction of compressive strength. However, there is virtually little correlation
between compressive strength prediction and w/b ratio. Although water does not participate in the
geopolymerization reaction, like the hydration reaction, dependence is still reasonable. The dataset
employed in this study (owing to the comparatively modest range of variation) may, however, be to
blame for the extraordinarily low reliance.

Figure 6: Sensitivity analysis of 28-d compressive strength on the basis of ANN model

3.3 Parametric Analysis
Several tests must be conducted to ensure that models developed using AI are trustworthy and

effective across a wide range of data combinations. Not all times do the best results for an output
parameter imply that the model correctly predicted the behavior. Previous studies have recommended
parametric and sensitivity analysis to better understand the relationship between input parameters and
their contribution to final output prediction [16,56]. For the parametric study, the procedure described
in Section 3.2 was followed. The variation of compressive strength with changing parameters is then
plotted to get the parametric evaluation.

According to Al-Majidi et al. [62], the addition of slag to fly ash-based GP resulted in improved
strength because of improved pore structure and extra reaction products (C-A-S-H and C-S-H gel),
which is evident here as well (Fig. 7a). As shown in Fig. 7b, the compressive strength improves as
the slag content increases. With the dosage of calcium hydroxide content being increased, a modest
rise in compressive strength can be seen in Fig. 7c. This is also somewhat understandable because an
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increase in calcium hydroxide concentration raises the system’s alkalinity, which in turn encourages the
dissolution of aluminum silicates [63]. As can be seen in Fig. 7d, the compressive strength improved
with an increase in activator dosage. The amount of alkaline activator has a direct impact on the
dissolution of the aluminosilicate precursor, which is the initial stage in the polymerization reaction.
Higher activator concentrations result in more significant dissolution and, as a result, greater strength
because of improved geopolymerization [64].

When it comes to the water binder ratio, a slight decrease in compressive strength can be observed
with an increase (Fig. 7e). Similar patterns have also been seen in a number of experimental research
[65,66]. Geopolymerization requires water for the dissolution, polycondensation, and hardening
phases. According to additional research, fly ash-based geopolymers lose strength when the w/b ratio
rises [67]. An interesting finding is the inverse relationship between the 28-d compressive strength
and the rise in curing temperature for one-part fly ash-slag geopolymers (Fig. 7f). The initial step
of geopolymerization, the dissolution of alumino-silicate compounds, is known to be triggered and
accelerated by heat [64]. However, water is released during the polycondensation process, which creates
aluminosilicate gel. This water becomes entrapped in the crevices of the geopolymer gel that has
become hard [68]. Heat curing might hasten the dissolving reaction and cause this water to evaporate
from the spaces, which would gradually increase the apparent porosity. As porosity rises, cementitious
compounds lose strength [69]. The observed decrease in 28-d compressive strength with an increase in
curing temperature may be due to the increase in porosity during high-temperature curing.

This implies that the established model is accurate and dependable for predicting the compressive
strength of one-part GP in the context of past experimental experiments. The parametric and
sensitivity analysis results are compatible with the findings of the preceding experimental investiga-
tions, indicating that the model has been successfully trained to reflect the behavior of a one-part
geopolymer.

Figure 7: (Continued)
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Figure 7: Parametric analysis on the basis of ANN model (a) With fly ash (b) With slag (c) with
Ca(OH2) (d) With Na2O (e) For w/b ratios (f) For variable curing temperature

4 Conclusion

Because of their low carbon emission content, Alkali Activated Materials (AAMs) or geopolymers
have been the focus of recent studies on ecological concrete. In addition to their outstanding environ-
mental qualities, AAMs outperform regular Portland cement-based concrete in terms of strength and
longevity. However, elements, including the kind, concentration, and characteristics of raw materials,
significantly impact how well AAMs perform. Because of their superior performance, fly ash and slag
are the favored precursors for creating one-part geopolymers. Notwithstanding the benefits, finding
the ideal combination of input parameters to achieve acceptable performance is complex and rarely
documented. As a result, this study uses machine learning techniques, especially Gene Expression
Programming (GEP) models and Artificial Neural Networks (ANN). These models, which were
created with MATLAB and GeneXprotools, respectively, are meant to forecast compressive strength
for fly ash and slag-based one-part geopolymers under different input material and content conditions.
The following conclusions were made from this study:

• The performance of the developed ANN and GEP models was evaluated using a variety of
statistical indices, i.e., R, MAE, RMSE, RSE, and RRMSE. The values of R (correlation)
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obtained from the ANN and GEP models were more significant than 0.8, suggesting a reliable
agreement between experimental and predicted results.

• With R-values of 0.96 and 0.90 for the training and validation datasets, respectively, the
ANN model performed better than the GEP model in predicting the strength of a one-part
geopolymer. Additional parameters such as MAE, RMSE, RRMSE, and RSE further validated
the higher performance of the ANN model. These values were obtained as 5.85, 8.93, 0.25, and
0.18 MPa, respectively.

• Sensitivity analysis revealed that activator content and slag content are the most influential
parameters showing the contribution (38.73 and 32.47, respectively) towards the prediction
of 28-d compressive strength. The parametric analysis revealed that activator content, slag,
and calcium hydroxide content followed a direct relation, while water binder ratio and curing
temperature followed an inverse relation with 28-d compressive strength. The study reveals that
the percentage of fly ash from 55% to 85% and slag from 15% to 50% are optimum values
depending on the strength requirement.

The current study was based on the data obtained from the literature. To provide more practical
and reliable recommendations on optimizing constituents of geopolymer concrete, control laboratory
experiments with uniform testing conditions shall be conducted in the future. Moreover, advanced
machine learning techniques, including metaheuristic algorithms, shall be used to develop more
accurate models.
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